Samuel Mimram

2025

École polytechnique

Constructing identities

For now, we cannot construct all the useful identities we would need.

In fact, nothing forces (yet) equality to be non-trivial and thus useful: for instance, we have a set-theoretic model.

In order to fix this, we will add the univalence axiom which roughly states:

equivalent types are equal.

We first need to make precise what we mean by equivalence.

Contractible types

The types

 $\stackrel{\times}{\cdot}$ and $\stackrel{a}{\cdot}$ $\stackrel{b}{\cdot}$

respectively correspond to

- one point x
- two points a and b which are equal

We therefore expect them to be identified, i.e. equal.

However the following space should not be identified to them

because there are 2 (actually, \mathbb{Z}) identifications of a and b. But $\overset{a}{\smile}$ is trivial.

When do we expect two types to be equivalent?

• contractible types: always

• propositions: when they are equivalent

$$(A \rightarrow B) \wedge (B \rightarrow A)$$

- sets: when isomorphic
- ..

We expect that the following notion is suitable:

Definition

A map $f: A \rightarrow B$ is an **isomorphism** when there exists $g: B \rightarrow A$ such that

$$g \circ f = \mathrm{id}_A$$
 and $f \circ g = \mathrm{id}_B$.

Excepting that we need to make sure that details are right:

- we have to make sure that we can compare functions in the right way (we don't want to assume funext)
- we have to make sure that we can say "exists",
 i.e. being a quasi-inverse is a proposition.

This is not the case here.

For the first point (comparison of functions), suppose that we want to show that $id : A \rightarrow A$ is an isomorphism with id as inverse.

We need to be able to show

$$id \circ id = id$$

which we cannot without function extensionality.

Homotopy

For the first problem there is an easy fix. Instead of requiring

$$g \circ f = id$$

we require

$$(x:A)\to g(fx)=x$$

what we will write

$$g \circ f \sim \mathsf{id}$$

Bi-invertible maps

For the second problem there is also an easy fix:

Definition

A map $f: A \to B$ is an **isomorphism** when there exists $g: B \to A$ and $g': B \to A$ such that

$$g \circ f \sim \mathsf{id}_{\mathcal{A}}$$

and
$$f \circ g' \sim \mathrm{id}_B$$
.

Let us understand why this is the case.

Part I

Equivalences in category theory

TODO: the fundamental groupoid is characterized by the fundamental group (when path connected)

Categories

Recall that a category C consists of

- a set of objects $x \in C$
- sets of morphisms C(x, y) for $x, y \in C$
- composition operations

$$x \xrightarrow{f} y \xrightarrow{g} z \longrightarrow x \xrightarrow{g \circ f} z$$

- identities
- satisfying axioms

A groupoid is a category in which every morphism is invertible.

Typical example: the fundamental groupoid of a space.

Functors between categories

A functor $F: C \rightarrow D$ between categories consists in

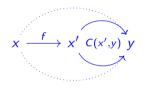
- a function $F: C \to D$ from the objects of C to those of D,
- for every x, y : C, a function $C(x, y) \to D(Fx, Fy)$
- in a way which respects composition and identities

A functor $F:C\to D$ is an **equivalence** when there exists $G:D\to C$ such that $G\circ F\sim \operatorname{Id}$ and $F\circ G\sim \operatorname{Id}_D$.

Groupoids

Lemma

Given invertible morphisms $f: x' \to x$ and $h: y \to y'$ in a category C, we have $C(x,y) \cong C(x',y)$:



Proof.

We have maps

$$C(x',y) \rightarrow C(x,y)$$
 $C(x,y) \rightarrow C(x',y)$ $g \mapsto g \circ f$ $g \mapsto g \circ f^{-1}$

Groupoids and groups

A groupoid is **connected** when there is a morphism $f_{x,y}: x \to y$ between any two objects x, y.

Proposition

Given a groupoid C and an object x, we have a group C(x,x).

When C is connected, we have $\phi_{y,z}: C(y,z) \stackrel{\sim}{\to} C(x,x)$ and composition corresponds to multiplication: for $f \in C(y,z)$ and g: C(z,w), we have $\phi(g \circ f) = \phi g \circ \phi f$.

In particular $C(y,y) \cong C(x,x)$ as a group.

Part II

Equivalences in topology

Let's investigate the situation on the topological side.

Topological spaces are difficult to study and classify, which should instead study some equivalence classes of such spaces.

Identity

The strict notion of equality is clearly too fine: for instance, we want to identify the spaces

Homeomorphisms

An **homeomorphism** $f: A \rightarrow B$ is a continuous map admitting a continuous inverse.

For instance,

but

Homotopy

A homotopy between two maps $f, g : A \rightarrow B$ is a continuous map

$$\alpha: I \to A \to B$$

with I = [0, 1], such that

$$\alpha \, 0 = f$$

$$\alpha \mathbf{1} = \mathbf{g}$$

We can also see this as a continuous map

$$\alpha: A \rightarrow I \rightarrow B$$

which means that for every $x \in A$ we should have paths

$$f x = g x$$

Homotopy equivalences

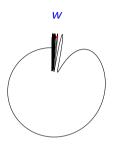
A homotopy equivalence $f:A\to B$ is a continuous map such that there is a continuous map $g:B\to A$ with $g\circ f\sim \operatorname{id}$ and $f\circ g\sim \operatorname{id}$.

For instance

Weak and homotopy equivalences in topology

- fundamental group (quotient by homotopy = path between paths)
- higher groups
- weak homotopy equivalences
- existence of a whe is reflexive and transitive, but not symmetric in general
- homotopy equivalences
- homotopy equivalence in topology

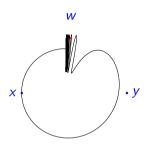
The Warsaw circle



Consider the extended topologist's sine curve aka the Warsaw circle W, which consists of the following points in \mathbb{C} :

$$W = \left\{ \left(1 + \frac{1}{2}\sin\left(\frac{1}{\theta}\right)\right) e^{i\theta} \mid \theta \in]0, 2\pi] \right\}$$

The Warsaw circle



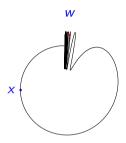
Given two points x and y, there is no continuous path from x to y going through w.

As a consequence, there is no non-trivial map $p: S^1 \to W$.

Therefore $\pi_1(W) = 1$.

More generally $\pi_k(W) = 1$, and W is thus weakly equivalent to 1.

The Warsaw circle



Consider the map $f: 1 \to W$ pointing at x. We have seen that this is a weak homotopy equivalence.

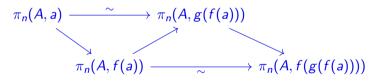
But this is not a homotopy equivalence: we would need a map $g:W\to 1$ such that $f\circ g\sim \mathrm{id}_W$, i.e. a family of paths $p_y:y\leadsto x$ continuous in y, but one of those paths would have to go through w!

The Whitehead theorem

Lemma

Every homotopy equivalence is a weak homotopy equivalence.

Proof. We have



By the 2-out-of-6 property, all the diagonal maps are equivalences (the first one in particular).

CW complexes

Definition

S¹, S², Mobius, torus, Klein

The Whitehead theorem

Theorem ([Whi49a, Whi49b])

A map $f: A \to B$ between CW-complexes A and B is a homotopy equivalence iff it is a weak homotopy equivalence.

Theorem (CW approximation)

For every space A there exists a space \tilde{A} and a weak homotopy equivalence $\tilde{A} \to A$.

Part III

Equivalences

Homotopies

A **homotopy** between two functions $f g : (x : A) \rightarrow B(x)$ is a function of type

$$(f \sim g) \quad \hat{=} \quad (x : A) \rightarrow f x = g x$$

Homotopies

Lemma ([Uni13, Lemma 2.4.2]) Homotopy is an equivalence relation: we have

- reflexivity: $f \sim f$
- symmetry: $f \sim g \rightarrow g \sim f$
- ullet transitivity: $f\sim g
 ightarrow g\sim h
 ightarrow f\sim h$

for
$$f g h : (x : A) \rightarrow B(x)$$
.

Proof.

We can consider: λx . refl : $(x : A) \rightarrow f x = f x$

and
$$\lambda p.\lambda x.(px)^-$$
: $((x:A) \to fx = gx) \to (x:A) \to gx = fx$

ar

and
$$\lambda p. \lambda q. \lambda x \to p \, x \cdot q \, x \qquad : \qquad ((x:A) \to f \, x = g \, x) \to ((x:A) \to g \, x = h \, x) \to (x:A) \to f \, \mathfrak{P} = 0$$

Homotopies: a 2-category

We have a **2-category** categories, functors and natural transformations:

$$C \xrightarrow{F \atop G} \mathcal{D}$$

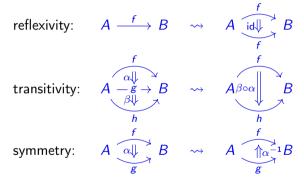
Similarly, we have something like a 2-category of types, functions and homotopies:

$$A \xrightarrow{g} B$$

with α : $f \sim g$.

Homotopies: a 2-category

The fact that \sim is an "equivalence relation" can be pictured as



Homotopies: whiskering

Proposition

As in a 2-category, we also have whiskering compositions:

left whiskering:

$$A \xrightarrow{f} B \xrightarrow{g'} C \qquad \rightsquigarrow \qquad A \xrightarrow{g' \circ f} C$$

right whiskering:

$$A \xrightarrow{f} B \xrightarrow{g} C \qquad \rightsquigarrow \qquad A \xrightarrow{g \circ f} C$$

Proof.

Define $\alpha_f x = \alpha(f x)$ and $g \alpha x = ap g(\alpha x)$.

Homotopy: naturality

Homotopies satisfy the following **naturality** property:

Lemma ([Uni13, Lemma 2.4.3])

Given functions $f g : A \to B$, homotopy $\alpha : f \sim g$ and equality p : x = y in A, we have

$$\alpha \mathbf{x} \cdot \mathsf{ap} \ \mathbf{g} \ \mathbf{p} = \mathsf{ap} \ \mathbf{f} \ \mathbf{p} \cdot \alpha \mathbf{y}$$

i.e.

$$\begin{array}{c|c}
f x & \xrightarrow{\alpha x} & g x \\
\text{ap } f p \parallel & & \| \text{ap } g p \\
f y & \xrightarrow{\alpha y} & g y
\end{array}$$

Proof.

By path induction on p, it is enough to show

$$\alpha x \cdot \text{ap } g \text{ refl} = \alpha x \cdot \text{refl} = \alpha x = \text{refl} \cdot \alpha x = \text{ap } f \text{ refl} \cdot \alpha x$$

Quasi-invertible maps

This suggests that we consider the following notion of equivalence:

Definition

For a map $f: A \rightarrow B$, a quasi-inverse is $g: B \rightarrow A$ such that

$$g \circ f \sim \mathrm{id}_A$$
 $f \circ g \sim \mathrm{id}_B$

We write

$$\mathsf{hasQInv}(f) \quad \hat{=} \quad \Sigma(g:B\to A).(g\circ f\sim \mathsf{id}\,A)\times (f\circ g\sim \mathsf{id}_B)$$

for the type of proofs that f admits a quasi-inverse.

The reason why this is not called an equivalence is that this <u>not</u> the right notion.

Being quasi-invertible is not a property: we might have two non-equal inverses g and g'!

We cannot say "is quasi-invertible"!

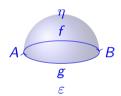
Quasi-invertible maps are not right

Consider

$$f:A\to B$$

 $f: A \to B$ $g: B \to A$ $\eta: g \circ f \sim id_A$ $\varepsilon: f \circ g \sim id_B$

which can be pictured as



One solution: fill in the sphere!

Definition

A half-adjoint equivalence is a map $f: A \to B$ such that there exists

$$g: B \to A$$

$$g: B \to A$$
 $\eta: g \circ f \sim \mathrm{id}_A$ $\varepsilon: f \circ g \sim \mathrm{id}_B$ $f \eta \sim \varepsilon f$

$$arepsilon: f\circ g \sim \mathsf{id}_B$$

$$f\eta\simarepsilon f$$

We will first see a simpler solution.

Bi-invertible equivalences

Definition

A map $f: A \to B$ is a **bi-invertible equivalence** where there are $g: B \to A$ and $h: B \to A$ such that

$$g \circ f \sim \mathrm{id}_A$$

$$f \circ h \sim \mathrm{id}_B$$

We write

$$\mathsf{isEquiv}(f) \quad \hat{=} \quad \Sigma(g:B\to A).(g\circ f\sim \mathsf{id}_A)\times \Sigma(h:B\to A).(f\circ h\sim \mathsf{id}_B)$$

Theorem

Being a bi-invertible equivalence is a property: isProp(isEquiv(f)).

Proof.

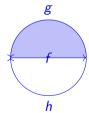
Wait some more!

Bi-invertible equivalences

Consider

$$f:A \to B$$
 $g:B \to A$ $\eta:g \circ f \sim \operatorname{id}_A$ $h:B \to A$ $\varepsilon:f \circ h \sim \operatorname{id}_B$

which can be pictured as



The data is contractible!

Quasi- vs bi-invertibles

Oddly, we have that

Proposition

Having a quasi-inverse and being bi-invertible are equivalent:

$$\mathsf{hasQInv}(f) o \mathsf{isEquiv}(f) \qquad \qquad \mathsf{isEquiv}(f) o \mathsf{hasQInv}(f)$$

This is very useful because quasi-invertible is a self-dual notion contrarily to bi-invertible!

Note: the pair of maps does not itself form an equivalence...

From quasi-invertibles to equivalences

A map

$$f:A\to B$$

which is quasi-invertible by

$$(\mathsf{g},\eta,arepsilon)$$

is also an equivalence by

$$(g, \eta, g, \varepsilon)$$

From equivalences to quasi-invertibles

Interlude

In a group, a left inverse of an element a is equal to any right inverse.

Proof.

Suppose given a, b and c such that ba = 1 and ac = 1. We want to show b = c.

We have

$$1 = ba$$

 $c = bac = b$

_

From equivalences to quasi-invertibles

Conversely, suppose given a bi-invertible equivalence $(f, g, \eta, h, \varepsilon)$.

We can build a quasi-invertible

$$(f, g, \eta, g, \varepsilon')$$

where we still have to define

$$\varepsilon'$$
: $f \circ g \sim id$

 $\varepsilon: f \circ h \sim id$

from

$$\eta: g \circ f \sim \mathsf{id}$$

From equivalences to quasi-invertibles

The left inverse g has to be homotopic to the right inverse h:

$$g \stackrel{g \varepsilon^{-}}{\sim} gfh \stackrel{\eta_h}{\sim} h$$

and we can therefore define ε' as the composite

$$fg \stackrel{fg \varepsilon^-}{\sim} fgfh \stackrel{f\eta_h}{\sim} fh \stackrel{\varepsilon}{\sim} id$$

More explicitly:

$$\varepsilon'x \quad \hat{=} \quad \operatorname{ap}(f \circ g)((\varepsilon x)^{-}) \cdot \operatorname{ap} f(\eta(hx)) \cdot \varepsilon x$$

Equivalences

We write

$$A \simeq B$$

for the type of equivalences between A and B:

$$A \simeq B \quad \hat{=} \quad \Sigma(f:A \to B)$$
. is Equiv (f)

Part IV

First properties of equivalences

Equivalences

Proposition ([Uni13, Lemma 2.4.12]) Being equivalent is an equivalence relation:

- $A \simeq A$,
- $A \simeq B$ implies $B \simeq A$,
- $A \simeq B$ and $B \simeq C$ implies $A \simeq C$.

Proof.

A function $f: A \to B$ is bi-invertible, thus quasi-invertible with inverse $f^{-1}: B \to A$, thus f^{-1} is quasi-invertible, thus f^{-1} is an equivalence.

Equivalences between propositions

Lemma ([Uni13, Lemma 3.3.3])

Two propositions A and B are equivalent if and only if they are logically equivalent:

$$(A \leftrightarrow B) \qquad \leftrightarrow \qquad (A \simeq B)$$

Proof.

The right-to-left implication is immediate.

For left-to-right, suppose given $f: A \to B$ and $g: B \to A$.

For x : A, we have g(f(x)) = x because A is a proposition and thus $g \circ f \sim id$.

Similarly, $f \circ g \sim id$.

Equivalences between propositions

We can even upgrade previous lemma:

Lemma

Given two propositions A and B, we have

$$(A \leftrightarrow B) \simeq (A \simeq B)$$

Proof.

We have that

$$(A \leftrightarrow B) \quad \hat{=} \quad (A \to B) \times (B \to A)$$

is a proposition and

$$(A \simeq B) \quad \hat{=} \quad \Sigma(f : A \to B)$$
. is Equiv (f)

is a proposition.

Equivalences between contractible types

Lemma ([Uni13, Lemma 3.11.3])
We have

$$isContr(A) \simeq (A \simeq 1)$$

Proof.

We have that isContr(A) is a proposition as well as

$$(A \simeq 1)$$
 $\hat{=}$ $\Sigma(f:A \to 1)$. isEquiv (f)

and therefore it is enough to show that

$$(A \simeq 1) \leftrightarrow \Sigma(f : A \to 1)$$
. isEquiv (f)

Standard equivalences

Lemma

Coproduct and product satisfy the expected equivalences:

$$0 \sqcup A \simeq A \simeq A \sqcup 0 \qquad (A \sqcup B) \sqcup C \simeq A \sqcup (B \sqcup B) \qquad A \sqcup B \simeq B \sqcup A$$
$$1 \times A \simeq A \simeq A \times 1 \qquad (A \times B) \times C \simeq A \times (B \times C) \qquad A \times B \simeq B \times A$$
$$0 \times A \simeq 0 \simeq A \times 0 \qquad A \times (B \sqcup C) \simeq (A \times B) \sqcup (A \times C)$$

Lemma ([Uni13, Section 2.15])

Arrow types satisfy the expected equivalences:

$$A \to 1 \simeq 1$$
 $X \to A \times B \simeq (X \to A) \times (X \to B)$
 $0 \to X \simeq 1$ $A \sqcup B \to X \simeq (A \to X) \times (B \to X)$
 $1 \to C \simeq C$ $(A \times B) \to C \simeq A \to (B \to C)$

The universal property of products

Let's focus on $(X \to A \times B) \simeq (X \to A) \times (X \to B)$: we have

$$\phi: (X \to A \times B) \longrightarrow (X \to A) \times (X \to B)$$
$$f \mapsto (\lambda x. \operatorname{fst}(f x), \lambda x. \operatorname{snd}(f x))$$

and

$$\psi: (X \to A) \times (X \to B) \to X \to A \times B$$

$$(f,g) \qquad x \mapsto (f \times g \times A)$$

satisfying

$$\psi \circ \phi(f) = \psi(\lambda x. \operatorname{fst}(f \, x), \lambda x. \operatorname{snd}(f \, x)) = \lambda x. (\operatorname{fst}(f \, x), \operatorname{snd}(f \, x)) = \lambda x. f \, x$$

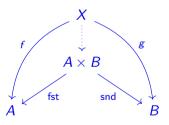
$$\phi \circ \psi(f, g) = \phi(\lambda x. (f \, x, g \, x)) = (\lambda x. \operatorname{fst}(f \, x, g \, x), \lambda x. \operatorname{snd}(f \, x, g \, x)) = (\lambda x. f \, x, \lambda x. g \, x) = (f, g)$$

The universal property of products

The equivalence

$$(X \rightarrow A \times B) \simeq (X \rightarrow A) \times (X \rightarrow B)$$

can be understood as encoding the universal property of products:



The universal property of coproducts

....

TODO: for coproducts: introduction / elimination / computation / uniqueness this only encodes non-dependent variant and does not inform us about definitional equalities

Variants for dependent types

Lemma ([Uni13, Section 2.15])

We also have the expected variants for dependent types:

• given $BC: A \rightarrow \mathcal{U}$:

$$(x:A) \rightarrow B \times \times C \times \simeq ((x:A) \rightarrow B \times) \times ((x:A) \rightarrow C \times)$$

• given $C: A \times B \rightarrow \mathcal{U}$:

$$(x:A\times B)\to C\,x \simeq (a:A)\to (b:B)\to C\,(a,b)$$

• given $B: A \to \mathcal{U}$ and $C: (\Sigma A.B) \to \mathcal{U}$:

$$(x:\Sigma A.B)
ightarrow C x \simeq (a:A)
ightarrow (b:Ba)
ightarrow C (a,b)$$

Skolemizing

In model theory, there is a *Skolemization* operation, which allows removing existential quantification for prenex formulas.

The idea is that we can replace a formula

$$\forall x. \exists y. P(x,y)$$

by a formula

$$\forall x. P(x, f(x))$$

for some function f.

For instance, we can replace

$$\forall x. \exists y. y \times x = 1 = x \times y$$

by

$$\forall x. x^{-1} \times x = 1 = x \times x^{-1}$$

The type-theoretic axiom of choice

A dependent variant of $A \times (B \sqcup C) \simeq (A \times B) \sqcup (A \times C)$ is

Proposition ([Uni13, Theorem 2.15.7]) Given $A: X \to \mathcal{U}$ and $B: (x: X) \to Ax \to \mathcal{U}$, we have

$$\Pi(x:X).\Sigma(a:Ax).Bxa \simeq \Sigma(f:(x:X)\to Ax).\Pi(x:X).Bx(fx)$$

This is sometimes called the type-theoretic axiom of choice.

The usual axiom of choice is rather

$$\Pi(x:X).\|\Sigma(a:Ax).Bxa\|_{-1} \rightarrow \|\Sigma(f:(x:X)\to Ax).\Pi(x:X).Bx(fx)\|_{-1}$$

Equivalence is a congruence

Lemma

Equivalence is a congruence with usual type formers: for $A \simeq A$ and $B \simeq B'$

$$A \times B \simeq A' \times B'$$

and similarly for \sqcup and \rightarrow .

Note: this is quite painful / by hand. With univalence, will become automatic!

We can also characterize path types in constructed types.

Paths in products types

Recall that, for x : A and x' : B, we have a function

$$(x = x') \rightarrow (\text{fst } x = \text{fst } x') \times (\text{snd } x = \text{snd } x')$$

given by $p \mapsto (ap \text{ fst } p, ap \text{ snd } p)$.

Theorem ([Uni13, Theorem 2.6.2]) The above function is an equivalence.

Proof.

We need to define a function

$$\mathsf{pair}^= : (\mathsf{fst} \ x = \mathsf{fst} \ x') \times (\mathsf{snd} \ x = \mathsf{snd} \ x') \to x = x'$$

(by product induction we assume that x = (a, b) and x' = (a', b')) which we can do by path induction on both components.

The fact that they are mutually inverse is (again) done by path induction.

Paths in products types

This equivalence means that we have

- an elimination rule
- an introduction rule
- a computation rule
- a uniqueness rule

Paths in Σ-types

Given $A: \mathcal{U}$ and $B: A \to \mathcal{U}$, and $(x,y)(x',y'): \Sigma A.B$, recall that we have a function

$$((x,y)=(x',y'))\to \Sigma(p:x=x').(y=_p^By')$$

and a function

$$pair^{=}: \Sigma(p: x = x').(y =_{p}^{B} y') \to ((x, y) = (x', y'))$$

Theorem ([Uni13, Theorem 2.7.2])
We have

$$(x,y) = (x',y') \simeq \Sigma(p: x = x').(y =_p^B y')$$

[Uni13, Section 2.14] [Uni13, Section 9.8] SIP

Part V

Being an equivalence is a proposition

Let's try to prove that being an equivalence is a proposition.

Being an equivalence is a proposition

Theorem ([Uni13, Lemma 4.2.9]) For a map $f: A \rightarrow B$, being an equivalence is a proposition.

Proof (first draft). Our goal is to show that

$$\mathsf{isEquiv}(f) \quad \hat{=} \quad \Sigma(g:B o A).(g \circ f \sim \mathsf{id}) imes \Sigma(g:B o A).(f \circ g \sim \mathsf{id})$$

is a proposition.

A first plan is to show that $\Sigma(g:B\to A).(g\circ f\sim id)$ is a proposition (and similarly for the other component) and conclude because propositions are closed under product.

But we cannot do this! For instance

$$f: 1 \longrightarrow 1$$

Being an equivalence is a proposition

Proof (continued).

However, what we can show is that *for an equivalence* having a left inverse is contractible (and thus a proposition).

As center of contraction, we choose

$$(g:B\to A,\eta:g\circ f\sim id)$$

given by the fact that we have an equivalence.

Given $(g': B \to A, \eta, \eta': g' \circ f \sim id)$, we need to show p: g = g' and $\eta =_{p''} \eta'$. For the first one, we have

$$g y = g'(f(g y)) = g' y$$

so that g = g' (if we assume funext!).

The second one can be done, but is less clear for now... (TBC)

Bibliography i

[Uni13] The Univalent Foundations Program.

Homotopy Type Theory: Univalent Foundations of Mathematics.

Institute for Advanced Study, 2013.

https://homotopytypetheory.org/book, arXiv:1308.0729.

[Whi49a] J. H. C. Whitehead.

Combinatorial homotopy. I.

Bulletin of the American Mathematical Society, 55(3):213 - 245, 1949.

[Whi49b] J. H. C. Whitehead.

Combinatorial homotopy. II.

Bulletin of the American Mathematical Society, 55(5):453 – 496, 1949.