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More equivalences

The goal of this last part about equivalences is to

• provide various equivalent definitions of equivalences

• show that being an equivalence is a proposition
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Equivalences

For now, our definition of equivalence has been:

Definition
A bi-invertible equivalence is a map f : A → B such that

isEquiv(f ) =̂ (Σ(g : B → A).g ◦ f ∼ id)× (Σ(g : B → A).f ◦ g ∼ id)

We recall this is better than the “bad definition”:

Definition
A quasi-invertible map f : A → B is such that

hasQInv(f ) =̂ Σ(g : B → A).((g ◦ f ∼ id)× (f ◦ g ∼ id))
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Half-adjoint equivalences

Consider

f : A → B

g : B → A η : g ◦ f ∼ idA ε : f ◦ g ∼ idB

which can be pictured as

f

A B

One solution: fill in the sphere!

Definition
A half-adjoint equivalence is a map f : A → B such that there exists

isHAE(f ) =̂ Σ(g : B → A).Σ(η : g ◦ f ∼ id).Σ(ε : f ◦ ∼ id).f η ∼ εf
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Contractible fibers

Given a set-theoretic function f : A → B , we have that f is a bijection if and only if
f −1(y) is a singleton for every y : B .

Definition
Given a map f : A → B and y : B , the fiber of f at y is

fib f y =̂ Σ(x : A).(f x = y)

Definition ([Uni13, Definition 4.4.1])
A map f : A → B has contractible fibers when

hasCFib(f ) =̂ (y : B) → isContr(fib f y)
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Roadmap

We show that

isEquiv(f ) → isHAE(f ) → hasCFib(f ) → isEquiv(f )

from which we will be able to deduce that being an equivalence is a proposition and all
are equivalent.
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From quasi-invertibles to half-adjoint

Theorem ([Uni13, Theorem 4.2.3])
We have hasQInv(f ) → isHAE(f ).

Proof.
Remember that f is quasi-invertible means that we have g : B → A with η : g ◦ f ∼ id

and ε : f ◦ g ∼ id. An idea would be to find α : f η ∼ εf , but we cannot in general!
We define ε′ by ε′x =̂ ε−f g f x · f ηg x · εx which can be pictured as

f g

so that
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From quasi-invertibles to half-adjoint

Previous proof relied on two technical lemmas. First, homotopies are natural:

Lemma ([Uni13, Lemma 2.4.3])
Suppose given f g : A → B such that α : f ∼ g , and p : x = y in A. We have

α x · ap g p = ap f p · α y

Proof.
By path induction on p.

Corollary
Given α : f ∼ g and β : f ′ ∼ g ′, we have

αf ′ x · gβx = f βx · αg ′ x

f f ′

α

β

g g′

=

f f ′

β

α

g g′
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From quasi-invertibles to half-adjoint

The second lemma is the following one:

Lemma ([Uni13, Corollary 2.4.4])
Suppose given f : A → A and α : f ∼ id. For x : A, we have

α (f x) = f (α x)

i.e.
f f

α

f

=
f f

α

f

Proof.
By naturality, we have

f αx · αx = αf x · αx

f f

α

α

=

f f

α

α
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From half-adjoint to contractible fibers

Theorem ([Uni13, Theorem 4.2.6])
For f : A → B , we have isHAE(f ) → hasCFib(f ).

Proof.
Fix y : A. We have to show that fib f y =̂ Σ(x : A).(f x = y) is contractible.

As center of contraction, we pick (

g y

,

εy : f (g y) = y

).
Given (x , p) : Σ(x : A).(f x = y), we want to show that it is equal to the above.
We have x = g (f x) = g y by (η x)−1 · ap g p

transport (λx .f x = y) ((η x)−1 · ap g p) p

= ap f ((η x)−1 · ap g p)−1 · p by transport in path types
= ap (f ◦ g) p−1 · ap f (η x) · p by distributivity
= ap f (η x) · ap id p−1 · p by naturality
= ap f (η x)

= ε (f x) by HAE
= ε y by p
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Being an equivalence is a proposition

We can finally show:

Theorem ([Uni13, Lemma 4.2.9])
For a map f : A → B, being an equivalence is a proposition.

Proof.
Follows immediately from next lemma.
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Being an equivalence is a proposition

Lemma
For an equivalence f : A ≃ B, having a left (resp. right) inverse is a proposition.

Proof.
We want to show

isContr(Σ(g : B → A).(g ◦ f ∼ id))

with

ϕ : (B → A) → (A → A)

g 7→ g ◦ f

Since we have shown that equivalences have contractible fibers, it is enough to show
that ϕ is an equivalence, which follows from the fact that f is.
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Being an equivalence is a proposition

In particular, we do not have to handle all the coherences!

Corollary
Given two equivalences e e ′ : A ≃ B . If their underlying functions f f ′ : A → B are
equal, then e = e ′.
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Contractible maps

note: if we apply being contractible this to equivalences associated to type
constructors, we obtain unique extension

A B

∥A∥−1

13



note : this is a miracle that we only need a finite quantity of data to define equivalences
!
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Sujections and embeddings

A set-theoretic function f : A → B is

• surjective when f −1(y) is inhabited for every y ∈ B ,

• injective when f −1(y) contains at most one element for every y ∈ B ,

• bijective when both injective and surjective.
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Surjections and embeddings

Definition
A map f : A → B is

• a surjection when (y : B) → ∥ fib f y∥−1,

• an embedding when (y : B) → isProp (fib f y).

Lemma ([Uni13, Theorem 4.6.3])
A map f : A → B is an equivalence iff both a surjection and an embedding.

Proof.
Suppose that f is bijective and fix y : B . We have |(f −1 y , refl)|−1 : fib f y .
Moreover isContr(fib f y) and thus isProp(fib f y).

Suppose that f is both a surjection and an embedding and fix y : B . We have
∥ fib f y∥−1 and since we are trying to prove that f is an equivalence which is a
proposition, we can assume given an element of fib f y . We thus have fib f y

contractible as an inhabited proposition.
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Embeddings

Lemma ([Uni13, Lemma 7.6.2])
A map f : A → B is an embedding if and only if the induced map

ap f : (x = y) → (f x = f y)

is an equivalence for every x y : A.
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Variants of the notions

There are variants of the notion which are not propositions.

Definition
A morphism f : A → B is

split

surjection when it satisfies

Π(y : B).∥Σ(x : A).f x = y∥−1

This is equivalent to
Σ(g : B → A).Π(y : B).f (g y) = y

i.e.

A B
f

g

This is clearly data in general, not a proposition.
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Variants of the notions

Definition
A map f : A → B is injective when it satisfies

(x y : A) → (f x = f y) → (x = y)

For A and B sets this is equivalent to f being an embedding.

The proofs that the identity

f :

x y

→

f x f y

is an embedding is Z.
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