
Univalence

Samuel Mimram

2025

École polytechnique



Contractible types

We have seen that a type is contractible when it is equivalent to 1: for instance

∥Bool ∥−1 ≃ 1

i.e. (roughly)
≃

However, nothing guarantees that we cannot distinguish between ∥Bool ∥−1 and 1.

1



Constructing identities

For now, we do not have a way of constructing non-trivial identities.

For instance, we have no way to show

Bool = 1 ⊔ 1

(even though we can show that they are equivalent).

2



One solution for everything

UNIVALENCE

3



Univalence

Lemma
We have a function

idtoequiv : (A = B) → (A ≃ B)

Proof (non-satisfactory computationally).
We could define it by path induction by

idtoequiv(refl) =̂ id

This is not entirely satisfactory, because the underlying function idtoequiv(p) : A → B

is not something definitionally known so that we have to do the lemmas again...

For instance: idtoequiv(p · q) = idtoequiv(q) ◦ idtoequiv(p).
4



Univalence

Lemma ([Uni13, Lemma 2.10.1])
We have a function

idtoequiv : (A = B) → (A ≃ B)

Proof.
We have a function

coe : (A = B) → (A → B)

defined by coe(refl) =̂ id or rather by coe =̂ transport (λX .X ) p x and we claim that
eq : (p : A = B) → isEquiv(coe(p)).
By path induction on p, we have to show isEquiv(id), which is easy.
And we define

idtoequiv(p) =̂ (coe(p), eq(p))

5



Univalence

Axiom
The univalence axiom states that, for AB : U , the function

idtoequiv : (A = B) → (A ≃ B)

is itself and equivalence.

6



Univalence

That idtoequiv : (A = B) → (A ≃ B) is an equivalence means that we have

• an elimination rule:
idtoequiv : (A = B) → (A ≃ B)

• an introduction rule:
ua : (A ≃ B) → A = B

• a computation rule: for f : A ≃ B and x : A,

coe (ua f ) x = f x

(and coe (ua f )−1 x = f −1 x)
• a uniqueness rule: for p : A = B

ua (coe p) = p 7



ua

A first family of applications is the construction of equalities, by ua.

For instance, we have
e : Bool ≃ 1 ⊔ 1

and therefore
ua e : Bool = 1 ⊔ 1

By transport, if we have P(Bool) then we have P(1 ⊔ 1), i.e. any property satisfied by
one is satisfied by the other.

More realistically, think of two implementations of natural numbers: unary and binary.

8



Independence under implementation

Suppose that we have two implementations of natural numbers Nunary and Nbinary.

We will be able to show that e : Nunary ≃ Nbinary.

And thus ua e : Nunary = Nbinary.

This means that any function working on one can be transported to a function working
on the other: given

pred : Nunary → Nunary

we have

pred′ =̂ transport (λX .X → X ) (ua e) (pred) : Nbinary → Nbinary

This is not magic:
pred′ = e ◦ pred ◦e−1

9



Homotopy invariance

Geometrically, this means that we cannot distinguish between two homotopy equivalent
types

A ≃ B

because we have
A = B

Otherwise said, all constructions are invariant under homotopy equivalence!

10



Univalence: universe levels

Axiom
The univalence axiom states that, for AB : Uℓ, the function

idtoequiv : (A = B) → (A ≃ B)

is itself and equivalence.

We can have A ≃ B for A : Uℓ and B : Uℓ′ ,
but A = B only makes sense at the same level.

11



Contractible types

We have seen earlier that a type A is contractible iff A ≃ 1. By univalence, we have

Lemma ([Uni13, Lemma 3.11.3])
Given a small contractible type A, we have A = 1.

Note: there are also large contractible types such as ∥U∥−1.

We also have

Lemma
Given a small type A such that ¬A, we have A = 0.

12



Incompatibility with the set-theoretic interpretation

We can also now start to construct some interesting non-trivial paths!

Consider the boolean negation function not : Bool → Bool.

We have not ◦ not = idBool.

Therefore we have an equivalence e : Bool ≃ Bool: Bool Bool

not

not

.

By univalence, we have a path p : Bool = Bool.

This path satisfies: coe p false = not false = true (by univalence computation).

p

Bool
f t

13



Incompatibility with the set-theoretic interpretation

It might be secretly the case that all the types we can constructs are sets?

Proposition ([Uni13, Example 3.1.9])
The universe is not a set.

Proof.
Suppose that U is a set. This implies that two paths p and refl of type Bool = Bool are
equal. Therefore we have

true = coe p false = coe refl false = false

Contradiction.

14



Incompatibility with classical logic

It might be secretly the case that the logic is classical?

Proposition ([Uni13, Corollary 3.2.7])
It is not the case that for every A : U , we have

A ⊔ ¬A

Proof.
It is well known that

(A : U) → A ⊔ ¬A

implies
(A : U) → ¬¬A → A

(it is in fact logically equivalent) and we do not have this (see next slide).

Note that we are parametric in A! 15



Incompatibility with classical logic

Proposition ([Uni13, Theorem 3.2.2])
It is not the case that for every A : U , we have

¬¬A → A

Proof.
Suppose that we have F : (A : U) → ¬¬A → A, in particular we have
f =̂ F Bool : ¬¬Bool → Bool.
With p : Bool = Bool the non-trivial path, we define g : transport (λX .¬¬X → X ) p f .

We have g = f by apd (λX .¬¬X → X )F p, i.e. for x : ¬¬Bool

not (f x) = f x

which is impossible. 16



Incompatibility with classical logic

We have see that we cannot assume the principle

(A : U) → A ⊔ ¬A

however, we can assume
(A : HProp) → A ⊔ ¬A

which is the right way of formulating excluded middle.

17



Decidable propositions

In fact, assuming that the logic is classical amounts to assuming that all propositions
are booleans.

Recall that a proposition A is decidable when A ⊔ ¬A holds.

Proposition
Decidable propositions are booleans.

Proof (sketch).
We want to show Σ(A : U).(isPropA× (A ⊔ ¬A)) ≃ Bool. From left-to-right we pick
true or false depending on if we have A or ¬A.
From right-to-left we pick the function picking 0 or 1 depending on the boolean.
The identity on Bool is simple, for the other side we need to use the fact that a
(resp. not) inhabited proposition is contractible and thus equal to 1 (resp. 0).

18



Equivalence induction

Equivalences behave like identities.
In particular, we have an analogous of J called equivalence induction:

Proposition ([Uni13, Corollary 5.8.5])
Suppose given a property P : {AB : U} → (A ≃ B) → U .
If for every A : U , we have rA : P idA, then for every e : A ≃ B we have P e.

Proof.
By path induction, we have f : (p : A = B) → P (idtoequiv p), namely f refl =̂ rA.
We thus have P (idtoequiv (ua e)) and thus P e by the computation rule for
univalence.

19



Bibliography i

[Uni13] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013.
https://homotopytypetheory.org/book, arXiv:1308.0729.

20

https://homotopytypetheory.org/book
https://arxiv.org/abs/1308.0729

