Function extensionality

Samuel Mimram
2025

Ecole polytechnique

Function extensionality

We can now construct useful non-trivial paths, such as Bool = Bool.

Function extensionality

We can now construct useful non-trivial paths, such as Bool = Bool.

However, we cannot seem to be able to construct non-trivial paths between functions
excepting simple ones.

Function extensionality

We can now construct useful non-trivial paths, such as Bool = Bool.

However, we cannot seem to be able to construct non-trivial paths between functions
excepting simple ones.

Recall that there is a natural notion for comparing functions f g : A — B:

fr~g = (x:A)—fx=gx

Function extensionality

If we consider the negation
not : Bool — Bool

we can show

not o not ~ idggol

by reasoning by case analysis

e not (not false) = false

e not (not true) = true

But we cannot show

not o not = idggol

Function extensionality

If we consider the negation

not : Bool — Bool

we can show

not o not ~ idggol
by reasoning by case analysis

e not (not false) = false

e not (not true) = true

But we cannot show

not o not = idggol

More generally, we would like to show that f = g is the same as f ~ g.

Function extensionality

The only equalities we can easily show are the definitional ones.

For instance, for f : A — B, we have
idof = (Ax.id (fx)) = (Ax.fx) = f

and thus
refl : idof =f

Equality vs homotopy

Given f g : A— B, we have a canonical map

happly : (f = g) = (f ~ g)

Equality vs homotopy

Given f g : A— B, we have a canonical map

happly : (f =g) = (x: A) = fx =gx

Equality vs homotopy

Given f g : A— B, we have a canonical map
happly : (f =g) = (x: A) = fx =gx
defined by path induction by

happly refl = Ax.refl

Equality vs homotopy

Given f g : A— B, we have a canonical map
happly : (f=g) = (x: A) = fx=gx
defined by path induction by
happly refl = Ax.refl
We will show that this map is an equivalence, in particular we will have an inverse

funext: ((x : A) > fx=gx)—>f=g

Equality vs homotopy

The equivalence (f = g) ~ (f ~ g) can be read as the fact that we have

e an elimination rule:
happly : (f = g) = (f ~ g)

Equality vs homotopy

The equivalence (f = g) ~ (f ~ g) can be read as the fact that we have

e an elimination rule:
happly : (f = g) = (f ~ g)

e an introduction rule;
funext: (f ~ g) — (f = g)

Equality vs homotopy

The equivalence (f = g) ~ (f ~ g) can be read as the fact that we have

e an elimination rule:
happly : (f = g) = (f ~ g)

e an introduction rule;
funext: (f ~ g) — (f = g)

e a computation rule: for a: f ~ g and x : A,

happly (funext a) x = a x

Equality vs homotopy

The equivalence (f = g) ~ (f ~ g) can be read as the fact that we have

an elimination rule:
happly : (f = g) = (f ~ g)

an introduction rule:
funext: (f ~ g) — (f = g)

a computation rule: for a: f ~ g and x : A,

happly (funext a) x = a x

a uniqueness rule: for p: f = h,

funext (Ax. happly px) = p 5

Function extensionality

There is no simple way of constructing the map

funext: (f ~g) = (f = g)

Function extensionality

There is no simple way of constructing the map
funext: (f ~g) = (f = g)
Intuitively, we should be able to do the following:
fFE=Mxfx=XMxgx=g
where the middle step is something like
ap (Ay.Ax.y) (hx)

but without proper a-conversion...

Alternative plan

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e.
Y(fg:A—=B)(f=g) =~ X(fg:A—B)(f~g)

Alternative plan

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e
Y(fg:A—=B)(f=g) =~ X(fg:A—B)(f~g)

If we consider the types
Path(A) = ZX(xy:A).(x=y)
Homotopy(A,B) = X(fg:A).(f~g)

we want to show
Path(A— B) =~ Homotopy(A, B)

Alternative plan

The idea is to show the from [Lic14] is to show the property for all f and g at once, i.e.
Y(fg:A—=B)(f=g) =~ X(fg:A—B)(f~g)
If we consider the types
Path(A) = ZX(xy:A).(x=y)
Homotopy(A,B) = X(fg:A).(f~g)

we want to show
Path(A— B) =~ Homotopy(A, B)

which we can do by
Path(A—-B) ~ A—-B ~ A—Path(B) ~ Homotopy(A,B)

Alternative plan

In particular, we obtain a function
Funext : Homotopy(A,B) — Path(A— B)

which to a homotopy associates a path

Alternative plan

In particular, we obtain a function

Funext : Homotopy(A,B) — Path(A— B)
which to a homotopy associates a path
If we manage to show that the endpoints are respected, this induces
funext : (fg:A—B) — f~g — f=g

by
funext fga = snd(Funext(f, g, a))

as required.

Equivalences

The equivalences are easily shown.

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B)

Equivalences

The equivalences are easily shown. We have

Homotopy(A,B) = X(fg:A— B).N(x:A).(fx=gx)

Equivalences

The equivalences are easily shown. We have
Homotopy(A,B) = X(fg:A— B).N(x:A).(fx=gx)
~ [(x:A).X(byby: B).(by = b2)

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A)

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A).X(y:B).(x=y)

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A)X(y:B).(x=y) =~ X(x:A).

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A)X(y:B).(x=y) ~ X(x:A).1 ~ A

(i.e. we contract paths on their source)

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A)X(y:B).(x=y) ~ X(x:A).1 ~ A
(i.e. we contract paths on their source) and thus

Path(A — B)

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A)X(y:B).(x=y) ~ X(x:A).1 ~ A
(i.e. we contract paths on their source) and thus

Path(A—B) ~ A—B

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A)X(y:B).(x=y) ~ X(x:A).1 ~ A
(i.e. we contract paths on their source) and thus

Path(A—B) ~ A—B ~ A— Path(B)

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A)X(y:B).(x=y) ~ X(x:A).1 ~ A
(i.e. we contract paths on their source) and thus

Path(A—B) =~ A—=B =~ A—Path(B) =~ Homotopy(A,B)

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A)X(y:B).(x=y) ~ X(x:A).1 ~ A
(i.e. we contract paths on their source) and thus
Path(A—B) =~ A—=B =~ A—Path(B) =~ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) — Path(A, B)

Equivalences

The equivalences are easily shown. We have

Homotopy(A, B) Y(fg:A— B).N(x:A).(fx=gx)
M(x : A).X(b1 by : B).(b1 = bp)
A — Path(B)

>

> R

and
Path(A) = X(x:A)X(y:B).(x=y) ~ X(x:A).1 ~ A
(i.e. we contract paths on their source) and thus
Path(A—B) =~ A—=B =~ A—Path(B) =~ Homotopy(A,B)

from which we deduce

Funext : Homotopy(A,B) — Path(A, B)

Where did we use univalence???

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define

»:(A—=B)—= (A= B)
f—

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define

»:(A—=B)—= (A= B)
frsgof

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define

»:(A—=B)—= (A= B) v: (A= B)— (A— B)
f’—>g0f f —

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define

»:(A—=B)—= (A= B) v: (A= B)— (A— B)
frgof fisgtof

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define

»:(A—=B)—= (A= B) v: (A= B)— (A— B)
frgof fisgtof

and we have
Y o ¢(f)

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define

»:(A—=B)—= (A= B) v: (A= B)— (A— B)
frgof fisgtof

and we have
Yod(f)=g to(gof)

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define

»:(A—=B)—= (A= B) v: (A= B)— (A— B)
frgof fisgtof

and we have
pop(f)=gto(gof)= (g tog)of

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define

»:(A—=B)—= (A= B) v: (A= B)— (A— B)
frgof fisgtof

and we have
Yod(f)=gto(gof)=(gtog)of =idof

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define

»:(A—=B)—= (A= B) v: (A= B)— (A— B)
frgof fisgtof

and we have
pop(f)=glo(gof)=(glog)of =idof =f

10

Equivalences

Subtle point: in order to deduce (A — B) ~ (A — Path(B)) from B ~ Path(B),
we have used

Lemma
If B~ B' then (A— B) ~ (A— B’).

Proof (attempt).
Writing g : B ~ B’, we define
»:(A—=B)—= (A= B) v: (A= B)— (A— B)
frgof fisgtof

and we have

Yoop(f)Z=g lo(gof)=(g tog)of=idof = f

1 1

Excepting that we do not have g=* o g =id but only g~ o g ~ id... O 10

Equivalences

The proof of the lemma is rather the following one:

Lemma ([Unil3, Lemma 4.9.2])
If B~ B’ then (A— B) ~ (A— B').

11

Equivalences

The proof of the lemma is rather the following one:

Lemma ([Unil3, Lemma 4.9.2])
If B~ B’ then (A— B) ~ (A— B').

Proof.
By univalence, from e : B ~ B’ we deduce ua e : B = B’

11

Equivalences

The proof of the lemma is rather the following one:

Lemma ([Unil3, Lemma 4.9.2])
If B~ B’ then (A— B) ~ (A— B').

Proof.
By univalence, from e : B ~ B’ we deduce ua e : B = B’ and thus

ap(AX.A—= X)(uae) : (A= B)=(A—B) O

11

Equivalences

The proof of the lemma is rather the following one:

Lemma ([Unil3, Lemma 4.9.2])
If B~ B’ then (A— B) ~ (A— B').

Proof.
By univalence, from e : B ~ B’ we deduce ua e : B = B’ and thus

ap(AX.A—= X)(uae) : (A= B)=(A—B) O

This proof is not entirely satisfactory, we would rather show that the previous
¢:(A—B)— (A— B')
is an equivalence, which can be done by equivalence induction (which requires

univalence), see the labs. 1

Equivalences

The proof of the lemma is rather the following one:

Lemma ([Unil3, Lemma 4.9.2])
If B~ B’ then (A— B) ~ (A— B').

Proof.
By univalence, from e : B ~ B’ we deduce ua e : B = B’ and thus

ap(AX.A—= X)(uae) : (A= B)=(A—B) O

This proof is not entirely satisfactory, we would rather show that the previous
¢:(A—B)— (A— B')

is an equivalence, which can be done by equivalence induction (which requires
univalence), see the labs. This works because we have id of = f! 11

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element

H=(f,g,a) : Homotopy(A,B)

12

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)

12

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)
(f. g)

12

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)
(f,g,0) Ax.(f x, g x; a(x))

12

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)
(f.g,) Ax.(f x, g x, a(x)) Ax.f x

12

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)
(f,g,a) Ax.(f x, g x, a(x)) Ax.f x ML(F, f,refl)

12

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)
(f,g,a) Ax.(f x, g x, a(x)) Ax.f x ML(F, f,refl)

It is the same as the image of

Ho = (f,f,id) : Homotopy(A, B)

12

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)
(f,g,a) Ax.(f x, g x, a(x)) Ax.f x ML(F, f,refl)

It is the same as the image of
Ho = (f,f,id) : Homotopy(A, B)

By injectivity, we thus have Hy = H

12

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)
(f,g,a) Ax.(f x, g x, a(x)) Ax.f x ML(F, f,refl)

It is the same as the image of
Ho = (f,f,id) : Homotopy(A, B)

By injectivity, we thus have Hy = H and thus f = g.

12

Preservation of endpoints

Suppose given f g : A — B, a homotopy « : f ~ g can be seen as an element
H=(f,g,a) : Homotopy(A,B)
Consider the image of H under the equivalence

Homotopy(A, B) =~ A — Path(B) ~ A—B ~ Path(A— B)
(f,g,a) Ax.(f x, g x, a(x)) Ax.f x ML(F, f,refl)

It is the same as the image of

Ho = (f,f,id) : Homotopy(A, B)
By injectivity, we thus have Hy = H and thus f = g.
We have shown (f ~ g) — (f = g) as desired.

12

Function extensionality

We have shown function extensionality:

Theorem
Given f g : A— B, we have

funext : (f~g) — (f=g)

13

Function extensionality

This can be refined to

Theorem
Given f g : A— B, we have

funext : (f~g) =~ (f=g) : happly

14

Function extensionality

This can be refined to

Theorem
Given f g : A— B, we have

funext : (f~g) =~ (f=g) : happly

Proof.
We have constructed an equivalence

Homotopy(A,B) ~ Path(A — B)

14

Function extensionality

This can be refined to

Theorem
Given f g : A— B, we have

funext : (f~g) =~ (f=g) : happly

Proof.
We have constructed an equivalence

T((f.g): (A= BY)(f~g) =~ X((f.g): (A~ B)).(f=¢g)

14

Function extensionality

This can be refined to

Theorem
Given f g : A— B, we have

funext : (f~g) =~ (f=g) : happly

Proof.
We have constructed an equivalence

((f,g): (A= B))(f~g) =~ X((f.g): (A= B)).(f=¢g)
By previous theorem, this equivalence comes from a family of maps

X((f.g): (A= B)) > (f~g) = (f =g)

14

Function extensionality

This can be refined to

Theorem
Given f g : A— B, we have

funext : (f~g) =~ (f=g) : happly

Proof.
We have constructed an equivalence

((f,g): (A= B))(f~g) =~ X((f.g): (A= B)).(f=¢g)
By previous theorem, this equivalence comes from a family of maps
T(f,g) (A= BY) = (f~g) = (f=g)

which ares equivalences (equivalences between total spaces are fiberwise so). O 4

Dependent function extensionality

We would like to generalize function extensionality

to dependent functions

15

Dependent function extensionality

We would like to generalize function extensionality

to dependent functions

The previous proof does not easily generalize.

15

Dependent function extensionality

We would like to generalize function extensionality

to dependent functions

The previous proof does not easily generalize.

But we can show that the non-dependent version implies the dependent one.

15

Dependent function extensionality

The plan is that

e non-dependent function extensionality
e implies weak function extensionality

e which implies (dependent) function extensionality

16

Weak function extensionality [Unil3, Definition 4.9.1]

The weak function extensionality principle is that for every A: U and B : A — U we
have
((x : A) — isContr(B x)) — isContr((x : A) — B x)

17

Weak function extensionality [Unil3, Definition 4.9.1]

The weak function extensionality principle is that for every A: U and B : A — U we
have
((x : A) — isContr(B x)) — isContr((x : A) — B x)

This can be seen as a stronger form of the axiom of choice

((x:A) = IBx]-1) = [[(x : A) = Bx| 1

17

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

18

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof (attempt).
Suppose (x : A) — isContr(B x).

18

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof (attempt).
Suppose (x : A) — isContr(B x). For each x : A, we have an element by : B x.

18

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof (attempt).
Suppose (x : A) — isContr(B x). For each x : A, we have an element by : B x.

We want to show that (x : A) — B x can be contracted to b = Ax.b.

18

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof (attempt).
Suppose (x : A) — isContr(B x). For each x : A, we have an element by : B x.

We want to show that (x : A) — B x can be contracted to b = Ax.b.
Given f : (x : A) = Bx, we want to show by = f from (x : A) = by = f x.

18

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof (attempt).
Suppose (x : A) — isContr(B x). For each x : A, we have an element by : B x.

We want to show that (x : A) — B x can be contracted to b = Ax.b.
Given f : (x : A) = Bx, we want to show by = f from (x : A) = by = f x.
But this is precisely dependent funext... O

18

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

19

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof.
Suppose (x : A) — isContr(B x).

19

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof.
Suppose (x : A) — isContr(B x). Since B x is contractible, we have Bx =1

19

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof.
Suppose (x : A) — isContr(B x). Since B x is contractible, we have Bx =1

and we are left with showing
isContr((x : A) — 1)

19

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof.
Suppose (x : A) — isContr(B x). Since B x is contractible, we have Bx =1

and we are left with showing
isContr((x : A) — 1)

This can be contracted to f : Ax.x.

19

Weak function extensionality

Theorem
The weak function extensionality principle holds:

((x : A) — isContr(B x)) — isContr((x : A) — Bx)

Proof.
Suppose (x : A) — isContr(B x). Since B x is contractible, we have Bx =1

and we are left with showing
isContr((x : A) — 1)

This can be contracted to f : Ax.x. Namely, given g : A — 1, we have f x = g x and
thus f = g by non-dependent funext. O

19

Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

20

Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

Proof.
Suppose given f and g such that f ~ g.

20

Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g
Proof.
Suppose given f and g such that f ~ g. f induces a function
' (x:A)=X(y:B)(fx=y)
X

20

Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

20

Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

and similarly for g.

20

Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=¢g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

and similarly for g. The type X(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) = X(y : B).(f x =y))

20

Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=¢g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

and similarly for g. The type X(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) = X(y : B).(fx =y)) thus f' = g’

20

Function extensionality

Theorem
We finally have function extensionality:

funext : (fg:(x:A)—=Bx) — ((x:A)—>fx=gx) — f=g

Proof.
Suppose given f and g such that f ~ g. f induces a function

' (x:A)=X(y:B)(fx=y)
x — (f x, refl)

and similarly for g. The type X(y : B).(f x = y) being contractible (singleton), by
weak funext we have isContr((x : A) = X(y : B).(f x =y)) thus f' = g’ and thus

f=g. O 0

Function extensionality

With a bit more work one can show

Theorem ([Unil3, Theorem 4.9.5])
We have function extensionality, i.e. an equivalence

funext : ((x:A)—=fx=gx) =~ (f=g) : happly

forfg:(x:A)— Bx.

21

Bibliography i

[Lic14]

[Uni13]

Dan Licata.

Another proof that univalence implies function extensionality.
Homotopy Type Theory blog post, 2014.
https://homotopytypetheory.org/2014/02/17/
another-proof-that-univalence-implies-function-extensionality/

The Univalent Foundations Program.

Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013.
https://homotopytypetheory.org/book, arXiv:1308.0729

22

https://homotopytypetheory.org/2014/02/17/another-proof-that-univalence-implies-function-extensionality/
https://homotopytypetheory.org/2014/02/17/another-proof-that-univalence-implies-function-extensionality/
https://homotopytypetheory.org/book
https://arxiv.org/abs/1308.0729

