Samuel Mimram

2025

École polytechnique

We can now construct useful non-trivial paths, such as Bool = Bool.

We can now construct useful non-trivial paths, such as Bool = Bool.

However, we cannot seem to be able to construct non-trivial paths between functions excepting simple ones.

We can now construct useful non-trivial paths, such as Bool = Bool.

However, we cannot seem to be able to construct non-trivial paths between functions excepting simple ones.

Recall that there is a natural notion for comparing functions $f g : A \rightarrow B$:

$$f \sim g \quad \hat{=} \quad (x : A) \rightarrow f x = g x$$

If we consider the negation

 $\mathsf{not} : \mathsf{Bool} \to \mathsf{Bool}$

we can show

 $\mathsf{not} \circ \mathsf{not} \sim \mathsf{id}_{\mathsf{Bool}}$

by reasoning by case analysis

- not (not false) = false
- not (not true) = true

But we cannot show

 $\mathsf{not} \circ \mathsf{not} = \mathsf{id}_{\mathsf{Bool}}$

If we consider the negation

$$\mathsf{not} : \mathsf{Bool} \to \mathsf{Bool}$$

we can show

$$\mathsf{not} \circ \mathsf{not} \sim \mathsf{id}_{\mathsf{Bool}}$$

by reasoning by case analysis

- not (not false) = false
- not (not true) = true

But we cannot show

$$\mathsf{not} \circ \mathsf{not} = \mathsf{id}_{\mathsf{Bool}}$$

More generally, we would like to show that f = g is the same as $f \sim g$.

The only equalities we can easily show are the definitional ones.

For instance, for $f: A \rightarrow B$, we have

$$id \circ f \triangleq (\lambda x. id (f x)) \triangleq (\lambda x. f x) \triangleq f$$

and thus

$$\mathsf{refl} \quad : \quad \mathsf{id} \circ f = f$$

Given $f g : A \rightarrow B$, we have a canonical map

$$\mathsf{happly}: (f = g) \to (f \sim g)$$

Given $f g : A \rightarrow B$, we have a canonical map

happly:
$$(f = g) \rightarrow (x : A) \rightarrow f x = g x$$

Given $f g : A \rightarrow B$, we have a canonical map

happly :
$$(f = g) \rightarrow (x : A) \rightarrow f x = g x$$

defined by path induction by

happly refl
$$\hat{=}$$
 λx . refl

Given $f g : A \rightarrow B$, we have a canonical map

happly :
$$(f = g) \rightarrow (x : A) \rightarrow f x = g x$$

defined by path induction by

happly refl
$$\hat{=} \lambda x$$
. refl

We will show that this map is an equivalence, in particular we will have an inverse

funext :
$$((x : A) \rightarrow f x = g x) \rightarrow f = g$$

The equivalence $(f = g) \simeq (f \sim g)$ can be read as the fact that we have

• an elimination rule:

$$\mathsf{happly}: (f = g) \to (f \sim g)$$

The equivalence $(f = g) \simeq (f \sim g)$ can be read as the fact that we have

• an elimination rule:

$$\mathsf{happly}: (f = g) \to (f \sim g)$$

• an introduction rule:

$$\mathsf{funext}: (f \sim g) \to (f = g)$$

The equivalence $(f = g) \simeq (f \sim g)$ can be read as the fact that we have

• an elimination rule:

$$\mathsf{happly}: (f = g) \to (f \sim g)$$

• an introduction rule:

funext :
$$(f \sim g) \rightarrow (f = g)$$

• a computation rule: for $\alpha : f \sim g$ and x : A,

happly (funext
$$\alpha$$
) $x = \alpha x$

The equivalence $(f = g) \simeq (f \sim g)$ can be read as the fact that we have

• an elimination rule:

$$\mathsf{happly}: (f = g) \to (f \sim g)$$

• an introduction rule:

$$\mathsf{funext}: (f \sim g) \to (f = g)$$

• a computation rule: for $\alpha : f \sim g$ and x : A,

happly (funext
$$\alpha$$
) $x = \alpha x$

• a uniqueness rule: for p : f = h,

funext
$$(\lambda x$$
. happly $px) = p$

There is no simple way of constructing the map

$$\mathsf{funext}: (f \sim g) \to (f = g)$$

There is no simple way of constructing the map

funext :
$$(f \sim g) \rightarrow (f = g)$$

Intuitively, we should be able to do the following:

$$f = \lambda x.f x = \lambda x.g x = g$$

where the middle step is something like

$$ap(\lambda y.\lambda x.y)(hx)$$

but without proper α -conversion...

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e.

$$\Sigma(f g : A \to B).(f = g) \simeq \Sigma(f g : A \to B).(f \sim g)$$

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e.

$$\Sigma(f g : A \to B).(f = g) \simeq \Sigma(f g : A \to B).(f \sim g)$$

If we consider the types

Path(A)
$$\hat{=}$$
 $\Sigma(x y : A).(x = y)$

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A).(f \sim g)$

we want to show

$$\mathsf{Path}(A \to B) \simeq \mathsf{Homotopy}(A, B)$$

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e.

$$\Sigma(f g : A \to B).(f = g) \simeq \Sigma(f g : A \to B).(f \sim g)$$

If we consider the types

Path(A)
$$\hat{=}$$
 $\Sigma(xy:A).(x=y)$

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A).(f \sim g)$

we want to show

$$Path(A \rightarrow B) \simeq Homotopy(A, B)$$

which we can do by

$$\mathsf{Path}(A \to B) \quad \simeq \quad A \to B \quad \simeq \quad A \to \mathsf{Path}(B) \quad \simeq \quad \mathsf{Homotopy}(A,B)$$

In particular, we obtain a function

Funext :
$$\mathsf{Homotopy}(A,B) \to \mathsf{Path}(A \to B)$$

which to a homotopy associates a path

In particular, we obtain a function

Funext :
$$\mathsf{Homotopy}(A,B) \to \mathsf{Path}(A \to B)$$

which to a homotopy associates a path

If we manage to show that the endpoints are respected, this induces

funext :
$$(fg:A \rightarrow B) \rightarrow f \sim g \rightarrow f = g$$

by

funext
$$f g \alpha = \operatorname{snd}(\operatorname{Funext}(f, g, \alpha))$$

as required.

The equivalences are easily shown.

The equivalences are easily shown. We have

 $\mathsf{Homotopy}(A,B)$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)
$$\hat{=}$$
 $\Sigma(x:A).\Sigma(y:B).(x=y)$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)
$$\hat{}$$
 $\Sigma(x:A).\Sigma(y:B).(x=y) \simeq \Sigma(x:A).1$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)
$$\hat{=}$$
 $\Sigma(x:A).\Sigma(y:B).(x=y) \simeq \Sigma(x:A).1 \simeq A$

(i.e. we contract paths on their source)

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)
$$\hat{=}$$
 $\Sigma(x:A).\Sigma(y:B).(x=y) \simeq \Sigma(x:A).1 \simeq A$

(i.e. we contract paths on their source) and thus

$$\mathsf{Path}(A \to B)$$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)
$$\hat{=}$$
 $\Sigma(x:A).\Sigma(y:B).(x=y) \simeq \Sigma(x:A).1 \simeq A$

(i.e. we contract paths on their source) and thus

$$Path(A \rightarrow B) \simeq A \rightarrow B$$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)
$$\hat{=}$$
 $\Sigma(x:A).\Sigma(y:B).(x=y) \simeq \Sigma(x:A).1 \simeq A$

(i.e. we contract paths on their source) and thus

$$Path(A \rightarrow B) \simeq A \rightarrow B \simeq A \rightarrow Path(B)$$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)
$$\hat{=}$$
 $\Sigma(x:A).\Sigma(y:B).(x=y) \simeq \Sigma(x:A).1 \simeq A$

(i.e. we contract paths on their source) and thus

$$\mathsf{Path}(A \to B) \quad \simeq \quad A \to B \quad \simeq \quad A \to \mathsf{Path}(B) \quad \simeq \quad \mathsf{Homotopy}(A,B)$$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)
$$\hat{=}$$
 $\Sigma(x:A).\Sigma(y:B).(x=y) \simeq \Sigma(x:A).1 \simeq A$

(i.e. we contract paths on their source) and thus

$$\mathsf{Path}(A \to B) \quad \simeq \quad A \to B \quad \simeq \quad A \to \mathsf{Path}(B) \quad \simeq \quad \mathsf{Homotopy}(A,B)$$

from which we deduce

Funext :
$$Homotopy(A, B) \rightarrow Path(A, B)$$

The equivalences are easily shown. We have

Homotopy(
$$A$$
, B) $\hat{=}$ $\Sigma(f g : A \rightarrow B).\Pi(x : A).(f x = g x)$
 $\simeq \Pi(x : A).\Sigma(b_1 b_2 : B).(b_1 = b_2)$
 $\hat{=}$ $A \rightarrow Path(B)$

and

Path(A)
$$\hat{=}$$
 $\Sigma(x:A).\Sigma(y:B).(x=y) \simeq \Sigma(x:A).1 \simeq A$

(i.e. we contract paths on their source) and thus

$$\mathsf{Path}(A \to B) \quad \simeq \quad A \to B \quad \simeq \quad A \to \mathsf{Path}(B) \quad \simeq \quad \mathsf{Homotopy}(A,B)$$

from which we deduce

Funext :
$$Homotopy(A, B) \rightarrow Path(A, B)$$

Where did we use univalence???

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If $B \simeq B'$ then $(A \to B) \simeq (A \to B')$.

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof (attempt).

$$\phi: (A \to B) \to (A \to B')$$
$$f \mapsto$$

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof (attempt).

$$\phi: (A \to B) \to (A \to B')$$
$$f \mapsto g \circ f$$

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof (attempt).

$$\phi: (A \to B) \to (A \to B')$$
$$f \mapsto g \circ f$$

$$\psi: (A \to B') \to (A \to B)$$
$$f \mapsto$$

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof (attempt).

$$\phi: (A \to B) \to (A \to B')$$
$$f \mapsto g \circ f$$

$$\psi: (A \to B') \to (A \to B)$$
$$f \mapsto g^{-1} \circ f$$

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof (attempt).

Writing $g: B \simeq B'$, we define

$$\phi: (A \to B) \to (A \to B')$$
$$f \mapsto g \circ f$$

$$\psi: (A \to B') \to (A \to B)$$
$$f \mapsto g^{-1} \circ f$$

$$\psi \circ \phi(f)$$

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof (attempt).

Writing $g: B \simeq B'$, we define

$$\phi: (A \to B) \to (A \to B')$$
$$f \mapsto g \circ f$$

$$\psi: (A \to B') \to (A \to B)$$
$$f \mapsto g^{-1} \circ f$$

$$\psi \circ \phi(f) \triangleq g^{-1} \circ (g \circ f)$$

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof (attempt).

Writing $g: B \simeq B'$, we define

$$\phi: (A \to B) \to (A \to B') \qquad \qquad \psi: (A \to B') \to (A \to B)$$

$$f \mapsto g \circ f \qquad \qquad f \mapsto g^{-1} \circ f$$

$$\psi \circ \phi(f) \stackrel{.}{=} g^{-1} \circ (g \circ f) \stackrel{.}{=} (g^{-1} \circ g) \circ f$$

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof (attempt).

Writing $g: B \simeq B'$, we define

$$\phi: (A \to B) \to (A \to B') \qquad \qquad \psi: (A \to B') \to (A \to B)$$

$$f \mapsto g \circ f \qquad \qquad f \mapsto g^{-1} \circ f$$

$$\psi \circ \phi(f) \stackrel{\triangle}{=} g^{-1} \circ (g \circ f) \stackrel{\triangle}{=} (g^{-1} \circ g) \circ f = \operatorname{id} \circ f$$

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma

If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof (attempt).

Writing $g: B \simeq B'$, we define

$$\phi: (A \to B) \to (A \to B') \qquad \qquad \psi: (A \to B') \to (A \to B)$$

$$f \mapsto g \circ f \qquad \qquad f \mapsto g^{-1} \circ f$$

$$\psi \circ \phi(f) \stackrel{.}{=} g^{-1} \circ (g \circ f) \stackrel{.}{=} (g^{-1} \circ g) \circ f = \operatorname{id} \circ f \stackrel{.}{=} f$$

Subtle point: in order to deduce $(A \to B) \simeq (A \to \mathsf{Path}(B))$ from $B \simeq \mathsf{Path}(B)$, we have used

Lemma If $B \simeq B'$ then $(A \rightarrow B) \simeq (A \rightarrow B')$.

Proof (attempt). Writing $g: B \simeq B'$, we define

$$\phi: (A \to B) \to (A \to B') \qquad \psi: (A \to B') \to (A \to B)$$

$$f \mapsto g \circ f \qquad f \mapsto g^{-1} \circ f$$

and we have

$$\psi \circ \phi(f) \stackrel{.}{=} g^{-1} \circ (g \circ f) \stackrel{.}{=} (g^{-1} \circ g) \circ f = \operatorname{id} \circ f \stackrel{.}{=} f$$

Excepting that we do not have $g^{-1} \circ g = \operatorname{id}$ but only $g^{-1} \circ g \sim \operatorname{id}$...

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2]) If $B \simeq B'$ then $(A \to B) \simeq (A \to B')$.

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2]) If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof.

By univalence, from $e: B \simeq B'$ we deduce ua e: B = B'

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2]) If
$$B \simeq B'$$
 then $(A \rightarrow B) \simeq (A \rightarrow B')$.

Proof.

By univalence, from $e:B\simeq B'$ we deduce ua e:B=B' and thus

$$\mathsf{ap}\left(\lambda X.A o X
ight)(\mathsf{ua}\;e) \quad : \quad (A o B)=(A o B')$$

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2]) If
$$B \simeq B'$$
 then $(A \to B) \simeq (A \to B')$.

Proof.

By univalence, from $e:B\simeq B'$ we deduce ua e:B=B' and thus

$$ap(\lambda X.A \rightarrow X)(ua\ e)$$
 : $(A \rightarrow B) = (A \rightarrow B')$

This proof is not entirely satisfactory, we would rather show that the previous

$$\phi: (A \to B) \to (A \to B')$$

is an equivalence, which can be done by equivalence induction (which requires univalence), see the labs.

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2]) If
$$B \simeq B'$$
 then $(A \rightarrow B) \simeq (A \rightarrow B')$.

Proof.

By univalence, from $e:B\simeq B'$ we deduce ua e:B=B' and thus

$$ap(\lambda X.A \rightarrow X)(ua\ e)$$
 : $(A \rightarrow B) = (A \rightarrow B')$

This proof is not entirely satisfactory, we would rather show that the previous

$$\phi: (A \rightarrow B) \rightarrow (A \rightarrow B')$$

is an equivalence, which can be done by equivalence induction (which requires univalence), see the labs. This works because we have $\operatorname{id} \circ f \triangleq f!$

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy (A, B)

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy(A, B)

$$\mathsf{Homotopy}(A,B) \quad \simeq \qquad A \to \mathsf{Path}(B) \qquad \simeq \quad A \to B \quad \simeq \quad \mathsf{Path}(A \to B)$$

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy(A, B)

$$\mathsf{Homotopy}(A,B) \simeq A o \mathsf{Path}(B) \simeq A o B \simeq \mathsf{Path}(A o B) \ (f,g,lpha)$$

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy (A, B)

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy (A, B)

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy (A, B)

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy(A, B)

Consider the image of *H* under the equivalence

It is the same as the image of

$$H_0 = (f, f, id)$$
 : Homotopy(A, B)

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy(A, B)

Consider the image of *H* under the equivalence

It is the same as the image of

$$H_0 = (f, f, id)$$
 : Homotopy(A, B)

By injectivity, we thus have $H_0 = H$

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy(A, B)

Consider the image of *H* under the equivalence

It is the same as the image of

$$H_0 = (f, f, id)$$
 : Homotopy(A, B)

By injectivity, we thus have $H_0 = H$ and thus f = g.

Suppose given $f g : A \to B$, a homotopy $\alpha : f \sim g$ can be seen as an element

$$H = (f, g, \alpha)$$
 : Homotopy (A, B)

Consider the image of *H* under the equivalence

It is the same as the image of

$$H_0 = (f, f, id)$$
 : Homotopy(A, B)

By injectivity, we thus have $H_0 = H$ and thus f = g.

We have shown $(f \sim g) \rightarrow (f = g)$ as desired.

We have shown function extensionality:

Theorem

Given $f g : A \rightarrow B$, we have

funext :
$$(f \sim g) \rightarrow (f = g)$$

This can be refined to

Theorem

Given $f g : A \rightarrow B$, we have

funext :
$$(f \sim g) \simeq (f = g)$$
 : happly

This can be refined to

Theorem

Given $f g : A \rightarrow B$, we have

funext :
$$(f \sim g) \simeq (f = g)$$
 : happly

Proof.

We have constructed an equivalence

$$\mathsf{Homotopy}(A,B) \simeq \mathsf{Path}(A \to B)$$

This can be refined to

Theorem

Given $f g : A \rightarrow B$, we have

funext :
$$(f \sim g)$$
 \simeq $(f = g)$: happly

Proof.

We have constructed an equivalence

$$\Sigma((f,g):(A\to B)^2).(f\sim g) \simeq \Sigma((f,g):(A\to B)^2).(f=g)$$

This can be refined to

Theorem

Given $f g : A \rightarrow B$, we have

funext :
$$(f \sim g) \simeq (f = g)$$
 : happly

Proof.

We have constructed an equivalence

$$\Sigma((f,g):(A\to B)^2).(f\sim g) \simeq \Sigma((f,g):(A\to B)^2).(f=g)$$

By previous theorem, this equivalence comes from a family of maps

$$\Sigma((f,g):(A\to B)^2)\to (f\sim g)\to (f=g)$$

This can be refined to

Theorem

Given $f g : A \rightarrow B$, we have

funext :
$$(f \sim g) \simeq (f = g)$$
 : happly

Proof.

We have constructed an equivalence

$$\Sigma((f,g):(A\to B)^2).(f\sim g) \simeq \Sigma((f,g):(A\to B)^2).(f=g)$$

By previous theorem, this equivalence comes from a family of maps

$$\Sigma((f,g):(A\to B)^2)\to (f\sim g)\to (f=g)$$

which ares equivalences (equivalences between total spaces are fiberwise so).

Dependent function extensionality

We would like to generalize function extensionality

$$(f = g) \simeq f \sim g$$

to dependent functions

$$fg$$
 : $(x:A) \rightarrow Bx$

Dependent function extensionality

We would like to generalize function extensionality

$$(f = g) \simeq f \sim g$$

to dependent functions

$$f g : (x : A) \rightarrow Bx$$

The previous proof does not easily generalize.

Dependent function extensionality

We would like to generalize function extensionality

$$(f = g) \simeq f \sim g$$

to dependent functions

$$f g : (x : A) \rightarrow Bx$$

The previous proof does not easily generalize.

But we can show that the non-dependent version implies the dependent one.

Dependent function extensionality

The plan is that

- non-dependent function extensionality
- implies weak function extensionality
- which implies (dependent) function extensionality

Weak function extensionality [Uni13, Definition 4.9.1]

The weak function extensionality principle is that for every $A:\mathcal{U}$ and $B:A\to\mathcal{U}$ we have

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Weak function extensionality [Uni13, Definition 4.9.1]

The weak function extensionality principle is that for every $A:\mathcal{U}$ and $B:A\to\mathcal{U}$ we have

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

This can be seen as a stronger form of the axiom of choice

$$((x:A) \to ||Bx||_{-1}) \to ||(x:A) \to Bx||_{-1}$$

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof (attempt). Suppose $(x : A) \rightarrow \mathsf{isContr}(B x)$.

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof (attempt).

Suppose $(x : A) \rightarrow \text{isContr}(B x)$. For each x : A, we have an element $b_x : B x$.

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof (attempt).

Suppose $(x : A) \xrightarrow{\cdot} isContr(Bx)$. For each x : A, we have an element $b_x : Bx$.

We want to show that $(x : A) \rightarrow Bx$ can be contracted to $b = \lambda x.b_x$.

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof (attempt).

Suppose $(x : A) \rightarrow \mathsf{isContr}(B x)$. For each x : A, we have an element $b_x : B x$.

We want to show that $(x : A) \to B x$ can be contracted to $b = \lambda x.b_x$.

Given $f:(x:A)\to Bx$, we want to show $b_x=f$ from $(x:A)\to b_x=fx$.

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof (attempt).

Suppose $(x : A) \rightarrow \mathsf{isContr}(B x)$. For each x : A, we have an element $b_x : B x$.

We want to show that $(x : A) \rightarrow Bx$ can be contracted to $b = \lambda x.b_x$.

Given $f:(x:A)\to Bx$, we want to show $b_x=f$ from $(x:A)\to b_x=fx$.

But this is precisely dependent funext...

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof.

Suppose $(x : A) \rightarrow \mathsf{isContr}(B x)$.

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof.

Suppose $(x : A) \rightarrow \mathsf{isContr}(B x)$. Since B x is contractible, we have B x = 1

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof.

Suppose $(x : A) \to \mathsf{isContr}(B x)$. Since B x is contractible, we have B x = 1 and we are left with showing

$$\mathsf{isContr}((x:A) \to 1)$$

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof.

Suppose $(x:A) \to \mathsf{isContr}(Bx)$. Since Bx is contractible, we have Bx = 1 and we are left with showing

$$\mathsf{isContr}((x:A) \to 1)$$

This can be contracted to $f: \lambda x.\star$.

Theorem

The weak function extensionality principle holds:

$$((x:A) \rightarrow \mathsf{isContr}(Bx)) \rightarrow \mathsf{isContr}((x:A) \rightarrow Bx)$$

Proof.

Suppose $(x : A) \rightarrow \mathsf{isContr}(B x)$. Since B x is contractible, we have B x = 1 and we are left with showing

$$isContr((x : A) \rightarrow 1)$$

This can be contracted to $f: \lambda x.\star$. Namely, given $g: A \to 1$, we have f x = g x and thus f = g by non-dependent funext.

Theorem

We finally have function extensionality:

funext :
$$(fg:(x:A) \rightarrow Bx) \rightarrow ((x:A) \rightarrow fx = gx) \rightarrow f = g$$

Theorem

We finally have function extensionality:

funext :
$$(fg:(x:A) \rightarrow Bx) \rightarrow ((x:A) \rightarrow fx = gx) \rightarrow f = g$$

Proof.

Suppose given f and g such that $f \sim g$.

Theorem

We finally have function extensionality:

funext :
$$(fg:(x:A) \rightarrow Bx) \rightarrow ((x:A) \rightarrow fx = gx) \rightarrow f = g$$

Proof.

Suppose given f and g such that $f \sim g$. f induces a function

$$f'$$
: $(x:A) \rightarrow \Sigma(y:B).(fx = y)$
 $x \mapsto$

Theorem

We finally have **function extensionality**:

funext :
$$(fg:(x:A) \rightarrow Bx) \rightarrow ((x:A) \rightarrow fx = gx) \rightarrow f = g$$

Proof.

Suppose given f and g such that $f \sim g$. f induces a function

$$f'$$
: $(x:A) \rightarrow \Sigma(y:B).(fx = y)$
 $x \mapsto (fx, refl)$

Theorem

We finally have function extensionality:

funext :
$$(fg:(x:A) \rightarrow Bx) \rightarrow ((x:A) \rightarrow fx = gx) \rightarrow f = g$$

Proof.

Suppose given f and g such that $f \sim g$. f induces a function

$$f'$$
: $(x : A) \rightarrow \Sigma(y : B).(f x = y)$
 $x \mapsto (f x, refl)$

and similarly for g.

Theorem

We finally have function extensionality:

funext :
$$(fg:(x:A) \rightarrow Bx) \rightarrow ((x:A) \rightarrow fx = gx) \rightarrow f = g$$

Proof.

Suppose given f and g such that $f \sim g$. f induces a function

$$f'$$
: $(x : A) \rightarrow \Sigma(y : B).(f x = y)$
 $x \mapsto (f x, refl)$

and similarly for g. The type $\Sigma(y:B).(f \times y)$ being contractible (singleton), by weak funext we have $isContr((x:A) \to \Sigma(y:B).(f \times y))$

Theorem

We finally have **function extensionality**:

funext :
$$(fg:(x:A) \rightarrow Bx) \rightarrow ((x:A) \rightarrow fx = gx) \rightarrow f = g$$

Proof.

Suppose given f and g such that $f \sim g$. f induces a function

$$f'$$
: $(x : A) \rightarrow \Sigma(y : B).(f x = y)$
 $x \mapsto (f x, refl)$

and similarly for g. The type $\Sigma(y:B).(fx=y)$ being contractible (singleton), by weak funext we have $isContr((x:A) \to \Sigma(y:B).(fx=y))$ thus f'=g'

Theorem

We finally have function extensionality:

funext :
$$(fg:(x:A) \rightarrow Bx) \rightarrow ((x:A) \rightarrow fx = gx) \rightarrow f = g$$

Proof.

Suppose given f and g such that $f \sim g$. f induces a function

$$f'$$
: $(x : A) \rightarrow \Sigma(y : B).(f x = y)$
 $x \mapsto (f x, refl)$

and similarly for g. The type $\Sigma(y:B).(f\times =y)$ being contractible (singleton), by weak funext we have $isContr((x:A) \to \Sigma(y:B).(f\times =y))$ thus f'=g' and thus f=g.

With a bit more work one can show

Theorem ([Uni13, Theorem 4.9.5])
We have function extensionality, i.e. an equivalence

funext :
$$((x : A) \rightarrow f x = g x) \simeq (f = g)$$
 : happly

for
$$f g : (x : A) \rightarrow B x$$
.

Bibliography i

[Lic14] Dan Licata.

Another proof that univalence implies function extensionality.

Homotopy Type Theory blog post, 2014.

https://homotopytypetheory.org/2014/02/17/

another-proof-that-univalence-implies-function-extensionality/.

[Uni13] The Univalent Foundations Program.

Homotopy Type Theory: Univalent Foundations of Mathematics.

Institute for Advanced Study, 2013.

https://homotopytypetheory.org/book, arXiv:1308.0729.