Iterated Regret Minimization in Game Graphs

Emmanuel Filiot, Tristan Le Gall, Jean-Francois Raskin

Université Libre de Bruxelles (ULB)

CIRM/ LMeASI, 10 décembre 2010

Some (Almost) Real Life Example

@ you spent too much time working on your MFCS paper

@ your partner is angry and you want to be forgiven
@ your partner likes travelling
@ you don't know if she/he likes chocolates (even Belgian ones)

9 Cost(chocolates) << Cost(travelling)

+1000$

+20$
(travel)

(chocolates)

likes doesn't like

0% +1000$ (travel)

(forgiven)) ((forgiven))

20$ 1020%)

Some (Almost) Real Life Example
o

+1000$
(travel)

+20%
(chocolates)

doesn't like

likes

0% +1000$ (travel)

(forgiven)) ((forgiven))

20% 1020$

Minmax Backward Induction
Offer a travel and pay 1000%

Some (Almost) Real Life Example
o

+1000%
(travel)

+20%
(chocolates)

likes doesn't like 1000%

0$ +1000$ (travel)

(Cforgiven)) (Cforgiven))

20% 1020$

Regret Minimization

regret; (A1, \2) = cost(A1, \2) — best-response(\2)
you (A1)

travel | chocolates
partner (\2)

likes chocolates
doesn’t

Some (Almost) Real Life Example
o

+1000$
(travel)

+20%
(chocolates)

likes doesn't like 1000%

0$ +1000$ (travel)

(Cforgiven)) (Cforgiven))

20% 1020$

Regret Minimization

regret; (A1, \2) = cost(A1, \2) — best-response(\2)
you (A1)

travel chocolates
partner (A2)

likes chocolates 1000 - 20 = 980
doesn't

Some (Almost) Real Life Example
o

+1000$
(travel)

+20%
(chocolates)

likes doesn't like 1000%

0$ +1000% (travel)

(Cforgiven)) (Cforgiven))

20% 1020$

Regret Minimization

regret; (A1, \2) = cost(A1, \2) — best-response(\2)
you (A1)

travel chocolates
partner (A2)

likes chocolates 100 - 20 = 980
doesn't 1000 - 1000 = 0

Some (Almost) Real Life Example
o

+1000%
(travel)

+20$
(chocolates)

likes doesn't like 1000%

0$ +1000$ (travel)

(Cforgiven)) (Cforgiven))

20% 1020$

Regret Minimization

regret; (A1, \2) = cost(A1, \2) — best-response(\2)
you (A1)

travel chocolates
partner (A2)

likes chocolates 1000 -20 =980 | 20-20 =0
doesn't 1000 - 1000 = 0

Some (Almost) Real Life Example
o

+1000%
(travel)

+20$
(chocolates)

likes doesn't like 1000%

0$ +1000% (travel)

(Cforgiven)) (Cforgiven))

20% 1020$

Regret Minimization

regret; (A1, \2) = cost(A1, \2) — best-response(\2)
you (A1)

travel chocolates
partner (X2)

likes chocolates 1000 - 20 = 980 20-20=0
doesn't 1000 - 1000 = 0 | 1020 - 1000=20

Some (Almost) Real Life Example
o

+1000%
(travel)

+20%
(chocolates)

likes doesn't like 1000%

0$ +1000$ (travel)

(Cforgiven)) (Cforgiven))

20% 1020$

Regret Minimization

regret; (A1, \2) = cost(A1, \2) — best-response(\2)
you (A1)

travel | chocolates
partner (\2)

likes chocolates 980 0
doesn’t 0 20

Some (Almost) Real Life Example
o

+1000%
(travel)

+20$
(chocolates)

likes doesn't like 1000%

0% +1000$ (travel)

(Cforgiven)) (Cforgiven))

20% 1020$

Regret Minimization

regret; (A1) = maxy, (cost(A1, A2) — best-response(\2))
you (A1)

travel | chocolates
partner (\2)

likes chocolates 980 0
doesn’t 0 20

Some (Almost) Real Life Example
o

+1000%
(travel)

+20$
(chocolates)

likes doesn't like 1000%

0% +1000$ (travel)

(Cforgiven)) (Cforgiven))

20% 1020$

Regret Minimization

regret; = miny, maxy, (cost(A1, A\2) — best-response(A2))

you (A1)

travel | chocolates
partner (\2)

likes chocolates 980 0
doesn’t 0 20

Related Work

Regret Minimization

o first introduced in the 50's [Savage,51] [Niehans,48]
@ in general, a cost function ¢; models what Player i pays
@ decision under uncertainty

@ choose a good strategy no matter the adversary does

Related Work

o first introduced in the 50's [Savage,51] [Niehans,48]
@ in general, a cost function ¢; models what Player i pays
@ decision under uncertainty

@ choose a good strategy no matter the adversary does

Iterated Regret Minimization

| A\

@ regret minimization selects a set of strategies for each player
9 can be iterated

& new solution concept proposed by [Halpern and Pass, IJCAI'09] in
strategic games where the costs are given by a matrix

9 iterated regret more reasonable than Nash equilibria for various classes of
games (Centipede Game, Travellers dilemma,...)

Comparison with Nash Equilibria

Definition

A couple of strategies (A1, A2) forms a Nash equilibrium if:
o C1(>\17)\2) = minA; Cl()\r,)\2)
o Cz()\l,)\z) = minA; C1()\1,)\;)

Remember: c1(A1, A2) represents what Player 1 pays

The Centipede Game

@ At each turn, the active player can choose to stop the game, or to continue

9 If she stops the game, a player pays less than if the other player stops the
game immediatly after

9 But if both players continue, they both pay less (cooperation is rewarded)

The Centipede Game

Regret Minimization vs Nash Equilibrium

@ Nash equilibrium suggests to stop the game immediately

The Centipede Game

Regret Minimization vs Nash Equilibrium

@ Nash equilibrium suggests to stop the game immediately
9 reg;(A—S)=5

The Centipede Game

Regret Minimization vs Nash Equilibrium

@ Nash equilibrium suggests to stop the game immediately
o reg(A—>S)=5-1=4

The Centipede Game

Regret Minimization vs Nash Equilibrium

@ Nash equilibrium suggests to stop the game immediately
o reg(A—>S)=5-1=4
o reg;(A—B;C—D;E—~S) =

The Centipede Game

Regret Minimization vs Nash Equilibrium

@ Nash equilibrium suggests to stop the game immediately
o reg(A—>S)=5-1=4
9 reg(A—B;C—>D;E—S) = 6—-5o0r

The Centipede Game

Regret Minimization vs Nash Equilibrium

@ Nash equilibrium suggests to stop the game immediately
o reg (A—>S)=5—-1=4
o reg(A—>B;C—>D;E—+S)=6-50r4-3 =1

The Centipede Game

Regret Minimization vs Nash Equilibrium

@ Nash equilibrium suggests to stop the game immediately
reg;(A—S)=5—-1=4

reg(A—B;C > D;E—S) =6-50r4-3 =1
reg,(B—S)=4—-2=2

¢ ¢ ¢

The Centipede Game

Regret Minimization vs Nash Equilibrium

o

9
9
9
9

Nash equilibrium suggests to stop the game immediately
reg;(A—S)=5—-1=4

reg(A—B;C > D;E—S) =6-50r4-3 =1
reg,(B—S)=4—-2=2

reg,(B— C;D—S)=5—-4=1

The Centipede Game

Regret Minimization vs Nash Equilibrium

@ Nash equilibrium suggests to stop the game immediately

9 regi(A—S)=5—-1=4

o reg(A—>B;C—-D;E—S) =6—-50r4—3 =1
dregy(B—S)=4-2=2

9 reg,(B—C;D—S)=5—-4=1

9 reg®(A— B;C— D;E - S)=0and reg®°(B— C;D — S) =0.

Regret vs Nash

@ Nash equilibria: the players implicitly need to know the other player
strategy

@ Regret minimization: each player wants to use a good strategy no matter
the other player does

@ Regret minimization is a robust solution concept. In average
(#n0des<10000, max weight<30):

o Regret: payoffs are 40% worst when the other player changes her strategy

while you stick to your strategy
o Subgame Perfect Nash Equilibria: 200% to 500% worst

¢ € ¢ ¢ ¢ ¢ ¢

2-players non-zero sum game given implicitely by a finite graph

Partition of the vertices of the graph

reachability objectives

edges (or target nodes) are weighted: cost to the first visit to a target node
tree arenas and finite graph arenas

algorithms to compute the (iterated) regret and to select strategies

extends to n players

Our aim is to compute:

regret; = miny, maxy, [costi(A1, A2) — best-response(A2)]
= miny, maxy, [costi(A1,A\2) — minA;costl(/\l*,/\z)]

and the iteration of the operator that deletes strictly dominated strategies.

trees | target-weighted graphs | edge-weighted graphs
F£strategies exp (o) (o)
regret O(n) PTIME ExPTIME
iterated o(n?) ? PSEUDO-EXPTIME
regret (with weigths > 0)

Regret Minimization in Trees

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable
subtrees

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable
subtrees

Regrets for Player 1

9 reg;(A— C) =

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable
subtrees

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable
subtrees

Regrets for Player 1

dreg(A—>C) =5-1=4
9 reg;(A— B;B— D) =

To maximize Player 1's regret, Player 2 should cooperate in the non-reachable
subtrees

Regrets for Player 1
oregi(A—>C) =5—-1=4
9 regi(A—-B;B—-D) =3-0=3

| \

Remarks
@ regret is not preserved by subtrees, no bottom-up algorithm
@ we must know the best alternative seen so far

9 we transform the game to obtain a min-max game

\

Algorithm

Steps of Computation

Q For each root-to-leaf path, compute the regret of this path:

(cost of the path) — (best alternative along this path)

Algorithm

Steps of Computation

Q For each root-to-leaf path, compute the regret of this path:

(cost of the path) — (best alternative along this path)

Algorithm

Steps of Computation

Q For each root-to-leaf path, compute the regret of this path:
(cost of the path) — (best alternative along this path)
Q Solve a min-max game in the tree T

regr(s(T1, T2)) = min(regr(T1),reg+(T2)) if sis a P1l's position
regr(s(T1, T2)) = max(regr(T1),regr(T2)) if sis a P2's position
regr(s) reg(path(so, s)) if s is leaf

Algorithm

Steps of Computation

Q For each root-to-leaf path, compute the regret of this path:
(cost of the path) — (best alternative along this path)
Q Solve a min-max game in the tree T

regr(s(T1, T2)) = min(regr(T1),reg+(T2)) if sis a P1l's position
regr(s(T1, T2)) = max(regr(T1),regr(T2)) if sis a P2's position
regr(s) reg(path(so, s)) if s is leaf

Algorithm

Steps of Computation

Q For each root-to-leaf path, compute the regret of this path:
(cost of the path) — (best alternative along this path)
Q Solve a min-max game in the tree T

regr(s(T1, T2)) = min(regr(T1),reg+(T2)) if sis a P1l's position
regr(s(T1, T2)) = max(regr(T1),regr(T2)) if sis a P2's position
regr(s) reg(path(so, s)) if s is leaf

Algorithm

Steps of Computation

Q For each root-to-leaf path, compute the regret of this path:
(cost of the path) — (best alternative along this path)
Q Solve a min-max game in the tree T

regr(s(T1, T2)) = min(regr(T1),reg+(T2)) if sis a P1l's position
regr(s(T1, T2)) = max(regr(T1),regr(T2)) if sis a P2's position
regr(s) reg(path(so, s)) if s is leaf

Algorithm

Steps of Computation

Q For each root-to-leaf path, compute the regret of this path:
(cost of the path) — (best alternative along this path)
Q Solve a min-max game in the tree T

regr(s(T1, T2)) = min(regr(T1),reg+(T2)) if sis a P1l's position
regr(s(T1, T2)) = max(regr(T1),regr(T2)) if sis a P2's position
regr(s) reg(path(so, s)) if s is leaf

Algorithm

Steps of Computation

Q For each root-to-leaf path, compute the regret of this path:
(cost of the path) — (best alternative along this path)
Q Solve a min-max game in the tree T

regr(s(T1, T2)) = min(regr(T1),reg+(T2)) if sis a P1l's position
regr(s(T1, T2)) = max(regr(T1),regr(T2)) if sis a P2's position
regr(s) reg(path(so, s)) if s is leaf

Iterated Regret Minimization

Algorithm

Q@ compact representation of strategies that minimize the regret: delete
non-optimal edges

keep only the reachable states

Q

@ do the same for Player 2

@ compute the regret in the new tree
Q

goto 1 until convergence

Iterated Regret Minimization

Algorithm

Q@ compact representation of strategies that minimize the regret: delete
non-optimal edges

Q keep only the reachable states
@ do the same for Player 2
@ compute the regret in the new tree

@ goto 1 until convergence

Overall complexity: quadratic time

What about graphs?

Target-Weighted Graphs

Description of the arena

@ Finite graph arena

o Costs are located on the target nodes (alternative definition: on the edges
leading to a target node)

v
Reduction to a min-max game

@ Cut the losing part of the graph

9 Enrich the graph with best alternative information

@ Remark: there are as many possible best alternatives as the number of
target nodes

@ — PTime Complexity

A\

Edge-Weighted Graphs

Remember

@ Infinite number of strategies
@ Each player has a set of target states, payoffs are on the edges

@ Utility of an outcome: sum of edge payoffs until it first reaches a target
state

@ If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding — tree arena)

Challenges

Edge-Weighted Graphs

Remember

@ Infinite number of strategies
@ Each player has a set of target states, payoffs are on the edges

@ Utility of an outcome: sum of edge payoffs until it first reaches a target
state

@ If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding — tree arena)

Challenges

@ Loops !

A\

Edge-Weighted Graphs

Remember

@ Infinite number of strategies

@ Each player has a set of target states, payoffs are on the edges

@ Utility of an outcome: sum of edge payoffs until it first reaches a target
state

@ If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding — tree arena)

Challenges

@ Loops !

@ Player i's choices are no longer important (for her) when her target is
reached

A\

Edge-Weighted Graphs

Remember

@ Infinite number of strategies

@ Each player has a set of target states, payoffs are on the edges

@ Utility of an outcome: sum of edge payoffs until it first reaches a target
state

@ If all payoffs are strictly positive integers, pseudo-polynomial time
algorithm (unfolding — tree arena)

Challenges

@ Loops !

@ Player i's choices are no longer important (for her) when her target is
reached

@ Avoid subset construction

A\

Sketch of the Reduction to a Tree Arena

Loops no more

9 Loop-free strategies are sufficient to minimize regrets ...
9 ... but we must consider all strategies when computing iterated regret

9 Assuming payoffs > 0 — eliminate loop issues

Sketch of the Reduction to a Tree Arena

Transformation

@ Unfold the graph and detect loops
@ Nodes of the unfolding (n, ui, uz, b1, bo) where

o nis a node of the original graph
o uj represents the utility for Player i (sum of payoffs) up to this node
9 bj is a boolean remembering whether Player i’s target has been reached

Sketch of the Reduction to a Tree Arena

Transformation

@ Unfold the graph and detect loops
@ Nodes of the unfolding (n, ui, uz, b1, bo) where

@ nis a node of the original graph
o u; represents the utility for Player i (sum of payoffs) up to this node
9 bj is a boolean remembering whether Player i’s target has been reached

@ Transition function: (n, u1, uz, by, b)) — (n’, ui, uy, by, by) if:
o there is an edge n — n’
o ul = if b; then u; else uj +c;j(n — n’)
o bl = b; or n’ is one of Player i's target states

Sketch of the Reduction to a Tree Arena

Transformation

@ Unfold the graph and detect loops
@ Nodes of the unfolding (n, ui, uz, b1, bo) where

@ nis a node of the original graph
o u; represents the utility for Player i (sum of payoffs) up to this node
9 bj is a boolean remembering whether Player i’s target has been reached

@ Transition function: (n, u1, uz, by, b)) — (n’, ui, uy, by, by) if:
o there is an edge n — n’
o ul = if b; then u; else uj +c;j(n — n’)
o bl = b; or n’ is one of Player i's target states

9 Loop detection: if uji > M where M is the maximal utility on a loop-free
paths of the graph

@ Stop unfolding when b;1&&b, or when a loop is detected
o Utility of a leaf: ci({n, u1, uz, b1, bz)) = if b;i then u; else +o00

Sketch of the Reduction to a Tree Arena

Transformation

@ Unfold the graph and detect loops
@ Nodes of the unfolding (n, ui, uz, b1, bo) where

@ nis a node of the original graph
o u; represents the utility for Player i (sum of payoffs) up to this node
9 bj is a boolean remembering whether Player i’s target has been reached

@ Transition function: (n, u1, uz, by, b)) — (n’, ui, uy, by, by) if:
o there is an edge n — n’
o ul = if b; then u; else uj +c;j(n — n’)
o bl = b; or n’ is one of Player i's target states

9 Loop detection: if uji > M where M is the maximal utility on a loop-free
paths of the graph

<

Stop unfolding when b;1&&b, or when a loop is detected
Utility of a leaf: ¢i({n, u1, uz, b1, b2)) = if b; then u; else +oc0

Overall complexity: pseudo-polynomial time and space

(7

<

Future Work

Future work

@ Extend the class of graphs: iterated regret minimization in general game
graphs

o problem: 0-cost loops
o challenge: add fairness condition to the graph

0/0 0/0

Oy 1)
© ®

@ Extend the quantitative measure: quantitative languages (Chatterjee,
Doyen, Henzinger, 2008), ...

Thank you

