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Constructing identities

For now, we cannot construct all the useful identities we would need.

In fact, nothing forces (yet) equality to be non-trivial and thus useful:
for instance, we have a set-theoretic model.

In order to fix this, we will add the univalence axiom which roughly states:

equivalent types are equal.

We first need to make precise what we mean by equivalence.



Contractible types

The types
X and
respectively correspond to

e one point x

e two points a and b which are equal

We therefore expect them to be identified, i.e. equal.
However the following space should not be identified to them
S—_—

because there are 2 (actually, Z) identifications of a and b. But a<>b is trivial.



Equivalences

When do we expect two types to be equivalent?

e contractible types: always

e propositions: when they are equivalent

(A= B)A (B — A)

e sets: when isomorphic



Equivalences

We expect that the following notion is suitable:
Definition
A map f : A— B is an isomorphism when there exists g : B — A such that

gof =ida and fog=idg.

Excepting that we need to make sure that details are right:

e we have to make sure that we can compare functions in the right way
(we don't want to assume funext)
e we have to make sure that we can say “exists”,

i.e. being a quasi-inverse is a proposition.

This is not the case here.



Equivalences

For the first point (comparison of functions), suppose that we want to show that
id : A — Ais an isomorphism with id as inverse.

We need to be able to show
idoid = id

which we cannot without function extensionality.



For the first problem there is an easy fix. Instead of requiring
gof=id

we require
(x:A)—=g(fx)=x

what we will write

gof~id



Bi-invertible maps

For the second problem there is also an easy fix:

Definition
A map f : A— B is an isomorphism when there exists g: B— Aand g’ : B — A
such that

gof ~idg and fog ~idg.

Let us understand why this is the case.



Part |

Equivalences in category theory



TODO: the fundamental groupoid is characterized by the fundamental group (when
path connected)



Recall that a category C consists of

e a set of objects x € C
e sets of morphisms C(x,y) for x,y € C

® composition operations

of
XL>yL>z ~ x —&85 4 2

e identities

satisfying axioms

A groupoid is a category in which every morphism is invertible.
Typical example: the fundamental groupoid of a space.
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Functors between categories

A functor F : C — D between categories consists in

e a function F : C — D from the objects of C to those of D,
e for every x,y : C, a function C(x,y) — D(Fx, Fy)

e in a way which respects composition and identities

A functor F : C — D is an equivalence when there exists G : D — C such that
GoF ~Idand FoG ~ Ildp.
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Lemma
Given invertible morphisms f : x' — x and h: y — y' in a category C, we have

Clx,y) = C(X,y):

x —F 5 X' iy y
B N A
Proof.
We have maps
C(x',y) = C(x,y) Clx,y) = C(x,y)
g+ gof g goft O
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Groupoids and groups

A groupoid is connected when there is a morphism f, , : x — y between any two
objects x, y.

Proposition
Given a groupoid C and an object x, we have a group C(x, x).

When C is connected, we have ¢, , : C(y,z) = C(x,x) and composition corresponds
to multiplication: for f € C(y,z) and g : C(z,w), we have ¢(g o ) = ¢g o ¢f.

In particular C(y,y) = C(x, x) as a group.

13



Part |l

Equivalences in topology
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Let's investigate the situation on the topological side.

Topological spaces are difficult to study and classify, which should instead study some
equivalence classes of such spaces.
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The strict notion of equality is clearly too fine: for instance, we want to identify the
spaces

and
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Homeomorphisms

An homeomorphism f : A — B is a continuous map admitting a continuous inverse.

O =G
OO OO

For instance,

but
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A homotopy between two maps f,g : A — B is a continuous map
a:l-A—=B
with | = [0, 1], such that

ald=f al=g

We can also see this as a continuous map
a:A—=>1—B
which means that for every x € A we should have paths
fx=gx
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Homotopy equivalences

A homotopy equivalence f : A — B is a continuous map such that there is a
continuous map g : B — A with gof ~id and f o g ~ id.

O=0

For instance
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Weak and homotopy equivalences in topology

fundamental group (quotient by homotopy = path between paths)

higher groups

weak homotopy equivalences

existence of a whe is reflexive and transitive, but not symmetric in general
homotopy equivalences

homotopy equivalence in topology
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The Warsaw circle

Consider the extended topologist’s sine curve aka the Warsaw circle W, which
consists of the following points in C:

W= {<1+;sin<;>>ei9|9€]0,27r]}
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The Warsaw circle

Given two points x and y, there is no continuous path from x to y going through w.
As a consequence, there is no non-trivial map p : S* — W.
Therefore m (W) = 1.

More generally mx (W) =1, and W is thus weakly equivalent to 1. 22



The Warsaw circle

Consider the map 7 : 1 — W pointing at x. We have seen that this is a weak
homotopy equivalence.

But this is not a homotopy equivalence: we would need a map g : W — 1 such that
fog~idy, i.e. afamily of paths p, : y ~» x continuous in y, but one of those paths
would have to go through w!
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The Whitehead theorem

Lemma
Every homotopy equivalence is a weak homotopy equivalence.

Proof.
We have

(A, f(a)) S mn(A, f(g(f())))

By the 2-out-of-6 property, all the diagonal maps are equivalences (the first one in

particular). O

24



CW complexes

Definition

S, S2, Mobius, torus, Klein
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The Whitehead theorem

Theorem ([Whi49a, Whi49b])
A map f : A— B between CW-complexes A and B is a homotopy equivalence iff it is a

weak homotopy equivalence.

Theorem (CW approximation) y y
For every space A there exists a space A and a weak homotopy equivalence A — A.
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Equivalences
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A homotopy between two functions f g : (x : A) — B(x) is a function of type

(F~g) = (x:A)—=>fx=gx
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Lemma ([Unil3, Lemma 2.4.2])
Homotopy is an equivalence relation: we have

o reflexivity: f ~ f
e symmetry: f ~g—>g~f

e transitivity: f ~ g —>g~h—f~h

forfgh:(x:A)— B(x).

Proof. _

We can consider: Ax.refl 0 (x:A) > fx="fFx

and ApAx.(px)” ¢ ((x:A) = fx=gx)—>(x:A)—gx="Fx
and

APAGAX = px-gx  ((x:A)—=>Ffx=gx)—= ((x:A) > gx=hx)—= (x: A) — 0=



Homotopies: a 2-category

We have a 2-category categories, functors and natural transformations:

with o : f ~ g.
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Homotopies: a 2-category

The fact that ~ is an “equivalence relation” can be pictured as

reflexivity: A—LfsB ~ A W B
~—
f

transitivity: A —ag% B ~  ABoa

symmetry: A @ B ~ A @—18
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Homotopies: whiskering

Proposition

As in a 2-category, we also have whiskering compositions:

e left whiskering:

e right whiskering:

Proof.

Define af x = a(f x) and gaox = ap g (a x).

g
A—fyBa”C
~_

—= C
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Homotopy: naturality

Homotopies satisfy the following naturality property:

Lemma ([Unil3, Lemma 2.4.3])
Given functions f g : A — B, homotopy «: f ~ g and equality p: x =y in A, we have

ax-apgp=apfp-ay

ie.
fx == gx
ap fPH ap g p
ty =—8Y
Proof.
By path induction on p, it is enough to show
ax-ap grefl= =ax-refl =ax =refl-ax = ap f refl-ax ]
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Quasi-invertible maps

This suggests that we consider the following notion of equivalence:

Definition
For a map f : A— B, a quasi-inverse is g : B — A such that

gof ~ida fog~idg
We write
hasQInv(f) = X(g:B— A).(gof ~idA)x (fog~idp)

for the type of proofs that f admits a quasi-inverse.
The reason why this is not called an equivalence is that this not the right notion.
Being quasi-invertible is not a property: we might have two non-equal inverses g and g'!

We cannot say “is quasi-invertible”! 34



Quasi-invertible maps are not right

Consider
f:A—B g: B A n:gof ~idy e:fog~idg
which can be pictured as 1
f'
A s
g
3

One solution: fill in the sphere!

Definition

A half-adjoint equivalence is a map f : A — B such that there exists
g:B—A n:gof ~ida e:fog~idg fn~ef

We will first see a simpler solution. 35



Bi-invertible equivalences

Definition
A map f : A— B is a bi-invertible equivalence where there are g : B — A and

h: B — A such that
gofwidA thNidB
We write

isEquiv(f) = Y(g:B—A).(gof ~ida)x Z(h: B — A).(foh~idg)

Theorem
Being a bi-invertible equivalence is a property: isProp(isEquiv(f)).

Proof.
Wait some morel! O 36



Bi-invertible equivalences

Consider
f:A—>B g:B—> A n:gof ~idy h:B—A e:foh~idg

which can be pictured as g

The data is contractiblel!
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Quasi- vs bi-invertibles

Oddly, we have that

Proposition
Having a quasi-inverse and being bi-invertible are equivalent:

hasQInv(f) — isEquiv(f) isEquiv(f) — hasQlInv(f)

This is very useful because quasi-invertible is a self-dual notion contrarily to
bi-invertible!

Note: the pair of maps does not itself form an equivalence...

38



From quasi-invertibles to equivalences

A map
f:A—B
which is quasi-invertible by
(g:m.¢)
is also an equivalence by
(&:1.8.¢)
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From equivalences to quasi-invertibles

Interlude
In a group, a left inverse of an element a is equal to any right inverse.

Proof.
Suppose given a, b and ¢ such that ba =1 and ac = 1. We want to show b = c.
We have
1= ba
c=bac=0>b [
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From equivalences to quasi-invertibles

Conversely, suppose given a bi-invertible equivalence (f, g,n, h,€).

We can build a quasi-invertible
(f.g,1,8:¢)

where we still have to define
g fogn~id

from

n:gof~id e:foh~id
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From equivalences to quasi-invertibles

The left inverse g has to be homotopic to the right inverse h:
g g gth L
and we can therefore define ¢’ as the composite
fe B fafh ¥ fh S id

More explicitly:

ex = ap(fog)((ex)7) apf(n(hx))-ex
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Equivalences

We write
A~B

for the type of equivalences between A and B:

A~B = Y(f:A— B).isEquiv(f)
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Part |V

First properties of equivalences

a4



Equivalences

Proposition ([Unil3, Lemma 2.4.12])
Being equivalent is an equivalence relation:

e A~ A,
o A~ B implies B ~ A,
e A~ B and B ~ C implies A~ C.

Proof.
A function f : A — B is bi-invertible, thus quasi-invertible with inverse f~1: B — A,

thus f~1 is quasi-invertible, thus f~! is an equivalence.
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Equivalences between propositions

Lemma ([Unil3, Lemma 3.3.3))
Two propositions A and B are equivalent if and only if they are logically equivalent:

(A< B) < (A~ B)
Proof.
The right-to-left implication is immediate.

For left-to-right, suppose given f : A— B and g : B — A.
For x : A, we have g(f(x)) = x because A is a proposition and thus g o f ~ id.
Similarly, f o g ~ id. O
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Equivalences between propositions

We can even upgrade previous lemma:

Lemma
Given two propositions A and B, we have

(A< B) ~ (A~ B)

Proof.
We have that

(A<-+B) = (A—=B)x(B—A)
is a proposition and
(A~ B) = X(f:A— B).isEquiv(f)

is a proposition. O
47



Equivalences between contractible types

Lemma ([Unil3, Lemma 3.11.3])
We have

isContr(A) ~ (Ax~1)

Proof.
We have that isContr(A) is a proposition as well as
(A~1) = X(f:A—1).isEquiv(f)

and therefore it is enough to show that

(A~1) < X(f: A—1).isEquiv(f)

48



Standard equivalences

Lemma
Coproduct and product satisfy the expected equivalences:

OUA~A~AUO (AUB)UC~AU(BUB) AUB~BLA
IXA~A~Ax1l (AxB)xC~Ax(BxC) AxB~BxA
OXA~0~Ax0 Ax(BUC)~(AxB)U(Ax (C)

Lemma ([Unil3, Section 2.15])
Arrow types satisfy the expected equivalences:

A—1n~1 X = Ax B~ (X— A)x (X — B)
0+ X~1 AUB = X~ (A— X)x(B—X)

l1-C~C (AxB) - C~A— (B— ()
49



The universal property of products

Let's focus on (X — A x B) ~ (X — A) x (X — B): we have

¢ (X = AxB) — (X = A)x (X = B)
f — (Ax.fst(f x), Ax.snd(f x))

and
Pp:(X—=>A)x(X—=B)—-X—>AxB

(f.g)  x—=(fx.gx)
satisfying

P o ¢(f) = P(Ax. fst(f x), Ax.snd(f x)) = Ax.(fst(f x),snd(f x)) = Ax.f x
po(f,g) = d(Ax.(f x,gx)) = (Ax.fst(f x, g x), Ax.snd(f x, g x)) = (Ax.f x, Ax.g x) = (f,

50



The universal property of products

The equivalence
(X > Ax B)~ (X — A)x (X — B)

can be understood as encoding the universal property of products:

X

v

Ax B

fst snd
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The universal property of coproducts

TODO: for coproducts : introduction / elimination / computation / uniqueness

this only encodes non-dependent variant and does not inform us about definitional
equalities

52



Variants for dependent types

Lemma ([Unil3, Section 2.15])
We also have the expected variants for dependent types:

e given BC: A—U:

(x:A) > BxxCx =~ ((x:A) —Bx)x((x:A)— Cx)

e given C:AXx B —U:

(x:AxB)—=Cx =~ (a:A)— (b:B)— C(a,b)

e given B:A— U and C: (XA.B) = U:

(x:TAB) > Cx =~ (a:A)— (b:Ba)— C(ab) >



Skolemizing

In model theory, there is a Skolemization operation, which allows removing existential
quantification for prenex formulas.

The idea is that we can replace a formula
Vx.3y.P(x,y)

by a formula
Vx.P(x, f(x))

for some function f.

For instance, we can replace
Vx.dy.yxx=1=xxy

by

-1

Uxx ITxx=1=xxx""t 54



The type-theoretic axiom of choice

A dependent variant of Ax (BUC)~(Ax B)U(Ax C)is

Proposition ([Unil3, Theorem 2.15.7])
Given A: X —U and B : (x : X) = Ax — U, we have

M(x: X).X(a: Ax).Bxa ~ X(f:(x:X)—= Ax).IN(x:X).Bx(fx)

This is sometimes called the type-theoretic axiom of choice.

The usual axiom of choice is rather

M(x: X).|[X(a: Ax).Bxa|l-1 —  [JZ(f: (x: X) = Ax).MN(x: X).Bx(fx)|-1
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Equivalence is a congruence

Lemma
Equivalence is a congruence with usual type formers: for A~ A and B ~ B’

AxB~A xB

and similarly for LI and —.

Note: this is quite painful / by hand. With univalence, will become automatic!
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We can also characterize path types in constructed types.
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Paths in products types

Recall that, for x : A and x’ : B, we have a function
(x =x") = (fst x = fst x') x (snd x = snd x’)
given by p — (ap fst p,ap snd p).

Theorem (f[Uni13, Theorem 2.6.2])
The above function is an equivalence.

Proof.
We need to define a function

pair~ : (fst x = fst x') x (snd x = snd x’) — x = X/

(by product induction we assume that x = (a, b) and x’ = (&', b’)) which we can do by
path induction on both components.

The fact that they are mutually inverse is (again) done by path induction. O



Paths in products types

This equivalence means that we have

e an elimination rule

an introduction rule

a computation rule

® a uniqueness rule
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Paths in X-types

Given A:U and B: A— U, and (x,y) (x',y') : LA.B, recall that we have a function

(y)=(.y) = Z(p:x=x).(y =5 ¥)

and a function

Theorem ([Unil3, Theorem 2.7.2])
We have

(xy)=Ky) ~ Z(p:x=x)(y=py)
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[Unil3, Section 2.14] [Unil3, Section 9.8]
SIP
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Part V

Being an equivalence is a proposition
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Let's try to prove that being an equivalence is a proposition.
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Being an equivalence is a proposition

Theorem ([Unil3, Lemma 4.2.9])
Fora map f : A— B, being an equivalence is a proposition.

Proof (first draft).
Our goal is to show that

isEquiv(f) = X(g:B—A).(gof~id)xX(g:B— A).(fog ~id)

is a proposition.

A first plan is to show that X(g : B — A).(g o f ~ id) is a proposition (and similarly for
the other component) and conclude because propositions are closed under product.

But we cannot do this! For instance

0Q——0
1
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Being an equivalence is a proposition

Proof (continued).
However, what we can show is that for an equivalence having a left inverse is

contractible (and thus a proposition).

As center of contraction, we choose
(g:B—Amn:gof~id)

given by the fact that we have an equivalence.

/

Given (g": B — A,n,n' : g' o f ~id), we need to show p: g =g" and 1 =. . 7".
For the first one, we have

gy=¢g(flgy))=¢'y
so that g = g’ (if we assume funext!).

The second one can be done, but is less clear for now... (TBC) O ;
5



Bibliography i

[Uni13] The Univalent Foundations Program.

Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013.

https://homotopytypetheory.org/book, arXiv:1308.0729.
[Whi49a] J. H. C. Whitehead.

Combinatorial homotopy. I.

Bulletin of the American Mathematical Society, 55(3):213 — 245, 1949.
[Whi49b] J. H. C. Whitehead.

Combinatorial homotopy. Il.

Bulletin of the American Mathematical Society, 55(5):453 — 496, 1949.

66


https://homotopytypetheory.org/book
https://arxiv.org/abs/1308.0729

	Equivalences in category theory
	Equivalences in topology
	Equivalences
	First properties of equivalences
	Being an equivalence is a proposition

