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Some (Almost) Real Life Example

@ you spent too much time working on your MFCS paper

@ your partner is angry and you want to be forgiven
@ your partner likes travelling
@ you don't know if she/he likes chocolates (even Belgian ones)

9 Cost(chocolates) << Cost(travelling)
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Related Work

Regret Minimization

o first introduced in the 50's [Savage,51] [Niehans,48]
@ in general, a cost function ¢; models what Player i pays
@ decision under uncertainty

@ choose a good strategy no matter the adversary does
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Iterated Regret Minimization

| A\

@ regret minimization selects a set of strategies for each player
9 can be iterated

& new solution concept proposed by [Halpern and Pass, IJCAI'09] in
strategic games where the costs are given by a matrix

9 iterated regret more reasonable than Nash equilibria for various classes of
games (Centipede Game, Travellers dilemma,...)




Comparison with Nash Equilibria

Definition

A couple of strategies (A1, A2) forms a Nash equilibrium if:
o C1(>\17 )\2) = minA; Cl()\r, )\2)
o Cz()\l,)\z) = minA; C1()\1, )\;)

Remember: c1(A1, A2) represents what Player 1 pays



The Centipede Game

@ At each turn, the active player can choose to stop the game, or to continue

9 If she stops the game, a player pays less than if the other player stops the
game immediatly after

9 But if both players continue, they both pay less (cooperation is rewarded)
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Regret Minimization vs Nash Equilibrium
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Regret Minimization vs Nash Equilibrium
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9
9
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The Centipede Game

Regret Minimization vs Nash Equilibrium

@ Nash equilibrium suggests to stop the game immediately

9 regi(A—S)=5—-1=4

o reg(A—>B;C—-D;E—S) =6—-50r4—3 =1
dregy(B—S)=4-2=2

9 reg,(B—C;D—S)=5—-4=1

9 reg®(A— B;C— D;E - S)=0and reg®°(B— C;D — S) =0.




Regret vs Nash

@ Nash equilibria: the players implicitly need to know the other player
strategy

@ Regret minimization: each player wants to use a good strategy no matter
the other player does

@ Regret minimization is a robust solution concept. In average
(#n0des<10000, max weight<30):

o Regret: payoffs are 40% worst when the other player changes her strategy

while you stick to your strategy
o Subgame Perfect Nash Equilibria: 200% to 500% worst
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2-players non-zero sum game given implicitely by a finite graph

Partition of the vertices of the graph

reachability objectives

edges (or target nodes) are weighted: cost to the first visit to a target node
tree arenas and finite graph arenas

algorithms to compute the (iterated) regret and to select strategies

extends to n players



Our aim is to compute:

regret; = miny, maxy, [costi(A1, A2) — best-response(A2)]
= miny, maxy, [costi(A1,A\2) — minA;costl(/\l*,/\z)]

and the iteration of the operator that deletes strictly dominated strategies.

trees | target-weighted graphs | edge-weighted graphs
F£strategies exp (o) (o)
regret O(n) PTIME ExPTIME
iterated o(n?) ? PSEUDO-EXPTIME
regret (with weigths > 0)




Regret Minimization in Trees



To maximize Player 1's regret, Player 2 should cooperate in the non-reachable
subtrees
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To maximize Player 1's regret, Player 2 should cooperate in the non-reachable
subtrees

Regrets for Player 1
oregi(A—>C) =5—-1=4
9 regi(A—-B;B—-D) =3-0=3

| \

Remarks
@ regret is not preserved by subtrees, no bottom-up algorithm
@ we must know the best alternative seen so far

9 we transform the game to obtain a min-max game

\
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Iterated Regret Minimization

Algorithm

Q@ compact representation of strategies that minimize the regret: delete
non-optimal edges

keep only the reachable states

Q

@ do the same for Player 2

@ compute the regret in the new tree
Q

goto 1 until convergence




Iterated Regret Minimization

Algorithm

Q@ compact representation of strategies that minimize the regret: delete
non-optimal edges

Q keep only the reachable states
@ do the same for Player 2
@ compute the regret in the new tree

@ goto 1 until convergence

Overall complexity: quadratic time



What about graphs?



Target-Weighted Graphs

Description of the arena

@ Finite graph arena

o Costs are located on the target nodes (alternative definition: on the edges
leading to a target node)

v
Reduction to a min-max game

@ Cut the losing part of the graph

9 Enrich the graph with best alternative information

@ Remark: there are as many possible best alternatives as the number of
target nodes

@ — PTime Complexity

A\




Edge-Weighted Graphs

Remember

@ Infinite number of strategies
@ Each player has a set of target states, payoffs are on the edges

@ Utility of an outcome: sum of edge payoffs until it first reaches a target
state

@ If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding — tree arena)

Challenges
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Edge-Weighted Graphs

Remember

@ Infinite number of strategies

@ Each player has a set of target states, payoffs are on the edges

@ Utility of an outcome: sum of edge payoffs until it first reaches a target
state

@ If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding — tree arena)

Challenges

@ Loops !

@ Player i's choices are no longer important (for her) when her target is
reached

@ Avoid subset construction

A\




Sketch of the Reduction to a Tree Arena

Loops no more

9 Loop-free strategies are sufficient to minimize regrets ...
9 ... but we must consider all strategies when computing iterated regret

9 Assuming payoffs > 0 — eliminate loop issues
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@ Unfold the graph and detect loops
@ Nodes of the unfolding (n, ui, uz, b1, bo) where

o nis a node of the original graph
o uj represents the utility for Player i (sum of payoffs) up to this node
9 bj is a boolean remembering whether Player i’s target has been reached
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Transformation

@ Unfold the graph and detect loops
@ Nodes of the unfolding (n, ui, uz, b1, bo) where

@ nis a node of the original graph
o u; represents the utility for Player i (sum of payoffs) up to this node
9 bj is a boolean remembering whether Player i’s target has been reached

@ Transition function: (n, u1, uz, by, b)) — (n’, ui, uy, by, by) if:
o there is an edge n — n’
o ul = if b; then u; else uj +c;j(n — n’)
o bl = b; or n’ is one of Player i's target states

9 Loop detection: if uji > M where M is the maximal utility on a loop-free
paths of the graph

<

Stop unfolding when b;1&&b, or when a loop is detected
Utility of a leaf: ¢i({n, u1, uz, b1, b2)) = if b; then u; else +oc0

Overall complexity: pseudo-polynomial time and space

(7

<




Future Work

Future work

@ Extend the class of graphs: iterated regret minimization in general game
graphs

o problem: 0-cost loops
o challenge: add fairness condition to the graph

0/0 0/0

Oy 1)
© ®

@ Extend the quantitative measure: quantitative languages (Chatterjee,
Doyen, Henzinger, 2008), ...
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