
Function extensionality

Samuel Mimram

2025

École polytechnique



Function extensionality

We can now construct useful non-trivial paths, such as Bool = Bool.

However, we cannot seem to be able to construct non-trivial paths between functions
excepting simple ones.

Recall that there is a natural notion for comparing functions f g : A → B :

f ∼ g =̂ (x : A) → f x = g x

1



Function extensionality

We can now construct useful non-trivial paths, such as Bool = Bool.

However, we cannot seem to be able to construct non-trivial paths between functions
excepting simple ones.

Recall that there is a natural notion for comparing functions f g : A → B :

f ∼ g =̂ (x : A) → f x = g x

1



Function extensionality

We can now construct useful non-trivial paths, such as Bool = Bool.

However, we cannot seem to be able to construct non-trivial paths between functions
excepting simple ones.

Recall that there is a natural notion for comparing functions f g : A → B :

f ∼ g =̂ (x : A) → f x = g x

1



Function extensionality

If we consider the negation
not : Bool → Bool

we can show
not ◦ not ∼ idBool

by reasoning by case analysis

• not (not false) = false

• not (not true) = true

But we cannot show
not ◦ not = idBool

More generally, we would like to show that f = g is the same as f ∼ g .

2



Function extensionality

If we consider the negation
not : Bool → Bool

we can show
not ◦ not ∼ idBool

by reasoning by case analysis

• not (not false) = false

• not (not true) = true

But we cannot show
not ◦ not = idBool

More generally, we would like to show that f = g is the same as f ∼ g .

2



Function extensionality

The only equalities we can easily show are the definitional ones.

For instance, for f : A → B , we have

id ◦f =̂ (λx . id (f x)) =̂ (λx .f x) =̂ f

and thus
refl : id ◦f = f

3



Equality vs homotopy

Given f g : A → B , we have a canonical map

happly : (f = g) → (f ∼ g)

defined by path induction by

happly refl =̂ λx . refl

We will show that this map is an equivalence, in particular we will have an inverse

funext : ((x : A) → f x = g x) → f = g

4



Equality vs homotopy

Given f g : A → B , we have a canonical map

happly : (f = g) → (x : A) → f x = g x

defined by path induction by

happly refl =̂ λx . refl

We will show that this map is an equivalence, in particular we will have an inverse

funext : ((x : A) → f x = g x) → f = g

4



Equality vs homotopy

Given f g : A → B , we have a canonical map

happly : (f = g) → (x : A) → f x = g x

defined by path induction by

happly refl =̂ λx . refl

We will show that this map is an equivalence, in particular we will have an inverse

funext : ((x : A) → f x = g x) → f = g

4



Equality vs homotopy

Given f g : A → B , we have a canonical map

happly : (f = g) → (x : A) → f x = g x

defined by path induction by

happly refl =̂ λx . refl

We will show that this map is an equivalence, in particular we will have an inverse

funext : ((x : A) → f x = g x) → f = g

4



Equality vs homotopy

The equivalence (f = g) ≃ (f ∼ g) can be read as the fact that we have

• an elimination rule:
happly : (f = g) → (f ∼ g)

• an introduction rule:
funext : (f ∼ g) → (f = g)

• a computation rule: for α : f ∼ g and x : A,

happly (funext α) x = α x

• a uniqueness rule: for p : f = h,

funext (λx . happly p x) = p

5



Equality vs homotopy

The equivalence (f = g) ≃ (f ∼ g) can be read as the fact that we have

• an elimination rule:
happly : (f = g) → (f ∼ g)

• an introduction rule:
funext : (f ∼ g) → (f = g)

• a computation rule: for α : f ∼ g and x : A,

happly (funext α) x = α x

• a uniqueness rule: for p : f = h,

funext (λx . happly p x) = p

5



Equality vs homotopy

The equivalence (f = g) ≃ (f ∼ g) can be read as the fact that we have

• an elimination rule:
happly : (f = g) → (f ∼ g)

• an introduction rule:
funext : (f ∼ g) → (f = g)

• a computation rule: for α : f ∼ g and x : A,

happly (funext α) x = α x

• a uniqueness rule: for p : f = h,

funext (λx . happly p x) = p

5



Equality vs homotopy

The equivalence (f = g) ≃ (f ∼ g) can be read as the fact that we have

• an elimination rule:
happly : (f = g) → (f ∼ g)

• an introduction rule:
funext : (f ∼ g) → (f = g)

• a computation rule: for α : f ∼ g and x : A,

happly (funext α) x = α x

• a uniqueness rule: for p : f = h,

funext (λx . happly p x) = p 5



Function extensionality

There is no simple way of constructing the map

funext : (f ∼ g) → (f = g)

Intuitively, we should be able to do the following:

f =̂ λx .f x = λx .g x =̂ g

where the middle step is something like

ap (λy .λx .y) (h x)

but without proper α-conversion...

6



Function extensionality

There is no simple way of constructing the map

funext : (f ∼ g) → (f = g)

Intuitively, we should be able to do the following:

f =̂ λx .f x = λx .g x =̂ g

where the middle step is something like

ap (λy .λx .y) (h x)

but without proper α-conversion...

6



Alternative plan

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e.

Σ(f g : A → B).(f = g) ≃ Σ(f g : A → B).(f ∼ g)

If we consider the types

Path(A) =̂ Σ(x y : A).(x = y)

Homotopy(A,B) =̂ Σ(f g : A).(f ∼ g)

we want to show
Path(A → B) ≃ Homotopy(A,B)

which we can do by

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

7



Alternative plan

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e.

Σ(f g : A → B).(f = g) ≃ Σ(f g : A → B).(f ∼ g)

If we consider the types

Path(A) =̂ Σ(x y : A).(x = y)

Homotopy(A,B) =̂ Σ(f g : A).(f ∼ g)

we want to show
Path(A → B) ≃ Homotopy(A,B)

which we can do by

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

7



Alternative plan

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e.

Σ(f g : A → B).(f = g) ≃ Σ(f g : A → B).(f ∼ g)

If we consider the types

Path(A) =̂ Σ(x y : A).(x = y)

Homotopy(A,B) =̂ Σ(f g : A).(f ∼ g)

we want to show
Path(A → B) ≃ Homotopy(A,B)

which we can do by

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

7



Alternative plan

In particular, we obtain a function

Funext : Homotopy(A,B) → Path(A → B)

which to a homotopy associates a path

If we manage to show that the endpoints are respected, this induces

funext : (f g : A → B) → f ∼ g → f = g

by
funext f g α =̂ snd(Funext(f , g , α))

as required.

8



Alternative plan

In particular, we obtain a function

Funext : Homotopy(A,B) → Path(A → B)

which to a homotopy associates a path

If we manage to show that the endpoints are respected, this induces

funext : (f g : A → B) → f ∼ g → f = g

by
funext f g α =̂ snd(Funext(f , g , α))

as required.

8



Equivalences

The equivalences are easily shown.

We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B)

=̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A)

=̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y)

≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1

≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source)

and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B)

≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B

≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B)

≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???

9



Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) =̂ Σ(f g : A → B).Π(x : A).(f x = g x)

≃ Π(x : A).Σ(b1 b2 : B).(b1 = b2)

=̂ A → Path(B)

and
Path(A) =̂ Σ(x : A).Σ(y : B).(x = y) ≃ Σ(x : A).1 ≃ A

(i.e. we contract paths on their source) and thus

Path(A → B) ≃ A → B ≃ A → Path(B) ≃ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) → Path(A,B)

Where did we use univalence???
9



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f
ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f = id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→

g ◦ f
ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f = id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f

ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f = id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f
ψ : (A → B ′) → (A → B)

f 7→

g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f = id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f
ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f = id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f
ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f )

=̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f = id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f
ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f )

=̂ (g−1 ◦ g) ◦ f = id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f
ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f

= id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f
ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f = id ◦f

=̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f
ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f = id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id...

10



Equivalences

Subtle point: in order to deduce (A → B) ≃ (A → Path(B)) from B ≃ Path(B),
we have used

Lemma
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof (attempt).
Writing g : B ≃ B ′, we define

ϕ : (A → B) → (A → B ′)

f 7→ g ◦ f
ψ : (A → B ′) → (A → B)

f 7→ g−1 ◦ f

and we have

ψ ◦ ϕ(f ) =̂ g−1 ◦ (g ◦ f ) =̂ (g−1 ◦ g) ◦ f = id ◦f =̂ f

Excepting that we do not have g−1 ◦ g = id but only g−1 ◦ g ∼ id... 10



Equivalences

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2])
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof.
By univalence, from e : B ≃ B ′ we deduce ua e : B = B ′ and thus

ap (λX .A → X ) (ua e) : (A → B) = (A → B ′)

This proof is not entirely satisfactory, we would rather show that the previous

ϕ : (A → B) → (A → B ′)

is an equivalence, which can be done by equivalence induction (which requires
univalence), see the labs. This works because we have id ◦f =̂ f !

11



Equivalences

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2])
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof.
By univalence, from e : B ≃ B ′ we deduce ua e : B = B ′

and thus

ap (λX .A → X ) (ua e) : (A → B) = (A → B ′)

This proof is not entirely satisfactory, we would rather show that the previous

ϕ : (A → B) → (A → B ′)

is an equivalence, which can be done by equivalence induction (which requires
univalence), see the labs. This works because we have id ◦f =̂ f !

11



Equivalences

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2])
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof.
By univalence, from e : B ≃ B ′ we deduce ua e : B = B ′ and thus

ap (λX .A → X ) (ua e) : (A → B) = (A → B ′)

This proof is not entirely satisfactory, we would rather show that the previous

ϕ : (A → B) → (A → B ′)

is an equivalence, which can be done by equivalence induction (which requires
univalence), see the labs. This works because we have id ◦f =̂ f !

11



Equivalences

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2])
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof.
By univalence, from e : B ≃ B ′ we deduce ua e : B = B ′ and thus

ap (λX .A → X ) (ua e) : (A → B) = (A → B ′)

This proof is not entirely satisfactory, we would rather show that the previous

ϕ : (A → B) → (A → B ′)

is an equivalence, which can be done by equivalence induction (which requires
univalence), see the labs.

This works because we have id ◦f =̂ f !

11



Equivalences

The proof of the lemma is rather the following one:

Lemma ([Uni13, Lemma 4.9.2])
If B ≃ B ′ then (A → B) ≃ (A → B ′).

Proof.
By univalence, from e : B ≃ B ′ we deduce ua e : B = B ′ and thus

ap (λX .A → X ) (ua e) : (A → B) = (A → B ′)

This proof is not entirely satisfactory, we would rather show that the previous

ϕ : (A → B) → (A → B ′)

is an equivalence, which can be done by equivalence induction (which requires
univalence), see the labs. This works because we have id ◦f =̂ f ! 11



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α) λx .(f x , g x , α(x)) λx .f x λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α) λx .(f x , g x , α(x)) λx .f x λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α)

λx .(f x , g x , α(x)) λx .f x λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α) λx .(f x , g x , α(x))

λx .f x λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α) λx .(f x , g x , α(x)) λx .f x

λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α) λx .(f x , g x , α(x)) λx .f x λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α) λx .(f x , g x , α(x)) λx .f x λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α) λx .(f x , g x , α(x)) λx .f x λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H

and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α) λx .(f x , g x , α(x)) λx .f x λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Preservation of endpoints

Suppose given f g : A → B , a homotopy α : f ∼ g can be seen as an element

H =̂ (f , g , α) : Homotopy(A,B)

Consider the image of H under the equivalence

Homotopy(A,B) ≃ A → Path(B) ≃ A → B ≃ Path(A → B)

(f , g , α) λx .(f x , g x , α(x)) λx .f x λf .(f , f , refl)

It is the same as the image of

H0 =̂ (f , f , id) : Homotopy(A,B)

By injectivity, we thus have H0 = H and thus f = g .

We have shown (f ∼ g) → (f = g) as desired.

12



Function extensionality

We have shown function extensionality:

Theorem
Given f g : A → B , we have

funext : (f ∼ g) → (f = g)

13



Function extensionality

This can be refined to

Theorem
Given f g : A → B , we have

funext : (f ∼ g) ≃ (f = g) : happly

Proof.
We have constructed an equivalence

Homotopy(A,B) ≃ Path(A → B)

By previous theorem, this equivalence comes from a family of maps

Σ((f , g) : (A → B)2) → (f ∼ g) → (f = g)

which ares equivalences (equivalences between total spaces are fiberwise so).

14



Function extensionality

This can be refined to

Theorem
Given f g : A → B , we have

funext : (f ∼ g) ≃ (f = g) : happly

Proof.
We have constructed an equivalence

Homotopy(A,B) ≃ Path(A → B)

By previous theorem, this equivalence comes from a family of maps

Σ((f , g) : (A → B)2) → (f ∼ g) → (f = g)

which ares equivalences (equivalences between total spaces are fiberwise so).

14



Function extensionality

This can be refined to

Theorem
Given f g : A → B , we have

funext : (f ∼ g) ≃ (f = g) : happly

Proof.
We have constructed an equivalence

Σ((f , g) : (A → B)2).(f ∼ g) ≃ Σ((f , g) : (A → B)2).(f = g)

By previous theorem, this equivalence comes from a family of maps

Σ((f , g) : (A → B)2) → (f ∼ g) → (f = g)

which ares equivalences (equivalences between total spaces are fiberwise so).

14



Function extensionality

This can be refined to

Theorem
Given f g : A → B , we have

funext : (f ∼ g) ≃ (f = g) : happly

Proof.
We have constructed an equivalence

Σ((f , g) : (A → B)2).(f ∼ g) ≃ Σ((f , g) : (A → B)2).(f = g)

By previous theorem, this equivalence comes from a family of maps

Σ((f , g) : (A → B)2) → (f ∼ g) → (f = g)

which ares equivalences (equivalences between total spaces are fiberwise so).

14



Function extensionality

This can be refined to

Theorem
Given f g : A → B , we have

funext : (f ∼ g) ≃ (f = g) : happly

Proof.
We have constructed an equivalence

Σ((f , g) : (A → B)2).(f ∼ g) ≃ Σ((f , g) : (A → B)2).(f = g)

By previous theorem, this equivalence comes from a family of maps

Σ((f , g) : (A → B)2) → (f ∼ g) → (f = g)

which ares equivalences (equivalences between total spaces are fiberwise so). 14



Dependent function extensionality

We would like to generalize function extensionality

(f = g) ≃ f ∼ g

to dependent functions
f g : (x : A) → B x

The previous proof does not easily generalize.

But we can show that the non-dependent version implies the dependent one.

15



Dependent function extensionality

We would like to generalize function extensionality

(f = g) ≃ f ∼ g

to dependent functions
f g : (x : A) → B x

The previous proof does not easily generalize.

But we can show that the non-dependent version implies the dependent one.

15



Dependent function extensionality

We would like to generalize function extensionality

(f = g) ≃ f ∼ g

to dependent functions
f g : (x : A) → B x

The previous proof does not easily generalize.

But we can show that the non-dependent version implies the dependent one.

15



Dependent function extensionality

The plan is that

• non-dependent function extensionality

• implies weak function extensionality

• which implies (dependent) function extensionality

16



Weak function extensionality [Uni13, Definition 4.9.1]

The weak function extensionality principle is that for every A : U and B : A → U we
have

((x : A) → isContr(B x)) → isContr((x : A) → B x)

This can be seen as a stronger form of the axiom of choice

((x : A) → ∥B x∥−1) → ∥(x : A) → B x∥−1

17



Weak function extensionality [Uni13, Definition 4.9.1]

The weak function extensionality principle is that for every A : U and B : A → U we
have

((x : A) → isContr(B x)) → isContr((x : A) → B x)

This can be seen as a stronger form of the axiom of choice

((x : A) → ∥B x∥−1) → ∥(x : A) → B x∥−1

17



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof (attempt).
Suppose (x : A) → isContr(B x). For each x : A, we have an element bx : B x .
We want to show that (x : A) → B x can be contracted to b =̂ λx .bx .
Given f : (x : A) → B x , we want to show bx = f from (x : A) → bx = f x .
But this is precisely dependent funext...

18



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof (attempt).
Suppose (x : A) → isContr(B x).

For each x : A, we have an element bx : B x .
We want to show that (x : A) → B x can be contracted to b =̂ λx .bx .
Given f : (x : A) → B x , we want to show bx = f from (x : A) → bx = f x .
But this is precisely dependent funext...

18



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof (attempt).
Suppose (x : A) → isContr(B x). For each x : A, we have an element bx : B x .

We want to show that (x : A) → B x can be contracted to b =̂ λx .bx .
Given f : (x : A) → B x , we want to show bx = f from (x : A) → bx = f x .
But this is precisely dependent funext...

18



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof (attempt).
Suppose (x : A) → isContr(B x). For each x : A, we have an element bx : B x .
We want to show that (x : A) → B x can be contracted to b =̂ λx .bx .

Given f : (x : A) → B x , we want to show bx = f from (x : A) → bx = f x .
But this is precisely dependent funext...

18



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof (attempt).
Suppose (x : A) → isContr(B x). For each x : A, we have an element bx : B x .
We want to show that (x : A) → B x can be contracted to b =̂ λx .bx .
Given f : (x : A) → B x , we want to show bx = f from (x : A) → bx = f x .

But this is precisely dependent funext...

18



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof (attempt).
Suppose (x : A) → isContr(B x). For each x : A, we have an element bx : B x .
We want to show that (x : A) → B x can be contracted to b =̂ λx .bx .
Given f : (x : A) → B x , we want to show bx = f from (x : A) → bx = f x .
But this is precisely dependent funext...

18



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof.
Suppose (x : A) → isContr(B x). Since B x is contractible, we have B x = 1
and we are left with showing

isContr((x : A) → 1)

This can be contracted to f : λx .⋆. Namely, given g : A → 1, we have f x = g x and
thus f = g by non-dependent funext.

19



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof.
Suppose (x : A) → isContr(B x).

Since B x is contractible, we have B x = 1
and we are left with showing

isContr((x : A) → 1)

This can be contracted to f : λx .⋆. Namely, given g : A → 1, we have f x = g x and
thus f = g by non-dependent funext.

19



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof.
Suppose (x : A) → isContr(B x). Since B x is contractible, we have B x = 1

and we are left with showing
isContr((x : A) → 1)

This can be contracted to f : λx .⋆. Namely, given g : A → 1, we have f x = g x and
thus f = g by non-dependent funext.

19



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof.
Suppose (x : A) → isContr(B x). Since B x is contractible, we have B x = 1
and we are left with showing

isContr((x : A) → 1)

This can be contracted to f : λx .⋆. Namely, given g : A → 1, we have f x = g x and
thus f = g by non-dependent funext.

19



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof.
Suppose (x : A) → isContr(B x). Since B x is contractible, we have B x = 1
and we are left with showing

isContr((x : A) → 1)

This can be contracted to f : λx .⋆.

Namely, given g : A → 1, we have f x = g x and
thus f = g by non-dependent funext.

19



Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) → isContr(B x)) → isContr((x : A) → B x)

Proof.
Suppose (x : A) → isContr(B x). Since B x is contractible, we have B x = 1
and we are left with showing

isContr((x : A) → 1)

This can be contracted to f : λx .⋆. Namely, given g : A → 1, we have f x = g x and
thus f = g by non-dependent funext.

19



Function extensionality

Theorem
We finally have function extensionality:

funext : (f g : (x : A) → B x) → ((x : A) → f x = g x) → f = g

Proof.
Suppose given f and g such that f ∼ g . f induces a function

f ′ : (x : A) → Σ(y : B).(f x = y)

x 7→ (f x , refl)

and similarly for g . The type Σ(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) → Σ(y : B).(f x = y)) thus f ′ = g ′ and thus
f = g .

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (f g : (x : A) → B x) → ((x : A) → f x = g x) → f = g

Proof.
Suppose given f and g such that f ∼ g .

f induces a function

f ′ : (x : A) → Σ(y : B).(f x = y)

x 7→ (f x , refl)

and similarly for g . The type Σ(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) → Σ(y : B).(f x = y)) thus f ′ = g ′ and thus
f = g .

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (f g : (x : A) → B x) → ((x : A) → f x = g x) → f = g

Proof.
Suppose given f and g such that f ∼ g . f induces a function

f ′ : (x : A) → Σ(y : B).(f x = y)

x 7→

(f x , refl)

and similarly for g . The type Σ(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) → Σ(y : B).(f x = y)) thus f ′ = g ′ and thus
f = g .

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (f g : (x : A) → B x) → ((x : A) → f x = g x) → f = g

Proof.
Suppose given f and g such that f ∼ g . f induces a function

f ′ : (x : A) → Σ(y : B).(f x = y)

x 7→ (f x , refl)

and similarly for g . The type Σ(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) → Σ(y : B).(f x = y)) thus f ′ = g ′ and thus
f = g .

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (f g : (x : A) → B x) → ((x : A) → f x = g x) → f = g

Proof.
Suppose given f and g such that f ∼ g . f induces a function

f ′ : (x : A) → Σ(y : B).(f x = y)

x 7→ (f x , refl)

and similarly for g .

The type Σ(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) → Σ(y : B).(f x = y)) thus f ′ = g ′ and thus
f = g .

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (f g : (x : A) → B x) → ((x : A) → f x = g x) → f = g

Proof.
Suppose given f and g such that f ∼ g . f induces a function

f ′ : (x : A) → Σ(y : B).(f x = y)

x 7→ (f x , refl)

and similarly for g . The type Σ(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) → Σ(y : B).(f x = y))

thus f ′ = g ′ and thus
f = g .

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (f g : (x : A) → B x) → ((x : A) → f x = g x) → f = g

Proof.
Suppose given f and g such that f ∼ g . f induces a function

f ′ : (x : A) → Σ(y : B).(f x = y)

x 7→ (f x , refl)

and similarly for g . The type Σ(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) → Σ(y : B).(f x = y)) thus f ′ = g ′

and thus
f = g .

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (f g : (x : A) → B x) → ((x : A) → f x = g x) → f = g

Proof.
Suppose given f and g such that f ∼ g . f induces a function

f ′ : (x : A) → Σ(y : B).(f x = y)

x 7→ (f x , refl)

and similarly for g . The type Σ(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) → Σ(y : B).(f x = y)) thus f ′ = g ′ and thus
f = g .

20



Function extensionality

With a bit more work one can show

Theorem ([Uni13, Theorem 4.9.5])
We have function extensionality, i.e. an equivalence

funext : ((x : A) → f x = g x) ≃ (f = g) : happly

for f g : (x : A) → B x .

21



Bibliography i

[Lic14] Dan Licata.
Another proof that univalence implies function extensionality.
Homotopy Type Theory blog post, 2014.
https://homotopytypetheory.org/2014/02/17/
another-proof-that-univalence-implies-function-extensionality/.

[Uni13] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013.
https://homotopytypetheory.org/book, arXiv:1308.0729.

22

https://homotopytypetheory.org/2014/02/17/another-proof-that-univalence-implies-function-extensionality/
https://homotopytypetheory.org/2014/02/17/another-proof-that-univalence-implies-function-extensionality/
https://homotopytypetheory.org/book
https://arxiv.org/abs/1308.0729

