Accurate and efficient expression evaluation and linear algebra, or Why it can be easier to compute accurate eigenvalues of a Vandermonde matrix than the accurate sum of 3 numbers

James Demmel

UC Berkeley Math and EECS Depts.

Joint work with Ioana Dumitriu, Olga Holtz, Plamen Koev

- 1. Getting the right answer
 - At all? In polynomial time?
 - Depends on the model of arithmetic

- 1. Getting the right answer
 - At all? In polynomial time?
 - Depends on the model of arithmetic
- 2. Getting the same answer
 - When running same problem on two different machines?
 - When running same problem twice on same machine?

- 1. Getting the right answer
 - At all? In polynomial time?
 - Depends on the model of arithmetic
- 2. Getting the same answer
 - When running same problem on two different machines?
 - When running same problem twice on same machine?
- 3. Getting a fast answer
 - Arithmetic is cheap, moving data is expensive
 - How does this change algorithms?

- 1. Getting the right answer
 - At all? In polynomial time?
 - Depends on the model of arithmetic
- 2. Getting the same answer
 - When running same problem on two different machines?
 - When running same problem twice on same machine?
- 3. Getting a fast answer
 - Arithmetic is cheap, moving data is expensive
 - How does this change algorithms?

Motivating Example (1/2)

Def: Accurate means relative error less than 1

How do the following 3 kinds of accurate evaluation problems differ in difficulty?

- 1. Motzkin polynomial $z^6 + x^2y^2(x^2 + y^2 3z^2)$, or eig(V) with $V_{ij} = x_i^j$, where $0 < x_1 < x_2 < \dots$
- 2. Eigenvalues of $\nabla \cdot (\theta \nabla u) + \lambda \rho u = 0$ discretized with the FEM on a triangular mesh, or
 - x + y + z
- 3. Determinant of a Toeplitz matrix

Motivating Example (2/2)

Accurate alg. for Motzkin polynomial $p = z^6 + x^2y^2(x^2 + y^2 - 3z^2)$

$$\begin{array}{ll} \text{if} & |x-z| \leq |x+z| \wedge |y-z| \leq |y+z| \\ p = z^4 \cdot [4((x-z)^2 + (y-z)^2 + (x-z)(y-z))] + \\ & + z^3 \cdot [2(2(x-z)^3 + 5(y-z)(x-z)^2 + 5(y-z)^2(x-z) + \\ & 2(y-z)^3)] + \\ & + z^2 \cdot [(x-z)^4 + 8(y-z)(x-z)^3 + 9(y-z)^2(x-z)^2 + \\ & 8(y-z)^3(x-z) + (y-z)^4] + \\ & + z \cdot [2(y-z)(x-z)((x-z)^3 + 2(y-z)(x-z)^2 + \\ & 2(y-z)^2(x-z) + (y-z)^3] + \\ & + (y-z)^2(x-z)^2((x-z)^2 + (y-z)^2) \\ \text{else} & \dots 7 \text{ more analogous cases} \end{array}$$

Can we automate the discovery of such algorithms? Or prove they do not exist, i.e. that extra precision is necessary? How much extra precision?

Getting the right answer: Outline

- 1. Problem statement and (more) motivating examples
- 2. Classical Model (CM) and Black-Box Model (BBM) of arithmetic
- 3. Necessary and sufficient conditions for accurate evaluation in CM
- 4. Necessary and sufficient conditions for accurate evaluation in BBM
- 5. Consequences for finite precision arithmetic
- 6. Is it worth getting the right answer? Conditioning
- 7. Open problems

Getting the right answer: Outline

- 1. Problem statement and (more) motivating examples
- 2. Classical Model (CM) and Black-Box Model (BBM) of arithmetic
- 3. Necessary and sufficient conditions for accurate evaluation in CM
- 4. Necessary and sufficient conditions for accurate evaluation in BBM
- 5. Consequences for finite precision arithmetic
- 6. Is it worth getting the right answer? Conditioning
- 7. Open problems

Problem statement

Given a polynomial (or a family of polynomials) p, either produce an **accurate** algorithm to compute y = p(x), or prove that none exists.

Accurately means relative error $\eta < 1$, i.e.

$$\diamond ||y_{\text{computed}} - y| \leq \eta ||y|,$$

♦
$$\eta = 10^{-2}$$
 yields two digits of accuracy,

$$\diamond \quad y_{\text{computed}} = 0 \iff y = 0.$$

50x50 Hilbert Matrix - \log_{10} (eigenvalues)

40x40 Pascal Matrix - eigenvalues

20x20 Schur Complement of 40x40 Vandermonde Matrix - eigenvalues

Complexity of Accurate Algorithms for General Structured Matrices

				Any			Sym
Type of matrix		$\det A$	A^{-1}	minor	LDU	SVD	EVD
Acyclic		n	n^2	n	$\leq n^2$	n^3	N/A
(bidiagona)	l and other)						
Total Sign	Compound	n	n^3	n	n^4	n^4	n^4
(TSC)							
Diagonally Scaled Totally		n^3	$n^{5}?$	n^3	n^3	n^3	n^3
Unimodular (DSTU)							
Weakly diagonally		n^3	n^3	?	n^3	n^3	n^3
dominant M-matrix							
	Cauchy	n^2	n^2	n^2	$\leq n^3$	n^3	n^3
Displace-							
ment	Vandermonde	n^2	?	?	?	n^3	n^3
Rank One							
	Polynomial	n^2	?	?	?	?	?
	Vandermonde						
Toeplitz		?	?	?	?	?	?

Complexity of Accurate Algorithms for Totally Nonnegative (TN) Matrices

Type of			Any	Gai	lSS.	elim.	NE	Ax=b		Eig.
Matrix	$\det A$	A^{-1}	minor	NP	PP	CP	NP		SVD	Val.
Cauchy	n^2	n^2	n^2	n^2	n^3	n^3	n^2	n^2	n^3	n^3
Vandermonde	n^2	n^3	n^3	n^2	n^2	poly	n^2	n^2	n^3	n^3
Generalized	n^2	n^3	poly	n^2	n^2	poly	n^2	n^2	n^3	n^3
Vandermonde										
Any TN in	n	n^3	n^3	n^3	n^3	n^3	0	n^2	n^3	n^3
Neville form										

Def: A is Totally Positive (TP) if all minors are positive. A is Totally Nonnegative (TN) if all minors are nonnegative.

Theorem: The class of TN matrices for which we can do accurate linear algebra in polynomial time is closed under multiplication, taking submatrices, Schur complement, J-inverse and converse.

Getting the right answer: Outline

- 1. Problem statement and (more) motivating examples
- 2. Classical Model (CM) and Black-Box Model (BBM) of arithmetic
- 3. Necessary and sufficient conditions for accurate evaluation in CM
- 4. Necessary and sufficient conditions for accurate evaluation in BBM
- 5. Consequences for finite precision arithmetic
- 6. Is it worth getting the right answer? Conditioning
- 7. Open problems

- All quantities are arbitrary real numbers, or complex numbers (bits come later)
- *fl*(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
 Operations?

- All quantities are arbitrary real numbers, or complex numbers (bits come later)
- *fl*(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
 Operations?
 - \diamond in Classical Model (CM), +, -, ×; also exact negation;

- All quantities are arbitrary real numbers, or complex numbers (bits come later)
- *fl*(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
 Operations?
 - \diamond in Classical Model (CM), +, -, \times ; also exact negation;
 - ♦ in Black-Box Model (BBM), in addition to the above, polynomial expressions (e.g. $x - y \cdot z$ (FMA), x + y + z, dot products, small determinants, ...)

• Constants?

Availability of constants?

- Classical Model:
 - without $\sqrt{2}$, we cannot compute

$$x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$$

accurately.

- no loss of generality for homogeneous, integer-coefficient polynomials.
- Black-Box Model:
 - any constants we choose can be accommodated.

- All quantities are arbitrary real numbers, or complex numbers (bits come later)
- *fl*(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
 Operations?
 - \diamond in Classical Model (CM), +, -, ×; also exact negation;
 - ♦ in Black-Box Model (BBM), in addition to the above, polynomial expressions (e.g. $x - y \cdot z$ (FMA), x + y + z, dot products, small determinants, ...)
- Constants? none in Classical Model, anything in Black-Box Model.

- All quantities are arbitrary real numbers, or complex numbers (bits come later)
- *fl*(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
 Operations?
 - \diamond in Classical Model (CM), +, -, ×; also exact negation;
 - ♦ in Black-Box Model (BBM), in addition to the above, polynomial expressions (e.g. $x - y \cdot z$ (FMA), x + y + z, dot products, small determinants, ...)

• Algorithms?

 \diamond exact answer in finite # of steps in absence of roundoff error

- All quantities are arbitrary real numbers, or complex numbers (bits come later)
- *fl*(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
 Operations?
 - \diamond in Classical Model (CM), +, -, ×; also exact negation;
 - ♦ in Black-Box Model (BBM), in addition to the above, polynomial expressions (e.g. $x - y \cdot z$ (FMA), x + y + z, dot products, small determinants, ...)
- Algorithms?
 - \diamond exact answer in finite # of steps in absence of roundoff error
 - \diamond branching based on comparisons

- All quantities are arbitrary real numbers, or complex numbers (bits come later)
- *fl*(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
 Operations?
 - \diamond in Classical Model (CM), +, -, ×; also exact negation;
 - ♦ in Black-Box Model (BBM), in addition to the above, polynomial expressions (e.g. $x - y \cdot z$ (FMA), x + y + z, dot products, small determinants, ...)
- Algorithms?
 - \diamond exact answer in finite # of steps in absence of roundoff error
 - \diamond branching based on comparisons
 - ◊ non-determinism (because determinism is simulable)

- All quantities are arbitrary real numbers, or complex numbers (bits come later)
- *fl*(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
 Operations?
 - \diamond in Classical Model (CM), +, -, ×; also exact negation;
 - ♦ in Black-Box Model (BBM), in addition to the above, polynomial expressions (e.g. $x - y \cdot z$ (FMA), x + y + z, dot products, small determinants, ...)
- Algorithms?
 - \diamond exact answer in finite # of steps in absence of roundoff error
 - \diamond branching based on comparisons
 - ◊ non-determinism (because determinism is simulable)
 - \diamond domains to be \mathbb{C}^n or \mathbb{R}^n (but some domain-specific results).

Problem Statement, formally:

 \diamond Notation:

- -p(x) multivariate polynomial to be evaluated, $x = (x_1, \ldots, x_k)$.
- $-\delta = (\delta_1, \ldots, \delta_m)$ is the vector of error (rounding) variables.
- $-p_{comp}(x, \delta)$ is the result of algorithm to compute p at x with errors δ .
- ◇ Goal: Decide if ∃ algorithm $p_{comp}(x, \delta)$ to accurately evaluate p(x) on \mathcal{D} : $\forall 0 < \eta < 1$... for any η = desired relative error $\exists 0 < \epsilon < 1$... there is an ϵ = maximum rounding error $\forall x \in \mathcal{D}$... so that for all x in the domain $\forall |\delta_i| \le \epsilon$... and for all rounding errors bounded by ϵ $|p_{comp}(x, \delta) - p(x)| \le \eta \cdot |p(x)|$... relative error is at most η

♦ Given p(x) and \mathcal{D} , seek effective procedure ("compiler") to exhibit algorithm, or show one does not exist

Examples in classical arithmetic over \mathbb{R}^n (none work over \mathbb{C}^n).

•
$$M_2(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 - 2 \cdot z^2)$$

- Positive definite and homogeneous, easy to evaluate accurately

•
$$M_3(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 - 3 \cdot z^2)$$

– Motzkin polynomial, nonnegative, zero at |x| = |y| = |z|

$$\begin{split} \text{if} & |x-z| \leq |x+z| \wedge |y-z| \leq |y+z| \\ p &= z^4 \cdot [4((x-z)^2 + (y-z)^2 + (x-z)(y-z))] + \\ &+ z^3 \cdot [2(2(x-z)^3 + 5(y-z)(x-z)^2 + 5(y-z)^2(x-z) + \\ &2(y-z)^3)] + \\ &+ z^2 \cdot [(x-z)^4 + 8(y-z)(x-z)^3 + 9(y-z)^2(x-z)^2 + \\ &8(y-z)^3(x-z) + (y-z)^4] + \\ &+ z \cdot [2(y-z)(x-z)((x-z)^3 + 2(y-z)(x-z)^2 + \\ &2(y-z)^2(x-z) + (y-z)^3] + \\ &+ (y-z)^2(x-z)^2((x-z)^2 + (y-z)^2) \\ \text{else} & \dots 2^{\# \text{vars}-1} \text{ more analogous cases} \end{split}$$

•
$$M_4(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 - 4 \cdot z^2)$$

– Impossible to evaluate accurately

Sneak Peak.

The variety,

 $V(p) = \{ x : p(x) = 0 \} \ ,$

plays a necessary role.

Getting the right answer: Outline

- 1. Problem statement and (more) motivating examples
- 2. Classical Model (CM) and Black-Box Model (BBM) of arithmetic
- 3. Necessary and sufficient conditions for accurate evaluation in CM
- 4. Necessary and sufficient conditions for accurate evaluation in BBM
- 5. Consequences for finite precision arithmetic
- 6. Is it worth getting the right answer? Conditioning
- 7. Open problems

Allowable varieties in Classical Model of arithmetic.

Define *basic allowable sets*:

•
$$Z_i = \{x : x_i = 0\},$$

•
$$S_{ij} = \{x : x_i + x_j = 0\},\$$

•
$$D_{ij} = \{x : x_i - x_j = 0\}.$$

A variety V(p) is *allowable* if it can be written as a finite union of intersections of basic allowable sets.

Denote by

$$\mathbf{G}(\mathbf{p}) = \mathbf{V}(\mathbf{p}) - \cup_{\mathbf{allowable}\ \mathbf{A} \ \subset \ \mathbf{V}(\mathbf{p})}\ \mathbf{A}$$

the set of points in general position.

V(p) unallowable $\Rightarrow G(p) \neq \emptyset.$

Necessary condition.

Theorem 1: V(p) unallowable $\Rightarrow p$ cannot be evaluated accurately on \mathbb{R}^n or on \mathbb{C}^n .

Theorem 2: On a domain \mathcal{D} , if $\operatorname{Int}(\mathcal{D}) \cap G(p) \neq \emptyset$, p cannot be evaluated accurately.

Examples on \mathbb{R}^n , revisited.

•
$$p(x, y, z) = x + y + z$$

UNALLOWABLE

•
$$M_2(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 - 2 \cdot z^2)$$

ALLOWABLE, $V(p) = \{0\}.$

- $M_3(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 3 \cdot z^2)$ ALLOWABLE, $V(p) = \{|x| = |y| = |z|\}$
- $M_4(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 4 \cdot z^2)$ UNALLOWABLE
- $V(\det(\text{Toeplitz}))$, UNALLOWABLE \Rightarrow no accurate linear algebra for Toeplitz (need arbitrary precision arithmetic, as we will see later).

Necessary condition, real and complex.

Theorem 1: V(p) unallowable $\Rightarrow p$ cannot be evaluated accurately on \mathbb{R}^n or on \mathbb{C}^n .

Theorem 2: On a domain \mathcal{D} , if $\operatorname{Int}(\mathcal{D}) \cap G(p) \neq \emptyset$, p cannot be evaluated accurately.

Sketch of proof.

Simplest case: non-branching, no data reuse (except for inputs), non-determinism.

Algorithm can be represented as a tree with extra edges from the sources, each node corresponds to an operation $(+, -, \times)$, each node has a specific δ , each node has two inputs, one output.

Let $x \in G(p)$ and define Allow(x) as the smallest allowable set containing x.

Necessary condition, real and complex.

Theorem 1: V(p) unallowable $\Rightarrow p$ cannot be evaluated accurately on \mathbb{R}^n or on \mathbb{C}^n .

Theorem 2: On a domain \mathcal{D} , if $\operatorname{Int}(\mathcal{D}) \cap G(p) \neq \emptyset$, p cannot be evaluated accurately.

Sketch of proof, cont'd.

Key fact: for a positive measure set of δ s in δ -space, a zero output can be "traced back" down the tree to "allowable" condition ($x_i = 0$ or $x_i + x_j = 0$), or trivial one ($x_i - x_i = 0$). So for a positive measure set of δ s, either

• $p_{comp}(x, \delta)$ is not 0 (though p(x) = 0), or

• for all $y \in Allow(x) \setminus V(p)$, $p_{comp}(y, \delta) = 0$ (though $p(y) \neq 0$).

In either case, the polynomial is not accurately evaluable arbitrarily close to x, q.e.d.

Sufficient Condition, complex case.

Theorem. Let p be a polynomial over \mathbb{C}^n with integer coefficients. If V(p) is allowable, then p is accurately evaluable.

Sketch of proof.

Can write

$$p(x) = c \prod_i p_i(x) \; ,$$

where $p_i(x)$ is a power of some x_j or $x_j \pm x_k$, and c is an integer; all operations are accurate.

Sufficient Condition, complex case.

Theorem. Let p be a polynomial over \mathbb{C}^n with integer coefficients. If V(p) is allowable, then p is accurately evaluable.

Sketch of proof.

Can write

$$p(x) = c \prod_{i} p_i(x) \; ,$$

where $p_i(x)$ is a power of some x_j or $x_j \pm x_k$, and c is an integer; all operations are accurate.

Corollary. If p is a complex multivariate polynomial, p is accurately evaluable iff p has integer coefficients and V(p) is allowable.

Sufficient Condition, real case.

Trickier... Allowability *not* sufficient:

- $q = (u^4 + v^4) + (u^2 + v^2)(x^2 + y^2 + z^2), V(p) = \{u = v = 0\}$: allowable and accurately evaluable
- $p = (u^4 + v^4) + (u^2 + v^2)(x + y + z)^2$, $V(p) = \{u = v = 0\}$: allowable but NOT accurately evaluable!
- Has to do with locally dominant behavior (in this case, near the set $\{u = v = 0\}$).

Sufficient Condition, real case.

Trickier... Allowability *not* sufficient:

- $q = (u^4 + v^4) + (u^2 + v^2)(x^2 + y^2 + z^2), V(p) = \{u = v = 0\}$: allowable and accurately evaluable
- $p = (u^4 + v^4) + (u^2 + v^2)(x + y + z)^2$, $V(p) = \{u = v = 0\}$: allowable but NOT accurately evaluable!
- Has to do with locally dominant behavior (in this case, near the set $\{u = v = 0\}$).

Theorem. If all "dominant terms" are accurately evaluable on \mathbb{R}^n then p is accurately evaluable. In non-branching case, if p is accurately evaluable on \mathbb{R}^n , then so are all "dominant terms".

What is dominance? Newton Polytope

What is dominance? Normal Fan

What is dominance? First orthant of -(Normal Fan)

What is dominance? Labeling dominant terms

What is dominance? (x, y) regions where different terms dominant

Sufficient Condition, real case.

Trickier... Allowability *not* sufficient:

- $q = (u^4 + v^4) + (u^2 + v^2)(x^2 + y^2 + z^2), V(p) = \{u = v = 0\}$: allowable and accurately evaluable
- $p = (u^4 + v^4) + (u^2 + v^2)(x + y + z)^2$, $V(p) = \{u = v = 0\}$: allowable but NOT accurately evaluable!
- Has to do with locally dominant behavior (in this case, near the set $\{u = v = 0\}$).

Theorem. If all "dominant terms" are accurately evaluable on \mathbb{R}^n then p is accurately evaluable. In non-branching case, if p is accurately evaluable on \mathbb{R}^n , then so are all "dominant terms".

Need inductive procedure of testing accurate evaluability, but so far no clear induction parameter.

Getting the right answer: Outline

- 1. Problem statement and (more) motivating examples
- 2. Classical Model (CM) and Black-Box Model (BBM) of arithmetic
- 3. Necessary and sufficient conditions for accurate evaluation in CM
- 4. Necessary and sufficient conditions for accurate evaluation in BBM
- 5. Consequences for finite precision arithmetic
- 6. Is it worth getting the right answer? Conditioning
- 7. Open problems

Allowable varieties in black-box arithmetic.

Define **black-boxes**: q_1, q_2, \ldots, q_k are polynomials $\mathcal{V}_i = \{ V \neq \mathbb{R}^n : V \text{ can be obtained from } q_i \text{ through Process A, below} \}$

Process A:

Step 1. repeat and/or negate, or 0 out some of the inputs,

Step 2. of the remaining variables, keep some symbolic, and find the variety in terms of the others.

Example: $q_1(x, y) = x - y$ has (up to symmetry) $\mathcal{V}_1 = \{\{x = 0\}, \{x - y = 0\}, \{x + y = 0\}\},$ $q_2(x, y, z) = x - y \cdot z$ has (up to symmetry) $\mathcal{V}_2 = \{\{x = 0\}, \{y = 0\} \cup \{z = 0\}, \{x = 0\} \cup \{x = 1\}, \{x = 0\} \cup \{x = -1\},$ $\{x = 0\} \cup \{y = 1\}, \{x = 0\} \cup \{y = -1\}, \{x - y^2 = 0\}, \{x + y^2 = 0\},$ $\{x - yz = 0\}, \{x + yz = 0\}\}.$

Allowable varieties in black-box arithmetic. Define black-boxes: q_1, q_2, \ldots, q_k are polynomials $\mathcal{V}_j = \{ V \neq \mathbb{R}^n : V \text{ can be obtained from } q_j \text{ through Process A} \}$

Define *basic allowable sets*:

- $\bullet Z_i = \{x : x_i = 0\},\$
- $S_{ij} = \{x : x_i + x_j = 0\},\$
- $D_{ij} = \{x : x_i x_j = 0\},\$
- any V for which there is a j such that $V \in \mathcal{V}_j$.

Allowable varieties in black-box arithmetic.

Define **black-boxes**: q_1, q_2, \ldots, q_k are polynomials

 $\mathcal{V}_j = \{ V \neq \mathbb{R}^n : V \text{ can be obtained from } q_j \text{ through } \mathbf{Process } \mathbf{A} \}$

A variety V(p) is *allowable* if it is a union of irreducible parts of finite intersections of basic allowable sets.

Denote by

 $\mathbf{G}(\mathbf{p}) = \mathbf{V}(\mathbf{p}) - \cup_{\text{allowable } \mathbf{A} \subset \mathbf{V}(\mathbf{p})} \mathbf{A}$

the set of points in general position.

V(p) unallowable $\Rightarrow G(p) \neq \emptyset.$

Necessary condition, real and complex.

Theorem 1: V(p) unallowable $\Rightarrow p$ cannot be evaluated accurately on \mathbb{R}^n or on \mathbb{C}^n .

Theorem 2: On a domain \mathcal{D} , if $\operatorname{Int}(\mathcal{D}) \cap G(p) \neq \emptyset$, p cannot be evaluated accurately.

Sufficient condition, complex, for all q_i irreducible.

Theorem: If V(p) is a union of intersections of sets Z_i , S_{ij} , D_{ij} , and $V(q_j)$, then p is accurately evaluable.

Corollary: If all q_j are affine, then p is accurately evaluable iff V(p) is allowable.

Consequences for Numerical Linear Algebra.

- $V(\det(\text{Toeplitz}))$ contains irreducible factors of arbitrarily large degree \Rightarrow no set of black-boxes of bounded degree will be sufficient for accurate evaluation \Rightarrow need arbitrary precision arithmetic to do NLA accurately on Toeplitz matrices.
- Same argument shows that we cannot accurately evaluate many generalized Vandermonde matrices (Schur functions as determinants).
- Conjecture: if the class of structured matrices has displacement rank ≥ 2 , then accurate evaluation will not always be possible.

Complexity of Accurate Algorithms for General Structured Matrices

				Any			Sym
Type of matrix		$\det A$	A^{-1}	minor	LDU	SVD	EVD
Acyclic		n	n^2	n	$\leq n^2$	n^3	N/A
(bidiagona)	l and other)						
Total Sign Compound		n	n^3	n	n^4	n^4	n^4
(TSC)							
Diagonally Scaled Totally		n^3	$n^{5}?$	n^3	n^3	n^3	n^3
Unimodular (DSTU)							
Weakly diagonally		n^3	n^3	No	n^3	n^3	n^3
dominant M-matrix							
	Cauchy	n^2	n^2	n^2	$\leq n^3$	n^3	n^3
Displace-							
ment	Vandermonde	n^2	No	No	No	n^3	n^3
Rank One							
	Polynomial	n^2	No	No	No	*	*
	Vandermonde						
Toeplitz		No	No	No	No	No	No

* = "it depends"

Getting the right answer: Outline

- 1. Problem statement and (more) motivating examples
- 2. Classical Model (CM) and Black-Box Model (BBM) of arithmetic
- 3. Necessary and sufficient conditions for accurate evaluation in CM
- 4. Necessary and sufficient conditions for accurate evaluation in BBM
- 5. Consequences for finite precision arithmetic
- 6. Is it worth getting the right answer? Conditioning
- 7. Open problems

Choosing a finite precision arithmetic model

- In finite precision, accuracy always possible, only question is cost
- Measure bit complexity in floating point: $(e, m) \equiv 2^e \cdot m$
- Contrasts between complexity in Floating Point and Fixed Point
 - Repeated squaring can have exponential cost in Fixed, polynomial in Float
 - $-\operatorname{Det}(A)$ polynomial in Fixed [Clarkson], unknown in Float
 - Witness for matrix singularity (null vector) in Float can have exponentially many bits
 - Computing "middle bits" of $\prod_{i=1}^{n} (1+x_i)$ polynomial in Fixed, as hard as computing the permanent in Float
- Float seems more natural for attaining relative accuracy

Cost implications for Accuracy in Floating Point

- If a problem is accurately evaluable in Classical Model, the same algorithm works in Float
 - Each operation runs in in polynomial time in size of inputs
 - -Ex: Motzkin polynomial, eig(Vandermonde)
- If a problem is accurately evaluable in Black-Box Model, then if you build an accurate library to evaluate each "black-box" operation, the same algorithm works in Float
 - If each "black-box" operation is of bounded degree and #terms, then each operation runs in polynomial time in size of inputs
 - Ex: eig(discretized scalar elliption PDE), x + y + z
 - If set of black-box operations of unbounded degree and #terms, then cost may be exponential
 - -Ex: det(Toeplitz)

Getting the right answer: Outline

- 1. Problem statement and (more) motivating examples
- 2. Classical Model (CM) and Black-Box Model (BBM) of arithmetic
- 3. Necessary and sufficient conditions for accurate evaluation in CM
- 4. Necessary and sufficient conditions for accurate evaluation in BBM
- 5. Consequences for finite precision arithmetic
- 6. Is it worth getting the right answer? Conditioning
- 7. Open problems

Is it worth getting the right answer?

- If the answer is ill-conditioned, why bother?
- Many problems have enormous condition numbers, but moderate *structured* conditioned numbers
 - $-\operatorname{Ex:}$ Hilbert matrix: exponentially large condition number as n grows
 - But $H_{ij} = 1/(x_i + x_j)$ with $x_i = i .5$ well-conditioned wrt x().
- True for all structured matrix examples
- So high accuracy deserved!

Getting the right answer: Outline

- 1. Problem statement and (more) motivating examples
- 2. Classical Model (CM) and Black-Box Model (BBM) of arithmetic
- 3. Necessary and sufficient conditions for accurate evaluation in CM
- 4. Necessary and sufficient conditions for accurate evaluation in BBM
- 5. Consequences for finite precision arithmetic
- 6. Is it worth getting the right answer? Conditioning
- 7. Open problems

Open problems

- **Complete** the decision procedure (analyze the dominant terms) when the domain is \mathbb{R}^n and V(p) allowable.
- **Narrow** the necessity and sufficiency conditions for the black-box case
- **Extend** to semi-algebraic domains \mathcal{D} .
- **Conjecture:** Same sufficient conditions for existence of accurate interval algorithms
- **Incorporate** division, rational functions, perturbation theory.
 - Conjecture (Demmel, '04): Accurate evaluation is possible only if condition number has only certain simple singularities (depend on reciprocal distance to set of ill-posed problems).
- **Implement** decision procedure to "compile" an accurate evaluation program given p(x), \mathcal{D} , and minimal set of "black boxes"

Reference

For a survey with many other references, see:

"Accurate and efficient expression evaluation and linear algebra," J. Demmel, I. Dumitriu, O. Holtz, P. Koev, *Acta Numerica* (2008), v. 17, pp 87-145

- 1. Getting the right answer
 - At all? In polynomial time?
 - Depends on the model of arithmetic
- 2. Getting the same answer
 - When running same problem on two different machines?
 - When running same problem twice on same machine?
- 3. Getting a fast answer
 - Arithmetic is cheap, moving data is expensive
 - How does this change algorithms?

Why wouldn't you get the same answer?

- Run same program twice on different machines (reproducibility)
 Different floating point semantics, compilers, ...
- Run same program twice on same machine (repeatability)
 - Floating point nonassociativity and dynamic scheduling of parallel tasks
- Who cares?
 - NA-Digest request for reproducible parallel sparse linear solver for use in a FEM package used by construction engineers with contractual obligations for repeatability
 - Subsequent informal survey of many users gave wide range of reasons for wanting repeatability
 - Debugging

Intel MKL is not repeatable

- Experiment:
 - Compute dot products of nearly orthogonal vectors, n = 1000.
 - Vary #thread (1-4), alignments
 - Histogram $[\max_i v_i \min_i v_i] / \max_i |v_i|$
- Repeatability possible, question is cost [H-D. Nguyen]
 - Cost so far: 2x for n = 1000, 1.2x for $n = 10^5$

- 1. Getting the right answer
 - At all? In polynomial time?
 - Depends on the model of arithmetic
- 2. Getting the same answer
 - When running same problem on two different machines?
 - When running same problem twice on same machine?
- 3. Getting a fast answer
 - Arithmetic is cheap, moving data is expensive
 - How does this change algorithms?

Arithmetic is cheap, moving data is expensive.

- Time to do one floating point operation already hundreds of times faster than getting data from main memory, or from another processor
- Technology trends
 - Arithmetic getting faster at $\approx 60\%/{\rm year}$
 - Communication bandwidth (moving data, either between levels of memory hierarchy or processors over a network) only improving at most 25%/year;
 - Latency worse
 - $-\operatorname{Similar}$ trends for energy

Impact on Linear Algebra

- Impact on Direct Linear Algebra (LU, QR, eig, SVD, ...)
 - Thm (Ballard, D., Holtz, Schwartz): Lower bound on communication for *any* of these problems
 - \ast Generalizes existing lower bounds for dense matmul
 - * Dense or sparse matrices, sequential or parallel
 - LAPACK/ScaLAPACK communicate asymptotically more than lower bounds
 - New algorithms do attain lower bounds large speedups * Up to 13x measured (or ∞x), 29x predicted

Impact on Linear Algebra

- Impact on Direct Linear Algebra (LU, QR, eig, SVD, ...)
 - Thm (Ballard, D., Holtz, Schwartz): Lower bound on communication for *any* of these problems
 - * Generalizes existing lower bounds for dense matmul
 - * Dense or sparse matrices, sequential or parallel
 - LAPACK/ScaLAPACK communicate asymptotically more than lower bounds
 - New algorithms do attain lower bounds large speedups * Up to 13x measured (or ∞x), 29x predicted
- Impact on Iterative Linear Algebra (Krylov Methods) Ditto
- See bebop.cs.berkeley.edu for papers, www.cs.berkeley.edu/~demmel for short course

Conclusion

Time to reengineer all linear algebra software!

Conclusion

Time to reengineer all linear algebra software!

Don't communic....