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Contractible types

We have seen that a type is contractible when it is equivalent to 1: for instance

||Bool||-1 =~ 1

i.e. (roughly)

However, nothing guarantees that we cannot distinguish between || Bool || and 1.



Constructing identities

For now, we do not have a way of constructing non-trivial identities.

For instance, we have no way to show
Bool = 1U1

(even though we can show that they are equivalent).



One solution for everything

UNIVALENCE



Univalence

Lemma
We have a function

idtoequiv. : (A=B)— (A~ B)
Proof ﬁnon-satisfactory computationally).
We could define it by path induction by

idtoequiv(refl) = id O

This is not entirely satisfactory, because the underlying function idtoequiv(p) : A — B
is not something definitionally known so that we have to do the lemmas again...

For instance: idtoequiv(p - q) = idtoequiv(q) o idtoequiv(p).



Univalence

Lemma ([Unil3, Lemma 2.10.1])
We have a function

idtoequiv. : (A=B)— (A~ B)

Proof.
We have a function

coe: (A=B)— (A— B)
defined by coe(refl) = id or rather by coe = transport (AX.X) px and we claim that
eq: (p: A= B) — isEquiv(coe(p)).
By path induction on p, we have to show isEquiv(id), which is easy.

And we define
idtoequiv(p) = (coe(p), eq(p)) O



Univalence

Axiom
The univalence axiom states that, for AB : U, the function

idtoequiv. : (A=B)— (A~ B)

is itself and equivalence.



Univalence

That idtoequiv : (A = B) — (A ~ B) is an equivalence means that we have

e an elimination rule:
idtoequiv: (A= B) - (A~ B)

e an introduction rule;
ua: (A~B)—-A=8B

e a computation rule: for f : A~ B and x : A,
coe(ua f)x =fx

(and coe (ua f) 1 x = f~1x)

® a uniqueness rule: for p: A= B

ua(coe p) = p 7



A first family of applications is the construction of equalities, by ua.

For instance, we have
e : Bool ~ 1U1

and therefore
uae : Bool = 1U01

By transport, if we have P(Bool) then we have P(1111), i.e. any property satisfied by
one is satisfied by the other.

More realistically, think of two implementations of natural numbers: unary and binary.



Independence under implementation

Suppose that we have two implementations of natural numbers Ny,ary and Npinary.
We will be able to show that e : Nunary >~ Npinary-
And thus ua e : Nynary = Ninary-

This means that any function working on one can be transported to a function working
on the other: given
pred Nunalry - Nunary

we have
pred” = transport (AX.X — X) (ua €)(pred) :  Npinary = Niinary

This is not magic:
pred = eopredoe? 9



Homotopy invariance

Geometrically, this means that we cannot distinguish between two homotopy equivalent

types
A

12

B

because we have

Otherwise said, all constructions are invariant under homotopy equivalence!
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Univalence: universe levels

Axiom
The univalence axiom states that, for A B : U, the function

idtoequiv. : (A=B)— (A~ B)

is itself and equivalence.

We can have A ~ B for A: Uy and B : Uy,
but A = B only makes sense at the same level.
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Contractible types

We have seen earlier that a type A is contractible iff A ~ 1. By univalence, we have

Lemma ([Unil3, Lemma 3.11.3])
Given a small contractible type A, we have A = 1.

Note: there are also large contractible types such as ||U/||_1.
We also have

Lemma
Given a small type A such that —A, we have A = 0.
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Incompatibility with the set-theoretic interpretation

We can also now start to construct some interesting non-trivial paths!
Consider the boolean negation function not : Bool — Bool.

We have not o not = idgyg|.

not
0

Therefore we have an equivalence e : Bool ~ Bool: Bool Bool .
K —

not

By univalence, we have a path p : Bool = Bool.

This path satisfies: coe p false = not false = true (by univalence computation).

Bool %
p
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Incompatibility with the set-theoretic interpretation

It might be secretly the case that all the types we can constructs are sets?

Proposition ([Unil3, Example 3.1.9])
The universe is not a set.

Proof.
Suppose that U is a set. This implies that two paths p and refl of type Bool = Bool are
equal. Therefore we have

true = coe p false = coe refl false = false

Contradiction. O
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Incompatibility with classical logic

It might be secretly the case that the logic is classical?

Proposition ([Unil3, Corollary 3.2.7])
It is not the case that for every A : U, we have

ALl -A

Proof.
It is well known that

(A:U) = AU-A

implies
(A:U)————A—=A

(it is in fact logically equivalent) and we do not have this (see next slide). O

Note that we are parametric in Al 1s



Incompatibility with classical logic

Proposition ([Unil3, Theorem 3.2.2])
It is not the case that for every A : U, we have

—-—A = A

Proof.
Suppose that we have F : (A:U) — ——A — A, in particular we have

f = F Bool : == Bool — Bool.
With p : Bool = Bool the non-trivial path, we define g : transport (AX.=—=X — X) pf.

We have g = f by apd (AX.—=X — X) F p, i.e. for x : == Bool
not(f x) =fx

which is impossible. O 16



Incompatibility with classical logic

We have see that we cannot assume the principle
(A:U) - AU-A

however, we can assume
(A:HProp) — AL-A

which is the right way of formulating excluded middle.
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Decidable propositions

In fact, assuming that the logic is classical amounts to assuming that all propositions

are booleans.

Recall that a proposition A is decidable when A LI —A holds.

Proposition
Decidable propositions are booleans.

Proof (sketch).

We want to show ¥ (A : U).(isProp A x (AL —A)) ~ Bool. From left-to-right we pick
true or false depending on if we have A or —A.

From right-to-left we pick the function picking 0 or 1 depending on the boolean.

The identity on Bool is simple, for the other side we need to use the fact that a

(resp. not) inhabited proposition is contractible and thus equal to 1 (resp. 0). O
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Equivalence induction

Equivalences behave like identities.

In particular, we have an analogous of J called equivalence induction:
Proposition ([Unil3, Corollary 5.8.5])

Suppose given a property P: {AB:U} — (A~ B) = U.

If for every A : U, we have ra : P ida, then for every e : A~ B we have P e.

Proof.
By path induction, we have f : (p: A= B) — P (idtoequiv p), namely f refl = rx.

We thus have P (idtoequiv (ua €)) and thus P e by the computation rule for
univalence. O
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