
Iterated Regret Minimization in Game Graphs

Emmanuel Filiot, Tristan Le Gall, Jean-François Raskin

Université Libre de Bruxelles (ULB)

CIRM/ LMeASI, 10 décembre 2010

Some (Almost) Real Life Example

Input data

you spent too much time working on your MFCS paper

your partner is angry and you want to be forgiven

your partner likes travelling

you don’t know if she/he likes chocolates (even Belgian ones)

Cost(chocolates) << Cost(travelling)

Game Tree

you

your partner forgiven

+1000$
(travel)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)0$

20$

1000$

1020$

likes doesn’t like

s

Some (Almost) Real Life Example

Game Tree

you

your partner forgiven

+1000$
(travel)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)0$

20$

1000$

1020$

likes doesn’t like

Minmax Backward Induction

Offer a travel and pay 1000$

Some (Almost) Real Life Example

Game Tree

you

your partner forgiven

+1000$
(travel)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)0$

20$

1000$

1020$

likes doesn’t like

Regret Minimization

regret1(λ1, λ2) = cost(λ1, λ2)− best-response(λ2)
�����������partner (λ2)

you (λ1)
travel chocolates

likes chocolates
doesn’t

Some (Almost) Real Life Example

Game Tree

you

your partner forgiven

+1000$
(travel)
+1000$
(travel)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)0$0$

20$

1000$

1020$

likes doesn’t like

Regret Minimization

regret1(λ1, λ2) = cost(λ1, λ2)− best-response(λ2)
�����������partner (λ2)

you (λ1)
travel chocolates

likes chocolates 1000 - 20 = 980
doesn’t

Some (Almost) Real Life Example

Game Tree

you

your partner forgiven

+1000$
(travel)
+1000$
(travel)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)+1000$ (travel)0$

20$

1000$

1020$

likes doesn’t like

Regret Minimization

regret1(λ1, λ2) = cost(λ1, λ2)− best-response(λ2)
�����������partner (λ2)

you (λ1)
travel chocolates

likes chocolates 100 - 20 = 980
doesn’t 1000 - 1000 = 0

Some (Almost) Real Life Example

Game Tree

you

your partner forgiven

+1000$
(travel)

+20$
(chocolates)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)0$0$

20$

1000$

1020$

likes doesn’t like

Regret Minimization

regret1(λ1, λ2) = cost(λ1, λ2)− best-response(λ2)
�����������partner (λ2)

you (λ1)
travel chocolates

likes chocolates 1000 - 20 = 980 20 - 20 = 0
doesn’t 1000 - 1000 = 0

Some (Almost) Real Life Example

Game Tree

you

your partner forgiven

+1000$
(travel)

+20$
(chocolates)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)+1000$ (travel)0$

20$

1000$

1020$

likes doesn’t like

Regret Minimization

regret1(λ1, λ2) = cost(λ1, λ2)− best-response(λ2)
�����������partner (λ2)

you (λ1)
travel chocolates

likes chocolates 1000 - 20 = 980 20 - 20 = 0
doesn’t 1000 - 1000 = 0 1020 - 1000=20

Some (Almost) Real Life Example

Game Tree

you

your partner forgiven

+1000$
(travel)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)0$

20$

1000$

1020$

likes doesn’t like

Regret Minimization

regret1(λ1, λ2) = cost(λ1, λ2)− best-response(λ2)
�����������partner (λ2)

you (λ1)
travel chocolates

likes chocolates 980 0
doesn’t 0 20

Some (Almost) Real Life Example

Game Tree

you

your partner forgiven

+1000$
(travel)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)0$

20$

1000$

1020$

likes doesn’t like

Regret Minimization

regret1(λ1) = maxλ2 (cost(λ1, λ2)− best-response(λ2))
�����������partner (λ2)

you (λ1)
travel chocolates

likes chocolates 980 0

doesn’t 0 20

Some (Almost) Real Life Example

Game Tree

you

your partner forgiven

+1000$
(travel)

+20$
(chocolates)

forgiven forgiven

+1000$ (travel)0$

20$

1000$

1020$

likes doesn’t like

Regret Minimization

regret1 = minλ1 maxλ2 (cost(λ1, λ2)− best-response(λ2))
�����������partner (λ2)

you (λ1)
travel chocolates

likes chocolates 980 0

doesn’t 0 20

Related Work

Regret Minimization

first introduced in the 50’s [Savage,51] [Niehans,48]

in general, a cost function ci models what Player i pays

decision under uncertainty

choose a good strategy no matter the adversary does

Related Work

Regret Minimization

first introduced in the 50’s [Savage,51] [Niehans,48]

in general, a cost function ci models what Player i pays

decision under uncertainty

choose a good strategy no matter the adversary does

Iterated Regret Minimization

regret minimization selects a set of strategies for each player

can be iterated

new solution concept proposed by [Halpern and Pass, IJCAI’09] in
strategic games where the costs are given by a matrix

iterated regret more reasonable than Nash equilibria for various classes of
games (Centipede Game, Travellers dilemma,...)

Comparison with Nash Equilibria

Definition

A couple of strategies 〈λ1, λ2〉 forms a Nash equilibrium if:

c1(λ1, λ2) = minλ∗
1
c1(λ

∗
1 , λ2)

c2(λ1, λ2) = minλ∗
2
c1(λ1, λ

∗
2)

Remember: c1(λ1, λ2) represents what Player 1 pays

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/7

Principle

At each turn, the active player can choose to stop the game, or to continue

If she stops the game, a player pays less than if the other player stops the
game immediatly after

But if both players continue, they both pay less (cooperation is rewarded)

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/7

Regret Minimization vs Nash Equilibrium

Nash equilibrium suggests to stop the game immediately

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/75/7

Regret Minimization vs Nash Equilibrium

Nash equilibrium suggests to stop the game immediately

reg1(A → S) = 5

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/75/7

0/0

0/0

0/0

0/0

1/3

Regret Minimization vs Nash Equilibrium

Nash equilibrium suggests to stop the game immediately

reg1(A → S) = 5− 1 = 4

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/7

0/0

0/0

1/3

Regret Minimization vs Nash Equilibrium

Nash equilibrium suggests to stop the game immediately

reg1(A → S) = 5− 1 = 4

reg1(A → B;C → D ;E → S) =

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/7

0/0

0/0

1/3

6/4

5/7

Regret Minimization vs Nash Equilibrium

Nash equilibrium suggests to stop the game immediately

reg1(A → S) = 5− 1 = 4

reg1(A → B;C → D ;E → S) = 6− 5 or

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/7

0/0

0/0

1/3

0/0 4/2
3/5

Regret Minimization vs Nash Equilibrium

Nash equilibrium suggests to stop the game immediately

reg1(A → S) = 5− 1 = 4

reg1(A → B;C → D ;E → S) = 6− 5 or 4− 3 = 1

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/7

Regret Minimization vs Nash Equilibrium

Nash equilibrium suggests to stop the game immediately

reg1(A → S) = 5− 1 = 4

reg1(A → B;C → D ;E → S) = 6− 5 or 4− 3 = 1

reg2(B → S) = 4− 2 = 2

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/7

0/0 4/2

Regret Minimization vs Nash Equilibrium

Nash equilibrium suggests to stop the game immediately

reg1(A → S) = 5− 1 = 4

reg1(A → B;C → D ;E → S) = 6− 5 or 4− 3 = 1

reg2(B → S) = 4− 2 = 2

reg2(B → C ;D → S) = 5− 4 = 1

The Centipede Game

B

C D

E

S

0/0

0/0

0/0

6/4

3/5
4/2

1/3

A
0/0

5/7

0/0 4/2

0/0

0/0

1/3

Regret Minimization vs Nash Equilibrium

Nash equilibrium suggests to stop the game immediately

reg1(A → S) = 5− 1 = 4

reg1(A → B;C → D ;E → S) = 6− 5 or 4− 3 = 1

reg2(B → S) = 4− 2 = 2

reg2(B → C ;D → S) = 5− 4 = 1

reg∞1 (A → B;C → D ;E → S) = 0 and reg∞2 (B → C ;D → S) = 0.

Regret vs Nash

Nash equilibria: the players implicitly need to know the other player
strategy

Regret minimization: each player wants to use a good strategy no matter
the other player does

Regret minimization is a robust solution concept. In average
(#nodes≤10000, max weight≤30):

Regret: payoffs are 40% worst when the other player changes her strategy
while you stick to your strategy
Subgame Perfect Nash Equilibria: 200% to 500% worst

Our Work

2-players non-zero sum game given implicitely by a finite graph

Partition of the vertices of the graph

reachability objectives

edges (or target nodes) are weighted: cost to the first visit to a target node

tree arenas and finite graph arenas

algorithms to compute the (iterated) regret and to select strategies

extends to n players

Results

Our aim is to compute:

regret1 = minλ1 maxλ2 [cost1(λ1, λ2) − best-response(λ2)]
= minλ1 maxλ2

[
cost1(λ1, λ2) − minλ∗

1
cost1(λ

∗
1 , λ2)

]

and the iteration of the operator that deletes strictly dominated strategies.

trees target-weighted graphs edge-weighted graphs
#strategies exp ∞ ∞

regret O(n) PTime ExpTime

iterated O(n2) ? Pseudo-ExpTime
regret (with weigths > 0)

Regret Minimization in Trees

Example

A

B

D E

C

H I

F G

0

3 0 5 0

14

0

To maximize Player 1’s regret, Player 2 should cooperate in the non-reachable
subtrees

Example

A

B

D E

C

H I

F G

0

3 0 5 0

14

00

To maximize Player 1’s regret, Player 2 should cooperate in the non-reachable
subtrees

Regrets for Player 1

reg1(A → C) =

Example

A

B

D E

C

H I

F G

0

3 0 5 0

14

00

5

0

0

1

To maximize Player 1’s regret, Player 2 should cooperate in the non-reachable
subtrees

Regrets for Player 1

reg1(A → C) = 5− 1 = 4

Example

A

B

D E

C

H I

F G

0

3 0 5 0

14

00

3

To maximize Player 1’s regret, Player 2 should cooperate in the non-reachable
subtrees

Regrets for Player 1

reg1(A → C) = 5− 1 = 4

reg1(A → B;B → D) =

Example

A

B

D E

C

H I

F G

0

3 0 5 0

14

00

3

1

0

0

To maximize Player 1’s regret, Player 2 should cooperate in the non-reachable
subtrees

Regrets for Player 1

reg1(A → C) = 5− 1 = 4

reg1(A → B;B → D) = 3− 0 = 3

Remarks

regret is not preserved by subtrees, no bottom-up algorithm

we must know the best alternative seen so far

we transform the game to obtain a min-max game

Algorithm

A

B

D E

C

H I

F G

0(0)

3(1) 0(3) 5 0

14

0(1)

Steps of Computation

1 For each root-to-leaf path, compute the regret of this path:

(cost of the path) − (best alternative along this path)

Algorithm

A

B

D,3 E

C

H,4 I,1

F,4 G,0

0(0)

3(1) 0(3) 5 0

14

0(1)

Steps of Computation

1 For each root-to-leaf path, compute the regret of this path:

(cost of the path) − (best alternative along this path)

Algorithm

A

B

D,3 E

C

H,4 I,1

F,4 G,0

0(0)

3(1) 0(3) 5 0

14

0(1)

Steps of Computation

1 For each root-to-leaf path, compute the regret of this path:

(cost of the path) − (best alternative along this path)

2 Solve a min-max game in the tree T

regT (s(T1,T2)) = min(regT (T1), regT (T2)) if s is a P1’s position
regT (s(T1,T2)) = max(regT (T1), regT (T2)) if s is a P2’s position
regT (s) = regT (path(s0, s)) if s is leaf

Algorithm

A

B

D,3

C

H,4 I,1

F,4 G,0

0(0)

3(1) 0(3) 5 0

14

0(1)

E,4

Steps of Computation

1 For each root-to-leaf path, compute the regret of this path:

(cost of the path) − (best alternative along this path)

2 Solve a min-max game in the tree T

regT (s(T1,T2)) = min(regT (T1), regT (T2)) if s is a P1’s position
regT (s(T1,T2)) = max(regT (T1), regT (T2)) if s is a P2’s position
regT (s) = regT (path(s0, s)) if s is leaf

Algorithm

A

D,3

C

H,4 I,1

F,4 G,0

0(0)

3(1) 0(3) 5 0

14

0(1)

E,4

B,3

Steps of Computation

1 For each root-to-leaf path, compute the regret of this path:

(cost of the path) − (best alternative along this path)

2 Solve a min-max game in the tree T

regT (s(T1,T2)) = min(regT (T1), regT (T2)) if s is a P1’s position
regT (s(T1,T2)) = max(regT (T1), regT (T2)) if s is a P2’s position
regT (s) = regT (path(s0, s)) if s is leaf

Algorithm

A

D,3

H,4 I,1

F,4 G,0

0(0)

3(1) 0(3) 5 0

14

0(1)

E,4

B,3 C,4

Steps of Computation

1 For each root-to-leaf path, compute the regret of this path:

(cost of the path) − (best alternative along this path)

2 Solve a min-max game in the tree T

regT (s(T1,T2)) = min(regT (T1), regT (T2)) if s is a P1’s position
regT (s(T1,T2)) = max(regT (T1), regT (T2)) if s is a P2’s position
regT (s) = regT (path(s0, s)) if s is leaf

Algorithm

D,3

H,4 I,1

F,4 G,0

0(0)

3(1) 0(3) 5 0

14

0(1)

E,4

B,3 C,4

A,3

Steps of Computation

1 For each root-to-leaf path, compute the regret of this path:

(cost of the path) − (best alternative along this path)

2 Solve a min-max game in the tree T

regT (s(T1,T2)) = min(regT (T1), regT (T2)) if s is a P1’s position
regT (s(T1,T2)) = max(regT (T1), regT (T2)) if s is a P2’s position
regT (s) = regT (path(s0, s)) if s is leaf

Algorithm

A,3

B,3

D,3 E,4

C,4

H,4 I,1

F,4 G,0

0(0)

3(1) 0(3) 5 0

14

0(1)

Steps of Computation

1 For each root-to-leaf path, compute the regret of this path:

(cost of the path) − (best alternative along this path)

2 Solve a min-max game in the tree T

regT (s(T1,T2)) = min(regT (T1), regT (T2)) if s is a P1’s position
regT (s(T1,T2)) = max(regT (T1), regT (T2)) if s is a P2’s position
regT (s) = regT (path(s0, s)) if s is leaf

Iterated Regret Minimization

Algorithm

1 compact representation of strategies that minimize the regret: delete
non-optimal edges

2 keep only the reachable states

3 do the same for Player 2

4 compute the regret in the new tree

5 goto 1 until convergence

Iterated Regret Minimization

Algorithm

1 compact representation of strategies that minimize the regret: delete
non-optimal edges

2 keep only the reachable states

3 do the same for Player 2

4 compute the regret in the new tree

5 goto 1 until convergence

Overall complexity: quadratic time

What about graphs?

Target-Weighted Graphs

Description of the arena

Finite graph arena

Costs are located on the target nodes (alternative definition: on the edges
leading to a target node)

Reduction to a min-max game

Cut the losing part of the graph

Enrich the graph with best alternative information

Remark: there are as many possible best alternatives as the number of
target nodes

→ PTime Complexity

Edge-Weighted Graphs

Remember

Infinite number of strategies

Each player has a set of target states, payoffs are on the edges

Utility of an outcome: sum of edge payoffs until it first reaches a target
state

If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding → tree arena)

Challenges

Edge-Weighted Graphs

Remember

Infinite number of strategies

Each player has a set of target states, payoffs are on the edges

Utility of an outcome: sum of edge payoffs until it first reaches a target
state

If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding → tree arena)

Challenges

Loops !

Edge-Weighted Graphs

Remember

Infinite number of strategies

Each player has a set of target states, payoffs are on the edges

Utility of an outcome: sum of edge payoffs until it first reaches a target
state

If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding → tree arena)

Challenges

Loops !

Player i ’s choices are no longer important (for her) when her target is
reached

Edge-Weighted Graphs

Remember

Infinite number of strategies

Each player has a set of target states, payoffs are on the edges

Utility of an outcome: sum of edge payoffs until it first reaches a target
state

If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding → tree arena)

Challenges

Loops !

Player i ’s choices are no longer important (for her) when her target is
reached

Avoid subset construction

Sketch of the Reduction to a Tree Arena

Loops no more

Loop-free strategies are sufficient to minimize regrets ...

... but we must consider all strategies when computing iterated regret

Assuming payoffs > 0 −→ eliminate loop issues

Sketch of the Reduction to a Tree Arena

Transformation

Unfold the graph and detect loops

Nodes of the unfolding 〈n, u1, u2, b1, b2〉 where
n is a node of the original graph
ui represents the utility for Player i (sum of payoffs) up to this node
bi is a boolean remembering whether Player i ’s target has been reached

Sketch of the Reduction to a Tree Arena

Transformation

Unfold the graph and detect loops

Nodes of the unfolding 〈n, u1, u2, b1, b2〉 where
n is a node of the original graph
ui represents the utility for Player i (sum of payoffs) up to this node
bi is a boolean remembering whether Player i ’s target has been reached

Transition function: 〈n, u1, u2, b1, b2〉 −→ 〈n′, u′
1, u

′
2, b

′
1, b

′
2〉 if:

there is an edge n → n′
u′i = if bi then ui else ui + ci (n → n′)
b′i = bi or n

′ is one of Player i ’s target states

Sketch of the Reduction to a Tree Arena

Transformation

Unfold the graph and detect loops

Nodes of the unfolding 〈n, u1, u2, b1, b2〉 where
n is a node of the original graph
ui represents the utility for Player i (sum of payoffs) up to this node
bi is a boolean remembering whether Player i ’s target has been reached

Transition function: 〈n, u1, u2, b1, b2〉 −→ 〈n′, u′
1, u

′
2, b

′
1, b

′
2〉 if:

there is an edge n → n′
u′i = if bi then ui else ui + ci (n → n′)
b′i = bi or n

′ is one of Player i ’s target states

Loop detection: if ui > M where M is the maximal utility on a loop-free
paths of the graph

Stop unfolding when b1&&b2 or when a loop is detected

Utility of a leaf: ci (〈n, u1, u2, b1, b2〉) = if bi then ui else +∞

Sketch of the Reduction to a Tree Arena

Transformation

Unfold the graph and detect loops

Nodes of the unfolding 〈n, u1, u2, b1, b2〉 where
n is a node of the original graph
ui represents the utility for Player i (sum of payoffs) up to this node
bi is a boolean remembering whether Player i ’s target has been reached

Transition function: 〈n, u1, u2, b1, b2〉 −→ 〈n′, u′
1, u

′
2, b

′
1, b

′
2〉 if:

there is an edge n → n′
u′i = if bi then ui else ui + ci (n → n′)
b′i = bi or n

′ is one of Player i ’s target states

Loop detection: if ui > M where M is the maximal utility on a loop-free
paths of the graph

Stop unfolding when b1&&b2 or when a loop is detected

Utility of a leaf: ci (〈n, u1, u2, b1, b2〉) = if bi then ui else +∞
Overall complexity: pseudo-polynomial time and space

Future Work

Future work

Extend the class of graphs: iterated regret minimization in general game
graphs

problem: 0-cost loops
challenge: add fairness condition to the graph

A B

C

0/0

0/0

5/0 0/5

D E

F

0/0

0/0

0/0

Extend the quantitative measure: quantitative languages (Chatterjee,
Doyen, Henzinger, 2008), ...

Thank you

