Quillen Model Categories
Model
Martin-L&f Type Theory with Identity Types

Samuel Mimram

CEA

Séminaire MeASI au CIRM

1/29

Disclaimer

Ideas are not from me (Awodey & Warren, Voevodsky, . .
errors are mine.

D

e Introduction rule;

MNx:AFf:B

rNXx.f:A—=B

M-calculus

3/29

e Introduction rule;

e Elimination rule;

Mx:AFf:

M-calculus

B

rNXx.f:A—=B

r'Hf:A—>B

N-g:A

-fg:B

3/29

M-calculus

e Introduction rule;
MNx:AFf:B

rNXx.f:A—=B

e Elimination rule;

r-f:A—B NlFg: A
g B

e Conversion rule;

Mx:AFf:B MN-g:A
M= (\x.flg =flg/x]: B

3/29

A

D

Now with dependent types.

4/29

Dependent types

Array.make : 1int -> array

5/29

Dependent types

Array.make : n:int -> n array

5/29

Dependent types

Array.make : [l,in¢.array(n)

5/29

Dependent types

Array.make : [l,in¢.array(n)

e Type formation rule:

Fn:int

- array(n) : type

5/29

Dependent types

Array.make : [l,in¢.array(n)

e Type formation rule:

Fn:int

- array(n) : type
e Introduction rules:

- k:int [,n:intF a:array(n)

] : array(0) M,n:int - (k:: a):array(n+1)

5/29

e Type formation rule:

Products (and sums)

x: AF B(x) : type
F My.a.B(x) : type

6/29

e Type formation rule:

e Introduction rule:

Products (and sums)

x: AF B(x) : type
F My.a.B(x) : type

x:AF f(x): B(x)

F)\X;A.f(x) . I_IX:A-B(X)

6/29

Products (and sums)

e Type formation rule:
x: AF B(x) : type
F My.a.B(x) : type

e Introduction rule:
x:AF f(x): B(x)

F)\X;A.f(x) . I_IX:A-B(X)

e Elimination rule:
F g MNya.B(x) Fx:A
- ga: B(a)

Products (and sums)
Type formation rule:
x: AF B(x) : type
F My.a.B(x) : type

Introduction rule:
x:AF f(x): B(x)
FAa-f(x) : Mya.B(x)

Elimination rule:
F g MNya.B(x) Fx:A
- ga: B(a)

Conversion rule:
x:AFf(x): B(x) Fa:A
F (Axa-f(x))a=f(a): B(a)

o

Remark

The usual arrow type A — B is recovered as
I_IXZA'B

where x does not occur in B.

~

e Type formation rule:

Identity types

Fa:A Fb:A

F1da(a, b) : type

8/29

e Type formation rule:

e Introduction rule:

Identity types

Fa:A Fb:A

F1da(a, b) : type

Fa:A
Fra(a) : 1da(a, a)

8/29

Identity types
e Type formation rule:
Fa:A Fb:A
F1da(a, b) : type

e Introduction rule:
Fa:A

Fra(a) : 1da(a, a)

e Elimination rule:
x: Ay Az lda(x,y) F D(x,y,z) : type
Fp:lda(a, b) x: AF d(x) : D(x,x, ra(x))
- Jap(d,a,b,p): D(a,b,p)

8/29

Identity types
Type formation rule:
Fa:A Fb:A
F1da(a, b) : type

Introduction rule;
Fa:A

Fra(a) : 1da(a, a)

Elimination rule:
x: Ay Az lda(x,y) F D(x,y,z) : type
Fp:lda(a, b) x: AF d(x) : D(x,x, ra(x))
- Jap(d,a,b,p): D(a,b,p)

Conversion rule:
x: Ay Az lda(x,y)F D(x,y,z) : type
Fa:A x: AF d(x): D(x,x, ra(x))
FJap(d,a,a, ra(a)) = d(a) : D(a, a, ra(a))

8/29

Categories
A category C consists of
e objects: Ob(C)
e morphisms: VA, B € Ob(C), Hom(A, B)
e compositions:
f:-A—B g:B—C
gof:A—C

e identities:
VA€ Ob(C), ida:A— A

such that
e composition is associative:

ho(gof)=(hog)of
e admits identities as neutral elements

idof=f=foid

9/29

The category Set

The category Set has
e objects: sets
e morphisms: functions f : A — B

e with usual composition and identities

10/29

Modeling programming languages

From a programming language, we can build a category Il whose
e objects: types
e morphisms: programs 7w : A — B modulo cut-elimination

e composition: usual composition of programs

11/29

Modeling programming languages

From a programming language, we can build a category Il whose
e objects: types
e morphisms: programs 7w : A — B modulo cut-elimination

e composition: usual composition of programs

Definition
A model of the programming language is a functor

F:MM—=C

11/29

Models of simply typed A-calculus

Take the category with
e objects: types

A = X | A=B | AxB

e morphisms A — B: M\-terms f : A= B

Models of simply typed A-calculus

Take the category with
e objects: types

A = X | A=B | AxB

e morphisms A — B: M\-terms f : A= B

Example:
XAy x:A— (B=A)

Models of simply typed A-calculus

Take the category with
e objects: types

A = X | A=B | AxB

e morphisms A — B: M\-terms f : A= B

Exercise: give a model of this language into Set.

Models of simply typed A-calculus

Take the category with
e objects: types

A = X | A=B | AxB

e morphisms A — B: M\-terms f : A= B

More generally, it can be modeled in any cartesian closed category.

12/29

Cartesian closed categories

Definition
A cartesian closed category is a category which has
e products:
A
v
Vf:A—B,g:A— C, f/Bx C\E
A &
B C

13/29

Cartesian closed categories

Definition
A cartesian closed category is a category which has
e products:
A
v
Vf:A—B,g:A— C, f/Bx C\¢&

e a terminal object 1:

VA, A1

13/29

Cartesian closed categories

Definition
A cartesian closed category is a category which has
e products:
A
v
Vf:A—B,g:A— C, f/Bx C\¢&

e a terminal object 1:
VA, A1

e which is closed:
AxB—=C

A— (B= ()

13 /29

A model of Martin-L&f type theory
The traditional models of Martin-L&f type theory are given by

Definition

A locally cartesian closed category is a category C in which for
every object A the slice category C/A is cartesian closed.

14 /29

A model of Martin-L&f type theory
The traditional models of Martin-L&f type theory are given by

Definition
A locally cartesian closed category is a category C in which for
every object A the slice category C/A is cartesian closed.

Theorem

An LCCC is a category with pullbacks in which for

every f : A— B, the base change functor f* :C/B — C/A
has a right adjoint Ny : C/A — C/B.

14 /29

A model of Martin-L&f type theory
The traditional models of Martin-L&f type theory are given by

Definition
A locally cartesian closed category is a category C in which for
every object A the slice category C/A is cartesian closed.

Theorem

An LCCC is a category with pullbacks in which for

every f : A— B, the base change functor f* :C/B — C/A
has a right adjoint Ny : C/A — C/B.

Example
Mx:AF B(x) : type

IEMy.a.B(x) : type

14 /29

Problem

Every LCCC is also a model of MLTT with the rule of
extensionality:
Fop:lda(a, b)

Fa=5b:A

...and type checking is indecidable in extensional MLTT!

15/29

Half of the title

We explain here that Quillen model categories model identity types
in Martin-L&f type theory:

F-M— QO

Which provides non-extensional models.

Half of the title

We explain here that Quillen model categories model identity types
in Martin-L&f type theory:

F-M— QO

Which provides non-extensional models.

The idea here is that identity types behave like homotopies between
topological spaces.

16 /29

Homotopy

A homotopy between two continuous functions f,g: A — B

between topological spaces A and B is a continuous function
h:1xA—B

where | = [0, 1] such that h(0,x) = f(x) and h(1,x) = g(x).

Homotopy
A homotopy between two continuous functions f,g: A — B
between topological spaces A and B is a continuous function

h:1xA—B
where | = [0, 1] such that h(0,x) = f(x) and h(1,x) = g(x).
Two spaces A and B are homotopy equivalent when there exists
maps f : A— B and g : B — A such that
gof ~ida fog~idg

Ex: square ~ circle, coffee mug = donut, etc.

Homotopies

Suppose given a topological space T.

e A path in T is a continuous function 7 : [— T,
where | = [0, 1].

18/

Homotopies

Suppose given a topological space T.
e A path in T is a continuous function 7 : [— T,
where | = [0, 1].
e An homotopy between two paths 7 and p is a continuous
function

h:l—-(=T) such that h(0)=m and h(1)=p

18 /29

Homotopies

Suppose given a topological space T.
e A path in T is a continuous function 7 : [— T,
where | = [0, 1].
e An homotopy between two paths 7 and p is a continuous
function

h:l—-(=T) such that h(0)=m and h(1)=p

e An homotopy between homotopies h and k is a continuous
function

h:l—(l=({=T)) such that h(0)=h and h(l)=k

18 /29

Homotopies

Suppose given a topological space T.

e A path in T is a continuous function 7 : [— T,
where | = [0, 1].

e An homotopy between two paths 7 and p is a continuous
function

h:l—-(=T) such that h(0)=m and h(1)=p

e An homotopy between homotopies h and k is a continuous
function

h:l—(l=({=T)) such that h(0)=h and h(l)=k

e etc.

18 /29

Modeling MLTT

We interpret
e atype - A : type as a topological space
e aterm b x: Aas a pointin A
e aterm p:lda(a,b) as a path a — b

p
e aterm s : ldjg(,) (P, g) as an homotopy a@ b
q
* etc.

19/

Dependent types

As in the case of LCCC we interpret a dependent type
x: AF B(x) : type

as a continuous map

><—0

20/29

Dependent types

As in the case of LCCC we interpret a dependent type
x: AF B(x) : type

as a continuous map

and a term x : AF f : B(x) as a section of this map.

20/29

Dependent types and equality
The maps interpreting types should have the homotopy lifting
property:
B
{0} —

e

[0,1] — A

21/29

Dependent types and equality
The maps interpreting types should have the homotopy lifting
property:
B
X xl{O}p*—: B

X % [0,1] —> A

Maps like this are often called fibrations.

21/29

Dependent types and equality
The maps interpreting types should have the homotopy lifting
property:
B
X x {0} —: B

|-

X % [0,1] —> A

Maps like this are often called fibrations.

Ex: the interpretation of x,y : A Ida(x,y) is a map

Al

|

Ax A

Lifting properties

Homotopy is more generally carried on in Quillen model categories.

22 /29

Lifting properties

Homotopy is more generally carried on in Quillen model categories.

Definition
Given maps f : A— B and g: C — D, f has the left lifting
property wrt g when every commutative square

Al

)

@)

-
[

v

—_—
k

Lifting properties

Homotopy is more generally carried on in Quillen model categories.

Definition
Given maps f : A— B and g: C — D, f has the left lifting
property wrt g when every commutative square

AP
e

— D

admits a lifting.

Lifting properties

Homotopy is more generally carried on in Quillen model categories.

Definition
Given maps f : A— B and g: C — D, f has the left lifting
property wrt g when every commutative square

AP
e

— D

admits a lifting.

Given a class £ of maps, we write - for the class of maps which
have LLP wrt every map in £ (and similarly £+ for RLP).

N
N

N

Weak factorization systems

Definition
A weak factorization system (£,R) consists of two classes of maps
such that

@ every map f : A — B factors as

AA44444144444> C

N

B

with i € £ and p € R
QL =%NRand £='R

23 /29

Model categories

Definition
A model category consists of C together with subcategories

e F: fibrations

e &: cofibrations

e 2: weak equivalences
such that

@ three for two

® both (€,20N F) and (€N W, F) are weak factorization
systems.

24 /29

Model categories

Definition
A model category consists of C together with subcategories

e F: fibrations

e &: cofibrations

e 2: weak equivalences
such that

@ three for two

® both (€,20N F) and (€N W, F) are weak factorization
systems.

Example
On Top:
e generating cofibrations are inclusions i : A" — A" x [,
e fibrations are RLP of generating cofibrations (Serre fibrations),

e weak equivalences are weak homotopy equivalences.

Path objects

Definition
A (very good) path object A! for an object A consists of a
factorization

Ax A

with r acyclic cofibration and p fibration.

Interpretation of MLTT

26 /29

Interpretation of MLTT

A d Al
x /

AxA

e Type formation rule:
Fa:A Fb:A
F1da(a, b) : type

Id4 is interpreted as p

26 /29

Interpretation of MLTT

e Type formation rule:

e Introduction rule:
Fa:A

Fra(a) : 1da(a, a)

ra is interpreted as r

26 /29

Interpretation of MLTT

e Type formation rule:
e Introduction rule:
e Elimination rule;

x: Ay Az lda(x,y) F D(x,y,z) : type
x: Ak d(x): D(x, x, ra(x))

X Av.y : A,Z : IdA(va) F JA,D(d7X7.y7Z) : D(X,y,Z)

Interpretation of MLTT

Type formation rule:
Introduction rule;
Elimination rule:

x: Ay Az lda(x,y) F D(x,y,z) : type
x: Ak d(x): D(x, x, ra(x))

X Av.y : A,Z : IdA(Xv.y) F JA,D(d7X7.y7Z) : D(X,y,Z)
Conversion rule;

x: Ay Az lda(x,y)F D(x,y,z) : type
x: AF d(x): D(x,x,ra(x))
x: A Jap(d,x,x,ra(x)) = d(x) : D(x, x, ra(x))

N
o

N

The current state of things

Theorem (Awodey & Warren)
MLTT can be interpreted in any model category.

Theorem (Gambino & Garner)

The interpretation is complete.

27 /29

The Homotopy Hypothesis

Homotopy Types Weak w-groupoids

77

MLTT

28 /29

Towards directed algebraic topology?

We could think of a directed variant:

e replace equality by a reduction relation:

f~g = there is a directed path from f to g

29 /29

Towards directed algebraic topology?

We could think of a directed variant:

e replace equality by a reduction relation:
f~g = there is a directed path from f to g
e the reduction should be compatible with identity:

rold(f, f) = Jg’, Is:ld(g,g’) and g~ g’

f

4

\
/

===&

g <~

We can “translate continuously” the directed path f ~ g into
the directed path ' ~ g

