The fundamental duality

Samuel Mimram

2025

Ecole polytechnique

Grothendieck dualities

There are various dualities which are all take the form of a bijection between

® some maps

e the same maps turned “upside down”

There are many variants, but we can call them Grothendieck dualities.

Subsets and characteristic functions

Given a set B, we have a bijective correspondence between

e injective functions A — B

e functions B — {0,1}

Namely,
A < . . {0,1} 11010
corresponds to
B B

Subsets and characteristic functions

Given a set B, we have a bijective correspondence between

e injective functions A — B

e functions B — {0,1}

Namely,
A < . . {0,1} 11010
corresponds to
B B

Note: to be precise, we only recover A up to isomorphism!

Functions and families of sets

Given a set B, we have a bijective correspondence between

e functions A — B
e functions B — Set

>
wn
D
—+

corresponds to

B e e e e e B

Again, “up to isomorphism” in the source.

Functions and families of sets

Given a set B, we have a bijective correspondence between

e functions A — B
e functions B — Set

corresponds to

B e e e e e B

Namely:
e to f:A— B we associate f 1 : B — Set

e to P : B — Set we associate the canonical projection f : (|| 4 P(x)) — B 3

x€A

Functions and families of sets

Given a set B, we have a bijective correspondence between

e functions A — B
e functions B — Set

corresponds to

B e e e e e B

The fact that we have a correspondence means that
o for f: A— B, we have A= Y (y: B).f1(y)
e for P : B — Set, the fiber of the projection f : X(y : B).P(y) — B at b is P(b) 3

There are many variants of this duality:

e discrete fibrations A — B and presheaves B — Set
e fibrations A — B and pseudo-functors B — Cat

The duality

In homotopy type theory, we have

Theorem ([Unil3, Theorem 4.8.3])
Given a type B, we have an equivalence

YA:U).(A—-B) ~ B-U

between fibrations over B and families indexed by B.

Any function
f:A—B

induces

Any function
f:A—>B

induces a fiber function
fibf:B—U

defined by
fibfy = X(x:A).(fx=y)

Total space

Any type family
P:B—-U

induces a map

Total space

Any type family
P:B—-U

induces a map
total P: (X(y:B).Py) — B

which is the first projection from the total space of the family.

The equivalence

These two constructions form an equivalence.

The equivalence

Lemma ([Unil3, Lemma 4.8.1])
For a type family P : B — U, the fiber of the first projection total P : *B.P — B at

y:BisPy.

The equivalence

Lemma ([Unil3, Lemma 4.8.1])
For a type family P : B — U, the fiber of the first projection total P : *B.P — B at

y:BisPy.

Proof.
We have
fib (total P)y

The equivalence

Lemma ([Unil3, Lemma 4.8.1])
For a type family P : B — U, the fiber of the first projection total P : *B.P — B at

y:BisPy.

Proof.
We have
fib (total P)y = X((b, x) : XB.P).(total P (b,x) = y)

The equivalence

Lemma ([Unil3, Lemma 4.8.1])
For a type family P : B — U, the fiber of the first projection total P : *B.P — B at

y:BisPy.
Proof.

We have
fib (total P)y = X((b, x) : XB.P).(total P (b,x) = y)

=X ((b,x): £B.P).(b=y)

The equivalence

Lemma ([Unil3, Lemma 4.8.1])
For a type family P : B — U, the fiber of the first projection total P : *B.P — B at

y:BisPy.
Proof.

We have
Y((b,x) : XB.P).(total P(b,x) =y)

(b, x)
Y((b,x) : XB.P).(b=y)
Y(b:B).X(x:Pb).(b=y)

fib (total P)y

The equivalence

Lemma ([Unil3, Lemma 4.8.1])
For a type family P : B — U, the fiber of the first projection total P : *B.P — B at

y:BisPy.
Proof.

We have

((b, x) : £B.P).(total P (b,x) =y)
((b,x): £B.P).(b=y)
(b: B).X(x:Pb).(b=y)
(

b:B).(b=y)x (Pb)

The equivalence

Lemma ([Unil3, Lemma 4.8.1])
For a type family P : B — U, the fiber of the first projection total P : *B.P — B at

y:BisPy.
Proof.

We have
fib (total P)y = X((b, x) : XB.P).(total P (b,x) = y)
2((b,x) : XB.P).(b=y)
=X(b: B). (:Pb)~(b=ﬂ
Y(b: =y)x (Pb)
(x(b:)(=y)).(Pb)

The equivalence

Lemma ([Unil3, Lemma 4.8.1])
For a type family P : B — U, the fiber of the first projection total P : *B.P — B at

y:BisPy.
Proof.

We have

((b, x) : £B.P).(total P (b,x) =y)
((b,x): £B.P).(b=y)

(b: B).X(x:Pb).(b=y)
(b:B).(b=y) x (Pb)

(X(b: B).(b=1y)).(Pb)

(

The equivalence

Lemma ([Unil3, Lemma 4.8.1])
For a type family P : B — U, the fiber of the first projection total P : *B.P — B at

y:BisPy.
Proof.

We have
: XB.P).(total P(b,x)=y)

. ¥B.P).(b=y)
b:B)Z(. Pb).(b=y)

fib (total P)y = Z((b,

(

(

(b: B).(b=y)x (Pb)
(

(

\./\./

2(b:B).(b=y)).(PDb)
1).(Py)

The equivalence

Lemma ([Unil3, Lemma 4.8.2])
For a function f : A— B, we have A=X(y : B).fib f y.

10

The equivalence

Lemma ([Unil3, Lemma 4.8.2])
For a function f : A— B, we have A=X(y : B).fib f y.

Proof.

We have
Y(y:B).fibfy

10

The equivalence

Lemma ([Unil3, Lemma 4.8.2])
For a function f : A— B, we have A=X(y : B).fib f y.

Proof.

We have
Y(y:B).fibfy=%X(y:B)X(x:A).(fx=y)

10

The equivalence

Lemma ([Unil3, Lemma 4.8.2])
For a function f : A— B, we have A=X(y : B).fib f y.

Proof.
We have

X(y: B).fib fy =%(y:B).X(x: A).(fx=y)
=Y (x: A)X(y: B).(fFx=y)

10

The equivalence

Lemma ([Unil3, Lemma 4.8.2])
For a function f : A— B, we have A=X(y : B).fib f y.

Proof.
We have

X(y: B).fib fy =X(y: B).X(x: A).(fx=y)
=Y (x: A)X(y: B).(fFx=y)
=2%(x:A).1

x

x

10

The equivalence

Lemma ([Unil3, Lemma 4.8.2])
For a function f : A— B, we have A=X(y : B).fib f y.

Proof.

We have
Y(y:B).fibfy=%X(y:B)X(x:A).(fx=y)

10

Consider the type family
P:S'—U
x — Bool

11

Consider the type family
P:S'—U
x — Bool

The corresponding fibration is

11

Consider the type family
P:S'—U
x — Bool

The corresponding fibration is the canonical projection

styst —» st

corresponds to 1

Sl

u © stist
>
-

0 0

11

Consider the type family
pP:St—u
* +— Bool
loop —

12

Consider the type family
P:S'—Uu
* — Bool

loop — uasuc

12

Consider the type family
P:S'—Uu
* — Bool
loop — uasuc

The corresponding fibration is

12

Consider the type family

The corresponding fibration is the double speed map

P:S'—Uu
* — Bool

loop — uasuc

styst

corresponds to

12

Given a map f : A — B with B pointed, we write
F—s A—'uB

to indicate that F = fib f x and A is the total space: this is a fiber sequence.

" ==
1
T

X

13

Given a map f : A — B with B pointed, we write
F—s A—'%B

to indicate that F = fib f x and A is the total space: this is a fiber sequence.

When B is connected all the fibers are the same, but the way they are glued matters.

13

Given a map f : A — B with B pointed, we write
F—s A—'%B

to indicate that F = fib f x and A is the total space: this is a fiber sequence.
When B is connected all the fibers are the same, but the way they are glued matters.

The previous fiber sequences are

Bool «— Stiyst —f 4 st and Bool «— St —f 4 ¢l

13

The

Consider the type family
P:S' U
x — St

14

The

Consider the type family
P:S' U
x — St

The corresponding fibration is

14

Consider the type family
P:S' U
x — St

The corresponding fibration is the projection from the torus

Sl xstyst

corresponds to

This means that we have a fiber sequence
St e Stxst — st

over S with fibers S! and the torus S' x S! as total space.

15

We have a conjugation operation
conj : St — St

on the circle:

16

We have a conjugation operation
conj : St — St

on the circle:

which is involutive

conjoconj = id

16

We have a conjugation operation
conj : St — St

on the circle:

which is involutive

conjoconj = id

and thus an equivalence.

16

The

Consider the type family
P:S' U
* St

loop — ua conj

17

The

Consider the type family
P:S*—u
* > St
loop — ua conj

The corresponding fibration is

17

The Klein bottle

Consider the type family
P:S*—u
* > St
loop — ua conj

The corresponding fibration is the projection from the Klein bottle

K— St

17

The Klein bottle

We have an associated fiber sequence:

Sl e s K—s 8t

18

Fibrations over the circle

All previous examples are particular cases of the following.

Given a type A and an equivalence e : A ~ A, we can define a type family

P:S' U
* = A

loop — ua e

19

The -sheeted covering of the circle

If we start from suc : Z, — Zp,, we obtain the n-sheeted covering of the circle

==

S ———

*

which corresponds to the fiber sequence

Ly — St — St

20

The -sheeted covering of the circle

If we start from suc : Z, — Zp,, we obtain the n-sheeted covering of the circle

==

S ———

*

which corresponds to the fiber sequence
Ly — St — St

We recover the non-trivial fibration with Bool as fibers with n = 2.

20

The universal cover of the circle

If we start from suc : Z — 7Z, we obtain the universal covering of the circle

u

S ——

*

which corresponds to the fiber sequence

7 ——3 St — 4 sl

21

The universal cover of the circle

If we start from suc : Z — 7Z, we obtain the universal covering of the circle

u

S ——

*

which corresponds to the fiber sequence
7 —— St —» st
The type family is

21

The universal cover of the circle

If we start from suc : Z — 7Z, we obtain the universal covering of the circle

u

S ——

*

which corresponds to the fiber sequence
7 —— St —» st
The type family is precisely the function Code : St — ¢/

21

The universal cover of the circle

If we start from suc : Z — 7Z, we obtain the universal covering of the circle

u

S ——

*

which corresponds to the fiber sequence
7 —— St —» st
The type family is precisely the function Code : S' — ¢/ and the corresponding fibration

IS 21

The universal cover of the circle

If we start from suc : Z — 7Z, we obtain the universal covering of the circle

u

S ——

*

which corresponds to the fiber sequence
7 —— St —» st
The type family is precisely the function Code : S' — ¢/ and the corresponding fibration

is the pointing map 1 — S*. 1

This suggests another approach for computing the loop space of the circle!

22

The loop space of the circle

This suggests the following alternative proof for showing QS! = Z.

23

The loop space of the circle

This suggests the following alternative proof for showing QS! = Z.

1. Define Code : S* — U by Code x = Z and ap Code loop £ ua suc.

23

The loop space of the circle

This suggests the following alternative proof for showing QS! = Z.

1. Define Code : S* — U by Code x = Z and ap Code loop £ ua suc.
2. Define a type Line generated by points n : Z together with paths p: n = n+ 1:

23

The loop space of the circle

This suggests the following alternative proof for showing QS! = Z.

1. Define Code : S* — U by Code x = Z and ap Code loop £ ua suc.
2. Define a type Line generated by points n : Z together with paths p: n = n+ 1:

3. Show that it is the total space of Code, i.e. ¥(x : S!). Code x = Line.

23

The loop space of the circle

This suggests the following alternative proof for showing QS! = Z.

1. Define Code : S* — U by Code x = Z and ap Code loop £ ua suc.
2. Define a type Line generated by points n : Z together with paths p: n = n+ 1:

3. Show that it is the total space of Code, i.e. ¥(x : S!). Code x = Line.
4. Show that the line is contractible, i.e. Line = 1.

23

The loop space of the circle

This suggests the following alternative proof for showing QS! = Z.

1. Define Code : S* — U by Code x = Z and ap Code loop £ ua suc.
2. Define a type Line generated by points n : Z together with paths p: n = n+ 1:

3. Show that it is the total space of Code, i.e. ¥(x : S!). Code x = Line.
4. Show that the line is contractible, i.e. Line = 1.
5. Deduce that ¥ (x : S!). Code x = Line = 1 = X(x : S1).(x = x).

23

The loop space of the circle

This suggests the following alternative proof for showing QS! = Z.

1.

Define Code : S' — U/ by Code x = Z and ap Code loop = ua suc.

2. Define a type Line generated by points n : Z together with paths p: n = n+ 1:

o kW

Show that it is the total space of Code, i.e. ¥ (x : S). Code x = Line.
Show that the line is contractible, i.e. Line = 1.
Deduce that ¥(x : S'). Code x = Line =1 = ¥ (x : S!).(» = x).

Deduce that Code x = (% = x) for any x : St.

23

The loop space of the circle

This suggests the following alternative proof for showing QS! = Z.

1.

Define Code : S' — U/ by Code x = Z and ap Code loop = ua suc.

2. Define a type Line generated by points n : Z together with paths p: n = n+ 1:

No oksuw

Show that it is the total space of Code, i.e. ¥ (x : S). Code x = Line.
Show that the line is contractible, i.e. Line = 1.

Deduce that ¥(x : S'). Code x = Line =1 = ¥ (x : S!).(» = x).
Deduce that Code x = (% = x) for any x : St.

Deduce that QS! = (x = x) = Code * £ Z.

23

The loop space of the circle

This suggests the following alternative proof for showing QS! = Z.

1. Define Code : S* — U by Code x = Z and ap Code loop £ ua suc.
2. Define a type Line generated by points n : Z together with paths p: n = n+ 1:

Show that it is the total space of Code, i.e. ¥ (x : S). Code x = Line.
Show that the line is contractible, i.e. Line = 1.

Deduce that ¥(x : S'). Code x = Line =1 = ¥ (x : S!).(» = x).
Deduce that Code x = (% = x) for any x : St.

7. Deduce that QS! = (x = x) = Code * £ Z.

o kW

The first 4 points require higher inductive types (see next session). Let us detail point 6.

23

Duality for maps

We have seen we have a correspondence between

e type families P: B — U
e fibrations f : A— B

24

Duality for maps

We have seen we have a correspondence between

e type families P: B — U
e fibrations f : A— B

This extends to morphisms between those: we have a correspondence between

e morphisms of families P — Q

e morphisms of fibrations total P — total @

24

Given two families P, Q : B — U, a morphism between them is a map

F:(y:B)—=Py—Qy

25

Given two families P, Q : B — U, a morphism between them is a map
F:(y:B)—=Py—Qy

Given two fibrations f : A— B and ' : A' — B, a morphism between them is an
element of
Y(g:A—= B).(flog=")

y A

A g
B

25

Given two families P, Q : B — U, a morphism between them is a map
F:(y:B)—=Py—Qy

Given two fibrations f : A— B and ' : A' — B, a morphism between them is an

element of
Y(g:A—= B).(flog=")

y A

A g
B

Theorem (see labs)
There is an equivalence between the two types of morphisms and this equivalence

preserves composition and identities. o5

Any morphism of families
F:(y:B)y=Py—Qy
induces a morphism between the total spaces

total F: ¥B.P = YB.Q
(v, x) = (v, Fyx)

which is a morphism in the sense that it commutes with first projection.

26

Any morphism of families
F:(y:B)—=Py—Qy
induces a morphism between the total spaces
total F: XB.P — £B.Q
(y,x) = (v, Fyx)

which is a morphism in the sense that it commutes with first projection.

Previous theorem implies that

Theorem ([Unil3, Theorem 4.7.7])
The morphism F is a family of equivalences if and only if total F is an equivalence.

26

Any morphism of families
F:(y:B)—=Py—Qy
induces a morphism between the total spaces
total F: XB.P — £B.Q
(y,x) = (v, Fyx)

which is a morphism in the sense that it commutes with first projection.

Previous theorem implies that

Theorem ([Unil3, Theorem 4.7.7])
The morphism F is a family of equivalences if and only if total F is an equivalence.

Note the right-to-left direction is not obvious: the inverse might not a priori preserve

the fibers!
26

Any morphism of families
F:(y:B)—=Py—Qy
induces a morphism between the total spaces
total F: XB.P — £B.Q
(y,x) = (v, Fyx)

which is a morphism in the sense that it commutes with first projection.

Previous theorem implies that

Theorem ([Unil3, Theorem 4.7.7])
The morphism F is a family of equivalences if and only if total F is an equivalence.
Note the right-to-left direction is not obvious: the inverse might not a priori preserve

the fibers! We are going to provide a direct proof of this.
26

Fiberwise equivalences

Theorem ([Unil3, Theorem 4.7.7])
A morphism F : (y : B) — Py — Qy, is a family of equivalences if and only if total F

is an equivalence.

27

Fiberwise equivalences

Theorem ([Unil3, Theorem 4.7.7])
A morphism F : (y : B) — Py — Qy, is a family of equivalences if and only if total F

is an equivalence.

Proof.
We will see in next lemma that we have, for y : B and x: Qy,

fib(Fy)x = fib(total F)(y,x)

Therefore the following are equivalent

27

Fiberwise equivalences

Theorem ([Unil3, Theorem 4.7.7])
A morphism F : (y : B) — Py — Qy, is a family of equivalences if and only if total F

is an equivalence.

Proof.
We will see in next lemma that we have, for y : B and x: Qy,

fib(Fy)x = fib(total F)(y,x)
Therefore the following are equivalent

e F is a family of equivalences,

27

Fiberwise equivalences

Theorem ([Unil3, Theorem 4.7.7])
A morphism F : (y : B) — Py — Qy, is a family of equivalences if and only if total F

is an equivalence.

Proof.
We will see in next lemma that we have, for y : B and x: Qy,

fib(Fy)x = fib(total F)(y,x)
Therefore the following are equivalent

e F is a family of equivalences,

e Fy is an equivalence for y : B,

27

Fiberwise equivalences

Theorem ([Unil3, Theorem 4.7.7])
A morphism F : (y : B) — Py — Qy, is a family of equivalences if and only if total F

is an equivalence.

Proof.
We will see in next lemma that we have, for y : B and x: Qy,

fib(Fy)x = fib(total F)(y,x)
Therefore the following are equivalent

e F is a family of equivalences,
e Fy is an equivalence for y : B,

e fib(F y)x is contractibl for y : B and x: Qy,

27

Fiberwise equivalences

Theorem ([Unil3, Theorem 4.7.7])
A morphism F : (y : B) — Py — Qy, is a family of equivalences if and only if total F

is an equivalence.

Proof.
We will see in next lemma that we have, for y : B and x: Qy,

fib(Fy)x = fib(total F)(y,x)
Therefore the following are equivalent

e F is a family of equivalences,

e Fy is an equivalence for y : B,

e fib(F y)x is contractibl for y : B and x: Qy,

e fib(total F)(y,x) is contractible for (y, x) : £B.Q,

27

Fiberwise equivalences

Theorem ([Unil3, Theorem 4.7.7])
A morphism F : (y : B) — Py — Qy, is a family of equivalences if and only if total F

is an equivalence.

Proof.
We will see in next lemma that we have, for y : B and x: Qy,

fib(Fy)x = fib(total F)(y,x)
Therefore the following are equivalent

e F is a family of equivalences,

e Fy is an equivalence for y : B,

fib (F y) x is contractibl for y : B and x : Qy,
fib (total F) (y, x) is contractible for (y, x) : £B.Q,

e total F is an equivalence. 027

Fiberwise equivalences

Lemma ([Unil3, Lemma 4.7.6])
ForF:(y:B)— Py — Qy,y:Bandx:Qy, we have

fib(Fy)x = fib(total F)(y,x)
Proof.
fib (total F)(y, x)

28

Fiberwise equivalences

Lemma ([Unil3, Lemma 4.7.6])
ForF:(y:B)— Py — Qy,y:Bandx:Qy, we have

fib(Fy)x = fib(total F)(y,x)
Proof.
fib (total F) (y,x) = X((y/,x") : £B.P).total F(y',x") = (v, x)

28

Fiberwise equivalences

Lemma ([Unil3, Lemma 4.7.6])
ForF:(y:B)— Py — Qy,y:Bandx:Qy, we have

fib(Fy)x = fib(total F)(y,x)
Proof.
fib (total F) (y,x) = X((y/,x") : £B.P).total F(y',x") = (v, x)
=X/, x) - 2B.P).(y', Fy'X') = (y,x)

28

Fiberwise equivalences

Lemma ([Unil3, Lemma 4.7.6])
ForF:(y:B)— Py — Qy,y:Bandx:Qy, we have

fib(Fy)x = fib(total F)(y,x)
Proof.
fib (total F) (y,x) = X((y/,x") : £B.P).total F(y',x") = (v, x)
=X((y",x") - ZB.P).(y, Fy'x') = (y,x)
(' B)X(X: Py).(y Fy' X)) = (v, %)

28

Fiberwise equivalences

Lemma ([Unil3, Lemma 4.7.6])
ForF:(y:B)— Py — Qy,y:Bandx:Qy, we have

fib(Fy)x = fib(total F)(y,x)
Proof.
fib (total F) (y,x) = X((y/,x") : £B.P).total F(y',x") = (v, x)
=X((v,x) : ZB.P).(y", Fy'X') = (v, x)
=Xy B).X(X - Py).(y', Fy' X)) = (y,x)
=Xy :B)X(X :Py)X(p:y =y).Fy x :,? X

28

Fiberwise equivalences

Lemma ([Unil3, Lemma 4.7.6])
ForF:(y:B)— Py — Qy,y:Bandx:Qy, we have

fib(Fy)x = fib(total F)(y,x)
Proof.
fib (total F)(y,x) = £((y/,x') : £B.P).total F (y',x') = (v, x)
=X((v', %) : ZBP)Y, Fy' x') = (1)
=3y :B).X(X: Py).(y,Fy'xX) = (y,x)
=Xy :B)X(X :Py)X(p:y =y).Fy x :g) X
=3(y' : B).I(p:y =y).I(x : Py).Fy x' =9

28

Fiberwise equivalences

Lemma ([Unil3, Lemma 4.7.6])
ForF:(y:B)— Py — Qy,y:Bandx:Qy, we have

fib(Fy)x = fib(total F)(y,x)
Proof.
fib (total F)(y,x) =% .P).total F(y',x') = (y,x)
g ’) YB.P).(y,Fy'x') = (y,x)
(X PY).(y Fy' X')= (%X)
(X PYy)E(p:y =y).Fy'x ,?
T(p:y =y)E(X:Py).Fy'x =3 x
,p) X(y :B)y =y) (X : Py).Fy X

Il
MMMMM

QX

28

Fiberwise equivalences

Lemma ([Unil3, Lemma 4.7.6])
ForF:(y:B)— Py — Qy,y:Bandx:Qy, we have

fib(Fy)x = fib(total F)(y,x)
Proof.
fib (total F)(y,x) =%). total F (y',x") = (y, x)
). Fy' X)) = (y,x)
X'Py)WCF/%%:Ux)
X Py)Z(p:y =y).Fyx =9x
p:y =y)E(X:Py).Fyx =3 x
(V' :B)y =y)E(X' : Py).Fy'x
y) Fyx =x

P
P

ML’lL’lﬁ

QX

><\
h

28

Fiberwise equivalences

Lemma ([Unil3, Lemma 4.7.6])
ForF:(y:B)— Py — Qy,y:Bandx:Qy, we have

fib(Fy)x = fib(total F)(y,x)
Proof.
fib (total F)(y,x) =%). total F (y',x") = (y, x)
). Fy'X') = (y,x)
X Py)WCF/%%:Ww)
X Py)Z(p:y =y).Fyx =9x
p:y =y)E(X:Py).Fyx =3 x
v @y*inZU“Py)F/x

P
P

ML’lL’lﬁ

QX

] 28

The fundamental theorem of identity types

[Rij25, Theorem 11.2.2]

29

when the Px are propositions the projection ZA.P — A is an embedding

in particular the inclusion of the connected component of a point into the sapce

30

Bibliography i

[Rij25] Egbert Rijke.
Introduction to Homotopy Type Theory.
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
2025.
arXiv:2212.11082.

[Uni13] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013.
https://homotopytypetheory.org/book, arXiv:1308.0729.

31

https://arxiv.org/abs/2212.11082
https://homotopytypetheory.org/book
https://arxiv.org/abs/1308.0729

