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We can now construct useful non-trivial paths, such as Bool = Bool.

However, we cannot seem to be able to construct non-trivial paths between functions
excepting simple ones.

Recall that there is a natural notion for comparing functions f g : A — B:

fr~g = (x:A)—fx=gx
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If we consider the negation

not : Bool — Bool

we can show

not o not ~ idggol
by reasoning by case analysis

e not (not false) = false

e not (not true) = true

But we cannot show

not o not = idggol

More generally, we would like to show that f = g is the same as f ~ g.



Function extensionality

The only equalities we can easily show are the definitional ones.

For instance, for f : A — B, we have
idof = (Ax.id (fx)) = (Ax.fx) = f

and thus
refl : idof =f
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Equality vs homotopy

Given f g : A— B, we have a canonical map
happly : (f=g) = (x: A) = fx=gx
defined by path induction by
happly refl = Ax.refl
We will show that this map is an equivalence, in particular we will have an inverse

funext: ((x : A) > fx=gx)—>f=g
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e an elimination rule:
happly : (f = g) = (f ~ g)

e an introduction rule;
funext: (f ~ g) — (f = g)

e a computation rule: for a: f ~ g and x : A,
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Equality vs homotopy

The equivalence (f = g) ~ (f ~ g) can be read as the fact that we have

an elimination rule:
happly : (f = g) = (f ~ g)

an introduction rule:
funext: (f ~ g) — (f = g)

a computation rule: for a: f ~ g and x : A,

happly (funext a) x = a x

a uniqueness rule: for p: f = h,

funext (Ax. happly px) = p 5
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Function extensionality

There is no simple way of constructing the map
funext: (f ~g) = (f = g)
Intuitively, we should be able to do the following:
fFE=Mxfx=XMxgx=g
where the middle step is something like
ap (Ay.Ax.y) (hx)

but without proper a-conversion...
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Alternative plan

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e.
Y(fg:A—=B)(f=g) =~ X(fg:A—B)(f~g)
If we consider the types
Path(A) = ZX(xy:A).(x=y)
Homotopy(A,B) = X(fg:A).(f~g)

we want to show
Path(A— B) =~ Homotopy(A, B)

which we can do by
Path(A—-B) ~ A—-B ~ A—Path(B) ~ Homotopy(A,B)



Alternative plan

In particular, we obtain a function
Funext : Homotopy(A,B) — Path(A— B)

which to a homotopy associates a path



Alternative plan

In particular, we obtain a function

Funext : Homotopy(A,B) — Path(A— B)
which to a homotopy associates a path
If we manage to show that the endpoints are respected, this induces
funext : (fg:A—B) — f~g — f=g

by
funext fga =  snd(Funext(f, g, a))

as required.
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Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A)X(y:B).(x=y) ~ X(x:A).1 ~ A
(i.e. we contract paths on their source) and thus
Path(A—B) =~ A—=B =~ A—Path(B) =~ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) — Path(A, B)

Where did we use univalence???
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Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define
»:(A—=B)—= (A= B) v: (A= B)— (A— B)
frgof fisgtof

and we have

Yoop(f)Z=g lo(gof)=(g tog)of=idof = f

1 1

Excepting that we do not have g=* o g =id but only g~ o g ~ id... O 10
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Equivalences

The proof of the lemma is rather the following one:

Lemma ([Unil3, Lemma 4.9.2])
If B~ B’ then (A— B) ~ (A— B').

Proof.
By univalence, from e : B ~ B’ we deduce ua e : B = B’ and thus

ap(AX.A—= X)(uae) : (A= B)=(A—B) O

This proof is not entirely satisfactory, we would rather show that the previous
¢:(A—B)— (A— B')

is an equivalence, which can be done by equivalence induction (which requires
univalence), see the labs. This works because we have id of = f! 11
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Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)
(f,g,a) Ax.(f x, g x, a(x)) Ax.f x ML(F, f,refl)

It is the same as the image of

Ho = (f,f,id) : Homotopy(A, B)
By injectivity, we thus have Hy = H and thus f = g.
We have shown (f ~ g) — (f = g) as desired.

12
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funext : (f~g) — (f=g)
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Proof.
We have constructed an equivalence
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Function extensionality

This can be refined to

Theorem
Given f g : A— B, we have

funext : (f~g) =~ (f=g) : happly

Proof.
We have constructed an equivalence

((f,g): (A= B))(f~g) =~ X((f.g): (A= B)).(f=¢g)
By previous theorem, this equivalence comes from a family of maps
T(f,g) (A= BY) = (f~g) = (f=g)

which ares equivalences (equivalences between total spaces are fiberwise so). O 4
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Dependent function extensionality

We would like to generalize function extensionality

to dependent functions

The previous proof does not easily generalize.

But we can show that the non-dependent version implies the dependent one.
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Dependent function extensionality

The plan is that

e non-dependent function extensionality
e implies weak function extensionality

e which implies (dependent) function extensionality
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Weak function extensionality [Unil3, Definition 4.9.1]

The weak function extensionality principle is that for every A: U and B : A — U we
have
((x : A) — isContr(B x)) — isContr((x : A) — B x)

This can be seen as a stronger form of the axiom of choice

((x:A) = IBx]-1) = [[(x : A) = Bx| 1
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Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof (attempt).
Suppose (x : A) — isContr(B x). For each x : A, we have an element by : B x.

We want to show that (x : A) — B x can be contracted to b = Ax.b.
Given f : (x : A) = Bx, we want to show by = f from (x : A) = by = f x.
But this is precisely dependent funext... O
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Proof.
Suppose (x : A) — isContr(B x). Since B x is contractible, we have Bx =1

and we are left with showing
isContr((x : A) — 1)

This can be contracted to f : Ax.x. Namely, given g : A — 1, we have f x = g x and
thus f = g by non-dependent funext. O

19



Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

Proof.
Suppose given f and g such that f ~ g.

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g
Proof.
Suppose given f and g such that f ~ g. f induces a function
' (x:A)=X(y:B)(fx=y)
X

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

and similarly for g.

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=¢g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

and similarly for g. The type X(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) = X(y : B).(f x =y))

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=¢g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

and similarly for g. The type X(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) = X(y : B).(fx =y)) thus f' = g’

20



Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

and similarly for g. The type X(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) = X(y : B).(f x =y)) thus f' = g’ and thus

f=g. O 0



Function extensionality

With a bit more work one can show

Theorem ([Unil3, Theorem 4.9.5])
We have function extensionality, i.e. an equivalence

funext : ((x:A)—=fx=gx) =~ (f=g) : happly

forfg:(x:A)— Bx.
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