

OVERVIEW

INTRODUCTION

- WHAT IS COMPLEXITY?
- 3-TENSORS
- APPLICATIONS OF TENSOR DECOMPOSITION

TENSOR RANK OF $\mathbb{F}_{q^{m}}$-LINEAR MATRIX CODES

INVARIANTS FOR MATRIX CODES

WHAT IS COMPLEXITY ?

\square

Definition

The complexity of a problem is the cost of the optimal procedure among all the ones that solve the problem and fit into a given model of computation.

It is allowed to freely use the intermediate results once they are computed.

A computation is said to be finished if the quantities that the computation is supposed to compute are among the intermediate results.

WHAT IS COMPLEXITY ?

The cost of a computation that solves a problem is an upper bound on the complexity of that problem with respect to the given model.

Lower bounds can be often obtain by establishing relations between the complexity of the problem and the invariants of the appropriate structure (algebraic, topological, geometric or combinatorial).

We are interested in the so-called nonscalar model where additions, subtractions and scalar multiplications are free of charge. The (nonscalar) cost of an algorithm is therefore the number of multiplications and divisions needed to compute the result.

AN EXAMPLE: MULTIPLICATION OF 2×2 MATRICES

Let A, B be 2×2 following matrices

$$
A=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right), \quad B=\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right) .
$$

The standard algorithm returns the matrix $C=A B$ by computing the following intermediate results:

$$
\begin{array}{ll}
c_{1}=a_{1} b_{1}+a_{2} b_{3}, & c_{2}=a_{1} b_{2}+a_{2} b_{4} \\
c_{3}=a_{3} b_{1}+a_{4} b_{3}, & c_{4}=a_{3} b_{2}+a_{4} b_{4}
\end{array}
$$

It requires 8 multiplications and 4 additions. Therefore, an upper bound for the complexity (in the nonscalar model) is 8.

AN EXAMPLE: MULTIPLICATION OF 2×2 MATRICES

We can compute $C=A B$ using Strassen's algorithm, which gives
$c_{1}=S_{1}+S_{4}-S_{5}+S_{7}, \quad c_{2}=S_{2}+S_{4}, \quad c_{3}=S_{3}+S_{5}, \quad c_{4}=S_{1}+S_{3}-S_{2}+S_{6}$
where the S_{i} 's are the intermediate steps

$$
\begin{array}{lll}
S_{1}=\left(a_{1}+a_{4}\right)\left(b_{1}+b_{4}\right), & S_{2}=\left(a_{3}+a_{4}\right) b_{1}, & S_{3}=a_{1}\left(b_{3}-b_{4}\right) \\
S_{4}=a_{4}\left(b_{3}-b_{1}\right), & S_{5}=\left(a_{1}+a_{2}\right) b_{4}, & S_{6}=\left(a_{3}-a_{1}\right)\left(b_{1}+b_{2}\right), \\
S_{7}=\left(a_{2}-a_{4}\right)\left(b_{3}+b_{4}\right) . & &
\end{array}
$$

It requires 7 multiplications and 18 additions.

AN EXAMPLE: MULTIPLICATION OF 2×2 MATRICES

Algorithm	\# multiplication	\# additions
standard	8	4
Strassen's	7	18

Remark

The complexity of multiplying 2×2 matrices (in the nonscalar model) is 7 . The upper-bound is given by Strassen (1969), the lower bound was proved by Winograd (1971).

LINEAR MAPS

Let A, B be vector spaces over the same field \mathbb{K} and denote by A^{*} the dual vector space of A, i.e. $A^{*}:=\{f: A \longrightarrow \mathbb{K} \mid f$ linear $\}$. For $\alpha \in A^{*}$ and $b \in B$, one can define a rank one linear map

$$
\alpha \otimes b: A \longrightarrow B: a \longmapsto \alpha(a) b .
$$

Definition

The rank $\tau(f)$ of a linear map $f: A \longrightarrow B$ is the smallest integer R such that there exist $\alpha_{1}, \ldots, \alpha_{R} \in A^{*}$ and $b_{1}, \ldots, b_{R} \in B$ such that

$$
f=\sum_{i=1}^{R} \alpha_{i} \otimes b_{i}
$$

BILINEAR MAPS

Let A, B, C be vector spaces over the same field \mathbb{K}. For $\alpha \in A^{*}, \beta \in B^{*}$ and $c \in C$, one can define a rank one bilinear map

$$
\alpha \otimes \beta \otimes c: A \times B \longrightarrow C:(a, b) \longmapsto \alpha(a) \beta(b) c
$$

Definition

The $\operatorname{rank} \tau(T)$ of a bilinear map $T: A \times B \longrightarrow C$ is the smallest integer R such that there exist $\alpha_{1}, \ldots, \alpha_{R} \in A^{*}, \beta_{1}, \ldots, \beta_{R} \in B^{*}$ and $c_{1}, \ldots, c_{R} \in C$ such that

$$
T=\sum_{i=1}^{R} \alpha_{i} \otimes \beta_{i} \otimes c_{i}
$$

BILINEAR MAPS AND COMPLEXITY

If a bilinear map T has rank R then T can be executed by performing R multiplications (and $\mathcal{O}(R)$ additions).

The rank of a bilinear map gives a measure of its complexity.

BILINEAR MAPS AND COMPLEXITY

If a bilinear map T has rank R then T can be executed by performing R multiplications (and $\mathcal{O}(R)$ additions).

The rank of a bilinear map gives a measure of its complexity.

Example

Matrix multiplication of $n \times n$ matrices is a bilinear map:

$$
M_{n, n, n}: \mathbb{K}^{n \times n} \times \mathbb{K}^{n \times n} \longrightarrow \mathbb{K}^{n \times n}
$$

We observed that $R\left(M_{2,2,2}\right)=7$ and it is known that $19 \leq R\left(M_{3,3,3}\right) \leq 23$.

3-TENSORS

We assume n, m, k to be integers.

Definition

A 3-tensor is an element of $\mathbb{K}^{k} \otimes \mathbb{K}^{n} \otimes \mathbb{K}^{m}$.

If $\left\{a_{1}, \ldots, a_{k}\right\},\left\{b_{1}, \ldots, b_{n}\right\},\left\{c_{1}, \ldots, c_{m}\right\}$ are bases of $\mathbb{K}^{k}, \mathbb{K}^{n}, \mathbb{K}^{m}$, respectively, then a basis for $\mathbb{K}^{k} \otimes \mathbb{K}^{n} \otimes \mathbb{K}^{m}$ is

$$
\left\{a_{i} \otimes b_{j} \otimes c_{\ell}: 1 \leq i \leq k, 1 \leq j \leq n, 1 \leq \ell \leq m\right\}
$$

In particular we have $\operatorname{dim}\left(\mathbb{K}^{k} \otimes \mathbb{K}^{n} \otimes \mathbb{K}^{m}\right)=\operatorname{dim}\left(\mathbb{K}^{k}\right) \operatorname{dim}\left(\mathbb{K}^{n}\right) \operatorname{dim}\left(\mathbb{K}^{m}\right)=k n m$.

COORDINATE TENSORS

A tensor $X:=\sum_{r} a_{r} \otimes b_{r} \otimes c_{r}$ can be represented as an array. That is as the map

$$
\begin{aligned}
& \qquad X:\{1, \ldots, k\} \times\{1, \ldots, n\} \times\{1, \ldots, m\} \longrightarrow \mathbb{K} \\
& \text { given by } X=\left(X_{i j \ell}: 1 \leq i \leq k, 1 \leq j \leq n, 1 \leq \ell \leq m\right) . \\
& \text { Therefore, } X \text { is related to the the 3-dimensional array } \\
& \qquad X_{i j \ell}=\sum_{r} a_{\ell r} b_{i r} c_{j r} .
\end{aligned}
$$

where $a_{r}:=\left(a_{\ell r}: 1 \leq \ell \leq k\right), b_{r}:=\left(b_{i r}: 1 \leq i \leq n\right), c_{r}:=\left(a_{j r}: 1 \leq j \leq m\right)$.

Remark

This representation of X is called coordinate tensor and allows to identify the space $\mathbb{K}^{k} \otimes \mathbb{K}^{n} \otimes \mathbb{K}^{m}$ with $\mathbb{K}^{k \times n \times m}$.

MATRIX REPRESENTATION

Consider the map $\mu: \mathbb{K}^{k} \times \mathbb{K}^{k \times n \times m} \longrightarrow \mathbb{K}^{k \times n \times m}:(v, X) \longmapsto \sum_{r}\left(v \cdot a_{r}\right) \otimes b_{r} \otimes c_{r}$, and notice that this map yields a 3-tensor of the form $\sum_{r} \lambda_{r} \otimes b_{r} \otimes c_{r}$, where $\lambda_{r} \in \mathbb{K}$, which can be identify as the 2-tensor $\sum_{r} \lambda_{r} b_{r} \otimes c_{r}$, since $\mathbb{K} \otimes \mathbb{K}^{n}$ and \mathbb{K}^{n} are isomorphic.

As a consequence, we can identify the tensor X with the array of $n \times m$ matrices $X=\left(X_{1}|\ldots| X_{k}\right)$, where

$$
x_{s}:=\mu\left(e_{s}, x\right)=\sum_{r}\left(a_{r}\right)_{s} b_{r} \otimes c_{r}
$$

and e_{s} is the s-th element of the canonical basis for \mathbb{K}^{k}, for all $1 \leq s \leq k$.

3-TENSORS

Let $X=\left(X_{1}|\ldots| X_{k}\right) \in \mathbb{K}^{k \times n \times m}$ be a 3-tensor.

Definition

The first slice space $\mathrm{ss}_{1}(X)$ of X is defined as the span $\left\langle X_{1}, \ldots, X_{k}\right\rangle$ over \mathbb{K}. We say that $\mathrm{ss}_{1}(X)$ is nondegenerate if $\operatorname{dim}\left(\mathrm{ss}_{1}(X)\right)=k$.

Definition

X is said to be simple (or rank one) if there exist $a \in \mathbb{K}^{k}, b \in \mathbb{K}^{n}$ and $c \in \mathbb{K}^{m}$ such that $X=a \otimes b \otimes c$.

Definition

The tensor rank $\operatorname{trk}(X)$ of X is defined as the smallest R such that X can be expressed as sum of R simple tensors.

PERFECT BASE

Let $X=\left(X_{1}|\ldots| X_{k}\right) \in \mathbb{K}^{k \times n \times m}$ be a 3-tensor.

Definition
Let $\mathcal{A}:=\left\{A_{1}, \ldots, A_{R}\right\} \subseteq \mathbb{K}^{n \times m}$ be a set of R linearly independent rank-1 matrices. We say that \mathcal{A} is a perfect base (or R-base) for the tensor X if

$$
\mathrm{ss}_{1}(X) \leq\left\langle A_{1}, \ldots, A_{R}\right\rangle
$$

$\stackrel{-0}{-0}$

Lemma

The following are equivalent.

- $\operatorname{trk}(X) \leq R$.
- There exists an R-base for X.

AN EXAMPLE

Let $X \in \mathbb{F}_{5}^{2 \times 2 \times 2}$ be the 3 -tensor defined as

$$
x:=\left(\begin{array}{ll|ll}
1 & 0 & 0 & 1 \\
0 & 1 & 3 & 1
\end{array}\right)
$$

One can check that $\operatorname{trk}(X)=3$ and a 3-base for X is given by

$$
\mathcal{A}:=\left\{\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right)\right\} .
$$

In particular, we have

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)+\left(\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right), \\
& \left(\begin{array}{ll}
0 & 1 \\
3 & 1
\end{array}\right)=2\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)+\left(\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right)
\end{aligned}
$$

EQUIVALENT 3-TENSORS

Let $X=\left(X_{1}|\ldots| X_{k}\right)$ and $Y=\left(Y_{1}|\ldots| Y_{k}\right)$ be 3-tensors in $\mathbb{K}^{k \times n \times m}$.

Definition
We say that X, Y are equivalent if there exist $P \in G L_{n}(\mathbb{K})$ and $Q \in G L_{m}(\mathbb{K})$ such that $\mathrm{ss}_{1}(X)=P \mathrm{ss}_{1}(Y) Q:=\left\{P N Q: N \in \mathrm{ss}_{1}(Y)\right\}$.

EQUIVALENT 3-TENSORS

Let $X=\left(X_{1}|\ldots| X_{k}\right)$ and $Y=\left(Y_{1}|\ldots| Y_{k}\right)$ be 3-tensors in $\mathbb{K}^{k \times n \times m}$.

Definition
We say that X, Y are equivalent if there exist $P \in G L_{n}(\mathbb{K})$ and $Q \in G L_{m}(\mathbb{K})$ such that $\mathrm{ss}_{1}(X)=P \mathrm{ss}_{1}(Y) Q:=\left\{P N Q: N \in \mathrm{ss}_{1}(Y)\right\}$.

Remark

For any pair of matrices $P \in G L_{n}(\mathbb{K})$ and $Q \in G L_{m}(\mathbb{K})$, if \mathcal{A} is a perfect base for X then $\{P A Q: A \in \mathcal{A}\}$ is a perfect base for the 3-tensor $P X Q$.

APPLICATIONS OF TENSOR DECOMPOSITION

- Cumulants
(Statistics)
- Fluorescence spectroscopy
(Chemistry)
- Interpretation of MRI

$$
K(t)=\sum_{i=0}^{\infty} \kappa_{n} \frac{t^{n}}{n!}=\mu t+\sigma^{2} \frac{t^{2}}{2}+\cdots
$$

- Blind source separation
(e.g. Cocktail Party Problem)
(Digital Signal Processing)
- Storage and Encoding
(Coding Theory)

APPLICATIONS OF TENSOR DECOMPOSITION

- Cumulants
(Statistics)
- Fluorescence spectroscopy
(Chemistry)
- Interpretation of MRI
(Medicine)
- Blind source separation
(e.g. Cocktail Party Problem)
(Digital Signal Processing)

- Storage and Encoding
(Coding Theory)

APPLICATIONS OF TENSOR DECOMPOSITION

- Cumulants
(Statistics)
- Fluorescence spectroscopy
(Chemistry)
- Interpretation of MRI
(Medicine)
- Blind source separation
(e.g. Cocktail Party Problem)
(Digital Signal Processing)

- Storage and Encoding
(Coding Theory)

APPLICATIONS OF TENSOR DECOMPOSITION

- Cumulants
(Statistics)
- Fluorescence spectroscopy
(Chemistry)
- Interpretation of MRI
(Medicine)
- Blind source separation
(e.g. Cocktail Party Problem)
(Digital Signal Processing)
- Storage and Encoding

APPLICATIONS OF TENSOR DECOMPOSITION

- Cumulants
(Statistics)
- Fluorescence spectroscopy
(Chemistry)
- Interpretation of MRI
(Medicine)
- Blind source separation
(e.g. Cocktail Party Problem)
(Digital Signal Processing)
- Storage and Encoding
(Coding Theory)

APPLICATIONS OF TENSOR DECOMPOSITION

- Cumulants
(Statistics)
- Fluorescence spectroscopy
(Chemistry)
- Interpretation of MRI
(Medicine)
- Blind source separation (e.g. Cocktail Party Problem)
(Digital Signal Processing)
- Storage and Encoding (Coding Theory)

Low tensor rank 3-tensors perform well in terms of storage and encoding complexity!

ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.
Tensor rank is np-complete, J. Håstad
International Colloquium on Automata, Languages, and Programming, Springer, 1989.

ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.
Tensor rank is np-complete, J. Håstad
International Colloquium on Automata, Languages, and Programming, Springer, 1989.

Performing the decomposition: find algorithms that exactly decompose a tensor X in terms of simple tensors.

ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.
Tensor rank is np-complete, J. Håstad
International Colloquium on Automata, Languages, and Programming, Springer, 1989.

Performing the decomposition: find algorithms that exactly decompose a tensor X in terms of simple tensors.

Uniqueness: it is an important issue with problems coming from spectroscopy and signal processing. If the rank is sufficiently small, uniqueness is assured with probability one.

ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.
Tensor rank is np-complete, J. Håstad
International Colloquium on Automata, Languages, and Programming, Springer, 1989.

Performing the decomposition: find algorithms that exactly decompose a tensor X in terms of simple tensors.

Uniqueness: it is an important issue with problems coming from spectroscopy and signal processing. If the rank is sufficiently small, uniqueness is assured with probability one.

Noise: in order to talk about noise in data, we must have a distance function. In some applications, these functions come from science, in other case they are chosen by convenience. For example, in signal processing, assuming that the noise has a certain behaviour (iid or Gaussian) can determine a distance function.

TENSOR RANK OF $\mathbb{F}_{q^{m}}$-LINEAR CODES

RANK-METRIC CODES

In the following, we assume $n \leq m$ without loss of generality.
Definition
A (matrix rank-metric) code is a subspace $\mathcal{C} \leq \mathbb{F}_{q}^{n \times m}$. The minimum (rank) distance of a non-zero code \mathcal{C} is $d(\mathcal{C}):=\min (\{\operatorname{rk}(c): c \in \mathcal{C}, c \neq 0\})$ and for $\mathcal{C}:=\{0\}$, we define $d(\mathcal{C})$ to be $n+1$. The maximum-rank of \mathcal{C} is defined as $\operatorname{maxrk}(\mathcal{C})=\max \{\mathrm{rk}(c): c \in C\}$.

RANK-METRIC CODES

In the following, we assume $n \leq m$ without loss of generality.
Definition
A (matrix rank-metric) code is a subspace $\mathcal{C} \leq \mathbb{F}_{q}^{n \times m}$. The minimum (rank) distance of a non-zero code \mathcal{C} is $d(\mathcal{C}):=\min (\{\operatorname{rk}(c): c \in \mathcal{C}, c \neq 0\})$ and for $\mathcal{C}:=\{0\}$, we define $d(\mathcal{C})$ to be $n+1$. The maximum-rank of \mathcal{C} is defined as $\operatorname{maxrk}(\mathcal{C})=\max \{\mathrm{rk}(c): c \in C\}$.

It is well-know that the dual \mathcal{C}^{\perp} of \mathcal{C} is a code.

RANK-METRIC CODES

In the following, we assume $n \leq m$ without loss of generality.

Definition

A (matrix rank-metric) code is a subspace $\mathcal{C} \leq \mathbb{F}_{q}^{n \times m}$. The minimum (rank) distance of a non-zero code \mathcal{C} is $d(\mathcal{C}):=\min (\{\operatorname{rk}(c): c \in \mathcal{C}, c \neq 0\})$ and for $\mathcal{C}:=\{0\}$, we define $d(\mathcal{C})$ to be $n+1$. The maximum-rank of \mathcal{C} is defined as $\operatorname{maxrk}(\mathcal{C})=\max \{\mathrm{rk}(c): c \in C\}$.

It is well-know that the dual \mathcal{C}^{\perp} of \mathcal{C} is a code.

We have that $\operatorname{trk}(\mathcal{C}) \geq \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C})+d(\mathcal{C})-1$.

Codes meeting this bound are called MTR (Minimal Tensor Rank).

$\mathbb{F}_{q^{m}-\text { LINEAR RANK-METRIC }}$ CODES

Let $\Gamma:=\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ be a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} and $v \in \mathbb{F}_{q^{m}}^{n}$. We define by $\Gamma(v) \in \mathbb{F}_{q}^{n \times m}$ the vector defined by

$$
v_{i}=\sum_{j=1}^{m} \Gamma(v)_{i, j} \gamma_{j} .
$$

The map $v \mapsto \Gamma(v)$ is an $\mathbb{F}_{q^{-}}$-isomorphism. Moreover, for a subspace V of $\mathbb{F}_{q^{m}}^{n}$, we define $\Gamma(V):=\{\Gamma(v): v \in V\}$.

Definition

A vector (rank-metric) code is a subspace $C \leq \mathbb{F}_{q^{m}}^{n}$. The minimum distance $d(C)$ of C is the minimum distance of $\Gamma(C)$ for any choice of a basis Γ of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$.

$\mathbb{F}_{q^{m}}$-LINEAR RANK-METRIC CODES

Let $\Gamma:=\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ be a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} and $v \in \mathbb{F}_{q^{m}}^{n}$. We define by $\Gamma(v) \in \mathbb{F}_{q}^{n \times m}$ the vector defined by

$$
v_{i}=\sum_{j=1}^{m} \Gamma(v)_{i, j} \gamma_{j} .
$$

The map $v \mapsto \Gamma(v)$ is an $\mathbb{F}_{q^{-}}$-isomorphism. Moreover, for a subspace V of $\mathbb{F}_{q^{m}}^{n}$, we define $\Gamma(V):=\{\Gamma(v): v \in V\}$.

Definition

A vector (rank-metric) code is a subspace $C \leq \mathbb{F}_{q^{m}}^{n}$. The minimum distance $d(C)$ of C is the minimum distance of $\Gamma(C)$ for any choice of a basis Γ of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$.

A vector code C is MTR if $\operatorname{trk}(C)=\operatorname{dim}_{\mathbb{F}_{q}}(C)+d(C)-1$.

DELSARTE- GABIDULIN CODES

Definition

Let $\beta_{1}, \ldots, \beta_{\mathrm{n}}$ be elements of $\mathbb{F}_{q^{m}}$ linearly independent over \mathbb{F}_{q}. We define the k-dimensional $\mathbb{F}_{q^{m}}$-Delsarte-Gabidulin code $\mathcal{G}_{k}\left(\beta_{1}, \ldots, \beta_{n}\right)$ as

$$
\begin{array}{r}
\mathcal{G}_{k}\left(\beta_{1}, \ldots, \beta_{n}\right):=\left\{\left(f\left(\beta_{1}\right), \ldots, f\left(\beta_{n}\right)\right): f \in \mathcal{G}_{k}\right\}, \\
\text { where } \mathcal{G}_{k}:=\left\{f_{0} x+f_{1} x^{q}+\cdots+f_{k-1} x^{q^{k-1}}: f_{0}, \ldots, f_{k-1} \in \mathbb{F}_{q^{m}}\right\} .
\end{array}
$$

DELSARTE- GABIDULIN CODES

Definition

Let $\beta_{1}, \ldots, \beta_{n}$ be elements of $\mathbb{F}_{q^{m}}$ linearly independent over \mathbb{F}_{q}. We define the k-dimensional $\mathbb{F}_{q^{m}}$-Delsarte-Gabidulin code $\mathcal{G}_{k}\left(\beta_{1}, \ldots, \beta_{n}\right)$ as

$$
\begin{array}{r}
\mathcal{G}_{k}\left(\beta_{1}, \ldots, \beta_{n}\right):=\left\{\left(f\left(\beta_{1}\right), \ldots, f\left(\beta_{n}\right)\right): f \in \mathcal{G}_{k}\right\}, \\
\text { where } \mathcal{G}_{k}:=\left\{f_{0} x+f_{1} x^{q}+\cdots+f_{k-1} x^{q^{k-1}}: f_{0}, \ldots, f_{k-1} \in \mathbb{F}_{q^{m}}\right\} .
\end{array}
$$

$\xlongequal{-\infty} \stackrel{\text { Proposition (Sheekey - 2016) }}{ }$

Let $\beta_{1}, \ldots, \beta_{n}$ be elements of $\mathbb{F}_{q^{m}}$ linearly independent over \mathbb{F}_{q}. The dual of the code $\mathcal{G}_{k}\left(\beta_{1}, \ldots, \beta_{n}\right)$ is equivalent to $\mathcal{G}_{n-k, s}\left(\beta_{1}, \ldots, \beta_{n}\right)$.

AN EXAMPLE

Let α be a primitive element of $\mathbb{F}_{5^{3}}$ and let

$$
\begin{aligned}
C & : \\
& =\mathcal{G}_{1}\left(\alpha^{4}, \alpha^{7}\right)=\left\{\left(f\left(\alpha^{4}\right), f\left(\alpha^{7}\right)\right): f \in\left\{f_{0} x: f_{0} \in \mathbb{F}_{5^{3}}\right\}\right\} \\
& =\left\{f_{0}\left(\alpha^{4}, \alpha^{7}\right): f_{0} \in \mathbb{F}_{5^{3}}\right\}=\left\langle\left(\alpha^{4}, \alpha^{7}\right)\right\rangle_{\mathbb{F}_{5}} .
\end{aligned}
$$

Let $\Gamma:=\left\{1, \alpha, \alpha^{2}\right\}$ be a \mathbb{F}_{5}-basis of $\mathbb{F}_{5^{3}}, N:=\Gamma\left(\left(\alpha^{4}, \alpha^{7}\right)\right)$ and M the companion matrix of the minimal polynomial of α, i.e.

$$
N:=\left(\begin{array}{lll}
0 & 2 & 2 \\
3 & 2 & 3
\end{array}\right), \quad M:=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 2 & 0
\end{array}\right) .
$$

One can check that

$$
\Gamma(C)=\left\langle N, N M, N M^{2}\right\rangle_{\mathbb{F}_{5}}=\left\langle\left(\begin{array}{lll}
0 & 2 & 2 \\
3 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
4 & 4 & 2 \\
1 & 4 & 2
\end{array}\right),\left(\begin{array}{lll}
4 & 3 & 4 \\
4 & 0 & 4
\end{array}\right)\right\rangle_{\mathbb{F}_{5}}
$$

DELSARTE- GABIDULIN CODES

$\frac{0-0}{-0-0}$
Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)
Let $q \geq m+n-2$ and α be primitive element of $\mathbb{F}_{q^{m}}$. For any code $C \leq \mathbb{F}_{q^{m}}^{n}$ equivalent to $\mathcal{G}_{1}\left(1, \alpha, \ldots, \alpha^{n}\right)$ we have

$$
\operatorname{trk}(C)=m+n-1
$$

and, in particular, C is MTR.

Algebras Having Linear Multiplicative Complexities, C. M. Fiduccia, Y. Zalcstein Journal of the ACM (JACM), ACM, 1977.

DELSARTE- GABIDULIN CODES

$\frac{0-0}{-0-0}$
Proposition (Byrne, C. - 2021)
Let $q \geq m+n-2, n \in\{2,3\}$ and α be primitive element of $\mathbb{F}_{q^{m}}$. We can construct a perfect base of cardinality $m+n-1$ for any code $C \leq \mathbb{F}_{q^{m}}^{n}$ equivalent to $\mathcal{G}_{1}\left(1, \alpha, \ldots, \alpha^{n}\right)$.

DELSARTE- GABIDULIN CODES

Proposition (Byrne, C. - 2021)

Let $q \geq m+n-2, n \in\{2,3\}$ and α be primitive element of $\mathbb{F}_{q^{m}}$. We can construct a perfect base of cardinality $m+n-1$ for any code $C \leq \mathbb{F}_{q^{m}}^{n}$ equivalent to $\mathcal{G}_{1}\left(1, \alpha, \ldots, \alpha^{n}\right)$.
$\stackrel{-}{-0-0} \quad$ Proposition (Byrne, C. - 2021)
Let $q \geq m$ and α be primitive element of $\mathbb{F}_{q^{m}}$. For any code $C \leq \mathbb{F}_{q^{m}}^{n}$ equivalent to $\mathcal{G}_{1}\left(1, \alpha, \ldots, \alpha^{n}\right)^{\perp}$ we have

$$
\operatorname{trk}(C)=m n-m+1
$$

and, in particular, C is MTR. Moreover, we can construct a perfect base of cardinality $m n-m+1$ for C.

AN EXAMPLE

Let α be a primitive element of $\mathbb{F}_{5^{3}}$ and let $C:=\mathcal{G}_{1}\left(1, \alpha, \alpha^{2}\right)=\left\langle\left(1, \alpha, \alpha^{2}\right)\right\rangle_{\mathbb{F}_{5}}$. One can check that $\Gamma\left(C^{\perp}\right) \leq \mathbb{F}_{5}^{3 \times 3}$ is the code of dimension 6 generated by

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
4 & 1 & 4
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
2 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
3 & 2 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 4 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
2 & 0 & 0
\end{array}\right) .
$$

Moreover, we have that trk $\left(C^{\perp}\right)=7$ and a 7-base for C^{\perp} is given by the following rank-1 matrices

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
3 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 & 3 & 0
\end{array}\right),\left(\begin{array}{lll}
4 & 2 & 1 \\
2 & 1 & 3 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
4 & 4 & 2 \\
2 & 2 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
4 & 4 & 4 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 1 & 1 \\
3 & 4 & 4
\end{array}\right) .
$$

In particular, the span over \mathbb{F}_{5} of these rank-1 contains C^{\perp} as subspace.

INVARIANTS FOR MATRIX CODES

PRELIMINARIES AND NOTATION

Definition
The row-support and the column-support of a code $\mathcal{C} \leq \mathbb{F}_{q}^{n \times m}$ are

$$
\operatorname{rowsupp}(\mathcal{C})=\sum_{c \in \mathcal{C}} \operatorname{rowsp}(c) \quad \text { and } \quad \operatorname{colsupp}(\mathcal{C})=\sum_{c \in \mathcal{C}} \operatorname{colsp}(c),
$$

where, for any $c \in \mathcal{C}$, rowsp(c) and colsp(c) denotes the row-space and the column-space of c respectively.

Definition

Let $V \leq \mathbb{F}_{q}^{m}, U \leq \mathbb{F}_{q}^{n}$ and $\mathcal{C} \leq \mathbb{F}_{q}^{n \times m}$ be a code. We define
$\mathcal{C}[V]:=\{c \in \mathcal{C}: \operatorname{rowsp}(c) \leq V\} \quad$ and $\quad \mathcal{C}(U):=\{c \in \mathcal{C}: \operatorname{colsp}(c) \leq U\}$.

DELSARTE-TYPE ANTICODES

Definition (Ravagnani - 2016)

Let $\mathcal{C} \leq \mathbb{F}_{q}^{n \times m}$ be a code. We say that \mathcal{C} is a Delsarte-type anticode if

$$
\operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C})=m \cdot \operatorname{maxrk}(\mathcal{C})
$$

$\xlongequal[-1]{-0-0}$ Theorem (Meshulam - 1985)
Let $\mathcal{C} \leq \mathbb{F}_{a}^{n \times m}$ be a code. We have that \mathcal{C} is a Delsarte-type anticode if and only if one of the following condition holds.

- $n<m$ and there exists $U \leq \mathbb{F}_{q}^{n}$ such that $\mathcal{C}=\mathbb{F}_{q}^{n \times m}(U)$.
- $n=m$ and there exists $U \leq \mathbb{F}_{q}^{n}$ such that $\mathcal{C}=\mathbb{F}_{q}^{n \times m}(U)$ or $\mathcal{C}=\mathbb{F}_{q}^{n \times m}[U]$.

TENSOR REPRESENTATION OF MATRICES

Consider the following map.

$$
\begin{aligned}
& \varphi: \quad \mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{m} \longrightarrow \\
& \sum_{i=1}^{R} \lambda_{i} u_{i} \otimes v_{i} \longmapsto \sum_{i=1}^{R} \lambda_{i} \\
& \mathbb{F}_{q}^{n \times m} \\
& \underbrace{\left(\begin{array}{cccc}
u_{1} v_{1} & u_{1} v_{2} & \cdots & u_{1} v_{m} \\
u_{2} v_{1} & u_{2} v_{2} & \cdots & u_{2} v_{m} \\
\vdots & \vdots & & \vdots \\
u_{n} v_{1} & u_{n} v_{2} & \cdots & u_{n} v_{m}
\end{array}\right)}_{\text {rank-1 matrix }}
\end{aligned}
$$

Remark

One can easily check that the map φ is an isomorphism. Therefore, we can identify the spaces $\mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{m}$ and $\mathbb{F}_{q}^{n \times m}$.

DELSARTE-TYPE ANTICODES

Observe that for any $U \leq \mathbb{F}_{q}^{n}$ we have

$$
\mathbb{F}_{q}^{n \times m}(U)=\left\{\sum_{i=1}^{R} \lambda_{i} u_{1} \otimes v_{i}: u_{1}, \ldots, u_{R} \in U \text { and } v_{1}, \ldots, v_{R} \in \mathbb{F}_{q}^{m}\right\}=U \otimes \mathbb{F}_{q}^{m}
$$

Analogously, for $V \in \mathbb{F}_{q}^{m}$ we have $\mathbb{F}_{q}^{n \times m}[V]=\mathbb{F}_{q}^{n} \otimes V$.

DELSARTE-TYPE ANTICODES

Observe that for any $U \leq \mathbb{F}_{q}^{n}$ we have

$$
\mathbb{F}_{q}^{n \times m}(U)=\left\{\sum_{i=1}^{R} \lambda_{i} u_{1} \otimes v_{i}: u_{1}, \ldots, u_{R} \in U \text { and } v_{1}, \ldots, v_{R} \in \mathbb{F}_{q}^{m}\right\}=U \otimes \mathbb{F}_{q}^{m}
$$

Analogously, for $V \in \mathbb{F}_{q}^{m}$ we have $\mathbb{F}_{q}^{n \times m}[V]=\mathbb{F}_{q}^{n} \otimes V$.
$\frac{-0-0}{-0-0}$
Theorem (Meshulam - 1985)
Let $\mathcal{C} \leq \mathbb{F}_{q}^{n \times m}$ be a code. We have that \mathcal{C} is a Delsarte-type anticode if and only if one of the following condition holds.

- $n<m$ and there exists $U \leq \mathbb{F}_{q}^{n}$ such that $\mathcal{C}=\mathbb{F}_{q}^{n \times m}(U)$.
- $n=m$ and there exists $U \leq \mathbb{F}_{q}^{n}$ such that $\mathcal{C}=\mathbb{F}_{q}^{n \times m}(U)$ or $\mathcal{C}=\mathbb{F}_{q}^{n \times m}[U]$.

DELSARTE-TYPE ANTICODES

Observe that for any $U \leq \mathbb{F}_{q}^{n}$ we have

$$
\mathbb{F}_{q}^{n \times m}(U)=\left\{\sum_{i=1}^{R} \lambda_{i} u_{1} \otimes v_{i}: u_{1}, \ldots, u_{R} \in U \text { and } v_{1}, \ldots, v_{R} \in \mathbb{F}_{q}^{m}\right\}=U \otimes \mathbb{F}_{q}^{m}
$$

Analogously, for $V \in \mathbb{F}_{q}^{m}$ we have $\mathbb{F}_{q}^{n \times m}[V]=\mathbb{F}_{q}^{n} \otimes V$.
$\frac{-0-0}{-0-0}$
Theorem (Meshulam - 1985)
Let $\mathcal{C} \leq \mathbb{F}_{q}^{n \times m}$ be a code. We have that \mathcal{C} is a Delsarte-type anticode if and only if one of the following condition holds.

- $n<m$ and there exists $U \leq \mathbb{F}_{q}^{n}$ such that $\mathcal{C}=U \otimes \mathbb{F}_{q}^{m}$.
- $n=m$ and there exists $U \leq \mathbb{F}_{q}^{n}$ such that $\mathcal{C}=U \otimes \mathbb{F}_{q}^{n}$ or $\mathcal{C}=\mathbb{F}_{q}^{n} \otimes U$.

A TENSOR ALGEBRA APPROACH TO ANTICODES

$$
\begin{aligned}
\mathcal{A}^{\mathrm{ps}} & :=\left\{A \leq \mathbb{F}_{q}^{n \times m}: A \text { is perfect }\right\}, \\
\mathcal{A}^{\mathrm{D}} & := \begin{cases}\left\{U \otimes \mathbb{F}_{q}^{m}: U \leq \mathbb{F}_{q}^{n}\right\} & \text { if } n<m, \\
\left\{U \otimes \mathbb{F}_{q}^{n}: U \leq \mathbb{F}_{q}^{n}\right\} \cup\left\{\mathbb{F}_{q}^{n} \otimes U: U \leq \mathbb{F}_{q}^{n}\right\} & \text { if } n=m,\end{cases}
\end{aligned}
$$

A TENSOR ALGEBRA APPROACH TO ANTICODES

$$
\begin{aligned}
& \mathcal{A}^{\mathrm{ps}}:=\left\{A \leq \mathbb{F}_{q}^{n \times m}: A \text { is perfect }\right\}, \\
& \mathcal{A}^{\mathrm{D}}:= \begin{cases}\left\{U \otimes \mathbb{F}_{q}^{m}: U \leq \mathbb{F}_{q}^{n}\right\} & \text { if } n<m, \\
\left\{U \otimes \mathbb{F}_{q}^{n}: U \leq \mathbb{F}_{q}^{n}\right\} \cup\left\{\mathbb{F}_{q}^{n} \otimes U: U \leq \mathbb{F}_{q}^{n}\right\} & \text { if } n=m,\end{cases} \\
& \mathcal{A}^{\mathrm{cl}}:=\left\{U \otimes V: U \leq \mathbb{F}_{q}^{n} \text { and } V \leq \mathbb{F}_{q}^{m}\right\}, \\
& \overline{\mathcal{A}^{\mathrm{cl}}}:=\left\{U \otimes \mathbb{F}_{q}^{m}+\mathbb{F}_{q}^{n} \otimes V: U \leq \mathbb{F}_{q}^{n} \text { and } V \leq \mathbb{F}_{q}^{m}\right\} .
\end{aligned}
$$

A TENSOR ALGEBRA APPROACH TO ANTICODES

$$
\begin{aligned}
& \mathcal{A}^{\mathrm{ps}}:=\left\{A \leq \mathbb{F}_{q}^{n \times m}: A \text { is perfect }\right\}, \\
& \mathcal{A}^{\mathrm{D}}:= \begin{cases}\left\{U \otimes \mathbb{F}_{q}^{m}: U \leq \mathbb{F}_{q}^{n}\right\} & \text { if } n<m, \\
\left\{U \otimes \mathbb{F}_{q}^{n}: U \leq \mathbb{F}_{q}^{n}\right\} \cup\left\{\mathbb{F}_{q}^{n} \otimes U: U \leq \mathbb{F}_{q}^{n}\right\} & \text { if } n=m,\end{cases} \\
& \mathcal{A}^{\mathrm{cl}}:=\left\{U \otimes V: U \leq \mathbb{F}_{q}^{n} \text { and } V \leq \mathbb{F}_{q}^{m}\right\},
\end{aligned} \begin{aligned}
& \text { Closure-type } \\
& \text { anticodes }
\end{aligned}
$$

A TENSOR ALGEBRA APPROACH TO ANTICODES

$$
\begin{gathered}
\mathcal{A}^{\text {ps }}:=\left\{A \leq \mathbb{F}_{q}^{n \times m}: A \text { is perfect }\right\}, \\
\mathcal{A}^{\mathrm{D}}:= \begin{cases}\left\{U \otimes \mathbb{F}_{q}^{m}: U \leq \mathbb{F}_{q}^{n}\right\} & \text { if } n<m, \\
\left\{U \otimes \mathbb{F}_{q}^{n}: U \leq \mathbb{F}_{q}^{n}\right\} \cup\left\{\mathbb{F}_{q}^{n} \otimes U: U \leq \mathbb{F}_{q}^{n}\right\} & \text { if } n=m,\end{cases} \\
\mathcal{A}^{\mathrm{cl}}:=\left\{U \otimes V: U \leq \mathbb{F}_{q}^{n} \text { and } V \leq \mathbb{F}_{q}^{m}\right\},
\end{gathered} \begin{array}{r}
\text { Closure-t } \\
\text { anticod }
\end{array}, \begin{gathered}
\overline{\mathcal{A}^{\mathrm{cl}}}:=\left\{U \otimes \mathbb{F}_{q}^{m}+\mathbb{F}_{q}^{n} \otimes V: U \leq \mathbb{F}_{q}^{n} \text { and } V \leq \mathbb{F}_{q}^{m}\right\} .
\end{gathered}
$$

INVARIANTS FOR MATRIX CODES

Definition
Let $\mathcal{C} \leq \mathbb{F}_{q}^{n \times m}$ be a code and \mathcal{A} be a set of anticodes. For any $j \in$ $\left\{1, \ldots, \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C})\right\}$, the j-th generalized tensor weight is

$$
t_{j}(\mathcal{C}):=\min \left\{\operatorname{dim}_{\mathbb{F}_{q}}(A): A \in \mathcal{A} \mid \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C} \cap A) \geq j\right\} .
$$

INVARIANTS FOR MATRIX CODES

Definition

Let $\mathcal{C} \leq \mathbb{F}_{a}^{n \times m}$ be a code and \mathcal{A} be a set of anticodes. For any $j \in$ $\left\{1, \ldots, \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C})\right\}$, the j-th generalized tensor weight is

$$
t_{j}(\mathcal{C}):=\min \left\{\operatorname{dim}_{\mathbb{F}_{q}}(A): A \in \mathcal{A} \mid \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C} \cap A) \geq j\right\} .
$$

If $\mathcal{A}=\mathcal{A}^{\mathrm{D}}$ then we recover the generalized rank weights. Indeed, we have

$$
t_{j}^{\mathrm{D}}(\mathcal{C})=\min \left\{\operatorname{dim}_{\mathbb{F}_{q}}(A): A \in \mathcal{A}^{\mathrm{D}} \mid \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C} \cap A) \geq j\right\}=m \cdot d_{j}(\mathcal{C})
$$

for any $j \in\left\{1, \ldots, \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C})\right\}$.Generalized weights: An anticode approach, A. Ravagnani
Journal of Pure and Applied Algebra, Elsevier, 2016.

INVARIANTS FOR MATRIX CODES

Definition

Let $\mathcal{C} \leq \mathbb{F}_{a}^{n \times m}$ be a code and \mathcal{A} be a set of anticodes. For any $j \in$ $\left\{1, \ldots, \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C})\right\}$, the j-th generalized tensor weight is

$$
t_{j}(\mathcal{C}):=\min \left\{\operatorname{dim}_{\mathbb{F}_{q}}(A): A \in \mathcal{A} \mid \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C} \cap A) \geq j\right\} .
$$

If $\mathcal{A}=\mathcal{A}^{\text {ps }}$ then we recover the generalized tensor ranks. Indeed, we have

$$
t_{j}^{\mathrm{ps}}(\mathcal{C})=\min \left\{\operatorname{dim}_{\mathbb{F}_{q}}(A): A \in \mathcal{A}^{\mathrm{ps}} \mid \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C} \cap A) \geq j\right\}=d_{j}(\mathcal{C})
$$

for any $j \in\left\{1, \ldots, \operatorname{dim}_{\mathbb{F}_{q}}(\mathcal{C})\right\}$.

Tensor representation of rank-metric codes, E. Byrne, A. Neri, A. Ravagnani, J. Sheekey SIAM Journal on Applied Algebra and Geometry, SIAM, 2019.

INVARIANTS FOR MATRIX CODES

Let \mathcal{C} be a $[n \times m, k, d]_{q}$ code.

$$
\begin{array}{l|l}
\text { Proposition (Ravagnani - 2016) } \\
\text { The following hold. } \\
\text { (1) } t_{1}^{\mathrm{D}}(\mathcal{C})=m d, \\
\text { (2) } t_{k}^{\mathrm{D}}(\mathcal{C}) \leq m n, \\
\text { (3) } t_{j}^{\mathrm{D}}(\mathcal{C}) \leq t_{j+1}^{\mathrm{D}}(\mathcal{C}) \text { for all } j \in\{1, \ldots, k-1\}, \\
\text { (4) } t_{j}^{\mathrm{D}}(\mathcal{C})<t_{j+m}^{\mathrm{D}}(\mathcal{C}) \text { for all } j \in\{1, \ldots, k-m\}, \\
\text { (5) } t_{j}^{\mathrm{D}}(\mathcal{C}) \leq n-\left\lfloor\frac{k-j}{m}\right\rfloor \text { for all } j \in\{1, \ldots, k\}
\end{array}
$$

INVARIANTS FOR MATRIX CODES

Let \mathcal{C} be a $[n \times m, k, d]_{q}$ code.
$\xlongequal{\circ}-$
The following hold.
(1) $t_{1}^{\mathrm{D}}(\mathcal{C})=m d$,
(2) $t_{k}^{\mathrm{D}}(\mathcal{C}) \leq m n$,
(3) $t_{j}^{\mathrm{D}}(\mathcal{C}) \leq t_{j+1}^{\mathrm{D}}(\mathcal{C})$ for all $j \in\{1, \ldots, k-1\}$,
(4) $t_{j}^{\mathrm{D}}(\mathcal{C})<t_{j+m}^{\mathrm{D}}(\mathcal{C})$ for all $j \in\{1, \ldots, k-m\}$,
(5) $t_{j}^{\mathrm{D}}(\mathcal{C}) \leq n-\left\lfloor\frac{k-j}{m}\right\rfloor$ for all $j \in\{1, \ldots, k\}$.

We say that \mathcal{C} is MRD if $m \mid k$ and \mathcal{C} meets bound (5) for $j=1$ with equality.

INVARIANTS FOR MATRIX CODES

Let \mathcal{C} be a $[n \times m, k, d]_{q}$ code.
$\stackrel{-0}{-0-0}$ Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)
The following hold.
(1) $t_{1}^{\mathrm{ps}}(\mathcal{C})=d$,
(2) $t_{k}^{\mathrm{ps}}(\mathcal{C})=\operatorname{trk}(\mathcal{C})$,
(3) $t_{j}^{\mathrm{ps}}(\mathcal{C})<t_{j+1}^{\mathrm{ps}}(\mathcal{C})$ for all $j \in\{1, \ldots, k-1\}$,
(4) $t_{j}^{\mathrm{ps}}(\mathcal{C}) \geq d+j-1$ for all $j \in\{1, \ldots, k\}$,
(5) $t_{j}^{\mathrm{ps}}(\mathcal{C}) \leq \operatorname{trk}(\mathcal{C})-k+j$ for all $j \in\{1, \ldots, k\}$.

INVARIANTS FOR MATRIX CODES

Let \mathcal{C} be a $[n \times m, k, d]_{q}$ code.
$\xlongequal{- \text { - }}$ Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)
The following hold.
(1) $t_{1}^{\text {ps }}(\mathcal{C})=d$,
(2) $t_{k}^{\mathrm{ps}}(\mathcal{C})=\operatorname{trk}(\mathcal{C})$,
(3) $t_{j}^{\mathrm{ps}}(\mathcal{C})<t_{j+1}^{\mathrm{ps}}(\mathcal{C})$ for all $j \in\{1, \ldots, k-1\}$,
(4) $t_{j}^{\mathrm{ps}}(\mathcal{C}) \geq d+j-1$ for all $j \in\{1, \ldots, k\}$,
(5) $t_{j}^{\mathrm{ps}}(\mathcal{C}) \leq \operatorname{trk}(\mathcal{C})-k+j$ for all $j \in\{1, \ldots, k\}$.

Observe that \mathcal{C} is MTR if \mathcal{C} meets bound (4) for $j=k$ or (5) for $j=1$ with equality.

INVARIANTS FOR MATRIX CODES

Let \mathcal{C} be a $[n \times m, k, d]_{q}$ code.
$\frac{0-0}{-0-0}$

Proposition (Byrne, c.)

The following hold.
(1) $t_{1}^{c l}(\mathcal{C})=d^{2}$,
(2) $t_{k}^{c l}(\mathcal{C})=\operatorname{dim}_{\mathbb{F}_{q}}(\operatorname{colsupp}(\mathcal{C})) \operatorname{dim}_{\mathbb{F}_{q}}(\operatorname{rowsupp}(\mathcal{C}))$,
(3) $t_{j}^{\mathrm{cl}}(\mathcal{C}) \leq t_{j+1}^{\mathrm{cl}}(\mathcal{C})$ for all $j \in\{1, \ldots, k-1\}$,
(4) $t_{j}^{\mathrm{ps}}(\mathcal{C}) \leq t_{j}^{\mathrm{cl}}(\mathcal{C}) \leq t_{j}^{\mathrm{D}}(\mathcal{C})$ or all $j \in\{1, \ldots, k\}$.

AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over \mathbb{F}_{3} :

$$
\begin{aligned}
\mathcal{C} & :=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)\right\rangle_{3}, \\
\mathcal{D} & :=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 2 & 0 & 2
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
2 & 1 & 2 & 2
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
2 & 2 & 1 & 1
\end{array}\right)\right\rangle_{3} .
\end{aligned}
$$

AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over \mathbb{F}_{3} :

$$
\begin{aligned}
\mathcal{C} & :=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)\right\rangle_{3}, \\
\mathcal{D} & :=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 2 & 0 & 2
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
2 & 1 & 2 & 2
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
2 & 2 & 1 & 1
\end{array}\right)\right\rangle_{3} .
\end{aligned}
$$

One one check the following.

- $t_{1}^{\mathrm{ps}}(\mathcal{C})=t_{1}^{\mathrm{ps}}(\mathcal{D})=2$.
- $t_{j}^{\mathrm{D}}(\mathcal{C})=t_{j}^{\mathrm{D}}(\mathcal{D})=8$ for all $j \in\{1, \ldots, 4\}$. In particular \mathcal{C} and \mathcal{D} are MRD.

AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over \mathbb{F}_{3} :

$$
\begin{aligned}
\mathcal{C} & :=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)\right\rangle_{3}, \\
\mathcal{D} & :=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 2 & 0 & 2
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
2 & 1 & 2 & 2
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
2 & 2 & 1 & 1
\end{array}\right)\right\rangle_{3} .
\end{aligned}
$$

One one check the following.
$\mathrm{t}_{1}^{\mathrm{ps}}(\mathcal{C})=\mathrm{t}_{1}^{\mathrm{ps}}(\mathcal{D})=2$.

- $t_{j}^{\mathrm{D}}(\mathcal{C})=t_{j}^{\mathrm{D}}(\mathcal{D})=8$ for all $j \in\{1, \ldots, 4\}$. In particular \mathcal{C} and \mathcal{D} are MRD.
- $t_{1}^{c l}(\mathcal{C})=4, t_{2}^{c l}(\mathcal{C})=6$ and $t_{3}^{c l}(\mathcal{C})=t_{4}^{c l}(\mathcal{C})=8$.
$\Rightarrow t_{1}^{c \mathrm{l}}(\mathcal{D})=4, t_{2}^{\mathrm{cl}}(\mathcal{D})=4$ and $t_{3}^{\mathrm{cl}}(\mathcal{D})=t_{4}^{\mathrm{cl}}(\mathcal{D})=8$.

AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over \mathbb{F}_{3} :

$$
\begin{aligned}
\mathcal{C} & :=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right)\right\rangle_{3}, \\
\mathcal{D} & :=\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 0 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 2 & 0 & 2
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
2 & 1 & 2 & 2
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
2 & 2 & 1 & 1
\end{array}\right)\right\rangle_{3} .
\end{aligned}
$$

One one check the following.

- $t_{1}^{\mathrm{ps}}(\mathcal{C})=t_{1}^{\mathrm{ps}}(\mathcal{D})=2$.
- $t_{j}^{\mathrm{D}}(\mathcal{C})=t_{j}^{\mathrm{D}}(\mathcal{D})=8$ for all $j \in\{1, \ldots, 4\}$. In particular \mathcal{C} and \mathcal{D} are MRD.
$\Rightarrow t_{1}^{c l}(\mathcal{C})=4, t_{2}^{c \mid}(\mathcal{C})=6$ and $t_{3}^{c \mid}(\mathcal{C})=t_{4}^{c l}(\mathcal{C})=8$.
- $t_{1}^{\mathrm{cl}}(\mathcal{D})=4, t_{2}^{\mathrm{cl}}(\mathcal{D})=4$ and $t_{3}^{\mathrm{cl}}(\mathcal{D})=t_{4}^{\mathrm{cl}}(\mathcal{D})=8$.

We can distinguish more!

FURTHER QUESTIONS

Find new classes of MTR codes.

Determine the tensor rank of classes of matrix codes.

Study properties of these invariants for tensor codes.

FURTHER QUESTIONS

Find new classes of MTR codes.

Determine the tensor rank of classes of matrix codes.
> "Matrices were created by God, tensors by Devil."

Max Noether

Study properties of these invariants for tensor codes.

