Equivalences

Samuel Mimram
2025

Ecole polytechnique

Constructing identities

For now, we cannot construct all the useful identities we would need.

In fact, nothing forces (yet) equality to be non-trivial and thus useful:
for instance, we have a set-theoretic model.

In order to fix this, we will add the univalence axiom which roughly states:

equivalent types are equal.

We first need to make precise what we mean by equivalence.

Contractible types

The types
X and
respectively correspond to

e one point x

e two points a and b which are equal

We therefore expect them to be identified, i.e. equal.
However the following space should not be identified to them
S—_—

because there are 2 (actually, Z) identifications of a and b. But a<>b is trivial.

Equivalences

When do we expect two types to be equivalent?

e contractible types: always

e propositions: when they are equivalent

(A= B)A (B — A)

e sets: when isomorphic

Equivalences

We expect that the following notion is suitable:
Definition
A map f : A— B is an isomorphism when there exists g : B — A such that

gof =ida and fog=idg.

Excepting that we need to make sure that details are right:

e we have to make sure that we can compare functions in the right way
(we don't want to assume funext)
e we have to make sure that we can say “exists”,

i.e. being a quasi-inverse is a proposition.

This is not the case here.

Equivalences

For the first point (comparison of functions), suppose that we want to show that
id : A — Ais an isomorphism with id as inverse.

We need to be able to show
idoid = id

which we cannot without function extensionality.

For the first problem there is an easy fix. Instead of requiring
gof=id

we require
(x:A)—=g(fx)=x

what we will write

gof~id

Bi-invertible maps

For the second problem there is also an easy fix:

Definition
A map f : A— B is an isomorphism when there exists g: B— Aand g’ : B — A
such that

gof ~idg and fog ~idg.

Let us understand why this is the case.

Part |

Equivalences in category theory

TODO: the fundamental groupoid is characterized by the fundamental group (when
path connected)

Recall that a category C consists of

e a set of objects x € C
e sets of morphisms C(x,y) for x,y € C

® composition operations

of
XL>yL>z ~ x —&85 4 2

e identities

satisfying axioms

A groupoid is a category in which every morphism is invertible.
Typical example: the fundamental groupoid of a space.

10

Functors between categories

A functor F : C — D between categories consists in

e a function F : C — D from the objects of C to those of D,
e for every x,y : C, a function C(x,y) — D(Fx, Fy)

e in a way which respects composition and identities

A functor F : C — D is an equivalence when there exists G : D — C such that
GoF ~Idand FoG ~ Ildp.

11

Lemma
Given invertible morphisms f : x' — x and h: y — y' in a category C, we have

Clx,y) = C(X,y):

x —F 5 X' iy y
B N A
Proof.
We have maps
C(x',y) = C(x,y) Clx,y) = C(x,y)
g+ gof g goft O

12

Groupoids and groups

A groupoid is connected when there is a morphism f, , : x — y between any two
objects x, y.

Proposition
Given a groupoid C and an object x, we have a group C(x, x).

When C is connected, we have ¢, , : C(y,z) = C(x,x) and composition corresponds
to multiplication: for f € C(y,z) and g : C(z,w), we have ¢(g o) = ¢g o ¢f.

In particular C(y,y) = C(x, x) as a group.

13

Part |l

Equivalences in topology

14

Let's investigate the situation on the topological side.

Topological spaces are difficult to study and classify, which should instead study some
equivalence classes of such spaces.

15

The strict notion of equality is clearly too fine: for instance, we want to identify the
spaces

and

16

Homeomorphisms

An homeomorphism f : A — B is a continuous map admitting a continuous inverse.

O =G
OO OO

For instance,

but

17

A homotopy between two maps f,g : A — B is a continuous map
a:l-A—=B
with | = [0, 1], such that

ald=f al=g

We can also see this as a continuous map
a:A—=>1—B
which means that for every x € A we should have paths
fx=gx

18

Homotopy equivalences

A homotopy equivalence f : A — B is a continuous map such that there is a
continuous map g : B — A with gof ~id and f o g ~ id.

O=0

For instance

19

Weak and homotopy equivalences in topology

fundamental group (quotient by homotopy = path between paths)

higher groups

weak homotopy equivalences

existence of a whe is reflexive and transitive, but not symmetric in general
homotopy equivalences

homotopy equivalence in topology

20

The Warsaw circle

Consider the extended topologist’s sine curve aka the Warsaw circle W, which
consists of the following points in C:

W= {<1+;sin<;>>ei9|9€]0,27r]}

21

The Warsaw circle

Given two points x and y, there is no continuous path from x to y going through w.
As a consequence, there is no non-trivial map p : S* — W.
Therefore m (W) = 1.

More generally mx (W) =1, and W is thus weakly equivalent to 1. 22

The Warsaw circle

Consider the map 7 : 1 — W pointing at x. We have seen that this is a weak
homotopy equivalence.

But this is not a homotopy equivalence: we would need a map g : W — 1 such that
fog~idy, i.e. afamily of paths p, : y ~» x continuous in y, but one of those paths
would have to go through w!

23

The Whitehead theorem

Lemma
Every homotopy equivalence is a weak homotopy equivalence.

Proof.
We have

(A, f(a)) S mn(A, f(g(f())))

By the 2-out-of-6 property, all the diagonal maps are equivalences (the first one in

particular). O

24

CW complexes

Definition

S, S2, Mobius, torus, Klein

25

The Whitehead theorem

Theorem ([Whi49a, Whi49b])
A map f : A— B between CW-complexes A and B is a homotopy equivalence iff it is a

weak homotopy equivalence.

Theorem (CW approximation) y y
For every space A there exists a space A and a weak homotopy equivalence A — A.

26

Part Il

Equivalences

27

A homotopy between two functions f g : (x : A) — B(x) is a function of type

(F~g) = (x:A)—=>fx=gx

28

Lemma ([Unil3, Lemma 2.4.2])
Homotopy is an equivalence relation: we have

o reflexivity: f ~ f
e symmetry: f ~g—>g~f

e transitivity: f ~ g —>g~h—f~h

forfgh:(x:A)— B(x).

Proof. _

We can consider: Ax.refl 0 (x:A) > fx="fFx

and ApAx.(px)” ¢ ((x:A) = fx=gx)—>(x:A)—gx="Fx
and

APAGAX = px-gx ((x:A)—=>Ffx=gx)—= ((x:A) > gx=hx)—= (x: A) — 0=

Homotopies: a 2-category

We have a 2-category categories, functors and natural transformations:

with o : f ~ g.

30

Homotopies: a 2-category

The fact that ~ is an “equivalence relation” can be pictured as

reflexivity: A—LfsB ~ A W B
~—
f

transitivity: A —ag% B ~ ABoa

symmetry: A @ B ~ A @—18

31

Homotopies: whiskering

Proposition

As in a 2-category, we also have whiskering compositions:

e left whiskering:

e right whiskering:

Proof.

Define af x = a(f x) and gaox = ap g (a x).

g
A—fyBa”C
~_

—= C

32

Homotopy: naturality

Homotopies satisfy the following naturality property:

Lemma ([Unil3, Lemma 2.4.3])
Given functions f g : A — B, homotopy «: f ~ g and equality p: x =y in A, we have

ax-apgp=apfp-ay

ie.
fx == gx
ap fPH ap g p
ty =—8Y
Proof.
By path induction on p, it is enough to show
ax-ap grefl= =ax-refl =ax =refl-ax = ap f refl-ax]

33

Quasi-invertible maps

This suggests that we consider the following notion of equivalence:

Definition
For a map f : A— B, a quasi-inverse is g : B — A such that

gof ~ida fog~idg
We write
hasQInv(f) = X(g:B— A).(gof ~idA)x (fog~idp)

for the type of proofs that f admits a quasi-inverse.
The reason why this is not called an equivalence is that this not the right notion.
Being quasi-invertible is not a property: we might have two non-equal inverses g and g'!

We cannot say “is quasi-invertible”! 34

Quasi-invertible maps are not right

Consider
f:A—B g: B A n:gof ~idy e:fog~idg
which can be pictured as 1
f'
A s
g
3

One solution: fill in the sphere!

Definition

A half-adjoint equivalence is a map f : A — B such that there exists
g:B—A n:gof ~ida e:fog~idg fn~ef

We will first see a simpler solution. 35

Bi-invertible equivalences

Definition
A map f : A— B is a bi-invertible equivalence where there are g : B — A and

h: B — A such that
gofwidA thNidB
We write

isEquiv(f) = Y(g:B—A).(gof ~ida)x Z(h: B — A).(foh~idg)

Theorem
Being a bi-invertible equivalence is a property: isProp(isEquiv(f)).

Proof.
Wait some morel! O 36

Bi-invertible equivalences

Consider
f:A—>B g:B—> A n:gof ~idy h:B—A e:foh~idg

which can be pictured as g

The data is contractiblel!

37

Quasi- vs bi-invertibles

Oddly, we have that

Proposition
Having a quasi-inverse and being bi-invertible are equivalent:

hasQInv(f) — isEquiv(f) isEquiv(f) — hasQlInv(f)

This is very useful because quasi-invertible is a self-dual notion contrarily to
bi-invertible!

Note: the pair of maps does not itself form an equivalence...

38

From quasi-invertibles to equivalences

A map
f:A—B
which is quasi-invertible by
(g:m.¢)
is also an equivalence by
(&:1.8.¢)

39

From equivalences to quasi-invertibles

Interlude
In a group, a left inverse of an element a is equal to any right inverse.

Proof.
Suppose given a, b and ¢ such that ba =1 and ac = 1. We want to show b = c.
We have
1= ba
c=bac=0>b [

40

From equivalences to quasi-invertibles

Conversely, suppose given a bi-invertible equivalence (f, g,n, h,€).

We can build a quasi-invertible
(f.g,1,8:¢)

where we still have to define
g fogn~id

from

n:gof~id e:foh~id

41

From equivalences to quasi-invertibles

The left inverse g has to be homotopic to the right inverse h:
g g gth L
and we can therefore define ¢’ as the composite
fe B fafh ¥ fh S id

More explicitly:

ex = ap(fog)((ex)7) apf(n(hx))-ex

42

Equivalences

We write
A~B

for the type of equivalences between A and B:

A~B = Y(f:A— B).isEquiv(f)

43

Part |V

First properties of equivalences

a4

Equivalences

Proposition ([Unil3, Lemma 2.4.12])
Being equivalent is an equivalence relation:

e A~ A,
o A~ B implies B ~ A,
e A~ B and B ~ C implies A~ C.

Proof.
A function f : A — B is bi-invertible, thus quasi-invertible with inverse f~1: B — A,

thus f~1 is quasi-invertible, thus f~! is an equivalence.

45

Equivalences between propositions

Lemma ([Unil3, Lemma 3.3.3))
Two propositions A and B are equivalent if and only if they are logically equivalent:

(A< B) < (A~ B)
Proof.
The right-to-left implication is immediate.

For left-to-right, suppose given f : A— B and g : B — A.
For x : A, we have g(f(x)) = x because A is a proposition and thus g o f ~ id.
Similarly, f o g ~ id. O

46

Equivalences between propositions

We can even upgrade previous lemma:

Lemma
Given two propositions A and B, we have

(A< B) ~ (A~ B)

Proof.
We have that

(A<-+B) = (A—=B)x(B—A)
is a proposition and
(A~ B) = X(f:A— B).isEquiv(f)

is a proposition. O
47

Equivalences between contractible types

Lemma ([Unil3, Lemma 3.11.3])
We have

isContr(A) ~ (Ax~1)

Proof.
We have that isContr(A) is a proposition as well as
(A~1) = X(f:A—1).isEquiv(f)

and therefore it is enough to show that

(A~1) < X(f: A—1).isEquiv(f)

48

Standard equivalences

Lemma
Coproduct and product satisfy the expected equivalences:

OUA~A~AUO (AUB)UC~AU(BUB) AUB~BLA
IXA~A~Ax1l (AxB)xC~Ax(BxC) AxB~BxA
OXA~0~Ax0 Ax(BUC)~(AxB)U(Ax (C)

Lemma ([Unil3, Section 2.15])
Arrow types satisfy the expected equivalences:

A—1n~1 X = Ax B~ (X— A)x (X — B)
0+ X~1 AUB = X~ (A— X)x(B—X)

l1-C~C (AxB) - C~A— (B— ()
49

The universal property of products

Let's focus on (X — A x B) ~ (X — A) x (X — B): we have

¢ (X = AxB) — (X = A)x (X = B)
f — (Ax.fst(f x), Ax.snd(f x))

and
Pp:(X—=>A)x(X—=B)—-X—>AxB

(f.g) x—=(fx.gx)
satisfying

P o ¢(f) = P(Ax. fst(f x), Ax.snd(f x)) = Ax.(fst(f x),snd(f x)) = Ax.f x
po(f,g) = d(Ax.(f x,gx)) = (Ax.fst(f x, g x), Ax.snd(f x, g x)) = (Ax.f x, Ax.g x) = (f,

50

The universal property of products

The equivalence
(X > Ax B)~ (X — A)x (X — B)

can be understood as encoding the universal property of products:

X

v

Ax B

fst snd

51

The universal property of coproducts

TODO: for coproducts : introduction / elimination / computation / uniqueness

this only encodes non-dependent variant and does not inform us about definitional
equalities

52

Variants for dependent types

Lemma ([Unil3, Section 2.15])
We also have the expected variants for dependent types:

e given BC: A—U:

(x:A) > BxxCx =~ ((x:A) —Bx)x((x:A)— Cx)

e given C:AXx B —U:

(x:AxB)—=Cx =~ (a:A)— (b:B)— C(a,b)

e given B:A— U and C: (XA.B) = U:

(x:TAB) > Cx =~ (a:A)— (b:Ba)— C(ab) >

Skolemizing

In model theory, there is a Skolemization operation, which allows removing existential
quantification for prenex formulas.

The idea is that we can replace a formula
Vx.3y.P(x,y)

by a formula
Vx.P(x, f(x))

for some function f.

For instance, we can replace
Vx.dy.yxx=1=xxy

by

-1

Uxx ITxx=1=xxx""t 54

The type-theoretic axiom of choice

A dependent variant of Ax (BUC)~(Ax B)U(Ax C)is

Proposition ([Unil3, Theorem 2.15.7])
Given A: X —U and B : (x : X) = Ax — U, we have

M(x: X).X(a: Ax).Bxa ~ X(f:(x:X)—= Ax).IN(x:X).Bx(fx)

This is sometimes called the type-theoretic axiom of choice.

The usual axiom of choice is rather

M(x: X).|[X(a: Ax).Bxa|l-1 — [JZ(f: (x: X) = Ax).MN(x: X).Bx(fx)|-1

55

Equivalence is a congruence

Lemma
Equivalence is a congruence with usual type formers: for A~ A and B ~ B’

AxB~A xB

and similarly for LI and —.

Note: this is quite painful / by hand. With univalence, will become automatic!

56

We can also characterize path types in constructed types.

57

Paths in products types

Recall that, for x : A and x’ : B, we have a function
(x =x") = (fst x = fst x') x (snd x = snd x’)
given by p — (ap fst p,ap snd p).

Theorem (f[Uni13, Theorem 2.6.2])
The above function is an equivalence.

Proof.
We need to define a function

pair~ : (fst x = fst x') x (snd x = snd x’) — x = X/

(by product induction we assume that x = (a, b) and x’ = (&', b’)) which we can do by
path induction on both components.

The fact that they are mutually inverse is (again) done by path induction. O

Paths in products types

This equivalence means that we have

e an elimination rule

an introduction rule

a computation rule

® a uniqueness rule

59

Paths in X-types

Given A:U and B: A— U, and (x,y) (x',y') : LA.B, recall that we have a function

(y)=(.y) = Z(p:x=x).(y =5 ¥)

and a function

Theorem ([Unil3, Theorem 2.7.2])
We have

(xy)=Ky) ~ Z(p:x=x)(y=py)

60

[Unil3, Section 2.14] [Unil3, Section 9.8]
SIP

61

Part V

Being an equivalence is a proposition

62

Let's try to prove that being an equivalence is a proposition.

63

Being an equivalence is a proposition

Theorem ([Unil3, Lemma 4.2.9])
Fora map f : A— B, being an equivalence is a proposition.

Proof (first draft).
Our goal is to show that

isEquiv(f) = X(g:B—A).(gof~id)xX(g:B— A).(fog ~id)

is a proposition.

A first plan is to show that X(g : B — A).(g o f ~ id) is a proposition (and similarly for
the other component) and conclude because propositions are closed under product.

But we cannot do this! For instance

0Q——0
1

64

Being an equivalence is a proposition

Proof (continued).
However, what we can show is that for an equivalence having a left inverse is

contractible (and thus a proposition).

As center of contraction, we choose
(g:B—Amn:gof~id)

given by the fact that we have an equivalence.

/

Given (g": B — A,n,n' : g' o f ~id), we need to show p: g =g" and 1 =. . 7".
For the first one, we have

gy=¢g(flgy))=¢'y
so that g = g’ (if we assume funext!).

The second one can be done, but is less clear for now... (TBC) O ;
5

Bibliography i

[Uni13] The Univalent Foundations Program.

Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013.

https://homotopytypetheory.org/book, arXiv:1308.0729.
[Whi49a] J. H. C. Whitehead.

Combinatorial homotopy. I.

Bulletin of the American Mathematical Society, 55(3):213 — 245, 1949.
[Whi49b] J. H. C. Whitehead.

Combinatorial homotopy. Il.

Bulletin of the American Mathematical Society, 55(5):453 — 496, 1949.

66

https://homotopytypetheory.org/book
https://arxiv.org/abs/1308.0729

	Equivalences in category theory
	Equivalences in topology
	Equivalences
	First properties of equivalences
	Being an equivalence is a proposition

