Cubical Agda

Samuel Mimram

2025

Ecole polytechnique

In order to define higher inductive types in practice, we need to explain the theory
behind cubical Agda

IIHigHEiIHHH!II

Homotopy type theory is obtained by adding a new axiom, univalence, stating that the

map
(A=B) — (A~ B)

is an equivalence.

This can be performed axiomatically, by adding a new axiom

postulate
isEquivPathToEquiv :
{A B : Type (} - isEquiv (pathToEquiv {A = A} {B = B})

IIHigHEiIHHH!II

Homotopy type theory is obtained by adding a new axiom, univalence, stating that the

map
(A=B) — (A~ B)

is an equivalence.

This can be performed axiomatically, by adding a new axiom
postulate
isEquivPathToEquiv :

{A B : Type (} - isEquiv (pathToEquiv {A = A} {B = B})

but this has a defect: it breaks canonicity.

Definition
A type theory has the canonicity property when every term t : N is convertible to a

natural number.

Definition
A type theory has the canonicity property when every term t : N is convertible to a

natural number.

Note: we could have taken other types instead of N (e.g. the booleans).

Definition
A type theory has the canonicity property when every term t : N is convertible to a

natural number.
Note: we could have taken other types instead of N (e.g. the booleans).

Theorem
Dependent type theory (without univalence) has the canonicity property.

Proof.
We can orient definitional equality into terminating rewriting system, e.g.

34+id2—3+2—5

The only terms in normal form of type N are natural numbers. O

Adding axioms (such as univalence) breaks canonicity:
e consider the function o : List 1 — List 1 defined by

o)y = =1

Adding axioms (such as univalence) breaks canonicity:
e consider the function o : List 1 — List 1 defined by

o)y = =1

e we have
e:Listl~N

Adding axioms (such as univalence) breaks canonicity:
e consider the function o : List 1 — List 1 defined by

o)y = =1

e we have
e:Listl~N

e by univalence we deduce
uae:List1=N

Adding axioms (such as univalence) breaks canonicity:
e consider the function o : List 1 — List 1 defined by

o)y = =1

e we have
e:Listl~N

e by univalence we deduce
uae:List1=N

e by transport we have a function s : N — N defined by

X>—>X~>X(

s = transport uae)o 4

Adding axioms (such as univalence) breaks canonicity:
e consider the function o : List 1 — List 1 defined by

o)y = =1

e we have
e:Listl~N

e by univalence we deduce
uae:List1=N

e by transport we have a function s : N — N defined by

X>—>X~>X(

s = transport uae)o 4

Brunerie's number

A famous example comes from Brunerie's PhD thesis [Brul6] who shows in HoTT

Y (n: N).(m4(S?) ~ Z/nZ)

Corollary 3.4.5. We have
74(S?) ~ Z/nZ,

where n is the absolute value of the image of [ia, is] by the equivalence m3(S?) — Z.

This result is quite remarkable in that even though it is a constructive proof, it is not
at all obvious how to actually compute this n. At the time of writing, we still haven’t
managed to extract its value from its definition. A complete and concise definition of this
number n is presented in appendix B, for the benefit of someone wanting to implement it
in a prospective proof assistant. In the rest of this thesis, we give a mathematical proof
in homotopy type theory that n = 2.

Brunerie's number

A famous example comes from Brunerie's PhD thesis [Brul6] who shows in HoTT

Y (n: N).(m4(S?) ~ Z/nZ)

Actually computing the natural number n was achieved by Ljungstrom and Mort-
berg [LM23] who show that n= ...

Brunerie's number

A famous example comes from Brunerie's PhD thesis [Brul6] who shows in HoTT

Y (n: N).(m4(S?) ~ Z/nZ)

Actually computing the natural number n was achieved by Ljungstrom and Mort-
berg [LM23] who show that n = —2.

Cubical type theory

In 2015, Cohen, Coquand, Huber and Mértberg [CCHM18] presented a variant of
dependent type theory in which

e one can manipulate n-cubes

e one can prove the univalence axiom

e supports higher inductive types [CHM18]
e has the canonicity property [Hub19]

Cubical type theory

The current implementation of cubical Agda is based on this
it can be activated with --cubical.

It is described in [VMA21] as well as in Agda’s reference manual.

It comes with an alternative standard library:
https://github.com/agda/cubical

https://github.com/agda/cubical

Cubical type theory

The cubical type theory can be considered as an “assembly language” for HoTT:

e most of the time we don't need to understand those details in order to make proofs
(we only use the cubical Agda library)

e implementation might actually change in the future while keeping most proofs valid

But it is sometimes useful to know how it works.

The interval type

We begin by adding a new type | for the interval with two constructors ig : | and iy : |

o i1

The idea is that a path in A corresponds to a function | — A.

The interval type

We begin by adding a new type | for the interval with two constructors ig : | and iy : |

o i1

The idea is that a path in A corresponds to a function | — A.

More generally,

e aterm | — | — A corresponds to a square in A,
e atebm /| — | — | — Atoacubein A,

e ectc.

This is why we are cubical.

The interval type

We begin by adding a new type | for the interval with two constructors ig : | and iy : |

o i1

The idea is that a path in A corresponds to a function | — A.

More generally,

e aterm | — | — A corresponds to a square in A,
e atebm /| — | — | — Atoacubein A,

e ectc.

This is why we are cubical.

We also want to consider paths (i : 1) — A(i) whose type is varying.

Paths

A varying type is a function A: | — U:

a0
Al Ali)
¢
I.% g.
) i i1

10

Paths

A varying type is a function A: | — U:

a0
Al Ali)
3
I.% g.
) i i1

The type of heterogeneous paths is
PathP: (A: 1= U) = Aig > Ail = U

where PathP A x y can be thought of as the type of functions p : (i : I) — A such that

pio = x pir=y 10

Paths

A varying type is a function A: | — U:

| A(i)
Al Al
3
I.% g.
io i i1

The type of heterogeneous paths is
PathP: (A: 1= U) = Aig > Ail = U
Given p : PathP Axy and i : |, we have

pi:Ai pip = x pit=y 10

A varying type is a function A: | — U: (0
A(i

The type of heterogeneous paths is
PathP: (A: 1= U) = Aig > Ail = U

10

Identity types

Given A : U, the type of paths in A is

>

xX=y PathP(_ — A)xy

11

Identity types

Given A : U, the type of paths in A is

>

xX=y PathP(_ — A)xy

We can define reflexivity paths by

refl : (A: Type) (x: A) = x = x
11

Identity types

Given A : U, the type of paths in A is

>

xX=y PathP(_ — A)xy

We can define reflexivity paths by
refl : (A: Type) (x: A) = x = x

AX — Ai.x 11

Identity types

Given A : U, the type of paths in A is

>

xX=y PathP(_ — A)xy

We can define reflexivity paths by
refl : (A: Type) (x: A) = x = x

AXi— X 11

Functoriality

We can define ap (aka cong) by (with xy : A)

ap:(F:A=B)(p:x=y)—>fx=fFy

12

Functoriality

We can define ap (aka cong) by (with xy : A)

ap:(F:A=B)(p:x=y)—>fx=fFy
fpi—f(pi)

12

Functoriality

We can define ap (aka cong) by (with xy : A)
ap:(F:A=B)(p:x=y)—>fx=fFy

fpi—f(pi)

and the dependent variant by

12

Functoriality

We can define ap (aka cong) by (with xy : A)

ap:(F:A=B)(p:x=y)—>fx=fFy
fpi—f(pi)

and the dependent variant by

apd: (f: (x: A) = Bx)(p:x=y)— PathP B(fx)(fy)
fpi—f(pi)

12

Functoriality

We can define ap (aka cong) by (with xy : A)

ap:(F:A=B)(p:x=y)—>fx=fFy
fpi—f(pi)

Things which used to require J can now be proved right away. For instance,

(f:A=B)(g:B—>C)(p:x=y)—>ap(gof)p=apg(apfp)

12

Functoriality

We can define ap (aka cong) by (with xy : A)

ap:(F:A=B)(p:x=y)—>fx=fFy
fpi—f(pi)

Things which used to require J can now be proved right away. For instance,

(f:A=B)(g:B—>C)(p:x=y)—>ap(gof)p=apg(apfp)
fgprrefl

12

Function extensionality

We can even prove function extensionality by

funext: (fg: A= B)(p: (x:A) > fx=gx)—>f=g

13

Function extensionality

We can even prove function extensionality by

funext: (fg: A= B)(p: (x:A) > fx=gx)—>f=g
fgpix— pxi

13

Another primitive operation is transport which is

transport: (A=B) - A— B

14

Another primitive operation is transport which is
transport: (A=B) - A— B
from which we can derive the more traditional transport function as

subst: (B:A—U) = (x=y) > Bx— By

14

Another primitive operation is transport which is
transport: (A=B) - A— B
from which we can derive the more traditional transport function as

subst: (B:A—U) = (x=y) > Bx— By
B px" + transport (\i.B(pi)) x’

14

Boolean operations

It will be useful to have the following operations on the elements of I:

® supremum: V
e infimum: A

e complement: ~

15

Boolean operations

It will be useful to have the following operations on the elements of I:

® supremum: V
e infimum: A

e complement: ~
Those satisfy definitionally all the laws of De Morgan algebras, e.g.
(iVi)VkZiv(Vk) (ivig) =iy ~io 2 i
iVUNK)=(iV) AV k) (iVig) =i ~ S

15

Boolean operations

It will be useful to have the following operations on the elements of I:

® supremum: V
e infimum: A

e complement: ~
Those satisfy definitionally all the laws of De Morgan algebras, e.g.
(IVHVkZiv(Vk) (ivig) =iy ~io 2 i
iVUNK)=(iV) AV k) (iVig) =i ~ S
i.e. all the laws of boolean algebras excepting

ESFESY A~ 2

15

Path reversal

We can define the path reversal operation by

sym: (x=y) = (y =x)

16

Path reversal

We can define the path reversal operation by

sym: (x =y) = (y = x)
pir p(~i)

16

Given a path p: x = y, we can define a square

X p y
refl p
J
L
X refl X

17

Given a path p: x = y, we can define a square

X p y
refl p
J
L
X refl X

NiN.p (i AJ)

17

The J rule can similarly be shown for x : Aand P : (y : A) - x =y — Type by

J:(r:Pxrefl){y A} (p:x=y)—= Pyp
rp—

18

The J rule can similarly be shown for x : Aand P : (y : A) - x =y — Type by
J:(r:Pxrefl){y A} (p:x=y)—= Pyp
rp—

Recall that we have a square Ai.Aj.p (i Aj)

X p y
refl p
J
L
X refl X

18

The J rule can similarly be shown for x : Aand P : (y : A) - x =y — Type by
J:(r:Pxrefl){y A} (p:x=y)—= Pyp
rp — transport (Aj.P (pj) (Ni.p(i Aj))) r

Recall that we have a square Ai.Aj.p (i Aj)

X p y
refl p
J
L
X refl X

18

J does not evaluate definitionally on refl
TODO: we however have transportRefl which allows showing this propositionally

TODO: definitional transportRefl is incompatible with cubical Agda [Swal8]

19

Defining composition

We could define composition by J as before

However this does not compute nicely because transport does not on path types...

20

In practice

explain indices for wanted boundaries

21

Part |

Filling boxes

22

Defining composition

We deduce composition from an operation which states that for every “open cube”

we can define

23

Defining composition

We deduce composition from an operation which states that for every “open cube”

we can define

e the missing face: hcomp

23

Defining composition

We deduce composition from an operation which states that for every “open cube”

we can define

e the missing face: hcomp

e the interior cube: hfill

23

Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.

24

Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.

The only functions
| — Bool

are the constant functions

Ai. true Ai. false

24

Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.

We can define a function

| — Partial (~ i Vi) Bool Bool
. ®
ig — false
i1 > true

24

Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined

when r is iy, which can be thought of as a cube with missing faces.

Agda checks that definitions match on their intersection so that we cannot define
| — Bool
ip > false

i1 — true

I — true

24

Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.

Agda checks that all cases are covered so that we cannot define

| — Bool
ip > false

i1 — true

24

Partial types

We write
Partial ¢ A

for the type of partial types: an element is a term of type A which is only defined
when r is iy, which can be thought of as a cube with missing faces.

The concrete syntax for pattern matching on interval arguments is

partialBool : (i : I) = Partial (7 i V i) Bool
i0) = false

il) = true

partialBool i (i

partialBool i (i
or

partialBool : (i : I) = Partial (T i V i) Bool
partialBool i = A { (i = i0) - false ; (i = il) - true } o4

Partial types

For instance, given p: x =x', g: x =y and r: y = y/, we can define

x' y'
p r
J
L
x q y

as

25

Partial types

For instance, given p: x =x', g: x =y and r: y = y/, we can define

/

x' y
p r
J
L
x q y

as
u:(i:1)(y:1)— Partial (~ iV~ VIi)A

25

Partial types

For instance, given p: x =x', g: x =y and r: y = y/, we can define

as

u:(i:

io

/

x' y
p r
x a v

1) (j: 1) = Partial (~ iV ~jVi)A

= pJ
= qi
—rj

25

Homogeneous composition

The homogeneous composition operation is
hcomp : {¢ : I} (u: | — Partial p A) (ug : A) — A

which can be pictured as
hcomp u ug

?
|
:
Lu
|
|
|
&UO

where Agda checks that ugp agrees with u (for i = ip) when both are defined.

26

Defining composition

For instance, given p: x = y and g : y = z, we can define their composite as

X p-q z

refl q

This means that we define

27

Defining composition

For instance, given p: x = y and g : y = z, we can define their composite as

X p-q z

refl q

This means that we define
u:(i:1)(:1)— Partial (~iVi)A
io j = X
i1 J = qJ
and
27

Defining composition

For instance, given p: x = y and g : y = z, we can define their composite as

X p-q z

refl q

This means that we define
u:(i:1)(:1)— Partial (~iVi)A
— X
= qJ
and p-q = Xi.hcomp(ui)(pi)
27

Subtypes

We write
Alp — u]

for the subtype of A whose elements are definitionally equal to u when ¢ is iy.

28

Subtypes

We write
Alp — u]

for the subtype of A whose elements are definitionally equal to u when ¢ is iy.

It comes equipped with two operations

inS: (u:A) = Alp — Ai.d]
outS: Alp—u] - A

28

Homogeneous filler

The homogeneous filler is
hfill : {¢ : 1} (u: (i : 1) — Partial pA) (uo : Alp — uio]) (i : 1) = A
which is

e ug when 7 is ig

e hcomp u ug when is is iy

29

Homogeneous filler

For instance, if we apply hfill to the previous composition situation

X p-q z

refl q

we obtain a path
f :PathP (\j.x = qj)p(p- q)
Jiwhfill(ui)(inS(pi))j

30

Homogeneous filler

For instance, if we apply hfill to the previous composition situation

p-q
X z
transport p
refl q
J
L
x p y

we obtain a path
f :PathP (\j.x = qj)p(p- q)
Jiwhfill(ui)(inS(pi))j

30

Composition is unital on the right

If we specialize to g = refl, we show composition is unital on the right

x p-refl y

refl refl

we obtain a path

f :PathP (A\j.x =y)p(p - refl)
Jihfill(ui)(inS(pi))j

31

Composition is unital on the right

If we specialize to g = refl, we show composition is unital on the right

x p-refl y

refl refl
J
L
x P y
we obtain a path
f:p=p-refl

Jihfill(ui)(inS(pi))j

31

Note that hfill can be defined from hcomp:

hfill : (u: (i : 1) — Partial) (up : Alp— uio]) (i : 1) = A
u 7 i — hcomp U (outS wup)

where U is the function

J(@=i1) = u(inj)
j(i = io) — outS wug

32

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The “cube” can be defined as

u: (i) G:l)(k:1) — Partial (~ i ViV~ k)A

33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The “cube” can be defined as

u: (i) G:l)(k:1) — Partial (~ i ViV~ k)A
o j ke

33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The “cube” can be defined as

u: (i) G:l)(k:1) — Partial (~ i ViV~ k)A
o j k —x

33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The “cube” can be defined as

u: (i) G:l)(k:1) — Partial (~ i ViV~ k)A
o j k —x
i1 J k —

33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The “cube” can be defined as

u: (i) G:l)(k:1) — Partial (~ i ViV~ k)A
o j k —x
i J k = p (Vv ~ k)

33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The “cube” can be defined as

u: (i) G:l)(k:1) — Partial (~ i ViV~ k)A
o j k —x
i J k = p (Vv ~ k)
i J io —

33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

k
i

J
%

The “cube” can be defined as

u: (i)
io

G:h)
J
J

J

x refl.p y
X
Py
Y lp
X refl Y
X X
X
p-
P y

(k : 1) — Partial (~ i ViV ~ k) A

k
k

io

— X
= p(V ~ k)

—pi
33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The bottom can be defined as

u:(i:)y(k:1)—A
i k —

33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

J
%

The bottom can be defined as

up -

k
i

(i:

i

x refl.p y
X
P Yy
X Y lp
X reft |V
X X X
X
p-
x P y
) (k:1) = A

k= p(in~k)

33

Composition is unital on the left

The definition of composition is biased: showing refl-p = p is more difficult.

x refl.p y
X
Py
X Y lp
X refl Y
X X X
X
ik P
B ' P
x P y

The filler is
fo:-NDG:DHk:)—A
i J k — hfill (\j.uijk)(inS (uo i k))

and we obtain the result as the top face (j = i1).

33

Composition is cancellative on the right

To show that composition is cancellative on the right, we can similarly use the “cube’

x PP X
X
X X/ _
X P
X p P
X X y
X
J ok r
B y
X P y

34

Glue types

35

Bibliography i

[Brul6]

[CCHM18]

Guillaume Brunerie.

On the homotopy groups of spheres in homotopy type theory.
PhD thesis, Université de Nice Sophia Antipolis, 2016.
arXiv:1606.05916.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mértberg.
Cubical Type Theory: A Constructive Interpretation of the
Univalence Axiom.

In 21st International Conference on Types for Proofs and Programs
(TYPES 2015), volume 69 of LIPIcs, pages 5:1-5:34. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2018.

arXiv:1611.02108, doi:10.4230/LIPIcs.TYPES.2015.5.

36

https://arxiv.org/abs/1606.05916
https://arxiv.org/abs/1611.02108
https://doi.org/10.4230/LIPIcs.TYPES.2015.5

Bibliography ii

[CHM18] Thierry Coquand, Simon Huber, and Anders Mértberg.

On higher inductive types in cubical type theory.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 255-264, 2018.

arXiv:1802.01170, doi:10.1145/3209108.3209197

[Hub19] Simon Huber.

Canonicity for cubical type theory.
Journal of Automated Reasoning, 63(2):173-210, 2019.
arXiv:1607.04156, doi:10.1007/s10817-018-9469-1.

37

https://arxiv.org/abs/1802.01170
https://doi.org/10.1145/3209108.3209197
https://arxiv.org/abs/1607.04156
https://doi.org/10.1007/s10817-018-9469-1

Bibliography iii

[LM23] Axel Ljungstrom and Anders Mértberg.
Formalizing m4(S3) = Z/27Z and computing a Brunerie number in
cubical agda.
In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1-13. IEEE, 2023.
arXiv:2302.00151.

[Swal8] Andrew Swan.

Separating path and identity types in presheaf models of univalent
type theory.

Preprint, 2018.

arXiv:1808.00920.

38

https://arxiv.org/abs/2302.00151
https://arxiv.org/abs/1808.00920

Bibliography iv

[VMA21]

Andrea Vezzosi, Anders Mortberg, and Andreas Abel.
Cubical agda: A dependently typed programming language with

univalence and higher inductive types.
Journal of Functional Programming, 31, 2021.
doi:10.1017/S0956796821000034.

39

https://doi.org/10.1017/S0956796821000034

	Filling boxes

