The fundamental duality

Samuel Mimram

2025

École polytechnique

Grothendieck dualities

There are various dualities which are all take the form of a bijection between

- some maps
- the same maps turned "upside down"

There are many variants, but we can call them Grothendieck dualities.

Subsets and characteristic functions

Given a set B, we have a bijective correspondence between

- injective functions $A \rightarrow B$
- functions $B \rightarrow \{0,1\}$

Namely,

Note: to be precise, we only recover A up to isomorphism!

Functions and families of sets

Given a set B, we have a bijective correspondence between

- functions $A \rightarrow B$
- functions $B \to Set$

Namely:

- to $f: A \to B$ we associate $f^{-1}: B \to \mathsf{Set}$
- to $P: B \to \mathsf{Set}$ we associate the canonical projection $f: (\bigsqcup_{x \in A} P(x)) \to B$

Dualities

There are many variants of this duality:

- discrete fibrations $A \to B$ and presheaves $B \to Set$
- fibrations $A \rightarrow B$ and pseudo-functors $B \rightarrow \mathsf{Cat}$
- ..

The duality

In homotopy type theory, we have

Theorem ([Uni13, Theorem 4.8.3]) Given a type B, we have an equivalence

$$\Sigma(A:\mathcal{U}).(A\to B) \simeq B\to \mathcal{U}$$

between fibrations over B and families indexed by B.

5

Fibers

Any function

$$f: A \rightarrow B$$

induces a fiber function

fib
$$f: B \to \mathcal{U}$$

defined by

fib
$$f y = \hat{\Sigma}(x : A).(f x = y)$$

Total space

Any type family

$$P:B\to \mathcal{U}$$

induces a map

total
$$P: (\Sigma(y:B).Py) \to B$$

which is the first projection from the total space of the family.

7

The equivalence

These two constructions form an equivalence.

The equivalence

Lemma ([Uni13, Lemma 4.8.1])

For a type family $P: B \to \mathcal{U}$, the fiber of the first projection total $P: \Sigma B.P \to B$ at y: B is Py.

Proof. We have

```
fib (total P) y = \Sigma((b, x) : \Sigma B.P). (total P(b, x) = y)

= \Sigma((b, x) : \Sigma B.P). (b = y)

= \Sigma(b : B).\Sigma(x : P b). (b = y)

= \Sigma(b : B). (b = y) \times (P b)

= \Sigma(\Sigma(b : B). (b = y)). (P b)

= \Sigma(\_: 1). (P y)

= P y
```

The equivalence

```
Lemma ([Uni13, Lemma 4.8.2]) For a function f: A \rightarrow B, we have A = \Sigma(y:B). fib fy.
```

Proof. We have

$$\Sigma(y:B). \text{ fib } f y = \Sigma(y:B).\Sigma(x:A).(f x = y)$$

$$= \Sigma(x:A).\Sigma(y:B).(f x = y)$$

$$= \Sigma(x:A).1$$

$$= A$$

Examples

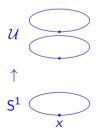
Consider the type family

$$P: \mathsf{S}^1 \to \mathcal{U}$$
$$x \mapsto \mathsf{Bool}$$

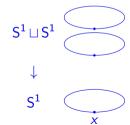
The corresponding fibration is the canonical projection

$$S^1 \sqcup S^1 \to S^1$$

i.e.



corresponds to



Examples

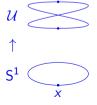
Consider the type family

$$P: S^1 \to \mathcal{U}$$
 $\star \mapsto \mathsf{Bool}$
 $\mathsf{loop} \mapsto \mathsf{uasuc}$

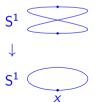
The corresponding fibration is the double speed map

$$\mathsf{S}^1 \sqcup \mathsf{S}^1$$

i.e.



corresponds to $% \frac{1}{2}\left(\frac{1}{2}\right) =0$

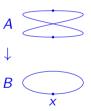


Fibration

Given a map $f: A \rightarrow B$ with B pointed, we write

$$F \hookrightarrow A \xrightarrow{f} B$$

to indicate that $F = \text{fib } f \star \text{ and } A$ is the total space: this is a **fiber sequence**.



When B is connected all the fibers are the same, but the way they are glued matters.

The previous fiber sequences are

The torus

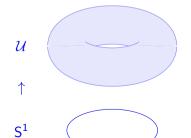
Consider the type family

$$P: S^1 \to \mathcal{U}$$
$$x \mapsto S^1$$

The corresponding fibration is the projection from the torus

$$S^1 \times S^1 \sqcup S^1$$

i.e.



corresponds to

 $\mathsf{S}^1\times\mathsf{S}^1$

14

The torus

This means that we have a fiber sequence

$$\mathsf{S}^1 \, {\,\,\smile\,} \longrightarrow \, \mathsf{S}^1 \times \mathsf{S}^1 \, \longrightarrow\!\!\!\!\longrightarrow \, \mathsf{S}^1$$

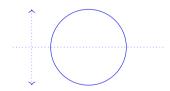
over S^1 with fibers S^1 and the torus $\mathsf{S}^1\times\mathsf{S}^1$ as total space.

Conjugation

We have a conjugation operation

$$\mathsf{conj}:\mathsf{S}^1\to\mathsf{S}^1$$

on the circle:



which is involutive

$$conj \circ conj = id$$

and thus an equivalence.

The Klein bottle

Consider the type family

$$P: S^1 \to \mathcal{U}$$

$$\star \mapsto S^1$$

$$\mathsf{loop} \mapsto \mathsf{ua} \; \mathsf{conj}$$

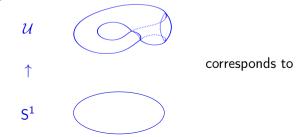
The corresponding fibration is the projection from the Klein bottle

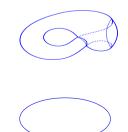
$$\mathsf{K}\to\mathsf{S}^1$$

K

 S^1

i.e.





The Klein bottle

We have an associated fiber sequence:

$$\mathsf{S}^1 \, {\, \smile\!\!\!\!-\!\!\!\!-\!\!\!\!\!-} \, \mathsf{K} \, \longrightarrow\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-} \, \mathsf{S}^1$$

Fibrations over the circle

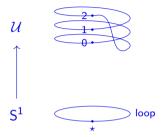
All previous examples are particular cases of the following.

Given a type A and an equivalence $e:A \simeq A$, we can define a type family

$$P: \mathsf{S}^1 o \mathcal{U} \ \star \mapsto A \ \mathsf{loop} \mapsto \mathsf{ua} \ e$$

The *n*-sheeted covering of the circle

If we start from suc : $\mathbb{Z}_n \to \mathbb{Z}_n$, we obtain the *n*-sheeted covering of the circle



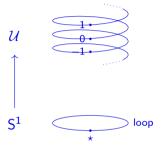
which corresponds to the fiber sequence

$$\mathbb{Z}_n \longrightarrow S^1 \longrightarrow S^1$$

We recover the non-trivial fibration with Bool as fibers with n = 2.

The universal cover of the circle

If we start from suc : $\mathbb{Z} \to \mathbb{Z}$, we obtain the universal covering of the circle



which corresponds to the fiber sequence

$$\mathbb{Z} \longrightarrow S^1 \longrightarrow S^1$$

The type family is precisely the function Code : $S^1 \to \mathcal{U}$ and the corresponding fibration is the pointing map $1 \to S^1$.

This suggests another approach for computing the loop space of the circle!

The loop space of the circle

This suggests the following alternative proof for showing $\Omega S^1 = \mathbb{Z}$.

- **1.** Define Code : $S^1 \to \mathcal{U}$ by Code $\star = \mathbb{Z}$ and ap Code loop = ua suc.
- **2.** Define a type Line generated by points $n : \mathbb{Z}$ together with paths p : n = n + 1:

- 3. Show that it is the total space of Code, i.e. $\Sigma(x:S^1)$. Code x= Line.
- **4.** Show that the line is contractible, i.e. Line = 1.
- **5.** Deduce that $\Sigma(x:S^1)$. Code $x = \text{Line} = 1 = \Sigma(x:S^1)$. $(\star = x)$.
- **6.** Deduce that Code $x = (\star = x)$ for any $x : S^1$.
- 7. Deduce that $\Omega S^1 = (\star = \star) = \text{Code } \star = \mathbb{Z}$.

The first 4 points require higher inductive types (see next session). Let us detail point 6.

Duality for maps

We have seen we have a correspondence between

- type families $P: B \to \mathcal{U}$
- fibrations $f: A \rightarrow B$

This extends to morphisms between those: we have a correspondence between

- morphisms of families $P \rightarrow Q$
- morphisms of fibrations total $P \rightarrow \text{total } Q$

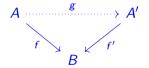
Morphisms

Given two families $P, Q: B \to \mathcal{U}$, a morphism between them is a map

$$F:(y:B)\to Py\to Qy$$

Given two fibrations $f: A \to B$ and $f': A' \to B$, a **morphism** between them is an element of

$$\Sigma(g:A\to B).(f'\circ g=f)$$



Theorem (see labs)

There is an equivalence between the two types of morphisms and this equivalence preserves composition and identities.

Morphisms

Any morphism of families

$$F:(y:B)\to Py\to Qy$$

induces a morphism between the total spaces

total
$$F: \Sigma B.P \to \Sigma B.Q$$

 $(y,x) \mapsto (y, Fyx)$

which is a morphism in the sense that it commutes with first projection.

Previous theorem implies that

Theorem ([Uni13, Theorem 4.7.7])

The morphism F is a family of equivalences if and only if total F is an equivalence.

Note the right-to-left direction is not obvious: the inverse might not a priori preserve the fibers! We are going to provide a direct proof of this.

Fiberwise equivalences

Theorem ([Uni13, Theorem 4.7.7]) A morphism $F: (y:B) \to P \ y \to Q \ y$, is a family of equivalences if and only if total F is an equivalence.

Proof.

We will see in next lemma that we have, for y : B and x : Qy,

$$fib(Fy)x = fib(total F)(y,x)$$

Therefore the following are equivalent

- F is a family of equivalences,
- F y is an equivalence for y : B,
- fib (F y) x is contractibl for y : B and x : Q y,
- fib (total F) (y, x) is contractible for (y, x) : $\Sigma B.Q$,
- total *F* is an equivalence.

Fiberwise equivalences

Lemma ([Uni13, Lemma 4.7.6])

For $F: (y:B) \rightarrow Py \rightarrow Qy$, y:B and x:Qy, we have

$$fib(Fy)x = fib(total F)(y,x)$$

Proof.

fib (total F)
$$(y, x) = \Sigma((y', x') : \Sigma B.P)$$
. total $F(y', x') = (y, x)$
 $= \Sigma((y', x') : \Sigma B.P).(y', F y' x') = (y, x)$
 $= \Sigma(y' : B).\Sigma(x' : P y').(y', F y' x') = (y, x)$
 $= \Sigma(y' : B).\Sigma(x' : P y').\Sigma(p : y' = y).F y' x' =_{p}^{Q} x$
 $= \Sigma(y' : B).\Sigma(p : y' = y).\Sigma(x' : P y').F y' x' =_{p}^{Q} x$
 $= \Sigma((y', p) : \Sigma(y' : B).y' = y).\Sigma(x' : P y').F y' x' =_{p}^{Q} x$
 $= \Sigma(x' : P y).F y x' = x$
 $= \text{fib } (F y) x$

The fundamental theorem of identity types

[Rij25, Theorem 11.2.2]

when the Px are propositions the projection $\Sigma A.P \to A$ is an embedding in particular the inclusion of the connected component of a point into the sapce

Bibliography i

[Rij25] Egbert Rijke.

Introduction to Homotopy Type Theory.

Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2025.

arXiv:2212.11082.

[Uni13] The Univalent Foundations Program.

Homotopy Type Theory: Univalent Foundations of Mathematics.

Institute for Advanced Study, 2013.

https://homotopytypetheory.org/book, arXiv:1308.0729.