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More equivalences

The goal of this last part about equivalences is to

e provide various equivalent definitions of equivalences

e show that being an equivalence is a proposition



Equivalences

For now, our definition of equivalence has been:

Definition
A bi-invertible equivalence is a map f : A — B such that

isEquiv(f) = (X(g:B— A)gof~id)x(X(g:B— A).fog~id)



Equivalences

For now, our definition of equivalence has been:

Definition
A bi-invertible equivalence is a map f : A — B such that

isEquiv(f) = (X(g:B— A)gof~id)x(X(g:B— A).fog~id)

We recall this is better than the “bad definition”:

Definition
A quasi-invertible map f : A — B is such that

hasQInv(f) = X(g:B — A).((gof ~id) x (fog ~id))
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Half-adjoint equivalences

Consider
f:A—B g: B A n:gof ~idy e:fog~idg
which can be pictured as 1
f'
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g
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One solution: fill in the sphere!

Definition
A half-adjoint equivalence is a map f : A — B such that there exists

isHAE(f) = X(g:B—A)X(n:gof ~id).X(e:for~id).fn~ef



Contractible fibers

Given a set-theoretic function f : A — B, we have that f is a bijection if and only if
f~Y(y) is a singleton for every y : B.



Contractible fibers

Given a set-theoretic function f : A — B, we have that f is a bijection if and only if
f~Y(y) is a singleton for every y : B.

Definition
Given amap f: A— B and y : B, the fiber of f at y is

fibfy = (x:A).(fx=y)



Contractible fibers

Given a set-theoretic function f : A — B, we have that f is a bijection if and only if
f~Y(y) is a singleton for every y : B.

Definition
Given amap f: A— B and y : B, the fiber of f at y is

fibfy = X(x:A)(fx=y)
Definition ([Unil3, Definition 4.4.1])
A map f : A — B has contractible fibers when

hasCFib(f) = (y: B) — isContr(fib f y)



We show that
isEquiv(f) — isHAE(f) — hasCFib(f) — isEquiv(f)

from which we will be able to deduce that being an equivalence is a proposition and all
are equivalent.
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From quasi-invertibles to half-adjoint

Theorem ([Unil3, Theorem 4.2.3])
We have hasQlnv(f) — isHAE(f).

Proof.
Remember that f is quasi-invertible means that we have g : B — A with n: go f ~id

and ¢ : fog ~id. An idea would be to find « : fn ~ ef, but we cannot in general!
We define ¢’ by &/, = Ergfx [Mgx Ex whicf} can be pictured as

so that @
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From quasi-invertibles to half-adjoint

Previous proof relied on two technical lemmas. First, homotopies are natural:

Lemma ([Unil3, Lemma 2.4.3])
Suppose given f g : A — B such that a.: f ~ g, and p: x =y in A. We have

ax-apgp = apfp-ay

Proof.
By path induction on p. O



From quasi-invertibles to half-adjoint

Previous proof relied on two technical lemmas. First, homotopies are natural:

Lemma ([Unil3, Lemma 2.4.3])
Suppose given f g : A — B such that a.: f ~ g, and p: x =y in A. We have

ax-apgp = apfp-ay

Corollary
Givena : f ~ g and B : f' ~ g', we have

afx-gBx = fﬁx'ag’x

=

- 4

g



From quasi-invertibles to half-adjoint

The second lemma is the following one:

Lemma ([Unil3, Corollary 2.4.4])
Suppose given f : A— Aand o : f ~id. For x: A, we have

a(fx) = f(ax)
ie. L L
@ = |®
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From quasi-invertibles to half-adjoint

The second lemma is the following one:

Lemma ([Unil3, Corollary 2.4.4])
Suppose given f : A— Aand o : f ~id. For x: A, we have

a(fx) = f(ax)
ie.
o f o f
61 = |6
Proof. f f
By naturality, we have
fax-ax = Qfx-Qyx
I



From quasi-invertibles to half-adjoint

The second lemma is the following one:

Lemma ([Unil3, Corollary 2.4.4])
Suppose given f : A— Aand o : f ~id. For x: A, we have

a(fx) = f(ax)

ie.
o f o f
@| = |®

Proof. I I

By naturality, we have

fa, = fax-ax-a;l = O{f‘X'O[X'Oé;l = Qfy

fof of



From half-adjoint to contractible fibers

Theorem ([Unil3, Theorem 4.2.6])
For f : A— B, we have isHAE(f) — hasCFib(f).

Proof.
Fix y : A. We have to show that fib f y = ¥(x : A).(f x

y) is contractible.
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Proof.
Fix y : A. We have to show that fib fy = ¥X(x : A).(f x = y) is contractible.
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Being an equivalence is a proposition

We can finally show:

Theorem ([Unil3, Lemma 4.2.9])
Fora map f : A— B, being an equivalence is a proposition.

Proof.
Follows immediately from next lemma. O

10



Being an equivalence is a proposition

Lemma
For an equivalence f : A ~ B, having a left (resp. right) inverse is a proposition.
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Being an equivalence is a proposition

Lemma
For an equivalence f : A ~ B, having a left (resp. right) inverse is a proposition.

Proof.
We want to show

isContr(fib ¢ id)

with
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Being an equivalence is a proposition

Lemma
For an equivalence f : A ~ B, having a left (resp. right) inverse is a proposition.

Proof.
We want to show

isContr(fib ¢ id)
with
¢:(B—A)— (A= A)

g—gof

Since we have shown that equivalences have contractible fibers, it is enough to show
that ¢ is an equivalence, which follows from the fact that f is. O
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Being an equivalence is a proposition

In particular, we do not have to handle all the coherences!

Corollary
Given two equivalences e e’ : A ~ B. If their underlying functions f f' : A — B are

equal, then e = ¢€'.

12



Contractible maps

note: if we apply being contractible this to equivalences associated to type
constructors, we obtain unique extension

A—— B

l L T

1Al -2
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note : this is a miracle that we only need a finite quantity of data to define equivalences
!
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Sujections and embeddings

A set-theoretic function f : A — B is

e surjective when f~1(y) is inhabited for every y € B,
e injective when f~1(y) contains at most one element for every y € B,

e bijective when both injective and surjective.
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Surjections and embeddings

Definition
Amapf:A—Bis

e a surjection when (y : B) — |[fib f y||_1,

e an embedding when (y : B) — isProp (fib f y).
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Surjections and embeddings

Definition
Amapf:A—Bis

e a surjection when (y : B) — |[fib f y||_1,
e an embedding when (y : B) — isProp (fib f y).

Lemma ([Unil3, Theorem 4.6.3])
A map f : A— B is an equivalence iff both a surjection and an embedding.

Proof.
Suppose that f is bijective and fix y : B. We have |(f~1y,refl)| 1 : fib fy.
Moreover isContr(fib f y) and thus isProp(fib f y).

Suppose that f is both a surjection and an embedding and fix y : B. We have
|| fib f y||—1 and since we are trying to prove that f is an equivalence which is a

proposition, we can assume given an element of fib f y.
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Surjections and embeddings

Definition
Amapf:A—Bis

e a surjection when (y : B) — |[fib f y||_1,

e an embedding when (y : B) — isProp (fib f y).

Lemma ([Unil3, Theorem 4.6.3])
A map f : A— B is an equivalence iff both a surjection and an embedding.

Proof.
Suppose that f is bijective and fix y : B. We have |(f~1y,refl)| 1 : fib fy.
Moreover isContr(fib f y) and thus isProp(fib f y).

Suppose that f is both a surjection and an embedding and fix y : B. We have
|| fib f y||—1 and since we are trying to prove that f is an equivalence which is a
proposition, we can assume given an element of fib f y. We thus have fib f y

, : . . 16
contractible as an inhabited proposition. O



Embeddings

Lemma ([Unil3, Lemma 7.6.2])
A map f : A— B is an embedding if and only if the induced map

apf : (x=y) — (fx=fy)

is an equivalence for every x y : A.

17



Variants of the notions

There are variants of the notion which are not propositions.

Definition
A morphism f : A— B is surjection when it satisfies

My : B).||Z(x: A).fx=yl-1
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Variants of the notions

There are variants of the notion which are not propositions.

Definition
A morphism f : A — B is split surjection when it satisfies

My : B).X(x:A).fx=y

This is equivalent to
Y(g:B—A)MN(y:B).f(gy)=y

g
A%B

This is clearly data in general, not a proposition.
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Variants of the notions

Definition _
A map f : A — B is injective when it satisfies

(xy:A)=(fx=fy)—=(x=y)
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Definition
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