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What is this talk about ?

Attack on a hard problem from code-based cryptography.

In the rank metric.

An algebraic attack.
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Fqm-linear codes in the rank metric
Fqm/Fq finite field extension of degree m, basis B := (β1, . . . , βm).

Fqm-linear code
Fqm -linear subspace C ⊂ Fn

qm , dim. k.
Words ↔ Matrices in Fm×n

q .

c := (c1, . . . , cn)↔Matc =

c1,1 · · · c1,n
... . . . ...

cm,1 · · · cm,n

 , where ci :=
m∑

j=1
cj,iβj .

Support and rank weight for c ∈ Fn
qm

Supp(c) := 〈c1, . . . , cn〉Fq .

ω(c) := dimFq (Supp(c)) = rk (Matc).
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The Rank Decoding problem (RD)

C := {xG, x ∈ Fn
qm} G ∈ Fk×n

qm generating matrix.

C := {c ∈ Fn
qm , cHT = 0} H ∈ F(n−k)×n

qm parity-check matrix.

(GHT = 0).

Fixed weight decoding
Given G ∈ Fk×n

q full-rank, y ∈ Fn
qm , find x ∈ Fn

qm s.t.

ω(y − xG) := ω(e) = r , where e is an error.

Syndrome decoding
Given H ∈ F(n−k)×n

qm full-rank, a syndrome s ∈ Fn−k
qm and r ∈ N, find

e ∈ Fn
qm s.t.

eHT = s and ω(e) = r .
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RD and the MinRank problem

MinRank
Input: an integer r ∈ N and K matrices M1, . . . ,MK ∈ Fm×n

q .
Output: x1, x2, . . . , xK ∈ Fq not all zero s.t.

rk
( K∑

i=1
xiM i

)
≤ r .

RD = MinRank with Fqm -linearity:
(g1, . . . , gk) Fqm -basis of C, target y := gk+1, K := (k + 1)m.

∀i ∈ {1..k + 1}, ∀j ∈ {1..m}, M(i−1)m+j := Matβj g i .

MinRank : NP-hard, RD : not (a priori) NP-hard.
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Outline of the talk

1 Our modeling to attack RSL

2 Solving the system

3 Conclusion
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Rank Support Learning problem (RSL)

Rank Support Learning (RSL)

Input: H ∈ F(n−k)×n
qm full-rank, N syndromes s i ∈ F(n−k)

qm s.t.

∀i ,∃e i ∈ Fn
qm , (e iHT = s i , Supp(e i ) = V),

where dimFq (V) = r .
Output: the common support V

This is RD when N = 1. How easier when N ↗ ?
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Motivation
Crypto !

RSL introduced for crypto (IBE in rank metric [Gab+17]).
Durandal signature scheme ([Ara+19]) relies on RSL.

Known algos
N ≥ nr : polynomial (linear algebra, [Gab+17]).
N ≥ kr : subexponential (GB, very overdetermined system, [DAT18]).
Any RD solver on 1 syndrome . . . the best so far when N < kr (!)

→ This talk : an algo for any N < kr .

[Gab+17] Gaborit et al. “Identity-based Encryption from Rank Metric”. CRYPTO 2017.

[Ara+19] Aragon et al. “Durandal: a rank metric based signature scheme”. EUROCRYPT 2019.

[DAT18] Debris-Alazard and Tillich. “Two attacks on rank metric code-based schemes: RankSign and an

Identity-Based-Encryption scheme”. ASIACRYPT 2018.
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RSL-Minors modeling

∀i , y iHT = s i (no weight constraint).

Caug := C + 〈y1, . . . , yN〉Fq = C + 〈e1, . . . , eN〉Fq := C + E ⊂ Fn
qm .

Strategy ([Gab+17])
Target : e ∈ Caug ,w(e) := w ≤ r (≈ qN such words).

⇒ MinRank with km + N matrices, rank w .

e := xG +
N∑

i=1
λiy i = (β1, β2, . . . , βm)Mate := (β1, β2, . . . , βm)CR.

(Unknowns x ∈ Fk
qm , λi ∈ Fq,C ∈ Fm×w

q and R ∈ Fw×n
q ).

[Gab+17] Gaborit et al. “Identity-based Encryption from Rank Metric”. CRYPTO 2017.
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RSL-Minors modeling
Multiply by HT to remove the xG term:

eHT := s =
N∑

i=1
λis i := (β1, β2, . . . , βm)CRHT.

The matrix ∆H :=


N∑

i=1
λis i

RHT

 =


N∑

i=1
λiy i

R

HT

has rank ≤ w !

System over Fqm (variables over Fq)

F :=
{

f = 0
∣∣∣f ∈ MaxMinors(∆H)

}
.

#eqs over Fqm =
(

n − k
w + 1

)
.
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RSL-Minors modeling

Degree ?
Bilinear in λi and in the maximal minors of R (rT = |R|∗,T ).

→ Sum of products

∣∣∣∣∣∣∣
N∑

i=1
λiy i

R

∣∣∣∣∣∣∣
∗,I

×
∣∣∣H∣∣∣

J,I
(Cauchy-Binet formula).

→ Compute left factors by Laplace expansion along the first row.

RSL-Minors system

Fext := ExpB(F) := {[βi ]f = 0 | i ∈ {1..m}, f ∈ F} .

#eqs over Fq = m
(

n − k
w + 1

)
#{monomials λi rT} = N

(
n
w

)
.
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Solving the system

1 Need to restrict the number of solutions !
→ If possible, choose smaller w ≤ r and/or shorten Caug .

2 “λ− XL” (as in [Bar+20]): multiply by monomials in λi + linearize
at bi-degree (b, 1).
→ Find b ? How many independent eqs ? Syzygies ?

3 Solve the linear system with Strassen/Wiedemann.
→ Very few sols, easy to recover the true RSL ones.

[Bar+20] Bardet et al. “Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems”.

ASIACRYPT 2020.
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At bi-degree ( b︸︷︷︸
λ

, 1︸︷︷︸
rT

) over Fqm (system F)

Syndrome matrix S :=
(
s1, . . . , sN

)
∈ F(n−k)×N

qm .

Assumption 1 (cheap)

We assume that Rank(S{1..n−k−w},∗) = n − k − w .

Assumption 1 ⇒ “control” on the staircase for row ech. form at bi-degree
(1, 1).
Use this fact to construct a basis at higher bi-degree !

Theorem 1 (under Assumption 1)
Let b ≥ 1 and Nb := #{Lin. Indep. bi-degree (b, 1)}. One has

Nb :=
n−k−w+1∑

d=2

(
n − k − d

w − 1

) d−1∑
j=1

(
N − j + 1 + b − 2

b − 1

)
.
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Expanding over Fq (system Fext)

To be solved: Fext = ExtB(F), eqs, sols ∈ Fq.

Assumption 2
Applying ExtB(.) does not add “extra” linear relations.

Theorem 1 + Assumption 2:
⇒ Find b to solve by linearization at bi-degree (b, 1).

Dominant cost : final linear system over Fq. Sparse linear algebra
when b large enough.
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Impact

128-bit parameters constructed w.r.t. Durandal reqs. + [Bar+20].

(m, n, k, r) Best so far (RD) N = k(r − 2) N = k(r − 1)
(277, 358, 179, 7) 130 126 125
(281, 242, 121, 8) 159 170 128
(293, 254, 127, 8) 152 172 125
(307, 274, 137, 9) 251 187 159

Improves key recovery on Durandal.
The harder the RD instance, the more we might gain (need to
compare asymptotic complexities though).
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