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Grothendieck dualities

There are various dualities which are all take the form of a bijection between

• some maps

• the same maps turned “upside down”

There are many variants, but we can call them Grothendieck dualities.
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Subsets and characteristic functions

Given a set B , we have a bijective correspondence between

• injective functions A → B

• functions B → {0, 1}

Namely,

A

B

corresponds to

{0, 1}

B

1 1 10 0

Note: to be precise, we only recover A up to isomorphism!
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Functions and families of sets

Given a set B , we have a bijective correspondence between

• functions A → B

• functions B → Set

A

B

corresponds to

Set

B

Namely:

• to f : A → B we associate f −1 : B → Set

• to P : B → Set we associate the canonical projection f :
(⊔

x∈A P(x)
)
→ B 3



Dualities

There are many variants of this duality:

• discrete fibrations A → B and presheaves B → Set

• fibrations A → B and pseudo-functors B → Cat

• ...
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The duality

In homotopy type theory, we have

Theorem ([Uni13, Theorem 4.8.3])
Given a type B , we have an equivalence

Σ(A : U).(A → B) ≃ B → U

between fibrations over B and families indexed by B .
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Fibers

Any function
f : A → B

induces a fiber function
fib f : B → U

defined by
fib f y =̂ Σ(x : A).(f x = y)
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Total space

Any type family
P : B → U

induces a map
total P : (Σ(y : B).P y) → B

which is the first projection from the total space of the family.
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The equivalence

These two constructions form an equivalence.

8



The equivalence

Lemma ([Uni13, Lemma 4.8.1])
For a type family P : B → U , the fiber of the first projection total P : ΣB.P → B at
y : B is P y .

Proof.
We have

fib (total P) y = Σ((b, x) : ΣB.P).(total P (b, x) = y)

= Σ((b, x) : ΣB.P).(b = y)

= Σ(b : B).Σ(x : P b).(b = y)

= Σ(b : B).(b = y)× (P b)

= Σ(Σ(b : B).(b = y)).(P b)

= Σ(_ : 1).(P y)

= P y

9



The equivalence

Lemma ([Uni13, Lemma 4.8.2])
For a function f : A → B, we have A = Σ(y : B). fib f y .

Proof.
We have

Σ(y : B). fib f y = Σ(y : B).Σ(x : A).(f x = y)

= Σ(x : A).Σ(y : B).(f x = y)

= Σ(x : A).1
= A
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Examples

Consider the type family
P : S1 → U

x 7→ Bool

The corresponding fibration is the canonical projection

S1 ⊔ S1 → S1

i.e.

S1

↑

U

x

corresponds to

S1

↓

S1 ⊔ S1

x
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Examples

Consider the type family
P : S1 → U

⋆ 7→ Bool

loop 7→ ua suc

The corresponding fibration is the double speed map

S1 ⊔ S1

i.e.

S1

↑

U

x

corresponds to

S1

↓

S1

x
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Fibration

Given a map f : A → B with B pointed, we write

F A Bf

to indicate that F = fib f ⋆ and A is the total space: this is a fiber sequence.

B

↓

A

x

When B is connected all the fibers are the same, but the way they are glued matters.

The previous fiber sequences are

Bool S1 ⊔ S1 S1f and Bool S1 S1f
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The torus

Consider the type family
P : S1 → U

x 7→ S1

The corresponding fibration is the projection from the torus

S1 × S1 ⊔ S1

i.e.

S1

U

↑
corresponds to

S1

S1 × S1

↓
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The torus

This means that we have a fiber sequence

S1 S1 × S1 S1

over S1 with fibers S1 and the torus S1 × S1 as total space.
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Conjugation

We have a conjugation operation

conj : S1 → S1

on the circle:

which is involutive
conj ◦ conj = id

and thus an equivalence.
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The Klein bottle

Consider the type family
P : S1 → U

⋆ 7→ S1

loop 7→ ua conj

The corresponding fibration is the projection from the Klein bottle

K → S1

i.e.

S1

U

↑ corresponds to

S1

K

↓
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The Klein bottle

We have an associated fiber sequence:

S1 K S1
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Fibrations over the circle

All previous examples are particular cases of the following.

Given a type A and an equivalence e : A ≃ A, we can define a type family

P : S1 → U
⋆ 7→ A

loop 7→ ua e
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The n-sheeted covering of the circle

If we start from suc : Zn → Zn, we obtain the n-sheeted covering of the circle

2
1
0

⋆

loopS1

U

which corresponds to the fiber sequence

Zn S1 S1

We recover the non-trivial fibration with Bool as fibers with n = 2.
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The universal cover of the circle

If we start from suc : Z → Z, we obtain the universal covering of the circle

1
0

−1

⋆

loopS1

U

which corresponds to the fiber sequence

Z S1 S1

The type family is precisely the function Code : S1 → U and the corresponding fibration
is the pointing map 1 → S1. 21



This suggests another approach for computing the loop space of the circle!
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The loop space of the circle

This suggests the following alternative proof for showing ΩS1 = Z.

1. Define Code : S1 → U by Code ⋆ =̂ Z and ap Code loop =̂ ua suc.
2. Define a type Line generated by points n : Z together with paths p : n = n + 1:

1
0

−1

3. Show that it is the total space of Code, i.e. Σ(x : S1).Code x = Line.
4. Show that the line is contractible, i.e. Line = 1.
5. Deduce that Σ(x : S1).Code x = Line = 1 = Σ(x : S1).(⋆ = x).

6. Deduce that Code x = (⋆ = x) for any x : S1.
7. Deduce that ΩS1 = (⋆ = ⋆) = Code ⋆ =̂ Z.

The first 4 points require higher inductive types (see next session). Let us detail point 6.
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Duality for maps

We have seen we have a correspondence between

• type families P : B → U
• fibrations f : A → B

This extends to morphisms between those: we have a correspondence between

• morphisms of families P → Q

• morphisms of fibrations totalP → totalQ
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Morphisms

Given two families P,Q : B → U , a morphism between them is a map

F : (y : B) → P y → Q y

Given two fibrations f : A → B and f ′ : A′ → B , a morphism between them is an
element of

Σ(g : A → B).(f ′ ◦ g = f )

A A′

B
f

g

f ′

Theorem (see labs)
There is an equivalence between the two types of morphisms and this equivalence
preserves composition and identities. 25



Morphisms

Any morphism of families
F : (y : B) → P y → Q y

induces a morphism between the total spaces

total F : ΣB.P → ΣB.Q

(y , x) 7→ (y ,F y x)

which is a morphism in the sense that it commutes with first projection.

Previous theorem implies that

Theorem ([Uni13, Theorem 4.7.7])
The morphism F is a family of equivalences if and only if total F is an equivalence.

Note the right-to-left direction is not obvious: the inverse might not a priori preserve
the fibers! We are going to provide a direct proof of this.
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Fiberwise equivalences

Theorem ([Uni13, Theorem 4.7.7])
A morphism F : (y : B) → P y → Q y , is a family of equivalences if and only if total F
is an equivalence.

Proof.
We will see in next lemma that we have, for y : B and x : Q y ,

fib (F y) x = fib (total F ) (y , x)

Therefore the following are equivalent

• F is a family of equivalences,

• F y is an equivalence for y : B ,

• fib (F y) x is contractibl for y : B and x : Q y ,

• fib (total F ) (y , x) is contractible for (y , x) : ΣB.Q,

• total F is an equivalence. 27



Fiberwise equivalences

Lemma ([Uni13, Lemma 4.7.6])
For F : (y : B) → P y → Q y , y : B and x : Q y , we have

fib (F y) x = fib (total F ) (y , x)

Proof.
fib (total F ) (y , x) = Σ((y ′, x ′) : ΣB.P). total F (y ′, x ′) = (y , x)

= Σ((y ′, x ′) : ΣB.P).(y ′,F y ′ x ′) = (y , x)

= Σ(y ′ : B).Σ(x ′ : P y ′).(y ′,F y ′ x ′) = (y , x)

= Σ(y ′ : B).Σ(x ′ : P y ′).Σ(p : y ′ = y).F y ′ x ′ =Q
p x

= Σ(y ′ : B).Σ(p : y ′ = y).Σ(x ′ : P y ′).F y ′ x ′ =Q
p x

= Σ((y ′, p) : Σ(y ′ : B).y ′ = y).Σ(x ′ : P y ′).F y ′ x ′ =Q
p x

= Σ(x ′ : P y).F y x ′ = x

= fib (F y) x
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The fundamental theorem of identity types

[Rij25, Theorem 11.2.2]
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when the Px are propositions the projection ΣA.P → A is an embedding

in particular the inclusion of the connected component of a point into the sapce
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