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In order to define higher inductive types in practice, we need to explain the theory
behind cubical Agda
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Homotopy type theory is obtained by adding a new axiom, univalence, stating that the

map
(A=B) — (A~ B)

is an equivalence.

This can be performed axiomatically, by adding a new axiom

postulate
isEquivPathToEquiv :
{A B : Type (} - isEquiv (pathToEquiv {A = A} {B = B})
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Homotopy type theory is obtained by adding a new axiom, univalence, stating that the

map
(A=B) — (A~ B)

is an equivalence.

This can be performed axiomatically, by adding a new axiom
postulate
isEquivPathToEquiv :

{A B : Type (} - isEquiv (pathToEquiv {A = A} {B = B})

but this has a defect: it breaks canonicity.
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A type theory has the canonicity property when every term t : N is convertible to a

natural number.
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Theorem
Dependent type theory (without univalence) has the canonicity property.

Proof.
We can orient definitional equality into terminating rewriting system, e.g.

34+id2—3+2—5

The only terms in normal form of type N are natural numbers. O
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e consider the function o : List 1 — List 1 defined by

o)y = =1

e we have
e:Listl~N

e by univalence we deduce
uae:List1=N

e by transport we have a function s : N — N defined by

X>—>X~>X(

s = transport uae)o 4



Brunerie's number

A famous example comes from Brunerie's PhD thesis [Brul6] who shows in HoTT

Y (n: N).(m4(S?) ~ Z/nZ)

Corollary 3.4.5. We have
74(S?) ~ Z/nZ,

where n is the absolute value of the image of [ia, is] by the equivalence m3(S?) — Z.

This result is quite remarkable in that even though it is a constructive proof, it is not
at all obvious how to actually compute this n. At the time of writing, we still haven’t
managed to extract its value from its definition. A complete and concise definition of this
number n is presented in appendix B, for the benefit of someone wanting to implement it
in a prospective proof assistant. In the rest of this thesis, we give a mathematical proof
in homotopy type theory that n = 2.
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Brunerie's number

A famous example comes from Brunerie's PhD thesis [Brul6] who shows in HoTT

Y (n: N).(m4(S?) ~ Z/nZ)

Actually computing the natural number n was achieved by Ljungstrom and Mort-
berg [LM23] who show that n = —2.



Cubical type theory

In 2015, Cohen, Coquand, Huber and Mértberg [CCHM18] presented a variant of
dependent type theory in which

e one can manipulate n-cubes

e one can prove the univalence axiom

e supports higher inductive types [CHM18]
e has the canonicity property [Hub19]



Cubical type theory

The current implementation of cubical Agda is based on this
it can be activated with --cubical.

It is described in [VMA21] as well as in Agda’s reference manual.

It comes with an alternative standard library:
https://github.com/agda/cubical


https://github.com/agda/cubical

Cubical type theory

The cubical type theory can be considered as an “assembly language” for HoTT:

e most of the time we don't need to understand those details in order to make proofs
(we only use the cubical Agda library)

e implementation might actually change in the future while keeping most proofs valid

But it is sometimes useful to know how it works.
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The interval type

We begin by adding a new type | for the interval with two constructors ig : | and iy : |

o i1

The idea is that a path in A corresponds to a function | — A.

More generally,

e aterm | — | — A corresponds to a square in A,
e atebm /| — | — | — Atoacubein A,

e ectc.

This is why we are cubical.

We also want to consider paths (i : 1) — A(i) whose type is varying.



Paths

A varying type is a function A: | — U:

a0
Al Ali)
¢
I.% g.
) i i1
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A varying type is a function A: | — U:

a0
Al Ali)
3
I.% g.
) i i1

The type of heterogeneous paths is
PathP: (A: 1= U) = Aig > Ail = U

where PathP A x y can be thought of as the type of functions p : (i : I) — A such that

pio = x pir=y 10



Paths

A varying type is a function A: | — U:

| A(i)
Al Al
3
I.% g.
io i i1

The type of heterogeneous paths is
PathP: (A: 1= U) = Aig > Ail = U
Given p : PathP Axy and i : |, we have

pi:Ai pip = x pit=y 10



A varying type is a function A: | — U: (0
A(i

The type of heterogeneous paths is
PathP: (A: 1= U) = Aig > Ail = U

10



Identity types

Given A : U, the type of paths in A is

>

xX=y PathP(_ — A)xy
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Identity types

Given A : U, the type of paths in A is

>

xX=y PathP(_ — A)xy

We can define reflexivity paths by
refl : (A: Type) (x: A) = x = x

AXi— X 11
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ap:(F:A=B)(p:x=y)—>fx=fFy
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Functoriality

We can define ap (aka cong) by (with xy : A)

ap:(F:A=B)(p:x=y)—>fx=fFy
fpi—f(pi)

and the dependent variant by

apd: (f: (x: A) = Bx)(p:x=y)— PathP B(fx)(fy)
fpi—f(pi)

12
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Functoriality

We can define ap (aka cong) by (with xy : A)

ap:(F:A=B)(p:x=y)—>fx=fFy
fpi—f(pi)

Things which used to require J can now be proved right away. For instance,

(f:A=B)(g:B—>C)(p:x=y)—>ap(gof)p=apg(apfp)
fgprrefl

12



Function extensionality

We can even prove function extensionality by

funext: (fg: A= B)(p: (x:A) > fx=gx)—>f=g
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Function extensionality

We can even prove function extensionality by

funext: (fg: A= B)(p: (x:A) > fx=gx)—>f=g
fgpix— pxi

13



Another primitive operation is transport which is

transport: (A=B) - A— B
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Another primitive operation is transport which is
transport: (A=B) - A— B
from which we can derive the more traditional transport function as

subst: (B:A—U) = (x=y) > Bx— By
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Another primitive operation is transport which is
transport: (A=B) - A— B
from which we can derive the more traditional transport function as

subst: (B:A—U) = (x=y) > Bx— By
B px" + transport (\i.B(pi)) x’

14
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® supremum: V
e infimum: A

e complement: ~
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Boolean operations

It will be useful to have the following operations on the elements of I:

® supremum: V
e infimum: A

e complement: ~
Those satisfy definitionally all the laws of De Morgan algebras, e.g.
(IVHVkZiv(Vk) (ivig) =iy ~io 2 i
iVUNK)=(iV) AV k) (iVig) =i ~ S
i.e. all the laws of boolean algebras excepting

ESFESY A~ 2

15



Path reversal

We can define the path reversal operation by

sym: (x=y) = (y =x)

16



Path reversal

We can define the path reversal operation by

sym: (x =y) = (y = x)
pir p(~i)

16



Given a path p: x = y, we can define a square

X p y
refl p
J
L
X refl X
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Given a path p: x = y, we can define a square

X p y
refl p
J
L
X refl X

NiN.p (i AJ)

17



The J rule can similarly be shown for x : Aand P : (y : A) - x =y — Type by

J:(r:Pxrefl){y A} (p:x=y)—= Pyp
rp—

18



The J rule can similarly be shown for x : Aand P : (y : A) - x =y — Type by
J:(r:Pxrefl){y A} (p:x=y)—= Pyp
rp—

Recall that we have a square Ai.Aj.p (i Aj)

X p y
refl p
J
L
X refl X
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The J rule can similarly be shown for x : Aand P : (y : A) - x =y — Type by
J:(r:Pxrefl){y A} (p:x=y)—= Pyp
rp — transport (Aj.P (pj) (Ni.p(i Aj))) r

Recall that we have a square Ai.Aj.p (i Aj)

X p y
refl p
J
L
X refl X

18



J does not evaluate definitionally on refl
TODO: we however have transportRefl which allows showing this propositionally

TODO: definitional transportRefl is incompatible with cubical Agda [Swal8]

19



Defining composition

We could define composition by J as before

However this does not compute nicely because transport does not on path types...

20



In practice

explain indices for wanted boundaries

21



Part |

Filling boxes
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Defining composition

We deduce composition from an operation which states that for every “open cube”

we can define
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We deduce composition from an operation which states that for every “open cube”

we can define

e the missing face: hcomp
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Defining composition

We deduce composition from an operation which states that for every “open cube”

we can define

e the missing face: hcomp

e the interior cube: hfill

23



Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.
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Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.

The only functions
| — Bool

are the constant functions

Ai. true Ai. false

24



Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.

We can define a function

| — Partial (~ i Vi) Bool Bool
. ®
ig — false
i1 > true

24



Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined

when r is iy, which can be thought of as a cube with missing faces.

Agda checks that definitions match on their intersection so that we cannot define
| — Bool
ip > false

i1 — true

I — true

24



Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.

Agda checks that all cases are covered so that we cannot define

| — Bool
ip > false

i1 — true

24



Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.

The concrete syntax for pattern matching on interval arguments is

partialBool : (i : I) = Partial (7 i V i) Bool
i0) = false

il) = true

partialBool i (i

partialBool i (i
or

partialBool : (i : I) = Partial (T i V i) Bool
partialBool i = A { (i = i0) - false ; (i = il) - true } o4



Partial types

For instance, given p: x =x', g: x =y and r: y = y/, we can define

x' y'
p r
J
L
x q y

as

25



Partial types

For instance, given p: x =x', g: x =y and r: y = y/, we can define

/

x' y
p r
J
L
x q y

as
u:(i:1)(y:1)— Partial (~ iV~ VIi)A

25



Partial types

For instance, given p: x =x', g: x =y and r: y = y/, we can define

as

u:(i:

io

/

x' y
p r
x a v

1) (j: 1) = Partial (~ iV ~jVi)A

= pJ
= qi
—rj

25



Homogeneous composition

The homogeneous composition operation is
hcomp : {¢ : I} (u: | — Partial p A) (ug : A) — A

which can be pictured as
hcomp u ug

?
|
:
Lu
|
|
|
&UO

where Agda checks that ugp agrees with u (for i = ip) when both are defined.

26



Defining composition

For instance, given p: x = y and g : y = z, we can define their composite as

X p-q z

refl q

This means that we define
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Defining composition

For instance, given p: x = y and g : y = z, we can define their composite as

X p-q z

refl q

This means that we define
u:(i:1)(:1)— Partial (~iVi)A
io j = X
i1 J = qJ
and
27



Defining composition

For instance, given p: x = y and g : y = z, we can define their composite as

X p-q z

refl q

This means that we define
u:(i:1)(:1)— Partial (~iVi)A
— X
= qJ
and p-q = Xi.hcomp(ui)(pi)
27



Subtypes

We write
Alp — u]

for the subtype of A whose elements are definitionally equal to u when ¢ is iy.
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Subtypes

We write
Alp — u]

for the subtype of A whose elements are definitionally equal to u when ¢ is iy.

It comes equipped with two operations

inS: (u:A) = Alp — Ai.d]
outS: Alp—u] - A

28



Homogeneous filler

The homogeneous filler is
hfill : {¢ : 1} (u: (i : 1) — Partial pA) (uo : Alp — uio]) (i : 1) = A
which is

e ug when 7 is ig

e hcomp u ug when is is iy

29



Homogeneous filler

For instance, if we apply hfill to the previous composition situation

X p-q z

refl q

we obtain a path
f :PathP (\j.x = qj)p(p- q)
Jiwhfill(ui)(inS(pi))j

30



Homogeneous filler

For instance, if we apply hfill to the previous composition situation

p-q
X z
transport p
refl q
J
L
x p y

we obtain a path
f :PathP (\j.x = qj)p(p- q)
Jiwhfill(ui)(inS(pi))j

30



Composition is unital on the right

If we specialize to g = refl, we show composition is unital on the right

x p-refl y

refl refl

we obtain a path

f :PathP (A\j.x =y)p(p - refl)
Jihfill(ui)(inS(pi))j

31



Composition is unital on the right

If we specialize to g = refl, we show composition is unital on the right

x p-refl y

refl refl
J
L
x P y
we obtain a path
f:p=p-refl

Jihfill(ui)(inS(pi))j

31



Note that hfill can be defined from hcomp:

hfill : (u: (i : 1) — Partial ) (up : Alp— uio]) (i : 1) = A
u 7 i — hcomp U (outS wup)

where U is the function

J(@=i1) = u(inj)
j(i = io) — outS wug

32



Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.
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Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The “cube” can be defined as

u: (i) G:l)(k:1) — Partial (~ i ViV~ k)A
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X
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Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The “cube” can be defined as

u: (i) G:l)(k:1) — Partial (~ i ViV~ k)A
o j  k  —x
i J k = p (Vv ~ k)
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Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The “cube” can be defined as

u: (i) G:l)(k:1) — Partial (~ i ViV~ k)A
o j  k  —x
i J k = p (Vv ~ k)
i J io —
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Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

k
i

J
%

The “cube” can be defined as

u: (i)
io

G:h)
J
J

J

x refl.p y
X
Py
Y lp
X refl Y
X X
X
p-
P y

(k : 1) — Partial (~ i ViV ~ k) A

k
k

io

— X
= p(V ~ k)

—pi
33



Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The bottom can be defined as

u:(i:)y(k:1)—A
i k —
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Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

J
%

The bottom can be defined as

up -

k
i

(i:

i

x refl.p y
X
P Yy
X Y lp
X reft |V
X X X
X
p-
x P y
) (k:1) = A

k= p(in~k)

33



Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The filler is
fo:-NDG:DHk:)—A
i J k — hfill (\j.uijk)(inS (uo i k))

and we obtain the result as the top face (j = i1).

33



Composition is cancellative on the right

To show that composition is cancellative on the right, we can similarly use the “cube’

x PP X
X
X X/ _
X P
X p P
X X y
X
J ok r
B y
X P y

34



Glue types

35



Bibliography i

[Brul6]

[CCHM18]

Guillaume Brunerie.

On the homotopy groups of spheres in homotopy type theory.
PhD thesis, Université de Nice Sophia Antipolis, 2016.
arXiv:1606.05916.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mértberg.
Cubical Type Theory: A Constructive Interpretation of the
Univalence Axiom.

In 21st International Conference on Types for Proofs and Programs
(TYPES 2015), volume 69 of LIPIcs, pages 5:1-5:34. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2018.

arXiv:1611.02108, doi:10.4230/LIPIcs.TYPES.2015.5.

36


https://arxiv.org/abs/1606.05916
https://arxiv.org/abs/1611.02108
https://doi.org/10.4230/LIPIcs.TYPES.2015.5

Bibliography ii

[CHM18]  Thierry Coquand, Simon Huber, and Anders Mértberg.

On higher inductive types in cubical type theory.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 255-264, 2018.

arXiv:1802.01170, doi:10.1145/3209108.3209197

[Hub19] Simon Huber.

Canonicity for cubical type theory.
Journal of Automated Reasoning, 63(2):173-210, 2019.
arXiv:1607.04156, doi:10.1007/s10817-018-9469-1.

37


https://arxiv.org/abs/1802.01170
https://doi.org/10.1145/3209108.3209197
https://arxiv.org/abs/1607.04156
https://doi.org/10.1007/s10817-018-9469-1

Bibliography iii

[LM23] Axel Ljungstrom and Anders Mértberg.
Formalizing m4(S3) = Z/27Z and computing a Brunerie number in
cubical agda.
In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1-13. IEEE, 2023.
arXiv:2302.00151.

[Swal8] Andrew Swan.

Separating path and identity types in presheaf models of univalent
type theory.

Preprint, 2018.

arXiv:1808.00920.

38


https://arxiv.org/abs/2302.00151
https://arxiv.org/abs/1808.00920

Bibliography iv

[VMA21]

Andrea Vezzosi, Anders Mortberg, and Andreas Abel.
Cubical agda: A dependently typed programming language with

univalence and higher inductive types.
Journal of Functional Programming, 31, 2021.
doi:10.1017/S0956796821000034.

39


https://doi.org/10.1017/S0956796821000034

	Filling boxes

