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WHAT IS COMPLEXITY ?

Definition
The complexity of a problem is the cost of the optimal procedure among all the
ones that solve the problem and fit into a given model of computation.

! It is allowed to freely use the intermediate results once they are computed.

! A computation is said to be finished if the quantities that the computation is supposed
to compute are among the intermediate results.
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WHAT IS COMPLEXITY ?

! The cost of a computation that solves a problem is an upper bound on the complexity
of that problem with respect to the given model.

! Lower bounds can be often obtain by establishing relations between the complexity
of the problem and the invariants of the appropriate structure (algebraic, topological,
geometric or combinatorial).

! We are interested in the so-called nonscalar model where additions, subtractions and
scalar multiplications are free of charge. The (nonscalar) cost of an algorithm is there-
fore the number of multiplications and divisions needed to compute the result.
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AN EXAMPLE: MULTIPLICATION OF 2× 2MATRICES

Let A, B be 2× 2 following matrices

A =

!
a1 a2
a3 a4

"
, B =

!
b1 b2
b3 b4

"
.

The standard algorithm returns thematrix C = AB by computing the following intermediate
results:

c1 = a1b1 + a2b3, c2 = a1b2 + a2b4,
c3 = a3b1 + a4b3, c4 = a3b2 + a4b4.

It requires 8multiplications and 4 additions. Therefore, an upper bound for the complexity
(in the nonscalar model) is 8.
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AN EXAMPLE: MULTIPLICATION OF 2× 2MATRICES

We can compute C = AB using Strassen’s algorithm, which gives

c1 = S1 + S4 − S5 + S7, c2 = S2 + S4, c3 = S3 + S5, c4 = S1 + S3 − S2 + S6

where the Si’s are the intermediate steps

S1 = (a1 + a4)(b1 + b4), S2 = (a3 + a4)b1, S3 = a1(b3 − b4),

S4 = a4(b3 − b1), S5 = (a1 + a2)b4, S6 = (a3 − a1)(b1 + b2),

S7 = (a2 − a4)(b3 + b4).

It requires 7multiplications and 18 additions.
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AN EXAMPLE: MULTIPLICATION OF 2× 2MATRICES

Algorithm # multiplication # additions

standard 8 4

Strassen’s 7 18

Remark
The complexity of multiplying 2 × 2 matrices (in the nonscalar model) is 7. The
upper-bound is given by Strassen (1969), the lower bound was proved by Wino-
grad (1971).
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LINEAR MAPS

Let A, B be vector spaces over the same fieldK and denote by A∗ the dual vector space of
A, i.e. A∗ := {f : A −→ K | f linear}. For α ∈ A∗ and b ∈ B, one can define a rank one
linear map

α⊗ b : A −→ B : a &−→ α(a)b.

Definition
The rank τ(f) of a linear map f : A −→ B is the smallest integer R such that there
exist α1, . . . ,αR ∈ A∗ and b1, . . . , bR ∈ B such that

f =
R#

i=1

αi ⊗ bi.
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BILINEAR MAPS

Let A, B, C be vector spaces over the same field K. For α ∈ A∗, β ∈ B∗ and c ∈ C, one can
define a rank one bilinear map

α⊗ β ⊗ c : A× B −→ C : (a, b) &−→ α(a)β(b)c.

Definition
The rank τ(T) of a bilinear map T : A×B −→ C is the smallest integer R such that
there exist α1, . . . ,αR ∈ A∗, β1, . . . ,βR ∈ B∗ and c1, . . . , cR ∈ C such that

T =
R#

i=1

αi ⊗ βi ⊗ ci.
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BILINEAR MAPS AND COMPLEXITY

! If a bilinear map T has rank R then T can be executed by performing R multiplications
(andO(R) additions).

! The rank of a bilinear map gives a measure of its complexity.
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BILINEAR MAPS AND COMPLEXITY

! If a bilinear map T has rank R then T can be executed by performing R multiplications
(andO(R) additions).

! The rank of a bilinear map gives a measure of its complexity.

Example
Matrix multiplication of n× nmatrices is a bilinear map:

Mn,n,n : Kn×n ×Kn×n −→ Kn×n.

We observed that R(M2,2,2) = 7 and it is known that 19 ≤ R(M3,3,3) ≤ 23.
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3 - TENSORS

We assume n,m, k to be integers.

Definition
A 3-tensor is an element ofKk ⊗Kn ⊗Km.

If {a1, . . . , ak}, {b1, . . . , bn}, {c1, . . . , cm} are bases ofKk,Kn,Km, respectively, then a ba-
sis forKk ⊗Kn ⊗Km is

{ai ⊗ bj ⊗ cℓ : 1 ≤ i ≤ k, 1 ≤ j ≤ n, 1 ≤ ℓ ≤ m}.

In particular we have dim(Kk ⊗Kn ⊗Km) = dim(Kk) dim(Kn) dim(Km) = knm.
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COORDINATE TENSORS

A tensor X :=
$

r ar ⊗ br ⊗ cr can be represented as an array. That is as the map

X : {1, . . . , k}× {1, . . . , n}× {1, . . . ,m} −→ K

given by X = (Xijℓ : 1 ≤ i ≤ k, 1 ≤ j ≤ n, 1 ≤ ℓ ≤ m).

Therefore, X is related to the the 3-dimensional array

Xijℓ =
#

r
aℓrbircjr.

where ar := (aℓr : 1 ≤ ℓ ≤ k), br := (bir : 1 ≤ i ≤ n), cr := (ajr : 1 ≤ j ≤ m).

Remark
This representation of X is called coordinate tensor and allows to identify the
spaceKk ⊗Kn ⊗Km withKk×n×m.
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MATRIX REPRESENTATION

Consider the map µ : Kk × Kk×n×m −→ Kk×n×m : (v, X) &−→
$

r(v · ar) ⊗ br ⊗ cr, and
notice that this map yields a 3-tensor of the form

$
r λr ⊗ br ⊗ cr, where λr ∈ K, which

can be identify as the 2-tensor
$

r λrbr ⊗ cr, sinceK⊗Kn andKn are isomorphic.

As a consequence, we can identify the tensor X with the
array of n×mmatrices X = (X1 | . . . | Xk), where

Xs := µ(es, X) =
#

r
(ar)sbr ⊗ cr

and es is the s-th element of the canonical basis forKk, for
all 1 ≤ s ≤ k.
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3 - TENSORS

Let X = (X1 | . . . | Xk) ∈ Kk×n×m be a 3-tensor.

Definition
The first slice space ss1(X) of X is defined as the span 〈X1, . . . , Xk〉 overK. We say
that ss1(X) is nondegenerate if dim(ss1(X)) = k.

Definition
X is said to be simple (or rank one) if there exist a ∈ Kk, b ∈ Kn and c ∈ Km such
that X = a⊗ b⊗ c.

Definition
The tensor rank trk(X) of X is defined as the smallest R such that X can be ex-
pressed as sum of R simple tensors.
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PERFECT BASE

Let X = (X1 | . . . | Xk) ∈ Kk×n×m be a 3-tensor.

Definition
LetA := {A1, . . . ,AR} ⊆ Kn×m be a set of R linearly independent rank-1matrices.
We say thatA is a perfect base (or R-base) for the tensor X if

ss1(X) ≤ 〈A1, . . . ,AR〉 .

Lemma
The following are equivalent.
◮ trk(X) ≤ R.
◮ There exists an R-base for X.
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AN EXAMPLE

Let X ∈ F2×2×2
5 be the 3-tensor defined as

X :=

!
1 0 0 1
0 1 3 1

"
.

One can check that trk(X) = 3 and a 3-base for X is given by

A :=

%!
4 1
3 2

"
,

!
2 4
2 4

"
,

!
0 0
0 3

"&
.

In particular, we have
!
1 0
0 1

"
=

!
4 1
3 2

"
+

!
2 4
2 4

"
,

!
0 1
3 1

"
= 2

!
4 1
3 2

"
+

!
2 4
2 4

"
+

!
0 0
0 3

"
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EQUIVALENT 3-TENSORS

Let X = (X1 | . . . | Xk) and Y = (Y1 | . . . | Yk) be 3-tensors inKk×n×m.

Definition
We say that X, Y are equivalent if there exist P ∈ GLn(K) and Q ∈ GLm(K) such
that ss1(X) = P ss1(Y)Q := {PNQ : N ∈ ss1(Y)}.
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EQUIVALENT 3-TENSORS

Let X = (X1 | . . . | Xk) and Y = (Y1 | . . . | Yk) be 3-tensors inKk×n×m.

Definition
We say that X, Y are equivalent if there exist P ∈ GLn(K) and Q ∈ GLm(K) such
that ss1(X) = P ss1(Y)Q := {PNQ : N ∈ ss1(Y)}.

Remark

For any pair of matrices P ∈ GLn(K) and Q ∈ GLm(K), ifA is a perfect base for X
then {P AQ : A ∈ A} is a perfect base for the 3-tensor P X Q .
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APPLICATIONS OF TENSOR DECOMPOSITION

◮ Cumulants
(Statistics)

◮ Fluorescence spectroscopy
(Chemistry)

◮ Interpretation of MRI
(Medicine)

◮ Blind source separation
(e.g. Cocktail Party Problem)
(Digital Signal Processing)

◮ Storage and Encoding
(Coding Theory)

K(t) =
∞#

i=0

κn
tn

n!
= µt+ σ2 t2

2
+ · · ·
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APPLICATIONS OF TENSOR DECOMPOSITION

◮ Cumulants
(Statistics)

◮ Fluorescence spectroscopy
(Chemistry)

◮ Interpretation of MRI
(Medicine)

◮ Blind source separation
(e.g. Cocktail Party Problem)
(Digital Signal Processing)

◮ Storage and Encoding
(Coding Theory)

Low tensor rank 3-tensors

perform well in terms of storage

and encoding complexity!
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

Tensor rank is np-complete, J. Håstad
International Colloquium on Automata, Languages, and Programming, Springer, 1989.
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

Tensor rank is np-complete, J. Håstad
International Colloquium on Automata, Languages, and Programming, Springer, 1989.

Performing the decomposition: find algorithms that exactly decompose a tensor X in
terms of simple tensors.
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Existence: determine the rank of a tensor X.

Tensor rank is np-complete, J. Håstad
International Colloquium on Automata, Languages, and Programming, Springer, 1989.

Performing the decomposition: find algorithms that exactly decompose a tensor X in
terms of simple tensors.

Uniqueness: it is an important issuewith problems coming from spectroscopy and signal
processing. If the rank is sufficiently small, uniqueness is assured with probability one.
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ISSUES IN TENSOR DECOMPOSITION

Existence: determine the rank of a tensor X.

Tensor rank is np-complete, J. Håstad
International Colloquium on Automata, Languages, and Programming, Springer, 1989.

Performing the decomposition: find algorithms that exactly decompose a tensor X in
terms of simple tensors.

Uniqueness: it is an important issuewith problems coming from spectroscopy and signal
processing. If the rank is sufficiently small, uniqueness is assured with probability one.

Noise: in order to talk about noise in data, we must have a distance function. In some
applications, these functions come from science, in other case they are chosen by con-
venience. For example, in signal processing, assuming that the noise has a certain be-
haviour (iid or Gaussian) can determine a distance function.
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INVARIANTSTENSOR RANK OF Fqm-LINEAR CODES



RANK-METRIC CODES

In the following, we assume n ≤ m without loss of generality.

Definition
A (matrix rank-metric) code is a subspace C ≤ Fn×m

q . The minimum (rank) dis-
tance of a non-zero code C is d(C) := min({rk(c) : c ∈ C, c ∕= 0}) and for
C := {0}, we define d(C) to be n + 1. The maximum-rank of C is defined as
maxrk(C) = max{rk(c) : c ∈ C}.
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In the following, we assume n ≤ m without loss of generality.

Definition
A (matrix rank-metric) code is a subspace C ≤ Fn×m

q . The minimum (rank) dis-
tance of a non-zero code C is d(C) := min({rk(c) : c ∈ C, c ∕= 0}) and for
C := {0}, we define d(C) to be n + 1. The maximum-rank of C is defined as
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RANK-METRIC CODES

In the following, we assume n ≤ m without loss of generality.

Definition
A (matrix rank-metric) code is a subspace C ≤ Fn×m

q . The minimum (rank) dis-
tance of a non-zero code C is d(C) := min({rk(c) : c ∈ C, c ∕= 0}) and for
C := {0}, we define d(C) to be n + 1. The maximum-rank of C is defined as
maxrk(C) = max{rk(c) : c ∈ C}.

It is well-know that the dual C⊥ of C is a code.

Proposition (Kruskal - 1977)

We have that trk(C) ≥ dimFq(C) + d(C)− 1.

Codes meeting this bound are calledMTR (Minimal Tensor Rank).
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Fqm-LINEAR RANK-METRIC CODES

Let Γ := {γ1, . . . , γm} be a basis of Fqm over Fq and v ∈ Fn
qm . We define by Γ(v) ∈ Fn×m

q
the vector defined by

vi =
m#

j=1

Γ(v)i,j γj.

The map v &→ Γ(v) is an Fq-isomorphism. Moreover, for a subspace V of Fn
qm , we define

Γ(V) := {Γ(v) : v ∈ V}.

Definition
A vector (rank-metric) code is a subspace C ≤ Fn

qm . Theminimum distance d(C)
of C is the minimum distance of Γ(C) for any choice of a basis Γ of Fqm/Fq.

Giuseppe Cotardo GRACE Young Seminar October, 2021



Fqm-LINEAR RANK-METRIC CODES

Let Γ := {γ1, . . . , γm} be a basis of Fqm over Fq and v ∈ Fn
qm . We define by Γ(v) ∈ Fn×m

q
the vector defined by

vi =
m#

j=1

Γ(v)i,j γj.

The map v &→ Γ(v) is an Fq-isomorphism. Moreover, for a subspace V of Fn
qm , we define

Γ(V) := {Γ(v) : v ∈ V}.

Definition
A vector (rank-metric) code is a subspace C ≤ Fn

qm . Theminimum distance d(C)
of C is the minimum distance of Γ(C) for any choice of a basis Γ of Fqm/Fq.

A vector code C is MTR if trk(C) = dimFq(C) + d(C)− 1.
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DELSARTE- GABIDULIN CODES

Definition
Let β1, . . . ,βn be elements of Fqm linearly independent over Fq. We define the
k-dimensional Fqm-Delsarte-Gabidulin code Gk(β1, . . . ,βn) as

Gk(β1, . . . ,βn) := {(f (β1), . . . , f (βn)) : f ∈ Gk},

where Gk := {f0 x+ f1 xq + · · ·+ fk−1 xq
k−1

: f0, . . . , fk−1 ∈ Fqm}.
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DELSARTE- GABIDULIN CODES

Definition
Let β1, . . . ,βn be elements of Fqm linearly independent over Fq. We define the
k-dimensional Fqm-Delsarte-Gabidulin code Gk(β1, . . . ,βn) as

Gk(β1, . . . ,βn) := {(f (β1), . . . , f (βn)) : f ∈ Gk},

where Gk := {f0 x+ f1 xq + · · ·+ fk−1 xq
k−1

: f0, . . . , fk−1 ∈ Fqm}.

Proposition (Sheekey - 2016)

Let β1, . . . ,βn be elements of Fqm linearly independent over Fq. The dual of the
code Gk(β1, . . . ,βn) is equivalent to Gn−k,s(β1, . . . ,βn).
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AN EXAMPLE

Let α be a primitive element of F53 and let

C :=G1
'
α4,α7( =

)'
f
'
α4( , f

'
α7(( : f ∈ {f0 x : f0 ∈ F53}

*

=
)
f0
'
α4,α7( : f0 ∈ F53

*
=

+'
α4,α7(,

F5
.

Let Γ := {1,α,α2} be a F5-basis of F53 , N := Γ
''
α4,α7(( andM the companion matrix of

the minimal polynomial of α, i.e.

N :=

!
0 2 2
3 2 3

"
, M :=

-

.
0 1 0
0 0 1
2 2 0

/

0 .

One can check that

Γ(C) =
+
N,NM,NM2,

F5
=

1!
0 2 2
3 2 3

"
,

!
4 4 2
1 4 2

"
,

!
4 3 4
4 0 4

"2

F5

.
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DELSARTE- GABIDULIN CODES

Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)

Let q ≥ m + n − 2 and α be primitive element of Fqm . For any code C ≤ Fn
qm

equivalent to G1(1,α, . . . ,αn) we have

trk(C) = m+ n− 1

and, in particular, C is MTR.

Algebras Having Linear Multiplicative Complexities, C. M. Fiduccia, Y. Zalcstein
Journal of the ACM (JACM), ACM, 1977.

Giuseppe Cotardo GRACE Young Seminar October, 2021



DELSARTE- GABIDULIN CODES

Proposition (Byrne, C. - 2021)

Let q ≥ m + n − 2, n ∈ {2, 3} and α be primitive element of Fqm . We can
construct a perfect base of cardinalitym+ n− 1 for any code C ≤ Fn

qm equivalent
to G1(1,α, . . . ,αn).
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DELSARTE- GABIDULIN CODES

Proposition (Byrne, C. - 2021)

Let q ≥ m + n − 2, n ∈ {2, 3} and α be primitive element of Fqm . We can
construct a perfect base of cardinalitym+ n− 1 for any code C ≤ Fn

qm equivalent
to G1(1,α, . . . ,αn).

Proposition (Byrne, C. - 2021)

Let q ≥ m and α be primitive element of Fqm . For any code C ≤ Fn
qm equivalent

to G1(1,α, . . . ,αn)⊥ we have

trk(C) = mn−m+ 1

and, in particular, C is MTR. Moreover, we can construct a perfect base of cardi-
nalitymn−m+ 1 for C.
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AN EXAMPLE

Let α be a primitive element of F53 and let C := G1(1,α,α2) =
+
(1,α,α2)

,
F5
. One can

check that Γ
'
C⊥

(
≤ F3×3

5 is the code of dimension 6 generated by
-

.
1 0 0
0 0 0
4 1 4

/

0 ,

-

.
0 1 0
0 0 0
2 0 0

/

0 ,

-

.
0 0 1
0 0 0
3 2 0

/

0 ,

-

.
0 0 0
1 0 0
1 4 0

/

0 ,

-

.
0 0 0
0 1 0
0 0 4

/

0 ,

-

.
0 0 0
0 0 1
2 0 0

/

0 .

Moreover, we have that trk
'
C⊥

(
= 7 and a 7-base for C⊥ is given by the following rank-1

matrices
-

.
0 0 1
0 0 0
0 0 0

/

0 ,

-

.
0 0 0
3 0 0
0 0 0

/

0 ,

-

.
0 0 0
0 0 0
2 3 0

/

0 ,

-

.
4 2 1
2 1 3
0 0 0

/

0 ,

-

.
0 0 0
4 4 2
2 2 1

/

0 ,

-

.
1 1 1
4 4 4
0 0 0

/

0 ,

-

.
0 0 0
2 1 1
3 4 4

/

0 .

In particular, the span over F5 of these rank-1 contains C⊥ as subspace.

Giuseppe Cotardo GRACE Young Seminar October, 2021



INVARIANTSINVARIANTS FOR MATRIX CODES



PRELIMINARIES AND NOTATION

Definition
The row-support and the column-support of a code C ≤ Fn×m

q are

rowsupp(C) =
#

c∈C
rowsp(c) and colsupp(C) =

#

c∈C
colsp(c),

where, for any c ∈ C, rowsp(c) and colsp(c) denotes the row-space and the
column-space of c respectively.

Definition
Let V ≤ Fm

q , U ≤ Fn
q and C ≤ Fn×m

q be a code. We define

C[V] := {c ∈ C : rowsp(c) ≤ V} and C(U) := {c ∈ C : colsp(c) ≤ U}.
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DELSARTE-TYPE ANTICODES

Definition (Ravagnani - 2016)

Let C ≤ Fn×m
q be a code. We say that C is a Delsarte-type anticode if

dimFq(C) = m ·maxrk(C).

Theorem (Meshulam - 1985)

Let C ≤ Fn×m
q be a code. We have that C is a Delsarte-type anticode if and only if

one of the following condition holds.
◮ n < m and there exists U ≤ Fn

q such that C = Fn×m
q (U).

◮ n = m and there exists U ≤ Fn
q such that C = Fn×m

q (U) or C = Fn×m
q [U].
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TENSOR REPRESENTATION OF MATRICES

Consider the following map.

ϕ : Fn
q ⊗ Fm

q −→ Fn×m
q

R#

i=1

λi ui ⊗ vi &−→
R#

i=1

λi

-

333.

u1v1 u1v2 · · · u1vm
u2v1 u2v2 · · · u2vm
...

...
...

unv1 unv2 · · · unvm

/

4440

5 67 8
rank-1matrix

Remark
One can easily check that themapϕ is an isomorphism. Therefore, we can identify
the spaces Fn

q ⊗ Fm
q and Fn×m

q .

Giuseppe Cotardo GRACE Young Seminar October, 2021



DELSARTE-TYPE ANTICODES

Observe that for any U ≤ Fn
q we have

Fn×m
q (U) =

9 R#

i=1

λi u1 ⊗ vi : u1, . . . , uR ∈ U and v1, . . . , vR ∈ Fm
q

:
= U⊗ Fm

q .

Analogously, for V ∈ Fm
q we have Fn×m

q [V] = Fn
q ⊗ V.
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λi u1 ⊗ vi : u1, . . . , uR ∈ U and v1, . . . , vR ∈ Fm
q

:
= U⊗ Fm

q .

Analogously, for V ∈ Fm
q we have Fn×m

q [V] = Fn
q ⊗ V.

Theorem (Meshulam - 1985)

Let C ≤ Fn×m
q be a code. We have that C is a Delsarte-type anticode if and only if

one of the following condition holds.
◮ n < m and there exists U ≤ Fn

q such that C = Fn×m
q (U).

◮ n = m and there exists U ≤ Fn
q such that C = Fn×m

q (U) or C = Fn×m
q [U].
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DELSARTE-TYPE ANTICODES

Observe that for any U ≤ Fn
q we have

Fn×m
q (U) =

9 R#

i=1

λi u1 ⊗ vi : u1, . . . , uR ∈ U and v1, . . . , vR ∈ Fm
q

:
= U⊗ Fm

q .

Analogously, for V ∈ Fm
q we have Fn×m

q [V] = Fn
q ⊗ V.

Theorem (Meshulam - 1985)

Let C ≤ Fn×m
q be a code. We have that C is a Delsarte-type anticode if and only if

one of the following condition holds.
◮ n < m and there exists U ≤ Fn

q such that C = U⊗ Fm
q .

◮ n = m and there exists U ≤ Fn
q such that C = U⊗ Fn

q or C = Fn
q ⊗ U.
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A TENSOR ALGEBRA APPROACH TO ANTICODES

AAD

Aps Aps :={A ≤ Fn×m
q : A is perfect},

AD :=

;
<

=
{U⊗ Fm

q : U ≤ Fn
q} if n < m,

{U⊗ Fn
q : U ≤ Fn

q} ∪ {Fn
q ⊗ U : U ≤ Fn

q} if n = m,
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A TENSOR ALGEBRA APPROACH TO ANTICODES

Acl

Acl

AD

Aps Aps :={A ≤ Fn×m
q : A is perfect},

AD :=

;
<

=
{U⊗ Fm

q : U ≤ Fn
q} if n < m,

{U⊗ Fn
q : U ≤ Fn

q} ∪ {Fn
q ⊗ U : U ≤ Fn

q} if n = m,

Acl :={U⊗ V : U ≤ Fn
q and V ≤ Fm

q },

Acl :={U⊗ Fm
q + Fn

q ⊗ V : U ≤ Fn
q and V ≤ Fm

q }.
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A TENSOR ALGEBRA APPROACH TO ANTICODES

Acl

Acl

AD

Aps Aps :={A ≤ Fn×m
q : A is perfect},

AD :=

;
<

=
{U⊗ Fm

q : U ≤ Fn
q} if n < m,

{U⊗ Fn
q : U ≤ Fn

q} ∪ {Fn
q ⊗ U : U ≤ Fn

q} if n = m,

Acl :={U⊗ V : U ≤ Fn
q and V ≤ Fm

q },

Acl :={U⊗ Fm
q + Fn

q ⊗ V : U ≤ Fn
q and V ≤ Fm

q }.

A ∈ Acl ⇐⇒ A ∈ Acl

Closure-type
anticodes
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A TENSOR ALGEBRA APPROACH TO ANTICODES

Acl

Acl

AD

Aps Aps :={A ≤ Fn×m
q : A is perfect},

AD :=

;
<

=
{U⊗ Fm

q : U ≤ Fn
q} if n < m,

{U⊗ Fn
q : U ≤ Fn

q} ∪ {Fn
q ⊗ U : U ≤ Fn

q} if n = m,

Acl :={U⊗ V : U ≤ Fn
q and V ≤ Fm

q },

Acl :={U⊗ Fm
q + Fn

q ⊗ V : U ≤ Fn
q and V ≤ Fm

q }.

A ∈ Acl ⇐⇒ A⊥ ∈ Acl

Closure-type
anticodes
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INVARIANTS FOR MATRIX CODES

Definition
Let C ≤ Fn×m

q be a code and A be a set of anticodes. For any j ∈
{1, . . . , dimFq(C)}, the j-th generalized tensor weight is

tj(C) := min
)
dimFq(A) : A ∈ A | dimFq(C ∩ A) ≥ j

*
.
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INVARIANTS FOR MATRIX CODES

Definition
Let C ≤ Fn×m

q be a code and A be a set of anticodes. For any j ∈
{1, . . . , dimFq(C)}, the j-th generalized tensor weight is

tj(C) := min
)
dimFq(A) : A ∈ A | dimFq(C ∩ A) ≥ j

*
.

IfA = AD then we recover the generalized rank weights. Indeed, we have

tDj (C) = min
)
dimFq(A) : A ∈ AD | dimFq(C ∩ A) ≥ j

*
= m · dj(C)

for any j ∈ {1, . . . , dimFq(C)}.

Generalized weights: An anticode approach, A. Ravagnani
Journal of Pure and Applied Algebra, Elsevier, 2016.
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INVARIANTS FOR MATRIX CODES

Definition
Let C ≤ Fn×m

q be a code and A be a set of anticodes. For any j ∈
{1, . . . , dimFq(C)}, the j-th generalized tensor weight is

tj(C) := min
)
dimFq(A) : A ∈ A | dimFq(C ∩ A) ≥ j

*
.

IfA = Aps then we recover the generalized tensor ranks. Indeed, we have

tpsj (C) = min
)
dimFq(A) : A ∈ Aps | dimFq(C ∩ A) ≥ j

*
= dj(C)

for any j ∈ {1, . . . , dimFq(C)}.

Tensor representation of rank-metric codes, E. Byrne, A. Neri, A. Ravagnani, J. Sheekey
SIAM Journal on Applied Algebra and Geometry, SIAM, 2019.
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INVARIANTS FOR MATRIX CODES

Let C be a [n×m, k, d]q code.

Proposition (Ravagnani - 2016)

The following hold.
(1) tD1 (C) = md,

(2) tDk (C) ≤ mn,

(3) tDj (C) ≤ tDj+1(C) for all j ∈ {1, . . . , k− 1},

(4) tDj (C) < tDj+m(C) for all j ∈ {1, . . . , k−m},

(5) tDj (C) ≤ n−
>
k−j
m

?
for all j ∈ {1, . . . , k}.
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INVARIANTS FOR MATRIX CODES

Let C be a [n×m, k, d]q code.

Proposition (Ravagnani - 2016)

The following hold.
(1) tD1 (C) = md,

(2) tDk (C) ≤ mn,

(3) tDj (C) ≤ tDj+1(C) for all j ∈ {1, . . . , k− 1},

(4) tDj (C) < tDj+m(C) for all j ∈ {1, . . . , k−m},

(5) tDj (C) ≤ n−
>
k−j
m

?
for all j ∈ {1, . . . , k}.

We say that C isMRD ifm | k and C meets bound (5) for j = 1 with equality.
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INVARIANTS FOR MATRIX CODES

Let C be a [n×m, k, d]q code.

Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)

The following hold.
(1) tps1 (C) = d,

(2) tpsk (C) = trk(C),

(3) tpsj (C) < tpsj+1(C) for all j ∈ {1, . . . , k− 1},

(4) tpsj (C) ≥ d+ j− 1 for all j ∈ {1, . . . , k},

(5) tpsj (C) ≤ trk(C)− k+ j for all j ∈ {1, . . . , k}.
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INVARIANTS FOR MATRIX CODES

Let C be a [n×m, k, d]q code.

Proposition (Byrne, Neri, Ravagnani, Sheekey - 2019)

The following hold.
(1) tps1 (C) = d,

(2) tpsk (C) = trk(C),

(3) tpsj (C) < tpsj+1(C) for all j ∈ {1, . . . , k− 1},

(4) tpsj (C) ≥ d+ j− 1 for all j ∈ {1, . . . , k},

(5) tpsj (C) ≤ trk(C)− k+ j for all j ∈ {1, . . . , k}.

Observe that C isMTR if C meets bound (4) for j = k or (5) for j = 1 with equality.

Giuseppe Cotardo GRACE Young Seminar October, 2021



INVARIANTS FOR MATRIX CODES

Let C be a [n×m, k, d]q code.

Proposition (Byrne, C.)

The following hold.
(1) tcl1 (C) = d2,

(2) tclk (C) = dimFq(colsupp(C)) dimFq(rowsupp(C)),

(3) tclj (C) ≤ tclj+1(C) for all j ∈ {1, . . . , k− 1},

(4) tpsj (C) ≤ tclj (C) ≤ tDj (C) or all j ∈ {1, . . . , k}.
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AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over F3:

C :=

1!
1 0 0 0
0 1 0 0

"
,

!
0 1 0 0
0 0 1 0

"
,

!
0 0 1 0
0 0 0 1

"
,

!
0 0 0 1
1 0 0 1

"2

3
,

D :=

1!
1 0 0 0
2 0 1 1

"
,

!
0 1 0 0
1 2 0 2

"
,

!
0 0 1 0
2 1 2 2

"
,

!
0 0 0 1
2 2 1 1

"2

3
.
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AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over F3:

C :=

1!
1 0 0 0
0 1 0 0

"
,

!
0 1 0 0
0 0 1 0

"
,

!
0 0 1 0
0 0 0 1

"
,

!
0 0 0 1
1 0 0 1

"2

3
,

D :=

1!
1 0 0 0
2 0 1 1

"
,

!
0 1 0 0
1 2 0 2

"
,

!
0 0 1 0
2 1 2 2

"
,

!
0 0 0 1
2 2 1 1

"2

3
.

One one check the following.
◮ tps1 (C) = tps1 (D) = 2.

◮ tDj (C) = tDj (D) = 8 for all j ∈ {1, . . . , 4}. In particular C andD are MRD.
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AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over F3:

C :=

1!
1 0 0 0
0 1 0 0

"
,

!
0 1 0 0
0 0 1 0

"
,

!
0 0 1 0
0 0 0 1

"
,

!
0 0 0 1
1 0 0 1

"2

3
,

D :=

1!
1 0 0 0
2 0 1 1

"
,

!
0 1 0 0
1 2 0 2

"
,

!
0 0 1 0
2 1 2 2

"
,

!
0 0 0 1
2 2 1 1

"2

3
.

One one check the following.
◮ tps1 (C) = tps1 (D) = 2.

◮ tDj (C) = tDj (D) = 8 for all j ∈ {1, . . . , 4}. In particular C andD are MRD.

◮ tcl1 (C) = 4, tcl2 (C) = 6 and tcl3 (C) = tcl4 (C) = 8.

◮ tcl1 (D) = 4, tcl2 (D) = 4 and tcl3 (D) = tcl4 (D) = 8.
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AN EXAMPLE

Consider the following 1-dimensional Delsarte-Gabidulin codes over F3:

C :=

1!
1 0 0 0
0 1 0 0

"
,

!
0 1 0 0
0 0 1 0

"
,

!
0 0 1 0
0 0 0 1

"
,

!
0 0 0 1
1 0 0 1

"2

3
,

D :=

1!
1 0 0 0
2 0 1 1

"
,

!
0 1 0 0
1 2 0 2

"
,

!
0 0 1 0
2 1 2 2

"
,

!
0 0 0 1
2 2 1 1

"2

3
.

One one check the following.
◮ tps1 (C) = tps1 (D) = 2.

◮ tDj (C) = tDj (D) = 8 for all j ∈ {1, . . . , 4}. In particular C andD are MRD.

◮ tcl1 (C) = 4, tcl2 (C) = 6 and tcl3 (C) = tcl4 (C) = 8.

◮ tcl1 (D) = 4, tcl2 (D) = 4 and tcl3 (D) = tcl4 (D) = 8.
We can

distinguish more!
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FURTHER QUESTIONS

! Find new classes of MTR codes.

! Determine the tensor rank of classes of matrix codes.

! Study properties of these invariants for tensor codes.
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FURTHER QUESTIONS

! Find new classes of MTR codes.

! Determine the tensor rank of classes of matrix codes.

! Study properties of these invariants for tensor codes.

THANK YOU

“Matrices were
created by God,
tensors by Devil.”

Max Noether
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