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Motivating Example (1/2)

Def: Accurate means relative error less than 1

How do the following 3 kinds of accurate evaluation problems differ
in difficulty?

1. Motzkin polynomial z6 + x2y2(x2 + y2 − 3z2), or

eig(V ) with Vij = x
j
i , where 0 < x1 < x2 < ...

2. Eigenvalues of ∇· (θ∇u) + λρu = 0 discretized with the FEM on
a triangular mesh, or
x + y + z

3. Determinant of a Toeplitz matrix



Motivating Example (2/2)

Accurate alg. for Motzkin polynomial p = z6 + x2y2(x2 + y2− 3z2)

if |x− z| ≤ |x + z| ∧ |y − z| ≤ |y + z|
p = z4 · [4((x− z)2 + (y − z)2 + (x− z)(y − z))] +

+z3 · [2(2(x− z)3 + 5(y − z)(x− z)2 + 5(y − z)2(x− z) +

2(y − z)3)] +

+z2 · [(x− z)4 + 8(y − z)(x− z)3 + 9(y − z)2(x− z)2 +

8(y − z)3(x− z) + (y − z)4] +

+z · [2(y − z)(x− z)((x− z)3 + 2(y − z)(x− z)2 +

2(y − z)2(x− z) + (y − z)3] +

+(y − z)2(x− z)2((x− z)2 + (y − z)2)

else ... 7 more analogous cases

Can we automate the discovery of such algorithms?
Or prove they do not exist, i.e. that extra precision is necessary?
How much extra precision?
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Problem statement

Given a polynomial (or a family of polynomials) p, either produce an
accurate algorithm to compute y = p(x), or prove that none exists.

Accurately means relative error η < 1, i.e.

� |ycomputed − y| ≤ η |y|,

� η = 10−2 yields two digits of accuracy,

� ycomputed = 0 ⇐⇒ y = 0.



50x50 Hilbert Matrix - log10(eigenvalues)

Hij = 1/(i + j − 1)



40x40 Pascal Matrix - eigenvalues
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20x20 Schur Complement of
40x40 Vandermonde Matrix - eigenvalues
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Complexity of Accurate Algorithms for General Structured Matrices

Any Sym
Type of matrix det A A−1 minor LDU SVD EVD
Acyclic n n2 n ≤ n2 n3 N/A
(bidiagonal and other)
Total Sign Compound n n3 n n4 n4 n4

(TSC)
Diagonally Scaled Totally n3 n5? n3 n3 n3 n3

Unimodular (DSTU)
Weakly diagonally n3 n3 ? n3 n3 n3

dominant M-matrix
Cauchy n2 n2 n2 ≤ n3 n3 n3

Displace-
ment Vandermonde n2 ? ? ? n3 n3

Rank One
Polynomial n2 ? ? ? ? ?
Vandermonde

Toeplitz ? ? ? ? ? ?



Complexity of Accurate Algorithms
for Totally Nonnegative (TN) Matrices

Type of Any Gauss. elim. NE Ax=b Eig.

Matrix det A A−1 minor NP PP CP NP SVD Val.

Cauchy n2 n2 n2 n2 n3 n3 n2 n2 n3 n3

Vandermonde n2 n3 n3 n2 n2 poly n2 n2 n3 n3

Generalized n2 n3 poly n2 n2 poly n2 n2 n3 n3

Vandermonde

Any TN in n n3 n3 n3 n3 n3 0 n2 n3 n3

Neville form

Def: A is Totally Positive (TP) if all minors are positive.
A is Totally Nonnegative (TN) if all minors are nonnegative.

Theorem: The class of TN matrices for which we can do accurate lin-
ear algebra in polynomial time is closed under multiplication, taking
submatrices, Schur complement, J-inverse and converse.
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Availability of constants?

• Classical Model:

- without
√

2, we cannot compute

x2 − 2 = (x−
√

2)(x +
√

2)

accurately.

– no loss of generality for homogeneous, integer-coefficient poly-
nomials.

• Black-Box Model:

- any constants we choose can be accommodated.



Model(s) of Arithmetic.

◦ All quantities are arbitrary real numbers, or complex numbers
(bits come later)
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◦ Operations?

� in Classical Model (CM), +, −, ×; also exact negation;

� in Black-Box Model (BBM), in addition to the above,
polynomial expressions (e.g. x − y · z (FMA), x + y + z,
dot products, small determinants, ...)

◦ Constants? none in Classical Model, anything in Black-Box Model.
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Model(s) of Arithmetic.

◦ All quantities are arbitrary real numbers, or complex numbers
(bits come later)

◦ fl(a⊗b) = (a⊗b)(1+δ), with arbitrary roundoff error |δ| < ε � 1

◦ Operations?

� in Classical Model (CM), +, −, ×; also exact negation;

� in Black-Box Model (BBM), in addition to the above,
polynomial expressions (e.g. x − y · z (FMA), x + y + z,
dot products, small determinants, ...)

◦ Algorithms?

� exact answer in finite # of steps in absence of roundoff error

� branching based on comparisons

� non-determinism (because determinism is simulable)

� domains to be Cn or Rn (but some domain-specific results).



Problem Statement, formally:

� Notation:

– p(x) multivariate polynomial to be evaluated, x = (x1, . . . , xk).

– δ = (δ1, . . . , δm) is the vector of error (rounding) variables.

– pcomp(x, δ) is the result of algorithm to compute p at x with
errors δ.

� Goal: Decide if ∃ algorithm pcomp(x, δ) to accurately evaluate p(x) on D:

∀ 0 < η < 1 ... for any η = desired relative error

∃ 0 < ε < 1 ... there is an ε = maximum rounding error

∀ x ∈ D ... so that for all x in the domain

∀ |δi| ≤ ε ... and for all rounding errors bounded by ε

|pcomp(x, δ)− p(x)| ≤ η · |p(x)| ... relative error is at most η

� Given p(x) andD, seek effective procedure (”compiler”) to exhibit
algorithm, or show one does not exist



.

Examples in classical arithmetic over Rn (none work over Cn).

• M2(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 2 · z2)

– Positive definite and homogeneous, easy to evaluate accurately

• M3(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 3 · z2)

– Motzkin polynomial, nonnegative, zero at |x| = |y| = |z|

if |x− z| ≤ |x + z| ∧ |y − z| ≤ |y + z|
p = z4 · [4((x− z)2 + (y − z)2 + (x− z)(y − z))] +

+z3 · [2(2(x− z)3 + 5(y − z)(x− z)2 + 5(y − z)2(x− z) +

2(y − z)3)] +

+z2 · [(x− z)4 + 8(y − z)(x− z)3 + 9(y − z)2(x− z)2 +

8(y − z)3(x− z) + (y − z)4] +

+z · [2(y − z)(x− z)((x− z)3 + 2(y − z)(x− z)2 +

2(y − z)2(x− z) + (y − z)3] +

+(y − z)2(x− z)2((x− z)2 + (y − z)2)

else ... 2#vars−1 more analogous cases

• M4(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 4 · z2)

– Impossible to evaluate accurately



Sneak Peak.

The variety,

V (p) = {x : p(x) = 0} ,

plays a necessary role.
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Allowable varieties in Classical Model of arithmetic.

Define basic allowable sets:

• Zi = {x : xi = 0},
• Sij = {x : xi + xj = 0},
•Dij = {x : xi − xj = 0}.

A variety V (p) is allowable if it can be written as a finite union of
intersections of basic allowable sets.

Denote by
G(p) = V(p)− ∪allowable A ⊂ V(p) A

the set of points in general position.

V (p) unallowable ⇒ G(p) 6= ∅.



Necessary condition.

Theorem 1: V (p) unallowable ⇒ p cannot be evaluated accu-
rately on Rn or on Cn.

Theorem 2: On a domain D, if Int(D) ∩ G(p) 6= ∅, p cannot be
evaluated accurately.



Examples on Rn, revisited.

• p(x, y, z) = x + y + z

UNALLOWABLE

•M2(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 2 · z2)

ALLOWABLE, V (p) = {0}.

•M3(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 3 · z2)

ALLOWABLE, V (p) = {|x| = |y| = |z|}

•M4(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 4 · z2)

UNALLOWABLE

• V (det(Toeplitz)), UNALLOWABLE⇒ no accurate linear algebra
for Toeplitz (need arbitrary precision arithmetic, as we will see
later).



Necessary condition, real and complex.

Theorem 1: V (p) unallowable ⇒ p cannot be evaluated accu-
rately on Rn or on Cn.

Theorem 2: On a domain D, if Int(D) ∩ G(p) 6= ∅, p cannot be
evaluated accurately.

Sketch of proof.
Simplest case: non-branching, no data reuse (except for inputs), non-
determinism.

Algorithm can be represented as a tree with extra edges from the
sources, each node corresponds to an operation (+,−,×), each node
has a specific δ, each node has two inputs, one output.

Let x ∈ G(p) and define Allow(x) as the smallest allowable set
containing x.



Necessary condition, real and complex.

Theorem 1: V (p) unallowable ⇒ p cannot be evaluated accu-
rately on Rn or on Cn.

Theorem 2: On a domain D, if Int(D) ∩ G(p) 6= ∅, p cannot be
evaluated accurately.

Sketch of proof, cont’d.
Key fact: for a positive measure set of δs in δ-space, a zero output
can be “traced back” down the tree to “allowable” condition (xi = 0
or xi + xj = 0), or trivial one (xi − xi = 0).

So for a positive measure set of δs, either

• pcomp(x, δ) is not 0 (though p(x) = 0), or

• for all y ∈ Allow(x) \ V (p), pcomp(y, δ) = 0 (though p(y) 6= 0).

In either case, the polynomial is not accurately evaluable arbitrarily
close to x, q.e.d.



Sufficient Condition, complex case.

Theorem. Let p be a polynomial over Cn with integer coefficients.
If V (p) is allowable, then p is accurately evaluable.

Sketch of proof.
Can write

p(x) = c
∏
i

pi(x) ,

where pi(x) is a power of some xj or xj ± xk, and c is an integer; all
operations are accurate.



Sufficient Condition, complex case.

Theorem. Let p be a polynomial over Cn with integer coefficients.
If V (p) is allowable, then p is accurately evaluable.

Sketch of proof.
Can write

p(x) = c
∏
i

pi(x) ,

where pi(x) is a power of some xj or xj ± xk, and c is an integer; all
operations are accurate.

Corollary. If p is a complex multivariate polynomial, p is accurately
evaluable iff p has integer coefficients and V (p) is allowable.



Sufficient Condition, real case.

Trickier... Allowability not sufficient:

• q = (u4 + v4) + (u2 + v2)(x2 + y2 + z2), V (p) = {u = v = 0}:
allowable and accurately evaluable

• p = (u4 + v4) + (u2 + v2)(x + y + z)2, V (p) = {u = v = 0}:
allowable but NOT accurately evaluable!

• Has to do with locally dominant behavior (in this case, near the
set {u = v = 0}).
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set {u = v = 0}).

Theorem. If all “dominant terms” are accurately evaluable on
Rn then p is accurately evaluable. In non-branching case, if p is
accurately evaluable on Rn, then so are all “dominant terms”.



What is dominance? Newton Polytope

p(x, y, z) = y8z12 + x2y2z16 + x8z12 + x6y14 + x10y6z4

Component of V (p) where {x = y = 0}
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What is dominance? First orthant of -(Normal Fan)

p(x, y, z) = y8z12 + x2y2z16 + x8z12 + x6y14 + x10y6z4

Component of V (p) where {x = y = 0}



What is dominance? Labeling dominant terms

p(x, y, z) = y8z12 + x2y2z16 + x8z12 + x6y14 + x10y6z4

Component of V (p) where {x = y = 0}



What is dominance? (x, y) regions where different terms
dominant

p(x, y, z) = y8z12 + x2y2z16 + x8z12 + x6y14 + x10y6z4

Component of V (p) where {x = y = 0}



Sufficient Condition, real case.

Trickier... Allowability not sufficient:

• q = (u4 + v4) + (u2 + v2)(x2 + y2 + z2), V (p) = {u = v = 0}:
allowable and accurately evaluable

• p = (u4 + v4) + (u2 + v2)(x + y + z)2, V (p) = {u = v = 0}:
allowable but NOT accurately evaluable!

• Has to do with locally dominant behavior (in this case, near the
set {u = v = 0}).

Theorem. If all “dominant terms” are accurately evaluable on
Rn then p is accurately evaluable. In non-branching case, if p is
accurately evaluable on Rn, then so are all “dominant terms”.

Need inductive procedure of testing accurate evaluability, but so
far no clear induction parameter.
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Allowable varieties in black-box arithmetic.

Define black-boxes: q1, q2, . . . , qk are polynomials

Vj = {V 6= Rn : V can be obtained from qj through Process A, below}

Process A:

Step 1. repeat and/or negate, or 0 out some of the inputs,

Step 2. of the remaining variables, keep some symbolic, and find the variety
in terms of the others.

Example: q1(x, y) = x− y has (up to symmetry)

V1 = {{x = 0}, {x− y = 0}, {x + y = 0}} ,

q2(x, y, z) = x− y · z has (up to symmetry)

V2 = {{x = 0}, {y = 0} ∪ {z = 0}, {x = 0} ∪ {x = 1}, {x = 0} ∪ {x = −1},
{x = 0} ∪ {y = 1}, {x = 0} ∪ {y = −1}, {x− y2 = 0}, {x + y2 = 0},
{x− yz = 0}, {x + yz = 0}} .



Allowable varieties in black-box arithmetic.

Define black-boxes: q1, q2, . . . , qk are polynomials

Vj = {V 6= Rn : V can be obtained from qj through Process A}

Define basic allowable sets:

• Zi = {x : xi = 0},
• Sij = {x : xi + xj = 0},
•Dij = {x : xi − xj = 0},
• any V for which there is a j such that V ∈ Vj.



Allowable varieties in black-box arithmetic.

Define black-boxes: q1, q2, . . . , qk are polynomials

Vj = {V 6= Rn : V can be obtained from qj through Process A}

A variety V (p) is allowable if it is a union of irreducible parts of
finite intersections of basic allowable sets.

Denote by
G(p) = V(p)− ∪allowable A ⊂ V(p) A

the set of points in general position.

V (p) unallowable ⇒ G(p) 6= ∅.



Necessary condition, real and complex.

Theorem 1: V (p) unallowable ⇒ p cannot be evaluated accu-
rately on Rn or on Cn.

Theorem 2: On a domain D, if Int(D) ∩ G(p) 6= ∅, p cannot be
evaluated accurately.

Sufficient condition, complex, for all qj irreducible.

Theorem: If V (p) is a union of intersections of sets Zi, Sij, Dij,
and V (qj), then p is accurately evaluable.

Corollary: If all qj are affine, then p is accurately evaluable iff V (p)
is allowable.



Consequences for Numerical Linear Algebra.

• V (det(Toeplitz)) contains irreducible factors of arbitrarily large
degree⇒ no set of black-boxes of bounded degree will be sufficient
for accurate evaluation ⇒ need arbitrary precision arithmetic to
do NLA accurately on Toeplitz matrices.

• Same argument shows that we cannot accurately evaluate many
generalized Vandermonde matrices (Schur functions as determi-
nants).

•Conjecture: if the class of structured matrices has displacement
rank ≥ 2, then accurate evaluation will not always be possible.



Complexity of Accurate Algorithms for General Structured Matrices

Any Sym
Type of matrix det A A−1 minor LDU SVD EVD
Acyclic n n2 n ≤ n2 n3 N/A
(bidiagonal and other)
Total Sign Compound n n3 n n4 n4 n4

(TSC)
Diagonally Scaled Totally n3 n5? n3 n3 n3 n3

Unimodular (DSTU)
Weakly diagonally n3 n3 No n3 n3 n3

dominant M-matrix
Cauchy n2 n2 n2 ≤ n3 n3 n3

Displace-
ment Vandermonde n2 No No No n3 n3

Rank One
Polynomial n2 No No No ∗ ∗
Vandermonde

Toeplitz No No No No No No

∗ = “it depends”
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Choosing a finite precision arithmetic model

• In finite precision, accuracy always possible, only question is cost

•Measure bit complexity in floating point: (e,m) ≡ 2e ·m
• Contrasts between complexity in Floating Point and Fixed Point

– Repeated squaring can have exponential cost in Fixed,
polynomial in Float

– Det(A) polynomial in Fixed [Clarkson], unknown in Float

– Witness for matrix singularity (null vector) in Float can have
exponentially many bits

– Computing “middle bits” of
∏n

i=1(1+xi) polynomial in Fixed,
as hard as computing the permanent in Float

• Float seems more natural for attaining relative accuracy



Cost implications for Accuracy in Floating Point

• If a problem is accurately evaluable in Classical Model, the same
algorithm works in Float

– Each operation runs in in polynomial time in size of inputs

– Ex: Motzkin polynomial, eig(Vandermonde)

• If a problem is accurately evaluable in Black-Box Model, then if
you build an accurate library to evaluate each
“black-box” operation, the same algorithm works in Float

– If each “black-box” operation is of bounded degree and #terms,
then each operation runs in polynomial time in size of inputs

– Ex: eig(discretized scalar elliption PDE), x + y + z

– If set of black-box operations of unbounded degree and #terms,
then cost may be exponential

– Ex: det(Toeplitz)
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Is it worth getting the right answer?

• If the answer is ill-conditioned, why bother?

•Many problems have enormous condition numbers, but moderate
structured conditioned numbers

– Ex: Hilbert matrix: exponentially large condition number as n
grows

– But Hij = 1/(xi + xj) with xi = i − .5 well-conditioned wrt
x().

• True for all structured matrix examples

• So high accuracy deserved!
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Open problems

•Complete the decision procedure (analyze the dominant terms)
when the domain is Rn and V (p) allowable.

•Narrow the necessity and sufficiency conditions for the black-box
case

• Extend to semi-algebraic domains D.

•Conjecture: Same sufficient conditions for existence of accurate
interval algorithms

• Incorporate division, rational functions, perturbation theory.

– Conjecture (Demmel, ’04): Accurate evaluation is possible
only if condition number has only certain simple singularities
(depend on reciprocal distance to set of ill-posed problems).

• Implement decision procedure to “compile” an accurate evalu-
ation program given p(x), D, and minimal set of “black boxes”



Reference

For a survey with many other references, see:

“Accurate and efficient expression evaluation and linear algebra,”
J. Demmel, I. Dumitriu, O. Holtz, P. Koev,
Acta Numerica (2008), v. 17, pp 87-145



Topics.

1. Getting the right answer

• At all? In polynomial time?

• Depends on the model of arithmetic

2. Getting the same answer

•When running same problem on two different machines?

•When running same problem twice on same machine?

3. Getting a fast answer

• Arithmetic is cheap, moving data is expensive

• How does this change algorithms?



Why wouldn’t you get the same answer?

• Run same program twice on different machines (reproducibility)

– Different floating point semantics, compilers, ...

• Run same program twice on same machine (repeatability)

– Floating point nonassociativity and dynamic scheduling
of parallel tasks

•Who cares?

– NA-Digest request for reproducible parallel sparse linear solver
for use in a FEM package used by construction engineers with
contractual obligations for repeatability

– Subsequent informal survey of many users gave wide range of
reasons for wanting repeatability

– Debugging



Intel MKL is not repeatable

• Experiment:

– Compute dot products of nearly orthogonal vectors, n = 1000.

– Vary #thread (1-4), alignments

– Histogram [maxi vi −mini vi]/ maxi |vi|
• Repeatability possible, question is cost [H-D. Nguyen]

– Cost so far: 2x for n = 1000, 1.2x for n = 105
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Arithmetic is cheap, moving data is expensive.

• Time to do one floating point operation already hundreds
of times faster than getting data from main memory,
or from another processor

• Technology trends

– Arithmetic getting faster at ≈ 60%/year

– Communication bandwidth (moving data, either between levels
of memory hierarchy or processors over a network) only
improving at most 25%/year;

– Latency worse

– Similar trends for energy



Impact on Linear Algebra

• Impact on Direct Linear Algebra (LU, QR, eig, SVD, ...)

– Thm (Ballard, D., Holtz, Schwartz): Lower bound on
communication for any of these problems

∗ Generalizes existing lower bounds for dense matmul

∗ Dense or sparse matrices, sequential or parallel

– LAPACK/ScaLAPACK communicate asymptotically more than
lower bounds

– New algorithms do attain lower bounds - large speedups

∗ Up to 13x measured (or ∞x), 29x predicted



Impact on Linear Algebra

• Impact on Direct Linear Algebra (LU, QR, eig, SVD, ...)

– Thm (Ballard, D., Holtz, Schwartz): Lower bound on
communication for any of these problems

∗ Generalizes existing lower bounds for dense matmul

∗ Dense or sparse matrices, sequential or parallel

– LAPACK/ScaLAPACK communicate asymptotically more than
lower bounds

– New algorithms do attain lower bounds - large speedups

∗ Up to 13x measured (or ∞x), 29x predicted

• Impact on Iterative Linear Algebra (Krylov Methods) - Ditto

• See bebop.cs.berkeley.edu for papers,
www.cs.berkeley.edu/∼demmel for short course



Conclusion

Time to reengineer all linear algebra software!



Conclusion

Time to reengineer all linear algebra software!

Don’t communic....


