Cubical Agda

Samuel Mimram

2025

École polytechnique

In order to define higher inductive types in practice, we need to explain the theory behind cubical Agda

Homotopy type theory is obtained by adding a new axiom, **univalence**, stating that the map

$$(A = B) \rightarrow (A \simeq B)$$

is an equivalence.

This can be performed axiomatically, by adding a new axiom

Homotopy type theory is obtained by adding a new axiom, **univalence**, stating that the map

$$(A = B) \rightarrow (A \simeq B)$$

is an equivalence.

This can be performed axiomatically, by adding a new axiom

but this has a defect: it breaks canonicity.

Definition

A type theory has the **canonicity** property when every term $t : \mathbb{N}$ is convertible to a natural number.

Definition

A type theory has the **canonicity** property when every term $t : \mathbb{N}$ is convertible to a natural number.

Note: we could have taken other types instead of \mathbb{N} (e.g. the booleans).

3

Definition

A type theory has the **canonicity** property when every term $t : \mathbb{N}$ is convertible to a natural number.

Note: we could have taken other types instead of \mathbb{N} (e.g. the booleans).

Theorem

Dependent type theory (without univalence) has the canonicity property.

Proof.

We can orient definitional equality into terminating rewriting system, e.g.

$$3 + id 2 \rightarrow 3 + 2 \rightarrow 5$$

The only terms in normal form of type $\mathbb N$ are natural numbers.

Adding axioms (such as univalence) breaks canonicity:

ullet consider the function $\sigma: \mathsf{List}\, 1 \to \mathsf{List}\, 1$ defined by

$$\sigma(I) \quad \hat{=} \quad \star :: I$$

4

Adding axioms (such as univalence) breaks canonicity:

• consider the function $\sigma: \mathsf{List}\, 1 \to \mathsf{List}\, 1$ defined by

$$\sigma(I) \quad \hat{=} \quad \star :: I$$

we have

$$e:\mathsf{List}\ 1\simeq\mathbb{N}$$

Adding axioms (such as univalence) breaks canonicity:

• consider the function $\sigma: \mathsf{List}\, 1 \to \mathsf{List}\, 1$ defined by

$$\sigma(I) = \star :: I$$

• we have

$$e$$
: List $1 \simeq \mathbb{N}$

by univalence we deduce

ua
$$e$$
: List $1 = \mathbb{N}$

4

Adding axioms (such as univalence) breaks canonicity:

ullet consider the function $\sigma: \mathsf{List}\, 1 \to \mathsf{List}\, 1$ defined by

$$\sigma(I) = \star :: I$$

• we have

$$e: \mathsf{List}\ 1 \simeq \mathbb{N}$$

by univalence we deduce

ua
$$e$$
: List $1 = \mathbb{N}$

• by transport we have a function $s : \mathbb{N} \to \mathbb{N}$ defined by

$$s \triangleq \operatorname{transport}^{X \mapsto X \to X} (\operatorname{ua} e) \sigma$$

Adding axioms (such as univalence) breaks canonicity:

ullet consider the function $\sigma: \mathsf{List}\, 1 \to \mathsf{List}\, 1$ defined by

$$\sigma(I) = \star :: I$$

• we have

$$e: \mathsf{List}\ 1 \simeq \mathbb{N}$$

by univalence we deduce

ua
$$e$$
: List $1 = \mathbb{N}$

• by transport we have a function $s : \mathbb{N} \to \mathbb{N}$ defined by

$$s \triangleq \operatorname{transport}^{X \mapsto X \to X} (\operatorname{ua} e) \sigma$$

Brunerie's number

A famous example comes from Brunerie's PhD thesis [Bru16] who shows in HoTT

$$\Sigma(n:\mathbb{N}).(\pi_4(S^3)\simeq \mathbb{Z}/n\mathbb{Z})$$

Corollary 3.4.5. We have

$$\pi_4(\mathbb{S}^3) \simeq \mathbb{Z}/n\mathbb{Z},$$

where n is the absolute value of the image of $[i_2, i_2]$ by the equivalence $\pi_3(\mathbb{S}^2) \xrightarrow{\sim} \mathbb{Z}$.

This result is quite remarkable in that even though it is a constructive proof, it is not at all obvious how to actually compute this n. At the time of writing, we still haven't managed to extract its value from its definition. A complete and concise definition of this number n is presented in appendix B, for the benefit of someone wanting to implement it in a prospective proof assistant. In the rest of this thesis, we give a mathematical proof in homotopy type theory that n=2.

Brunerie's number

A famous example comes from Brunerie's PhD thesis [Bru16] who shows in HoTT

$$\Sigma(n:\mathbb{N}).(\pi_4(S^3)\simeq \mathbb{Z}/n\mathbb{Z})$$

Actually computing the natural number n was achieved by Ljungström and Mörtberg [LM23] who show that $n = \dots$

5

Brunerie's number

A famous example comes from Brunerie's PhD thesis [Bru16] who shows in HoTT

$$\Sigma(n:\mathbb{N}).(\pi_4(S^3)\simeq \mathbb{Z}/n\mathbb{Z})$$

Actually computing the natural number n was achieved by Ljungström and Mörtberg [LM23] who show that n=-2.

5

Cubical type theory

In 2015, Cohen, Coquand, Huber and Mörtberg [CCHM18] presented a variant of dependent type theory in which

- one can manipulate *n*-cubes
- one can prove the univalence axiom
- supports higher inductive types [CHM18]
- has the canonicity property [Hub19]

Cubical type theory

The current implementation of cubical Agda is based on this it can be activated with --cubical.

It is described in [VMA21] as well as in Agda's reference manual.

It comes with an alternative **standard library**: https://github.com/agda/cubical

Cubical type theory

The cubical type theory can be considered as an "assembly language" for HoTT:

- most of the time we don't need to understand those details in order to make proofs (we only use the cubical Agda library)
- implementation might actually change in the future while keeping most proofs valid

But it is sometimes useful to know how it works.

The interval type

We begin by adding a new type I for the interval with two constructors $i_0:I$ and $i_1:I$

The idea is that a path in A corresponds to a function $I \rightarrow A$.

9

The interval type

We begin by adding a new type I for the interval with two constructors $i_0:I$ and $i_1:I$

The idea is that a path in A corresponds to a function $I \rightarrow A$.

More generally,

- a term $I \rightarrow I \rightarrow A$ corresponds to a square in A,
- a term $I \rightarrow I \rightarrow I \rightarrow A$ to a cube in A,
- etc.

This is why we are cubical.

The interval type

We begin by adding a new type I for the interval with two constructors $i_0:I$ and $i_1:I$

The idea is that a path in A corresponds to a function $I \rightarrow A$.

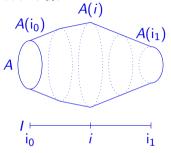
More generally,

- a term $I \rightarrow I \rightarrow A$ corresponds to a square in A,
- a term $I \rightarrow I \rightarrow I \rightarrow A$ to a cube in A,
- etc.

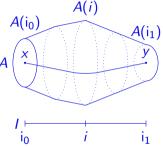
This is why we are cubical.

We also want to consider paths $(i : I) \rightarrow A(i)$ whose type is varying.

A varying type is a function $A: I \to \mathcal{U}$:



A varying type is a function $A: I \rightarrow \mathcal{U}$:



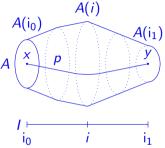
The type of heterogeneous paths is

PathP :
$$(A : I \rightarrow \mathcal{U}) \rightarrow A i_0 \rightarrow A i_1 \rightarrow \mathcal{U}$$

where PathP $A \times y$ can be thought of as the type of functions $p:(i:I) \to Ai$ such that

$$\mathfrak{p}$$
 i $_1 \mathrel{\hat{=}} _{.}$

A varying type is a function $A: I \to \mathcal{U}$:



The type of heterogeneous paths is

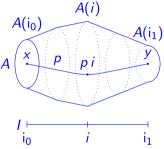
PathP :
$$(A : I \rightarrow \mathcal{U}) \rightarrow A i_0 \rightarrow A i_1 \rightarrow \mathcal{U}$$

Given p: PathP $A \times y$ and i: I, we have

$$i_0 = \lambda$$

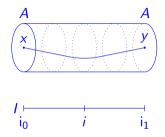
$$i_1 \stackrel{.}{=} y$$

A varying type is a function $A: I \to \mathcal{U}$:



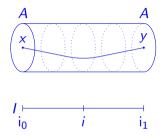
The type of heterogeneous paths is

$$\mathsf{PathP} : (A : \mathsf{I} \to \mathcal{U}) \to A \ \mathsf{i}_0 \to A \ \mathsf{i}_1 \to \mathcal{U}$$



Given $A: \mathcal{U}$, the type of **paths** in A is

$$x = y$$
 $\hat{=}$ PathP($_ \mapsto A$) $x y$

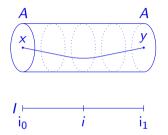


Given $A: \mathcal{U}$, the type of **paths** in A is

$$x = y \quad \hat{=} \quad \mathsf{PathP}(_ \mapsto A) \, x \, y$$

We can define **reflexivity paths** by

refl :
$$(A : Type)(x : A) \rightarrow x = x$$



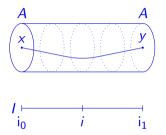
Given $A: \mathcal{U}$, the type of **paths** in A is

$$x = y \quad \hat{=} \quad \mathsf{PathP}(_ \mapsto A) \, x \, y$$

We can define **reflexivity paths** by

refl:
$$(A: Type)(x: A) \rightarrow x = x$$

 $Ax \mapsto \lambda i.x$



Given $A: \mathcal{U}$, the type of **paths** in A is

$$x = y \quad \hat{=} \quad \mathsf{PathP}(_ \mapsto A) \, x \, y$$

We can define reflexivity paths by

refl:
$$(A : Type)(x : A) \rightarrow x = x$$

 $A \times i \mapsto x$

We can define ap (aka cong) by (with xy : A)

$$\mathsf{ap}: (f:A\to B)\,(p:x=y)\to f\,x=f\,y$$

We can define ap (aka cong) by (with xy : A)

$$ap: (f: A \to B) (p: x = y) \to f x = f y$$
$$f p i \mapsto f (p i)$$

We can define ap (aka cong) by (with xy : A)

$$ap: (f: A \to B) (p: x = y) \to f x = f y$$
$$f p i \mapsto f (p i)$$

and the dependent variant by

We can define ap (aka cong) by (with xy : A)

$$ap: (f: A \to B) (p: x = y) \to f x = f y$$
$$f p i \mapsto f (p i)$$

and the dependent variant by

apd:
$$(f:(x:A) \rightarrow Bx)(p:x=y) \rightarrow PathP \ B(fx)(fy)$$

 $f \ p \ i \mapsto f(p \ i)$

We can define ap (aka cong) by (with xy : A)

$$ap: (f: A \to B) (p: x = y) \to f x = f y$$
$$f p i \mapsto f (p i)$$

Things which used to require J can now be proved right away. For instance,

$$(f:A\rightarrow B)(g:B\rightarrow C)(p:x=y)\rightarrow \operatorname{ap}(g\circ f)p=\operatorname{ap}g(\operatorname{ap}fp)$$

We can define ap (aka cong) by (with xy : A)

$$ap: (f: A \to B) (p: x = y) \to f x = f y$$
$$f p i \mapsto f (p i)$$

Things which used to require J can now be proved right away. For instance,

$$(f:A \rightarrow B)(g:B \rightarrow C)(p:x=y) \rightarrow \operatorname{ap}(g \circ f)p = \operatorname{ap}g(\operatorname{ap}fp)$$

$$f g p \mapsto \operatorname{refl}$$

Function extensionality

We can even prove function extensionality by

funext :
$$(f g : A \rightarrow B) (p : (x : A) \rightarrow f x = g x) \rightarrow f = g$$

Function extensionality

We can even prove function extensionality by

funext :
$$(f g : A \rightarrow B) (p : (x : A) \rightarrow f x = g x) \rightarrow f = g$$

 $f g p i x \mapsto p x i$

Transport

Another primitive operation is transport which is

transport :
$$(A = B) \rightarrow A \rightarrow B$$

Transport

Another primitive operation is transport which is

transport :
$$(A = B) \rightarrow A \rightarrow B$$

from which we can derive the more traditional transport function as

$$\mathsf{subst} : (B : A \to \mathcal{U}) \to (x = y) \to B \, x \to B \, y$$

Transport

Another primitive operation is transport which is

transport :
$$(A = B) \rightarrow A \rightarrow B$$

from which we can derive the more traditional transport function as

subst :
$$(B: A \to \mathcal{U}) \to (x = y) \to B x \to B y$$

 $B p x' \mapsto \text{transport} (\lambda i. B(p i)) x'$

Boolean operations

It will be useful to have the following operations on the elements of I:

- supremum: V
- infimum: ∧
- complement: ~

Boolean operations

It will be useful to have the following operations on the elements of I:

- supremum: V
- infimum: ∧
- complement: ~

Those satisfy definitionally all the laws of De Morgan algebras, e.g.

$$(i \lor j) \lor k \triangleq i \lor (j \lor k)$$
 $(i \lor i_1) \triangleq i_1$ $\sim i_0 \triangleq i_1$...
 $i \lor (j \land k) \triangleq (i \lor j) \land (i \lor k)$ $(i \lor i_0) \triangleq i$ $\sim \sim i \triangleq i$...

Boolean operations

It will be useful to have the following operations on the elements of I:

- supremum: V
- infimum: ∧
- complement: ~

Those satisfy definitionally all the laws of De Morgan algebras, e.g.

$$(i \lor j) \lor k \triangleq i \lor (j \lor k)$$
 $(i \lor i_1) \triangleq i_1$ $\sim i_0 \triangleq i_1$...
 $i \lor (j \land k) \triangleq (i \lor j) \land (i \lor k)$ $(i \lor i_0) \triangleq i$ $\sim \sim i \triangleq i$...

i.e. all the laws of boolean algebras excepting

$$i \lor \sim i \triangleq i_1$$
 $i \land \sim i \triangleq i_0$

Path reversal

We can define the path reversal operation by

$$\mathsf{sym}: (x=y) \to (y=x)$$

Path reversal

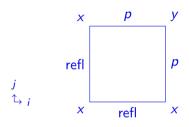
We can define the path reversal operation by

sym:
$$(x = y) \rightarrow (y = x)$$

 $p i \mapsto p (\sim i)$

A square

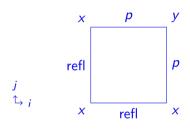
Given a path p: x = y, we can define a square



by

A square

Given a path p: x = y, we can define a square



by

$$\lambda i.\lambda j.p(i \wedge j)$$

The J rule can similarly be shown for x:A and $P:(y:A)\to x=y\to Type$ by

$$J: (r: P \times refl) \{y: A\} (p: x = y) \rightarrow P y p$$

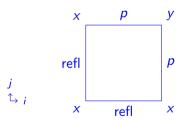
 $r p \mapsto$

The J rule can similarly be shown for x:A and $P:(y:A)\to x=y\to Type$ by

$$J: (r: Px \text{ refl}) \{y: A\} (p: x = y) \rightarrow Pyp$$

 $rp \mapsto$

Recall that we have a square $\lambda i.\lambda j.p(i \wedge j)$

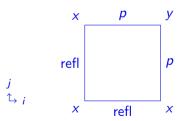


The J rule can similarly be shown for x:A and $P:(y:A)\to x=y\to Type$ by

$$J: (r: P \times refl) \{y: A\} (p: x = y) \rightarrow P y p$$

 $r p \mapsto \operatorname{transport} (\lambda j. P(p j) (\lambda i. p (i \wedge j))) r$

Recall that we have a square $\lambda i.\lambda j.p(i \wedge j)$



J does not evaluate definitionally on refl

TODO: we however have transportRefl which allows showing this propositionally

TODO: definitional transportRefl is incompatible with cubical Agda [Swa18]

We could define composition by J as before

...

However this does not compute nicely because transport does not on path types...

In practice

explain indices for wanted boundaries

Part I

Filling boxes

We deduce composition from an operation which states that for every "open cube"

we can define

We deduce composition from an operation which states that for every "open cube"

we can define

• the missing face: hcomp

We deduce composition from an operation which states that for every "open cube"

we can define

• the missing face: hcomp

• the interior cube: hfill

We write

Partial φA

for the type of **partial types**: an element is a term of type A which is only defined when r is i_1 , which can be thought of as a cube with missing faces.

We write

Partial φA

for the type of **partial types**: an element is a term of type A which is only defined when r is i_1 , which can be thought of as a cube with missing faces.

The only functions

 $I \rightarrow Bool$

are the constant functions

 λi . true λi . false

We write

Partial φA

for the type of **partial types**: an element is a term of type A which is only defined when r is i_1 , which can be thought of as a cube with missing faces.

We can define a function

$$I o Partial (\sim i \lor i)$$
 Bool $i_0 \mapsto false$ $i_1 \mapsto true$

We write

Partial φA

for the type of **partial types**: an element is a term of type A which is only defined when r is i_1 , which can be thought of as a cube with missing faces.

Agda checks that definitions match on their intersection so that we cannot define

 $I \rightarrow Bool$ $i_0 \mapsto false$ $i_1 \mapsto true$ $i \mapsto true$

We write

Partial φA

for the type of **partial types**: an element is a term of type A which is only defined when r is i_1 , which can be thought of as a cube with missing faces.

Agda checks that all cases are covered so that we cannot define

 $I \rightarrow \mathsf{Bool}$

 $i_0 \mapsto false$

 $i_1 \mapsto \mathsf{true}$

We write

Partial φA

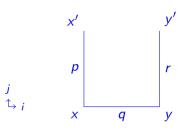
for the type of **partial types**: an element is a term of type A which is only defined when r is i_1 , which can be thought of as a cube with missing faces.

The concrete syntax for pattern matching on interval arguments is

```
partialBool : (i : I) → Partial (~ i ∨ i) Bool
partialBool i (i = i0) = false
partialBool i (i = i1) = true
or
```

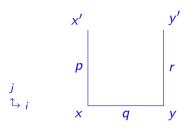
```
partialBool : (i : I) \rightarrow Partial (~ i \lor i) Bool partialBool i = \lambda { (i = i0) \rightarrow false ; (i = i1) \rightarrow true }
```

For instance, given p: x = x', q: x = y and r: y = y', we can define



as

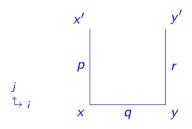
For instance, given p: x = x', q: x = y and r: y = y', we can define



as

$$u:(i:I)\ (j:I) o \mathsf{Partial}\ (\sim i \lor \sim j \lor i)\ A$$

For instance, given p: x = x', q: x = y and r: y = y', we can define



as

$$u: (i:1) (j:1) \rightarrow \operatorname{Partial} (\sim i \lor \sim j \lor i) A$$
 $i_0 \quad j \quad \mapsto pj$
 $i \quad i_0 \quad \mapsto qi$
 $i_1 \quad j \quad \mapsto rj$

Homogeneous composition

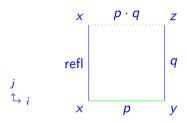
The homogeneous composition operation is

hcomp :
$$\{\varphi: I\}$$
 $(u: I \rightarrow \mathsf{Partial}\ \varphi\ A)(u_0: A) \rightarrow A$

which can be pictured as

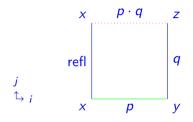
where Agda checks that u_0 agrees with u (for $i = i_0$) when both are defined.

For instance, given p: x = y and q: y = z, we can define their composite as



This means that we define

For instance, given p: x = y and q: y = z, we can define their composite as

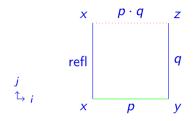


This means that we define

$$u: (i:I) (j:I) \rightarrow \mathsf{Partial} (\sim i \lor i) A$$
 $i_0 \quad j \quad \mapsto x$
 $i_1 \quad j \quad \mapsto qj$

and

For instance, given p: x = y and q: y = z, we can define their composite as



This means that we define

$$u: (i:I) (j:I) \rightarrow \mathsf{Partial} (\sim i \lor i) A$$
 $i_0 \quad j \quad \mapsto x$
 $i_1 \quad j \quad \mapsto qj$
 $p \cdot q \quad \hat{=} \quad \lambda i. \, \mathsf{hcomp} \, (u\,i) \, (p\,i)$

and

Subtypes

We write

$$A[\varphi \mapsto u]$$

for the **subtype** of A whose elements are definitionally equal to u when φ is i_1 .

Subtypes

We write

$$A[\varphi \mapsto u]$$

for the **subtype** of A whose elements are definitionally equal to u when φ is i_1 .

It comes equipped with two operations

inS:
$$(u:A) \rightarrow A[\varphi \mapsto \lambda i.u]$$

outS: $A[\varphi \mapsto u] \rightarrow A$

Homogeneous filler

The homogeneous filler is

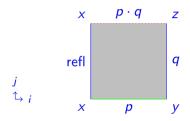
hfill:
$$\{\varphi : I\}$$
 $(u : (i : I) \rightarrow \mathsf{Partial}\,\varphi A)(u_0 : A[\varphi \mapsto u\,\mathsf{i}_0])(i : I) \rightarrow A$

which is

- u_0 when i is i_0
- hcomp $u u_0$ when is is i_1

Homogeneous filler

For instance, if we apply hfill to the previous composition situation

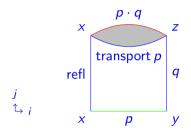


$$f: \mathsf{PathP}(\lambda j.x = qj) p(p \cdot q)$$

 $j i \mapsto \mathsf{hfill}(u i) (\mathsf{inS}(p i)) j$

Homogeneous filler

For instance, if we apply hfill to the previous composition situation

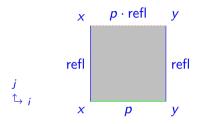


$$f: \mathsf{PathP}(\lambda j.x = qj) p(p \cdot q)$$

 $j i \mapsto \mathsf{hfill}(u i) (\mathsf{inS}(p i)) j$

Composition is unital on the right

If we specialize to q = refl, we show composition is unital on the right

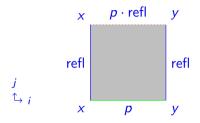


$$f : \mathsf{PathP}(\lambda j. x = y) p(p \cdot \mathsf{refl})$$

 $j i \mapsto \mathsf{hfill}(u i) (\mathsf{inS}(p i)) j$

Composition is unital on the right

If we specialize to q = refl, we show composition is unital on the right



$$f: p = p \cdot \text{refl}$$

 $j i \mapsto \text{hfill}(u i)(\text{inS}(p i))j$

Defining hfill

Note that hfill can be defined from hcomp:

hfill:
$$(u:(i:I) \rightarrow \mathsf{Partial}\ \varphi)\ (u_0:A[\varphi \mapsto u\ \mathsf{i}_0])\ (i:I) \rightarrow A$$

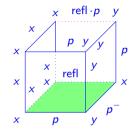
$$u \qquad \qquad u_0 \qquad \qquad i \qquad \mapsto \mathsf{hcomp}\ U\ (\mathsf{outS}\ u_0)$$

where U is the function

$$j(\phi = i_1) \mapsto u(i \wedge j)$$
$$j(i = i_0) \mapsto \text{outS } u_0$$

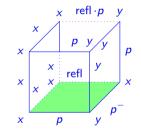
The definition of composition is biased: showing refl p = p is more difficult.

The definition of composition is biased: showing refl p = p is more difficult.



$$u:(i:I)\ (j:I)\ (k:I) o \mathsf{Partial}\ (\sim i \lor i \lor \sim k)\ A$$

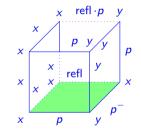
The definition of composition is biased: showing refl p = p is more difficult.



$$u: (i:I) (j:I) (k:I) \rightarrow \text{Partial} (\sim i \lor i \lor \sim k) A$$

 $i_0 \quad j \quad k \quad \mapsto$

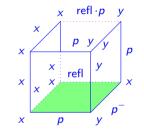
The definition of composition is biased: showing refl $\cdot p = p$ is more difficult.



$$u: (i:I) (j:I) (k:I) \rightarrow \text{Partial} (\sim i \lor i \lor \sim k) A$$

 $i_0 \quad j \quad k \quad \mapsto x$

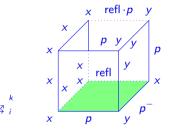
The definition of composition is biased: showing refl p = p is more difficult.



$$u: (i:1) (j:1) (k:1) \rightarrow \text{Partial} (\sim i \lor i \lor \sim k) A$$

 $i_0 \quad j \quad k \quad \mapsto x$
 $i_1 \quad j \quad k \quad \mapsto$

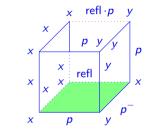
The definition of composition is biased: showing refl p = p is more difficult.



$$u: (i:1) (j:1) (k:1) \rightarrow \text{Partial} (\sim i \lor i \lor \sim k) A$$

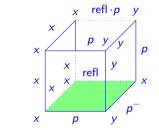
 $i_0 \quad j \quad k \quad \mapsto x$
 $i_1 \quad j \quad k \quad \mapsto p(j \lor \sim k)$

The definition of composition is biased: showing refl p = p is more difficult.



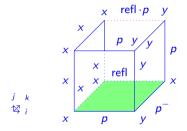
$$u: (i:1) (j:1) (k:1) \rightarrow \text{Partial} (\sim i \lor i \lor \sim k) A$$
 $i_0 \quad j \quad k \quad \mapsto x$
 $i_1 \quad j \quad k \quad \mapsto p(j \lor \sim k)$
 $i \quad j \quad i_0 \quad \mapsto$

The definition of composition is biased: showing refl p = p is more difficult.



$$u: (i:1) (j:1) (k:1) \rightarrow \text{Partial} (\sim i \lor i \lor \sim k) A$$
 $i_0 \quad j \quad k \quad \mapsto x$
 $i_1 \quad j \quad k \quad \mapsto p(j \lor \sim k)$
 $i \quad j \quad i_0 \quad \mapsto p i$

The definition of composition is biased: showing refl p = p is more difficult.

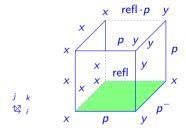


The bottom can be defined as

$$u_0: (i:1) (k:1) \rightarrow A$$

 $i \quad k \mapsto$

The definition of composition is biased: showing refl p = p is more difficult.

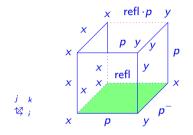


The bottom can be defined as

$$u_0: (i:1) (k:1) \rightarrow A$$

 $i \quad k \quad \mapsto p(i \land \sim k)$

The definition of composition is biased: showing refl p = p is more difficult.



The filler is

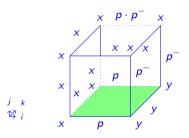
$$f: (i:1) (j:1) (k:1) \rightarrow A$$

 $i \quad j \quad k \mapsto \text{hfill} (\lambda j. u \, i \, j \, k) (\text{inS} (u_0 \, i \, k))$

and we obtain the result as the top face $(j = i_1)$.

Composition is cancellative on the right

To show that composition is cancellative on the right, we can similarly use the "cube":



Glue types

Bibliography i

[Bru16] Guillaume Brunerie.

Univalence Axiom.

On the homotopy groups of spheres in homotopy type theory.

PhD thesis, Université de Nice Sophia Antipolis, 2016. arXiv:1606.05916.

[CCHM18] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory: A Constructive Interpretation of the

In 21st International Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of LIPIcs, pages 5:1–5:34. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

arXiv:1611.02108, doi:10.4230/LIPIcs.TYPES.2015.5.

Bibliography ii

[CHM18] Thierry Coquand, Simon Huber, and Anders Mörtberg.

On higher inductive types in cubical type theory.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 255–264, 2018.

arXiv:1802.01170, doi:10.1145/3209108.3209197.

[Hub19] Simon Huber.

Canonicity for cubical type theory.

Journal of Automated Reasoning, 63(2):173–210, 2019.

arXiv:1607.04156, doi:10.1007/s10817-018-9469-1.

Bibliography iii

[LM23] Axel Ljungström and Anders Mörtberg.

Formalizing $\pi_4(\mathbb{S}^3)\cong \mathbb{Z}/2\mathbb{Z}$ and computing a Brunerie number in cubical agda.

In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13. IEEE, 2023.

arXiv:2302.00151.

[Swa18] Andrew Swan.

Separating path and identity types in presheaf models of univalent type theory.

Preprint, 2018.

arXiv:1808.00920.

Bibliography iv

[VMA21] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel.

Cubical agda: A dependently typed programming language with univalence and higher inductive types.

Journal of Functional Programming, 31, 2021.

doi:10.1017/S0956796821000034.