Equivalences II

Samuel Mimram

2025

École polytechnique

More equivalences

The goal of this last part about equivalences is to

- provide various equivalent definitions of equivalences
- show that being an equivalence is a proposition

Equivalences

For now, our definition of equivalence has been:

Definition

A bi-invertible equivalence is a map $f: A \rightarrow B$ such that

$$\mathsf{isEquiv}(f) \quad \hat{=} \quad (\Sigma(g:B \to A).g \circ f \sim \mathsf{id}) \times (\Sigma(g:B \to A).f \circ g \sim \mathsf{id})$$

2

Equivalences

For now, our definition of equivalence has been:

Definition

A bi-invertible equivalence is a map $f: A \rightarrow B$ such that

$$\mathsf{isEquiv}(f) \quad \hat{=} \quad (\Sigma(g:B \to A).g \circ f \sim \mathsf{id}) \times (\Sigma(g:B \to A).f \circ g \sim \mathsf{id})$$

We recall this is better than the "bad definition":

Definition

A quasi-invertible map $f: A \rightarrow B$ is such that

$$\mathsf{hasQInv}(f) \quad \hat{=} \quad \Sigma(g:B\to A).((g\circ f\sim \mathsf{id})\times (f\circ g\sim \mathsf{id}))$$

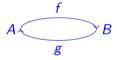
2

Consider

$$f:A\to B$$

Consider

$$f:A\to B$$
 $g:B\to A$



Consider

$$f:A\to I$$

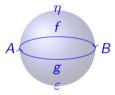
$$g:B\to A$$

$$f:A \to B$$
 $g:B \to A$ $\eta:g\circ f \sim \mathrm{id}_A$

Consider

$$f:A\to I$$

 $f: A \to B$ $g: B \to A$ $\eta: g \circ f \sim id_A$ $\varepsilon: f \circ g \sim id_B$

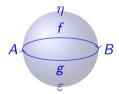


Consider

$$f:A\to B$$

 $f: A \to B$ $g: B \to A$ $\eta: g \circ f \sim id_A$ $\varepsilon: f \circ g \sim id_B$

which can be pictured as



One solution: fill in the sphere!

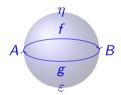
Consider

$$f:A\to E$$

$$\eta: g \circ f \sim \mathsf{id}_{f}$$

$$f:A \to B$$
 $g:B \to A$ $\eta:g \circ f \sim \mathrm{id}_A$ $\varepsilon:f \circ g \sim \mathrm{id}_B$

which can be pictured as



One solution: fill in the sphere!

Definition

A half-adjoint equivalence is a map $f: A \to B$ such that there exists

$$\mathsf{isHAE}(f) \quad \hat{=} \quad \Sigma(g:B\to A).\Sigma(\eta:g\circ f\sim \mathsf{id}).\Sigma(\varepsilon:f\circ \sim \mathsf{id}).f\eta\sim \varepsilon f$$

Contractible fibers

Given a set-theoretic function $f: A \to B$, we have that f is a bijection if and only if $f^{-1}(y)$ is a singleton for every y: B.

Contractible fibers

Given a set-theoretic function $f: A \to B$, we have that f is a bijection if and only if $f^{-1}(y)$ is a singleton for every y: B.

Definition

Given a map $f: A \rightarrow B$ and y: B, the **fiber** of f at y is

fib
$$f y = \sum (x : A) \cdot (f x = y)$$

4

Contractible fibers

Given a set-theoretic function $f: A \to B$, we have that f is a bijection if and only if $f^{-1}(y)$ is a singleton for every y: B.

Definition

Given a map $f: A \rightarrow B$ and y: B, the **fiber** of f at y is

fib
$$f y = \sum (x : A) \cdot (f x = y)$$

Definition ([Uni13, Definition 4.4.1])

A map $f: A \to B$ has contractible fibers when

$$\mathsf{hasCFib}(f) \quad \hat{=} \quad (y:B) \to \mathsf{isContr}(\mathsf{fib}\ f\ y)$$

Roadmap

We show that

$$\mathsf{isEquiv}(f) \quad o \quad \mathsf{isHAE}(f) \quad o \quad \mathsf{hasCFib}(f) \quad o \quad \mathsf{isEquiv}(f)$$

from which we will be able to deduce that being an equivalence is a proposition and all are equivalent.

5

Theorem ([Uni13, Theorem 4.2.3]) We have $hasQInv(f) \rightarrow isHAE(f)$.

Theorem ([Uni13, Theorem 4.2.3]) We have hasQInv(f) \rightarrow isHAE(f).

Proof.

Remember that f is quasi-invertible means that we have $g: B \to A$ with $\eta: g \circ f \sim \operatorname{id}$ and $\varepsilon: f \circ g \sim \operatorname{id}$.

6

Theorem ([Uni13, Theorem 4.2.3]) We have $hasQInv(f) \rightarrow isHAE(f)$.

Proof.

Remember that f is quasi-invertible means that we have $g:B\to A$ with $\eta:g\circ f\sim \operatorname{id}$ and $\varepsilon:f\circ g\sim \operatorname{id}$. An idea would be to find $\alpha:f\eta\sim \varepsilon f$, but we cannot in general!

6

Theorem ([Uni13, Theorem 4.2.3]) We have hasQ $Inv(f) \rightarrow isHAE(f)$.

Proof.

Remember that f is quasi-invertible means that we have $g:B\to A$ with $\eta:g\circ f\sim \mathrm{id}$ and $\varepsilon:f\circ g\sim \mathrm{id}$. An idea would be to find $\alpha:f\eta\sim\varepsilon f$, but we cannot in general! We define ε' by $\varepsilon'_{\mathsf{x}} \triangleq \varepsilon^-_{f,g,f,\mathsf{x}} \cdot f\eta_{g,\mathsf{x}} \cdot \varepsilon_{\mathsf{x}}$ which can be pictured as

so that

Theorem ([Uni13, Theorem 4.2.3]) We have $hasQInv(f) \rightarrow isHAE(f)$.

Proof.

Remember that f is quasi-invertible means that we have $g:B\to A$ with $\eta:g\circ f\sim \operatorname{id}$ and $\varepsilon:f\circ g\sim \operatorname{id}$. An idea would be to find $\alpha:f\eta\sim \varepsilon f$, but we cannot in general!

We define ε' by $\varepsilon'_{x} = \varepsilon_{fgfx} \cdot f\eta_{gx} \cdot \varepsilon_{x}$ which can be pictured as

so that

$$\varepsilon'_{fx} = \varepsilon^{-}_{fgfx} \cdot f \eta_{gx} \cdot \varepsilon_{x} = \bigcup_{f} \int_{f}^{g} \int_{f}^{f} = \bigcup_{f} \int_{f}^{g} \int_{f}^{f} = \int_{f}^{g} \int_{f}^{g} \int_{f}^{f} = \int_{f}^{g} \int_{f}^{g} \int_{f}^{f} = \int_{f}^{g} \int_{f}^{g}$$

Theorem ([Uni13, Theorem 4.2.3]) We have $hasQInv(f) \rightarrow isHAE(f)$.

Proof.

Remember that f is quasi-invertible means that we have $g:B\to A$ with $\eta:g\circ f\sim \mathrm{id}$ and $\varepsilon:f\circ g\sim \mathrm{id}$. An idea would be to find $\alpha:f\eta\sim\varepsilon f$, but we cannot in general! We define ε' by $\varepsilon'_{\mathsf{x}}\triangleq\varepsilon^-_{f,g,f,\mathsf{x}}\cdot f\eta_{g,\mathsf{x}}\cdot\varepsilon_{\mathsf{x}}$ which can be pictured as

so that

$$f\eta_{gfx} \cdot \varepsilon_{fx} = \bigcup_{f}^{f} \bigcup_{g}^{g} \bigcup_{f}^{g} \bigcup_{g}^{f} = \bigcup_{f}^{g} \bigcup_{g}^{f} \bigcup_{f}^{g} \bigcup_{g}^{f} = \varepsilon_{fgfx} \cdot f\eta_{x} \quad \Box$$

Previous proof relied on two technical lemmas. First, homotopies are natural:

Lemma ([Uni13, Lemma 2.4.3])

Suppose given $f g : A \rightarrow B$ such that $\alpha : f \sim g$, and p : x = y in A. We have

$$\alpha x \cdot \text{ap } g p = \text{ap } f p \cdot \alpha y$$

Proof.

By path induction on p.

Previous proof relied on two technical lemmas. First, homotopies are natural:

Lemma ([Uni13, Lemma 2.4.3]) Suppose given $f g : A \to B$ such that $\alpha : f \sim g$, and p : x = y in A. We have

$$\alpha x \cdot \text{ap } g p = \text{ap } f p \cdot \alpha y$$

Corollary

Given α : $f \sim g$ and β : $f' \sim g'$, we have

$$\alpha_{f'x} \cdot g\beta_x = f\beta_x \cdot \alpha_{g'x}$$

The second lemma is the following one:

Lemma ([Uni13, Corollary 2.4.4]) Suppose given $f: A \rightarrow A$ and $\alpha: f \sim id$. For x: A, we have

$$\alpha(fx) = f(\alpha x)$$

i.e.

The second lemma is the following one:

Lemma ([Uni13, Corollary 2.4.4]) Suppose given $f: A \rightarrow A$ and $\alpha: f \sim id$. For x: A, we have

$$\alpha(fx) = f(\alpha x)$$

i.e.

Proof.

By naturality, we have

$$f\alpha_{\mathbf{x}} \cdot \alpha_{\mathbf{x}} = \alpha_{f_{\mathbf{x}}} \cdot \alpha_{\mathbf{x}}$$

$$\stackrel{f}{\otimes} \stackrel{f}{\otimes} = \stackrel{f}{\otimes} \stackrel{f}{\otimes}$$

The second lemma is the following one:

Lemma ([Uni13, Corollary 2.4.4]) Suppose given $f:A\to A$ and $\alpha:f\sim \operatorname{id}$. For x:A, we have

$$\alpha(fx) = f(\alpha x)$$

i.e.

Proof.

By naturality, we have

$$f\alpha_{x} = f\alpha_{x} \cdot \alpha_{x} \cdot \alpha_{x}^{-1} = \alpha_{fx} \cdot \alpha_{x} \cdot \alpha_{x}^{-1} = \alpha_{fx}$$

$$\stackrel{f}{\otimes} \stackrel{f}{\downarrow} = \stackrel{f}{\stackrel{f}{\otimes}}$$

Theorem ([Uni13, Theorem 4.2.6]) For $f: A \rightarrow B$, we have $isHAE(f) \rightarrow hasCFib(f)$.

Proof.

Fix y:A. We have to show that fib f $y = \Sigma(x:A) \cdot (f \times f) = 0$ is contractible.

```
Theorem ([Uni13, Theorem 4.2.6]) For f:A\to B, we have isHAE(f)\to hasCFib(f).

Proof.

Fix y:A. We have to show that fib f y = \Sigma(x:A).(f = y) is contractible. As center of contraction, we pick ( ).
```

```
Theorem ([Uni13, Theorem 4.2.6]) For f:A\to B, we have \mathsf{isHAE}(f)\to \mathsf{hasCFib}(f).

Proof. Fix y:A. We have to show that fib f y = \Sigma(x:A) \cdot (f \times f) is contractible. As center of contraction, we pick (g\ y, f).
```

```
Theorem ([Uni13, Theorem 4.2.6]) For f: A \rightarrow B, we have isHAE(f) \rightarrow hasCFib(f).
```

Proof.

Fix y:A. We have to show that fib f $y = \Sigma(x:A) \cdot (f \times f)$ is contractible.

As center of contraction, we pick $(g y, \varepsilon_y : f(g y) = y)$.

```
Theorem ([Uni13, Theorem 4.2.6])

For f: A \to B, we have isHAE(f) \to hasCFib(f).

Proof.

Fix y: A. We have to show that fib f y = \Sigma(x: A) \cdot (f x = y) is contractible.

As center of contraction, we pick (g y, \varepsilon_y: f(g y) = y).
```

Given $(x, p) : \Sigma(x : A) \cdot (f x = y)$, we want to show that it is equal to the above.

```
Theorem ([Uni13, Theorem 4.2.6])
For f: A \to B, we have isHAE(f) \to hasCFib(f).

Proof.
Fix y: A. We have to show that fib f y = \Sigma(x:A) \cdot (f x = y) is contractible.
As center of contraction, we pick (g y, \varepsilon_y : f(g y) = y).

Given (x, p) : \Sigma(x:A) \cdot (f x = y), we want to show that it is equal to the above.

We have x = g(f x) = g y by (\eta x)^{-1} \cdot ap g p
```

```
Theorem ([Uni13, Theorem 4.2.6]) For f:A\to B, we have \operatorname{isHAE}(f)\to\operatorname{hasCFib}(f).

Proof.

Fix y:A. We have to show that fib f y = \Sigma(x:A).(f \times y) is contractible. As center of contraction, we pick (g \cdot y, \varepsilon_y : f(g \cdot y) = y).

Given (x,p):\Sigma(x:A).(f \times y), we want to show that it is equal to the above. We have x=g(f \times y)=g \cdot y by (\eta \times y)^{-1}\cdot\operatorname{ap}(g \cdot p) transport (\lambda x.f \times y)((\eta \times y)^{-1}\cdot\operatorname{ap}(g \cdot p))p
```

```
Theorem ([Uni13, Theorem 4.2.6])
For f: A \rightarrow B, we have isHAE(f) \rightarrow hasCFib(f).
Proof.
Fix y:A. We have to show that fib f y = \sum (x:A) \cdot (f x = y) is contractible.
As center of contraction, we pick (g y, \varepsilon_v : f(g y) = y).
Given (x, p) : \Sigma(x : A) \cdot (f x = y), we want to show that it is equal to the above.
We have x = g(f x) = g y by (\eta x)^{-1} \cdot ap g p
      transport (\lambda x.f x = y) ((\eta x)^{-1} \cdot \text{ap } g p) p
               = ap f((nx)^{-1} \cdot ap g p)^{-1} \cdot p
                                                                   by transport in path types
```

```
Theorem ([Uni13, Theorem 4.2.6])
For f: A \rightarrow B, we have isHAE(f) \rightarrow hasCFib(f).
Proof.
Fix y:A. We have to show that fib f y = \sum (x:A) \cdot (f x = y) is contractible.
As center of contraction, we pick (g y, \varepsilon_v : f(g y) = y).
Given (x, p) : \Sigma(x : A) \cdot (f x = y), we want to show that it is equal to the above.
We have x = g(f x) = g y by (\eta x)^{-1} \cdot ap g p
      transport (\lambda x.f x = y) ((\eta x)^{-1} \cdot \text{ap } g p) p
               = ap f((\eta x)^{-1} \cdot \text{ap } g p)^{-1} \cdot p
                                                                     by transport in path types
               = ap (f \circ g) p^{-1} \cdot ap f(nx) \cdot p
                                                                     by distributivity
```

```
Theorem ([Uni13, Theorem 4.2.6])
For f: A \rightarrow B, we have isHAE(f) \rightarrow hasCFib(f).
Proof.
Fix y:A. We have to show that fib f y = \sum (x:A) \cdot (f x = y) is contractible.
As center of contraction, we pick (g \ y, \varepsilon_{v} : f(g \ y) = y).
Given (x, p) : \Sigma(x : A) \cdot (f x = y), we want to show that it is equal to the above.
We have x = g(f x) = g y by (\eta x)^{-1} \cdot ap g p
      transport (\lambda x.f x = y) ((\eta x)^{-1} \cdot \text{ap } g p) p
                = ap f((\eta x)^{-1} \cdot \text{ap } g p)^{-1} \cdot p
                                                                      by transport in path types
                = ap (f \circ g) p^{-1} \cdot ap f(nx) \cdot p
                                                                      by distributivity
                = ap f(nx) \cdot ap \text{ id } p^{-1} \cdot p
                                                                      by naturality
```

```
Theorem ([Uni13, Theorem 4.2.6])
For f: A \rightarrow B, we have isHAE(f) \rightarrow hasCFib(f).
Proof.
Fix y:A. We have to show that fib f y = \sum (x:A) \cdot (f x = y) is contractible.
As center of contraction, we pick (g \ y, \varepsilon_{v} : f(g \ y) = y).
Given (x, p) : \Sigma(x : A) \cdot (f x = y), we want to show that it is equal to the above.
We have x = g(f x) = g y by (\eta x)^{-1} \cdot ap g p
      transport (\lambda x.f x = y) ((\eta x)^{-1} \cdot \text{ap } g p) p
               = ap f((\eta x)^{-1} \cdot \text{ap } g p)^{-1} \cdot p
                                                                     by transport in path types
               = ap (f \circ g) p^{-1} \cdot ap f(nx) \cdot p
                                                                     by distributivity
               = ap f(\eta x) \cdot ap id p^{-1} \cdot p
                                                                     by naturality
               = ap f(nx)
```

From half-adjoint to contractible fibers

```
Theorem ([Uni13, Theorem 4.2.6])
For f: A \rightarrow B, we have isHAE(f) \rightarrow hasCFib(f).
Proof.
Fix y:A. We have to show that fib f y = \Sigma(x:A) \cdot (f \times f) is contractible.
As center of contraction, we pick (g \ y, \varepsilon_{v} : f(g \ y) = y).
Given (x, p) : \Sigma(x : A) \cdot (f x = y), we want to show that it is equal to the above.
We have x = g(f x) = g y by (\eta x)^{-1} \cdot ap g p
      transport (\lambda x.f x = y) ((\eta x)^{-1} \cdot \text{ap } g p) p
               = ap f((\eta x)^{-1} \cdot \text{ap } g p)^{-1} \cdot p
                                                                      by transport in path types
               = ap (f \circ g) p^{-1} \cdot ap f(\eta x) \cdot p
                                                                      by distributivity
               = ap f(\eta x) \cdot ap id p^{-1} \cdot p
                                                                      by naturality
               = ap f(nx)
               = \varepsilon(fx)
                                                                      by HAE
```

From half-adjoint to contractible fibers

```
Theorem ([Uni13, Theorem 4.2.6])
For f: A \rightarrow B, we have isHAE(f) \rightarrow hasCFib(f).
Proof.
Fix y:A. We have to show that fib f y = \sum (x:A) \cdot (f x = y) is contractible.
As center of contraction, we pick (g \ y, \varepsilon_{v} : f(g \ y) = y).
Given (x, p) : \Sigma(x : A) \cdot (f x = y), we want to show that it is equal to the above.
We have x = g(f x) = g y by (\eta x)^{-1} \cdot ap g p
      transport (\lambda x.f x = y) ((\eta x)^{-1} \cdot \text{ap } g p) p
                = ap f((\eta x)^{-1} \cdot \text{ap } g p)^{-1} \cdot p
                                                                       by transport in path types
                = ap (f \circ g) p^{-1} \cdot ap f(\eta x) \cdot p
                                                                       by distributivity
                = ap f(\eta x) \cdot ap id p^{-1} \cdot p
                                                                       by naturality
                = ap f(\eta x)
                = \varepsilon(fx)
                                                                       by HAE
                      \varepsilon v
```

We can finally show:

Theorem ([Uni13, Lemma 4.2.9]) For a map $f: A \rightarrow B$, being an equivalence is a proposition.

Proof.

Follows immediately from next lemma.

Lemma

For an equivalence $f:A\simeq B$, having a left (resp. right) inverse is a proposition.

Lemma

For an equivalence $f:A\simeq B$, having a left (resp. right) inverse is a proposition.

Proof.

We want to show

$$\mathsf{isContr}(\Sigma(g:B o A).(g \circ f \sim \mathsf{id}))$$

Lemma

For an equivalence $f:A\simeq B$, having a left (resp. right) inverse is a proposition.

Proof.

We want to show

$$\mathsf{isContr}(\Sigma(g:B \to A).(g \circ f = \mathsf{id}))$$

Lemma

For an equivalence $f:A\simeq B$, having a left (resp. right) inverse is a proposition.

Proof.

We want to show

$$isContr(fib \phi id)$$

with

$$\phi: (B \to A) \to (A \to A)$$
$$g \mapsto g \circ f$$

Lemma

For an equivalence $f:A \simeq B$, having a left (resp. right) inverse is a proposition.

Proof.

We want to show

isContr(fib
$$\phi$$
 id)

with

$$\phi: (B \to A) \to (A \to A)$$
$$g \mapsto g \circ f$$

Since we have shown that equivalences have contractible fibers, it is enough to show that ϕ is an equivalence, which follows from the fact that f is.

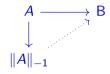
In particular, we do not have to handle all the coherences!

Corollary

Given two equivalences $e e' : A \simeq B$. If their underlying functions $f f' : A \to B$ are equal, then e = e'.

Contractible maps

note: if we apply being contractible this to equivalences associated to type constructors, we obtain unique extension



note : this is a miracle that we only need a finite quantity of data to define equivalences

A set-theoretic function $f: A \rightarrow B$ is

A set-theoretic function $f: A \rightarrow B$ is

• surjective when $f^{-1}(y)$ is inhabited for every $y \in B$,

A set-theoretic function $f: A \rightarrow B$ is

- surjective when $f^{-1}(y)$ is inhabited for every $y \in B$,
- injective when $f^{-1}(y)$ contains at most one element for every $y \in B$,

A set-theoretic function $f: A \rightarrow B$ is

- surjective when $f^{-1}(y)$ is inhabited for every $y \in B$,
- injective when $f^{-1}(y)$ contains at most one element for every $y \in B$,
- bijective when both injective and surjective.

Definition

A map $f: A \rightarrow B$ is

- a surjection when $(y : B) \rightarrow \| \text{ fib } f y \|_{-1}$,
- an **embedding** when $(y : B) \rightarrow \mathsf{isProp}(\mathsf{fib}\ f\ y)$.

Definition

A map $f: A \rightarrow B$ is

- a surjection when $(y : B) \rightarrow \| \text{ fib } f y \|_{-1}$,
- an **embedding** when $(y : B) \rightarrow \mathsf{isProp}(\mathsf{fib}\ f\ y)$.

Lemma ([Uni13, Theorem 4.6.3])

A map $f: A \to B$ is an equivalence iff both a surjection and an embedding.

Definition

A map $f: A \rightarrow B$ is

- a surjection when $(y : B) \rightarrow \| \text{ fib } f y \|_{-1}$,
- an **embedding** when $(y : B) \rightarrow \mathsf{isProp}(\mathsf{fib}\ f\ y)$.

Lemma ([Uni13, Theorem 4.6.3])

A map $f: A \to B$ is an equivalence iff both a surjection and an embedding.

Proof.

Suppose that f is bijective and fix y : B.

Definition

A map $f: A \rightarrow B$ is

- a surjection when $(y : B) \rightarrow \| \text{ fib } f y \|_{-1}$,
- an **embedding** when $(y : B) \rightarrow \mathsf{isProp}(\mathsf{fib}\ f\ y)$.

Lemma ([Uni13, Theorem 4.6.3])

A map $f: A \to B$ is an equivalence iff both a surjection and an embedding.

Proof.

Suppose that f is bijective and fix y : B. We have $|(f^{-1}y, refl)|_{-1} : fib f y$.

Definition

A map $f: A \rightarrow B$ is

- a surjection when $(y : B) \rightarrow \| \text{ fib } f y \|_{-1}$,
- an **embedding** when $(y : B) \rightarrow \mathsf{isProp}(\mathsf{fib}\ f\ y)$.

Lemma ([Uni13, Theorem 4.6.3])

A map $f : A \to B$ is an equivalence iff both a surjection and an embedding.

Proof.

Suppose that f is bijective and fix y : B. We have $|(f^{-1}y, refl)|_{-1} : fib f y$. Moreover is Contr(fib f y) and thus is Prop(fib f y).

Definition

A map $f: A \rightarrow B$ is

- a surjection when $(y : B) \rightarrow \| \text{ fib } f y \|_{-1}$,
- an **embedding** when $(y : B) \rightarrow \mathsf{isProp}(\mathsf{fib}\ f\ y)$.

Lemma ([Uni13, Theorem 4.6.3])

A map $f : A \to B$ is an equivalence iff both a surjection and an embedding.

Proof.

Suppose that f is bijective and fix y : B. We have $|(f^{-1}y, refl)|_{-1} : fib f y$. Moreover is Contr(fib f y) and thus is Prop(fib f y).

Suppose that f is both a surjection and an embedding and fix y : B. We have $\| \text{ fib } f y \|_{-1}$ and since we are trying to prove that f is an equivalence which is a proposition, we can assume given an element of fib f y.

Definition

A map $f: A \rightarrow B$ is

- a surjection when $(y : B) \rightarrow \| \text{ fib } f y \|_{-1}$,
- an **embedding** when $(y : B) \rightarrow \mathsf{isProp}(\mathsf{fib}\ f\ y)$.

Lemma ([Uni13, Theorem 4.6.3])

A map $f: A \to B$ is an equivalence iff both a surjection and an embedding.

Proof.

Suppose that f is bijective and fix y : B. We have $|(f^{-1}y, refl)|_{-1} : fib f y$. Moreover is Contr(fib f y) and thus is Prop(fib f y).

Suppose that f is both a surjection and an embedding and fix y : B. We have $\| \text{ fib } f y \|_{-1}$ and since we are trying to prove that f is an equivalence which is a proposition, we can assume given an element of fib f y. We thus have fib f y contractible as an inhabited proposition.

Embeddings

Lemma ([Uni13, Lemma 7.6.2])

A map $f: A \to B$ is an embedding if and only if the induced map

$$\mathsf{ap}\ f \quad : \quad (x=y) \quad \to \quad (f\,x=f\,y)$$

is an equivalence for every x y : A.

There are variants of the notion which are not propositions.

Definition

A morphism $f: A \rightarrow B$ is surjection when it satisfies

$$\Pi(y:B).\|\Sigma(x:A).f x = y\|_{-1}$$

There are variants of the notion which are not propositions.

Definition

A morphism $f: A \rightarrow B$ is **split surjection** when it satisfies

$$\Pi(y:B).\Sigma(x:A).f x = y$$

There are variants of the notion which are not propositions.

Definition

A morphism $f: A \rightarrow B$ is **split surjection** when it satisfies

$$\Pi(y:B).\Sigma(x:A).f x = y$$

This is equivalent to

$$\Sigma(g:B\to A).\Pi(y:B).f(gy)=y$$

i.e.

$$A \xrightarrow{f} B$$

There are variants of the notion which are not propositions.

Definition

A morphism $f: A \rightarrow B$ is **split surjection** when it satisfies

$$\Pi(y:B).\Sigma(x:A).f x = y$$

This is equivalent to

$$\Sigma(g:B\to A).\Pi(y:B).f(gy)=y$$

i.e.

$$A \xrightarrow{\xi^{1,\dots,\xi}} B$$

This is clearly data in general, not a proposition.

Definition

A map $f: A \rightarrow B$ is **injective** when it satisfies

$$(xy:A) \rightarrow (fx=fy) \rightarrow (x=y)$$

Definition

A map $f: A \rightarrow B$ is **injective** when it satisfies

$$(xy:A) \rightarrow (fx=fy) \rightarrow (x=y)$$

For A and B sets this is equivalent to f being an embedding.

Definition

A map $f: A \rightarrow B$ is **injective** when it satisfies

$$(xy:A) \rightarrow (fx=fy) \rightarrow (x=y)$$

For A and B sets this is equivalent to f being an embedding.

The proofs that the identity

$$f$$
 : \bigcirc \rightarrow \bigcirc

Definition

A map $f: A \rightarrow B$ is **injective** when it satisfies

$$(xy:A) \rightarrow (fx = fy) \rightarrow (x = y)$$

For A and B sets this is equivalent to f being an embedding.

The proofs that the identity

$$f : X \longrightarrow Y \rightarrow fX \longrightarrow fy$$

Definition

A map $f: A \rightarrow B$ is **injective** when it satisfies

$$(xy:A) \rightarrow (fx = fy) \rightarrow (x = y)$$

For A and B sets this is equivalent to f being an embedding.

The proofs that the identity

$$f: x \longrightarrow y \rightarrow fx \longrightarrow fy$$

Definition

A map $f: A \rightarrow B$ is **injective** when it satisfies

$$(xy:A) \rightarrow (fx = fy) \rightarrow (x = y)$$

For A and B sets this is equivalent to f being an embedding.

The proofs that the identity

$$f : x \longrightarrow f x \longrightarrow f y$$

Definition

A map $f: A \rightarrow B$ is **injective** when it satisfies

$$(xy:A) \rightarrow (fx = fy) \rightarrow (x = y)$$

For A and B sets this is equivalent to f being an embedding.

The proofs that the identity

$$f : x \longrightarrow y \rightarrow fx \longrightarrow fy$$

is an embedding is \mathbb{Z} .

Bibliography i

[Uni13] The Univalent Foundations Program.

Homotopy Type Theory: Univalent Foundations of Mathematics.

Institute for Advanced Study, 2013.

https://homotopytypetheory.org/book, arXiv:1308.0729.