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In other words..
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Introduction to Binary ECC

Basic overview
I Binary elliptic curves are elliptic curves defined over a binary

field F2n ;

I We use polynomial representation and the operations are in F2
since F2n ∼= F2[z ]/(m(z)), where m(z) is an irreducible
polynomial of degree n;

I All computations are done mod m(z).
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Introduction to Binary ECC
Basic overview of operations
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Introduction to Binary ECC

Hardness of ECC
I Alice and Bob agrees in the same point P over a curve;

I Alice selects a secret integer α and Bob selects an integer β;
I Then, they calculate and tell each other Pα = [α]P and

Pβ = [β]P ;
I Finally, they calculate their shared point

Pαβ = [α · β]P = [α]Pβ = [β]Pα.
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Introduction to Quantum Computing

How a quantum computer works?
I It perform computations based on probabilities of an object’s

state before it is measured;

I We can change the probabilities of a state;
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Quantum Computation - qubits

Qubit vs Classical bit

|0〉 =
(
1
0

)
|1〉 =

(
0
1

)
α |0〉+ β |1〉 ,

|α|2 + |β|2 = 1

.
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Measure quantum state

Measuring collapses the state.
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Quantum gates

Identity gate:
|a〉 I |a〉

NOT gate:
|a〉 NOT |1− a〉

CNOT gate:
|a〉
|b〉

|a〉
|a⊕ b〉

Hadamard Gate:

I H = 1√
2

(
1 1
1 −1

)
|b〉 H

(|0〉+(−1)b|1〉)√
2

|b〉 H H |b〉

Toffoli gate:
|a〉
|b〉
|c〉

|a〉
|b〉
|ab ⊕ c〉

14 / 28



n-Qubit system

Definition
|ψ〉 ∈ C2 such that || |ψ〉 || = 1,

|ψ〉 =
∑

x∈{0,1}n
αx |x〉

where ∑
x∈{0,1}n

|αx |2 = 1.

Example 2-qubit system
I 4 basis states:
|0〉⊗ |0〉, |0〉⊗ |1〉,|1〉⊗ |0〉,
|1〉 ⊗ |1〉.

I It is common to use just:
|0〉 |1〉,|10〉
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Quantum computation and reversibility

Reversibility

Quantum evolution is unitary (or any operation that changes the
state needs to be unitary);

Unitary means:

UU† = U†U = I
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Quantum computation and reversibility

Reversibility

A unitary transformation taking basis states to basis states must be
a permutation.

if U |x〉 = |u〉 and U |y〉 = |u〉, then |x〉 = U−1 |u〉 = |y〉.
Therefore quantum mechanics imposes the constraint that

classically it must be reversible computation.
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Factoring prime numbers

Factoring Integers with Shor’s algorithm

I Develop by Peter Shor in
1994;

I Brings apocalypse to
cryptography;

I It breaks RSA, ECDSA and
DSA;

I How many qubits and gates
do we need to run Shor’s
algorithm?
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Shor’s algorithm
In summary Shor’s algorithm has two parts:
I A reduction of the factoring problem to the problem of

order-finding, which can be done on a classical computer;

I A quantum algorithm to solve the order-finding problem.
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Shor’s algorithm
A toy example can be when we have N = 15. Let’s see how Shor’s
algorithm works:

1 Select an arbitrary number, such as a = 2 (< 15)
2 gcd(a,N) = gcd(2, 15) = 1
3 Find the period of function f (x) = ax mod N, which satisfies
f (x + r) = f (x);

4 Get r = 4 through the circuit below;
5 gcd(a

r
2 + 1,N) = gcd(5, 15) = 5;

6 gcd(a
r
2 − 1,N) = gcd(3, 15) = 5;

7 For N = 15, the two decomposed prime numbers are 3 and 5.
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Ressource Estimation

Break RSA (Integer Factoring)
From Gidney & Ekerå(2019)3 uses “3n+ 0.002nlg(n) logical qubits,
0.3n3 + 0.0005n3lg(n) Toffolis, and 500n2 + n2lg(n) measurement
depth to factor n-bit RSA integers”

RSA Bits Qubits Toffoli + T Gates (billions)
1024 3092 0.4
2048 6189 2.7
3072 9287 9.9

3Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. arXiv preprint quant-ph/1904.09749, 2019.
https://arxiv.org/abs/1905.09749
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Shor’s circuit for finding elliptic curve discrete logarithm
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Shor’s circuit for finding elliptic curve discrete logarithm

I Implementation (Quantumly) of Inversion using GCD and FLT
(Fermat’s little theorem);

I We use for multiplication Karatsuba from Iggy’s paper4;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of "window" addition;
I Q# implementation of Karatsuba and other functions.

4Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binaryfinite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.
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Ressource Estimation

Break Binary ECC (DLP)
From Banegas, Bernstein, von Hoof and Lange(2021)5 we have
that for breaking binary ECC we have 7n + blog(n)c+ 9 qubits,
48n3 + 8nlog(3)+1 + 352n2 log(n) + 512n2 +O(nlog(3)) Toffoli gates
and O(n3) CNOT gates (More details in the presentation at
CHES2021).

Single step Total
n qubits TOF gates CNOT gates depth upper bound TOF gates
163 1,157 893,585 827,379 1,262,035 293,095,880
233 1,647 1,669,299 1,614,947 2,405,889 781,231,932
283 1,998 2,427,369 2,358,734 3,503,510 1,378,745,592
571 4,015 8,987,401 9,080,190 13,237,682 10,281,586,744

5Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum
cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(1)
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Other Quantum algorithms
I Simon’s Algorithm (QFT);
I Ambaini’s Algorithm (Element disticness);
I Claw finding Algorithm;
I Kuperberg’s Algorithm (dihedral hidden subgroup problem);
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Questions

Thank you for your attention.
Questions?

gustavo@cryptme.in
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