
Cubical Agda

Samuel Mimram

2025

École polytechnique



In order to define higher inductive types in practice, we need to explain the theory
behind cubical Agda

1



Canonicity

Homotopy type theory is obtained by adding a new axiom, univalence, stating that the
map

(A = B) → (A ≃ B)

is an equivalence.

This can be performed axiomatically, by adding a new axiom

postulate
isEquivPathToEquiv :

{A B : Type ℓ} → isEquiv (pathToEquiv {A = A} {B = B})

but this has a defect: it breaks canonicity.

2



Canonicity

Homotopy type theory is obtained by adding a new axiom, univalence, stating that the
map

(A = B) → (A ≃ B)

is an equivalence.

This can be performed axiomatically, by adding a new axiom

postulate
isEquivPathToEquiv :

{A B : Type ℓ} → isEquiv (pathToEquiv {A = A} {B = B})

but this has a defect: it breaks canonicity.

2



Canonicity

Definition
A type theory has the canonicity property when every term t : N is convertible to a
natural number.

Note: we could have taken other types instead of N (e.g. the booleans).

Theorem
Dependent type theory (without univalence) has the canonicity property.

Proof.
We can orient definitional equality into terminating rewriting system, e.g.

3 + id 2 → 3 + 2 → 5

The only terms in normal form of type N are natural numbers.

3



Canonicity

Definition
A type theory has the canonicity property when every term t : N is convertible to a
natural number.

Note: we could have taken other types instead of N (e.g. the booleans).

Theorem
Dependent type theory (without univalence) has the canonicity property.

Proof.
We can orient definitional equality into terminating rewriting system, e.g.

3 + id 2 → 3 + 2 → 5

The only terms in normal form of type N are natural numbers.

3



Canonicity

Definition
A type theory has the canonicity property when every term t : N is convertible to a
natural number.

Note: we could have taken other types instead of N (e.g. the booleans).

Theorem
Dependent type theory (without univalence) has the canonicity property.

Proof.
We can orient definitional equality into terminating rewriting system, e.g.

3 + id 2 → 3 + 2 → 5

The only terms in normal form of type N are natural numbers.

3



Canonicity

Adding axioms (such as univalence) breaks canonicity:

• consider the function σ : List 1 → List 1 defined by

σ(l) =̂ ⋆ :: l

• we have
e : List 1 ≃ N

• by univalence we deduce
ua e : List 1 = N

• by transport we have a function s : N → N defined by

s =̂ transportX 7→X→X (ua e)σ

• we have an equality which is not definitional:

s(5) = 6

4



Canonicity

Adding axioms (such as univalence) breaks canonicity:

• consider the function σ : List 1 → List 1 defined by

σ(l) =̂ ⋆ :: l

• we have
e : List 1 ≃ N

• by univalence we deduce
ua e : List 1 = N

• by transport we have a function s : N → N defined by

s =̂ transportX 7→X→X (ua e)σ

• we have an equality which is not definitional:

s(5) = 6

4



Canonicity

Adding axioms (such as univalence) breaks canonicity:

• consider the function σ : List 1 → List 1 defined by

σ(l) =̂ ⋆ :: l

• we have
e : List 1 ≃ N

• by univalence we deduce
ua e : List 1 = N

• by transport we have a function s : N → N defined by

s =̂ transportX 7→X→X (ua e)σ

• we have an equality which is not definitional:

s(5) = 6

4



Canonicity

Adding axioms (such as univalence) breaks canonicity:

• consider the function σ : List 1 → List 1 defined by

σ(l) =̂ ⋆ :: l

• we have
e : List 1 ≃ N

• by univalence we deduce
ua e : List 1 = N

• by transport we have a function s : N → N defined by

s =̂ transportX 7→X→X (ua e)σ

• we have an equality which is not definitional:

s(5) = 6

4



Canonicity

Adding axioms (such as univalence) breaks canonicity:

• consider the function σ : List 1 → List 1 defined by

σ(l) =̂ ⋆ :: l

• we have
e : List 1 ≃ N

• by univalence we deduce
ua e : List 1 = N

• by transport we have a function s : N → N defined by

s =̂ transportX 7→X→X (ua e)σ

• we have an equality which is not definitional:

s(5) = 6

4



Brunerie’s number

A famous example comes from Brunerie’s PhD thesis [Bru16] who shows in HoTT

Σ(n : N).(π4(S
3) ≃ Z/nZ)

5



Brunerie’s number

A famous example comes from Brunerie’s PhD thesis [Bru16] who shows in HoTT

Σ(n : N).(π4(S
3) ≃ Z/nZ)

Actually computing the natural number n was achieved by Ljungström and Mört-
berg [LM23] who show that n = . . .

5



Brunerie’s number

A famous example comes from Brunerie’s PhD thesis [Bru16] who shows in HoTT

Σ(n : N).(π4(S
3) ≃ Z/nZ)

Actually computing the natural number n was achieved by Ljungström and Mört-
berg [LM23] who show that n = −2.

5



Cubical type theory

In 2015, Cohen, Coquand, Huber and Mörtberg [CCHM18] presented a variant of
dependent type theory in which

• one can manipulate n-cubes

• one can prove the univalence axiom

• supports higher inductive types [CHM18]

• has the canonicity property [Hub19]

6



Cubical type theory

The current implementation of cubical Agda is based on this
it can be activated with --cubical.

It is described in [VMA21] as well as in Agda’s reference manual.

It comes with an alternative standard library:
https://github.com/agda/cubical

7

https://github.com/agda/cubical


Cubical type theory

The cubical type theory can be considered as an “assembly language” for HoTT:

• most of the time we don’t need to understand those details in order to make proofs
(we only use the cubical Agda library)

• implementation might actually change in the future while keeping most proofs valid

But it is sometimes useful to know how it works.

8



The interval type

We begin by adding a new type I for the interval with two constructors i0 : I and i1 : I

i0 i1

The idea is that a path in A corresponds to a function I → A.

More generally,

• a term I → I → A corresponds to a square in A,
• a term I → I → I → A to a cube in A,
• etc.

This is why we are cubical.

We also want to consider paths (i : I) → A(i) whose type is varying.

9



The interval type

We begin by adding a new type I for the interval with two constructors i0 : I and i1 : I

i0 i1

The idea is that a path in A corresponds to a function I → A.

More generally,

• a term I → I → A corresponds to a square in A,
• a term I → I → I → A to a cube in A,
• etc.

This is why we are cubical.

We also want to consider paths (i : I) → A(i) whose type is varying.

9



The interval type

We begin by adding a new type I for the interval with two constructors i0 : I and i1 : I

i0 i1

The idea is that a path in A corresponds to a function I → A.

More generally,

• a term I → I → A corresponds to a square in A,
• a term I → I → I → A to a cube in A,
• etc.

This is why we are cubical.

We also want to consider paths (i : I) → A(i) whose type is varying.

9



Paths

A varying type is a function A : I → U :

I

A

A(i0)
A(i)

A(i1)

i0 i i1

x y

The type of heterogeneous paths is

PathP : (A : I → U) → A i0 → A i1 → U

10



Paths

A varying type is a function A : I → U :

I

A

A(i0)
A(i)

A(i1)

i0 i i1

x y

The type of heterogeneous paths is

PathP : (A : I → U) → A i0 → A i1 → U

where PathPAx y can be thought of as the type of functions p : (i : I) → A i such that

p i0 =̂ x p i1 =̂ y 10



Paths

A varying type is a function A : I → U :

I

A

A(i0)
A(i)

A(i1)

i0 i i1

x yp

The type of heterogeneous paths is

PathP : (A : I → U) → A i0 → A i1 → U

Given p : PathPAx y and i : I, we have

p i : A i p i0 =̂ x p i1 =̂ y 10



Paths

A varying type is a function A : I → U :

I

A

A(i0)
A(i)

A(i1)

i0 i i1

x yp p i

The type of heterogeneous paths is

PathP : (A : I → U) → A i0 → A i1 → U

10



Identity types

I

A A

i0 i i1

x y

Given A : U , the type of paths in A is

x = y =̂ PathP(_ 7→ A) x y

We can define reflexivity paths by

refl : (A : Type) (x : A) → x = x

A x 7→ λi .x

11



Identity types

I

A A

i0 i i1

x y

Given A : U , the type of paths in A is

x = y =̂ PathP(_ 7→ A) x y

We can define reflexivity paths by

refl : (A : Type) (x : A) → x = x

A x 7→ λi .x

11



Identity types

I

A A

i0 i i1

x y

Given A : U , the type of paths in A is

x = y =̂ PathP(_ 7→ A) x y

We can define reflexivity paths by

refl : (A : Type) (x : A) → x = x

A x 7→ λi .x 11



Identity types

I

A A

i0 i i1

x y

Given A : U , the type of paths in A is

x = y =̂ PathP(_ 7→ A) x y

We can define reflexivity paths by

refl : (A : Type) (x : A) → x = x

A x i 7→ x 11



Functoriality

We can define ap (aka cong) by (with x y : A)

ap : (f : A → B) (p : x = y) → f x = f y

f p i 7→ f (p i)

12



Functoriality

We can define ap (aka cong) by (with x y : A)

ap : (f : A → B) (p : x = y) → f x = f y

f p i 7→ f (p i)

12



Functoriality

We can define ap (aka cong) by (with x y : A)

ap : (f : A → B) (p : x = y) → f x = f y

f p i 7→ f (p i)

and the dependent variant by

apd : (f : (x : A) → B x) (p : x = y) → PathP B (f x) (f y)

f p i 7→ f (p i)

12



Functoriality

We can define ap (aka cong) by (with x y : A)

ap : (f : A → B) (p : x = y) → f x = f y

f p i 7→ f (p i)

and the dependent variant by

apd : (f : (x : A) → B x) (p : x = y) → PathP B (f x) (f y)

f p i 7→ f (p i)

12



Functoriality

We can define ap (aka cong) by (with x y : A)

ap : (f : A → B) (p : x = y) → f x = f y

f p i 7→ f (p i)

Things which used to require J can now be proved right away. For instance,

(f : A → B) (g : B → C ) (p : x = y) → ap (g ◦ f ) p = ap g (ap f p)

f g p 7→ refl

12



Functoriality

We can define ap (aka cong) by (with x y : A)

ap : (f : A → B) (p : x = y) → f x = f y

f p i 7→ f (p i)

Things which used to require J can now be proved right away. For instance,

(f : A → B) (g : B → C ) (p : x = y) → ap (g ◦ f ) p = ap g (ap f p)

f g p 7→ refl

12



Function extensionality

We can even prove function extensionality by

funext : (f g : A → B) (p : (x : A) → f x = g x) → f = g

f g p i x 7→ p x i

13



Function extensionality

We can even prove function extensionality by

funext : (f g : A → B) (p : (x : A) → f x = g x) → f = g

f g p i x 7→ p x i

13



Transport

Another primitive operation is transport which is

transport : (A = B) → A → B

from which we can derive the more traditional transport function as

subst : (B : A → U) → (x = y) → B x → B y

B p x ′ 7→ transport (λi .B(p i)) x ′

14



Transport

Another primitive operation is transport which is

transport : (A = B) → A → B

from which we can derive the more traditional transport function as

subst : (B : A → U) → (x = y) → B x → B y

B p x ′ 7→ transport (λi .B(p i)) x ′

14



Transport

Another primitive operation is transport which is

transport : (A = B) → A → B

from which we can derive the more traditional transport function as

subst : (B : A → U) → (x = y) → B x → B y

B p x ′ 7→ transport (λi .B(p i)) x ′

14



Boolean operations

It will be useful to have the following operations on the elements of I:

• supremum: ∨
• infimum: ∧
• complement: ∼

Those satisfy definitionally all the laws of De Morgan algebras, e.g.

(i ∨ j) ∨ k =̂ i ∨ (j ∨ k) (i ∨ i1) =̂ i1 ∼ i0 =̂ i1 . . .

i ∨ (j ∧ k) =̂ (i ∨ j) ∧ (i ∨ k) (i ∨ i0) =̂ i ∼∼ i =̂ i . . .

i.e. all the laws of boolean algebras excepting

i∨ ∼ i =̂ i1 i∧ ∼ i =̂ i0

15



Boolean operations

It will be useful to have the following operations on the elements of I:

• supremum: ∨
• infimum: ∧
• complement: ∼

Those satisfy definitionally all the laws of De Morgan algebras, e.g.

(i ∨ j) ∨ k =̂ i ∨ (j ∨ k) (i ∨ i1) =̂ i1 ∼ i0 =̂ i1 . . .

i ∨ (j ∧ k) =̂ (i ∨ j) ∧ (i ∨ k) (i ∨ i0) =̂ i ∼∼ i =̂ i . . .

i.e. all the laws of boolean algebras excepting

i∨ ∼ i =̂ i1 i∧ ∼ i =̂ i0

15



Boolean operations

It will be useful to have the following operations on the elements of I:

• supremum: ∨
• infimum: ∧
• complement: ∼

Those satisfy definitionally all the laws of De Morgan algebras, e.g.

(i ∨ j) ∨ k =̂ i ∨ (j ∨ k) (i ∨ i1) =̂ i1 ∼ i0 =̂ i1 . . .

i ∨ (j ∧ k) =̂ (i ∨ j) ∧ (i ∨ k) (i ∨ i0) =̂ i ∼∼ i =̂ i . . .

i.e. all the laws of boolean algebras excepting

i∨ ∼ i =̂ i1 i∧ ∼ i =̂ i0

15



Path reversal

We can define the path reversal operation by

sym : (x = y) → (y = x)

p i 7→ p (∼ i)

16



Path reversal

We can define the path reversal operation by

sym : (x = y) → (y = x)

p i 7→ p (∼ i)

16



A square

Given a path p : x = y , we can define a square

i

j

x x

x y

refl

p

refl p

by

λi .λj .p (i ∧ j)

17



A square

Given a path p : x = y , we can define a square

i

j

x x

x y

refl

p

refl p

by
λi .λj .p (i ∧ j)

17



J

The J rule can similarly be shown for x : A and P : (y : A) → x = y → Type by

J : (r : P x refl) {y : A} (p : x = y) → P y p

r p 7→

transport (λj .P (p j) (λi .p (i ∧ j))) r

Recall that we have a square λi .λj .p (i ∧ j)

i

j

x x

x y

refl

p

refl p

18



J

The J rule can similarly be shown for x : A and P : (y : A) → x = y → Type by

J : (r : P x refl) {y : A} (p : x = y) → P y p

r p 7→

transport (λj .P (p j) (λi .p (i ∧ j))) r

Recall that we have a square λi .λj .p (i ∧ j)

i

j

x x

x y

refl

p

refl p

18



J

The J rule can similarly be shown for x : A and P : (y : A) → x = y → Type by

J : (r : P x refl) {y : A} (p : x = y) → P y p

r p 7→ transport (λj .P (p j) (λi .p (i ∧ j))) r

Recall that we have a square λi .λj .p (i ∧ j)

i

j

x x

x y

refl

p

refl p

18



J

J does not evaluate definitionally on refl

TODO: we however have transportRefl which allows showing this propositionally

TODO: definitional transportRefl is incompatible with cubical Agda [Swa18]

19



Defining composition

We could define composition by J as before

...

However this does not compute nicely because transport does not on path types...

20



In practice

explain indices for wanted boundaries

21



Part I

Filling boxes

22



Defining composition

We deduce composition from an operation which states that for every “open cube”

we can define

• the missing face: hcomp

• the interior cube: hfill

23



Defining composition

We deduce composition from an operation which states that for every “open cube”

we can define

• the missing face: hcomp

• the interior cube: hfill

23



Defining composition

We deduce composition from an operation which states that for every “open cube”

we can define

• the missing face: hcomp

• the interior cube: hfill

23



Partial types

We write
Partial φA

for the type of partial types: an element is a term of type A which is only defined
when r is i1, which can be thought of as a cube with missing faces.

24



Partial types

We write
Partial φA

for the type of partial types: an element is a term of type A which is only defined
when r is i1, which can be thought of as a cube with missing faces.

The only functions
I → Bool

are the constant functions

λi . true λi . false

24



Partial types

We write
Partial φA

for the type of partial types: an element is a term of type A which is only defined
when r is i1, which can be thought of as a cube with missing faces.

We can define a function

I → Partial (∼ i ∨ i) Bool

i0 7→ false

i1 7→ true
I

Bool

24



Partial types

We write
Partial φA

for the type of partial types: an element is a term of type A which is only defined
when r is i1, which can be thought of as a cube with missing faces.

Agda checks that definitions match on their intersection so that we cannot define

I → Bool

i0 7→ false

i1 7→ true

i 7→ true

24



Partial types

We write
Partial φA

for the type of partial types: an element is a term of type A which is only defined
when r is i1, which can be thought of as a cube with missing faces.

Agda checks that all cases are covered so that we cannot define

I → Bool

i0 7→ false

i1 7→ true

24



Partial types

We write
Partial φA

for the type of partial types: an element is a term of type A which is only defined
when r is i1, which can be thought of as a cube with missing faces.

The concrete syntax for pattern matching on interval arguments is

partialBool : (i : I) → Partial (~ i ∨ i) Bool
partialBool i (i = i0) = false
partialBool i (i = i1) = true

or

partialBool : (i : I) → Partial (~ i ∨ i) Bool
partialBool i = λ { (i = i0) → false ; (i = i1) → true } 24



Partial types

For instance, given p : x = x ′, q : x = y and r : y = y ′, we can define

i

j

x y

x ′ y ′

q

p r

as

u : (i : I) (j : I) → Partial (∼ i∨ ∼ j ∨ i)A

i0 j 7→ p j

i i0 7→ q i

i1 j 7→ r j

25



Partial types

For instance, given p : x = x ′, q : x = y and r : y = y ′, we can define

i

j

x y

x ′ y ′

q

p r

as
u : (i : I) (j : I) → Partial (∼ i∨ ∼ j ∨ i)A

i0 j 7→ p j

i i0 7→ q i

i1 j 7→ r j

25



Partial types

For instance, given p : x = x ′, q : x = y and r : y = y ′, we can define

i

j

x y

x ′ y ′

q

p r

as
u : (i : I) (j : I) → Partial (∼ i∨ ∼ j ∨ i)A

i0 j 7→ p j

i i0 7→ q i

i1 j 7→ r j

25



Homogeneous composition

The homogeneous composition operation is

hcomp : {φ : I} (u : I → Partial φA) (u0 : A) → A

which can be pictured as

u

u0

hcomp u u0

where Agda checks that u0 agrees with u (for i =̂ i0) when both are defined.

26



Defining composition

For instance, given p : x = y and q : y = z , we can define their composite as

i

j

refl

p

q

p · q

x y

x z

This means that we define

u : (i : I) (j : I) → Partial (∼ i ∨ i)A

i0 j 7→ x

i1 j 7→ q j

and p · q =̂ λi . hcomp (u i) (p i)

27



Defining composition

For instance, given p : x = y and q : y = z , we can define their composite as

i

j

refl

p

q

p · q

x y

x z

This means that we define

u : (i : I) (j : I) → Partial (∼ i ∨ i)A

i0 j 7→ x

i1 j 7→ q j

and

p · q =̂ λi . hcomp (u i) (p i)

27



Defining composition

For instance, given p : x = y and q : y = z , we can define their composite as

i

j

refl

p

q

p · q

x y

x z

This means that we define

u : (i : I) (j : I) → Partial (∼ i ∨ i)A

i0 j 7→ x

i1 j 7→ q j

and p · q =̂ λi . hcomp (u i) (p i)

27



Subtypes

We write
A[φ 7→ u]

for the subtype of A whose elements are definitionally equal to u when φ is i1.

It comes equipped with two operations

inS : (u : A) → A[φ 7→ λi .u]

outS : A[φ 7→ u] → A

28



Subtypes

We write
A[φ 7→ u]

for the subtype of A whose elements are definitionally equal to u when φ is i1.

It comes equipped with two operations

inS : (u : A) → A[φ 7→ λi .u]

outS : A[φ 7→ u] → A

28



Homogeneous filler

The homogeneous filler is

hfill : {φ : I} (u : (i : I) → PartialφA) (u0 : A[φ 7→ u i0]) (i : I ) → A

which is

• u0 when i is i0

• hcomp u u0 when is is i1

29



Homogeneous filler

For instance, if we apply hfill to the previous composition situation

i

j

refl

p

q

p · q

x y

x z

we obtain a path

f : PathP (λj .x = q j) p (p · q)
j i 7→ hfill (u i) (inS (p i)) j

30



Homogeneous filler

For instance, if we apply hfill to the previous composition situation

i

j

refl

p

q

p · q

transport p

x y

x z

we obtain a path

f : PathP (λj .x = q j) p (p · q)
j i 7→ hfill (u i) (inS (p i)) j

30



Composition is unital on the right

If we specialize to q =̂ refl, we show composition is unital on the right

i

j

refl

p

refl

p · refl

x y

x y

we obtain a path

f : PathP (λj .x = y) p (p · refl)
j i 7→ hfill (u i) (inS (p i)) j

31



Composition is unital on the right

If we specialize to q =̂ refl, we show composition is unital on the right

i

j

refl

p

refl

p · refl

x y

x y

we obtain a path

f :p = p · refl
j i 7→ hfill (u i) (inS (p i)) j

31



Defining hfill

Note that hfill can be defined from hcomp:

hfill : (u : (i : I) → Partial φ) (u0 : A[φ 7→ u i0]) (i : I) → A

u u0 i 7→ hcomp U (outS u0)

where U is the function

j (ϕ = i1) 7→ u (i ∧ j)

j (i = i0) 7→ outS u0

32



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The “cube” can be defined as

u : (i : I) (j : I) (k : I) → Partial (∼ i ∨ i∨ ∼ k)A

i0 j k 7→ x

i1 j k 7→ p (j∨ ∼ k)

i j i0 7→ p i

33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The “cube” can be defined as

u : (i : I) (j : I) (k : I) → Partial (∼ i ∨ i∨ ∼ k)A

i0 j k 7→ x

i1 j k 7→ p (j∨ ∼ k)

i j i0 7→ p i

33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The “cube” can be defined as

u : (i : I) (j : I) (k : I) → Partial (∼ i ∨ i∨ ∼ k)A

i0 j k 7→

x

i1 j k 7→ p (j∨ ∼ k)

i j i0 7→ p i

33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The “cube” can be defined as

u : (i : I) (j : I) (k : I) → Partial (∼ i ∨ i∨ ∼ k)A

i0 j k 7→ x

i1 j k 7→ p (j∨ ∼ k)

i j i0 7→ p i

33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The “cube” can be defined as

u : (i : I) (j : I) (k : I) → Partial (∼ i ∨ i∨ ∼ k)A

i0 j k 7→ x

i1 j k 7→

p (j∨ ∼ k)

i j i0 7→ p i

33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The “cube” can be defined as

u : (i : I) (j : I) (k : I) → Partial (∼ i ∨ i∨ ∼ k)A

i0 j k 7→ x

i1 j k 7→ p (j∨ ∼ k)

i j i0 7→ p i

33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The “cube” can be defined as

u : (i : I) (j : I) (k : I) → Partial (∼ i ∨ i∨ ∼ k)A

i0 j k 7→ x

i1 j k 7→ p (j∨ ∼ k)

i j i0 7→

p i

33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The “cube” can be defined as

u : (i : I) (j : I) (k : I) → Partial (∼ i ∨ i∨ ∼ k)A

i0 j k 7→ x

i1 j k 7→ p (j∨ ∼ k)

i j i0 7→ p i
33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The bottom can be defined as

u0 : (i : I) (k : I) → A

i k 7→

p (i∧ ∼ k)

33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The bottom can be defined as

u0 : (i : I) (k : I) → A

i k 7→ p (i∧ ∼ k)

33



Composition is unital on the left

The definition of composition is biased: showing refl ·p = p is more difficult.

i

j k

x

x

x

x

y

y
p

p−

p

p

refl

refl ·p

x

x

x

x

y

y

y

x

The filler is
f : (i : I) (j : I) (k : I) → A

i j k 7→ hfill (λj .u i j k) (inS (u0 i k))

and we obtain the result as the top face (j = i1).

33



Composition is cancellative on the right

To show that composition is cancellative on the right, we can similarly use the “cube”:

i

j k

x

x

x

x

p−

x
p−

y

p

x

p

p · p−

x

x

x

x

y

x

x

y

34



Glue types

35



Bibliography i

[Bru16] Guillaume Brunerie.
On the homotopy groups of spheres in homotopy type theory.
PhD thesis, Université de Nice Sophia Antipolis, 2016.
arXiv:1606.05916.

[CCHM18] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg.
Cubical Type Theory: A Constructive Interpretation of the
Univalence Axiom.
In 21st International Conference on Types for Proofs and Programs
(TYPES 2015), volume 69 of LIPIcs, pages 5:1–5:34. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018.
arXiv:1611.02108, doi:10.4230/LIPIcs.TYPES.2015.5.

36

https://arxiv.org/abs/1606.05916
https://arxiv.org/abs/1611.02108
https://doi.org/10.4230/LIPIcs.TYPES.2015.5


Bibliography ii

[CHM18] Thierry Coquand, Simon Huber, and Anders Mörtberg.
On higher inductive types in cubical type theory.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 255–264, 2018.
arXiv:1802.01170, doi:10.1145/3209108.3209197.

[Hub19] Simon Huber.
Canonicity for cubical type theory.
Journal of Automated Reasoning, 63(2):173–210, 2019.
arXiv:1607.04156, doi:10.1007/s10817-018-9469-1.

37

https://arxiv.org/abs/1802.01170
https://doi.org/10.1145/3209108.3209197
https://arxiv.org/abs/1607.04156
https://doi.org/10.1007/s10817-018-9469-1


Bibliography iii

[LM23] Axel Ljungström and Anders Mörtberg.
Formalizing π4(S3) ∼= Z/2Z and computing a Brunerie number in
cubical agda.
In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–13. IEEE, 2023.
arXiv:2302.00151.

[Swa18] Andrew Swan.
Separating path and identity types in presheaf models of univalent
type theory.
Preprint, 2018.
arXiv:1808.00920.

38

https://arxiv.org/abs/2302.00151
https://arxiv.org/abs/1808.00920


Bibliography iv

[VMA21] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel.
Cubical agda: A dependently typed programming language with
univalence and higher inductive types.
Journal of Functional Programming, 31, 2021.
doi:10.1017/S0956796821000034.

39

https://doi.org/10.1017/S0956796821000034

	Filling boxes

