Samuel Mimram

2025

École polytechnique

In topology, we have the **spheres**:

$$S^0 = \cdot \qquad S^1 = \qquad \qquad S^2 = \boxed{\qquad} .$$

and the disks

$$D^0 = \longleftarrow \qquad \qquad D^1 = \boxed{\qquad \qquad } \qquad \qquad \dots$$

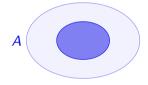
which come equipped with a canonical inclusion

$$\iota^n:\mathsf{S}^n\hookrightarrow\mathsf{D}^n$$

Note: all disks are contractile and thus homotopy equivalent to a point, i.e. $D^n = 1$.

Given a space A, an *n*-sphere in A is a map $\sigma : S^n \to A$.

An *n*-sphere is **contractible** when this maps extends to 1:



A type is an *n*-type (or *n*-truncated) when all its *k*-spheres are contractible for k > n.

For instance, in a 0-type all k-spheres are contractible:

A 0-type is thus a space in which between any two points there is at most one path (up to homotopy).

This kind of observation can be used in order to define n-types in a nice way.

In low dimensions, n-types have names

- -2 contractible types
- -1 propositions
 - 0 sets
 - 1 groupoids

We will begin by studying those before the general case.

Part I

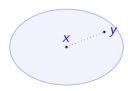
Contractible types

Contractible types

A type A is **contractible** when it satisfies

isContr
$$A \triangleq \Sigma(x : A).\Pi(y : A).(x = y)$$

The point x is the *center of contraction*.



Contractible types

The canonical example of a contractible type is 1.

Namely, we can show

isContr 1
$$\hat{=}$$
 $\Sigma(x:1).\Pi(y:1).(x=y)$

by

$$(\star, f)$$

with *f* defined by induction by

$$f: (y:1) \to (\star = y)$$

 $\star \mapsto \mathsf{refl}$

This is fact, essentially, the only contractible type.

Bool is not contractible

Lemma

Bool is not contractible.

Proof.

Suppose that Bool is contractible. There is a point b_0 : Bool and a family of paths

$$p:(b:\mathsf{Bool})\to b_0=b$$

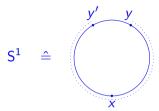
We thus have

true
$$\stackrel{(p \text{ true})^-}{=} b_0 \stackrel{p \text{ false}}{=}$$
 false

but we know that this is not the case.

S¹ is not contractible

It might seem that



is contractible, but this is not the case!

Namely, we have to construct a function

$$(y:S^1) \rightarrow (x=y)$$

which, as any function, has to be continuous.

In topology, this is the difference between a contractible and path connected space.

Path spaces of contractible types

You might have the false impression that everything can be solved with J / path induction:

Proposition?

Given a contractible type A and paths p q : x = y, we have p = q.

Proof.

By path induction on q, it is enough to show that for every path p: x = x we have p = refl. We cannot do a path induction on p!

Path spaces of contractible types

Proposition ([Uni13, Lemma 3.11.10])

Given a contractible type A and xy : A, we have that x = y is contractible.

Proof.

We have a center of contraction $x_0: A$ and family of paths $p: (x:A) \to x_0 = x$.

For x = y, we choose as center of contraction $q_0 = (px)^- \cdot (py)$.

Suppose given a path q: x = y, we need to show $p_0 = q$.

By path induction on q, it is enough to show $(px)^- \cdot (px) = \text{refl}$ which does hold.

Alternatively, by apd [Uni13, Lemma 2.3.4] and transport in path types [Uni13, Lemma

2.11.2], we have $py = \text{transport} (\lambda x. x_0 = x) q(px) = px \cdot q$

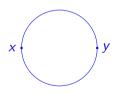
and we conclude by groupoid laws.



Path spaces of contractible types

Proposition ([Uni13, Lemma 3.11.10]) Given a contractible space A and xy : A, we have that x = y is contractible.

This also shows that S^1 is not contractible:



Clearly x = y is not contractible!

Singletons

Given x : A, we define the type **singleton** at x as

singl
$$x = \sum (y : A) \cdot (x = y)$$

At first it might seem that $singl\ x$ is the *connected component* of x in A. This is not the case because we keep the information of the path!

TODO: circle..... (not the connected component) helix

Singleton

Proposition ([Uni13, Lemma 3.11.8])

Given x : A, the type singl $x = \Sigma(y : A) \cdot (x = y)$ is contractible.

Proof.

As center of contraction, we take (x, refl).

Suppose given (y, p) with p : x = y, we need to show (x, refl) = (y, p) in $\Sigma(y : A).(x = y)$. This can be done by taking p : x = y and constructing a path

q: transport
$$(\lambda y.x = y) p$$
 refl = p

By transport in path types [Uni13, Lemma 2.11.2], we have

transport
$$(\lambda y.x = y) p \text{ refl} = \text{refl} \cdot p$$

and we conclude by unitality.

The 1 contractible type

Are there contractible types other than 1?

For now, we do not have a way to show that is Contr $A \rightarrow (A = 1)$ or even I = 1.

But we will once we assume univalence, so that you can safely suppose this.

Part II

Propositions

Propositions

A type A is a **proposition** when it satisfies

isProp
$$A = (x y : A) \rightarrow (x = y)$$

For instance,

- 0 is a proposition
- 1 is a proposition
- Bool and N are not propositions
- Sⁿ are not propositions

Contractible propositions

Lemma

Every contractible type is a proposition.

Proof.

Given a contractible type A and xy:A, we know that x=y is contractible and thus inhabited.

More explicitly, writing (x_0, p) for the contraction of A, with $p: (x:A) \to (x_0 = x)$, we can take

$$x \stackrel{(p \times)^-}{=} x_0 \stackrel{p y}{=} y$$

Propositions as contractible types

What does a proposition look like? It is either empty or contractible. Excepting that we cannot say this like this in intuitionistic logic:

isProp
$$A \rightarrow (A = 0) \sqcup \text{isContr } A$$

is not expected to hold.

Namely, take A to be "the n-th Turing machine halts": this is a proposition!

Propositions as contractible types

However one can show that

Lemma

For $A: \mathcal{U}$, we have that isProp A is logically equivalent to $A \to \text{isContr } A$.

Proof.

Suppose p: isProp A and x: A, then we can contract A with $(x, \lambda y.p \times y)$.

Conversely suppose $f: A \rightarrow \text{isContr } A$. Given xy: A, we have to show x = y.

By $f \times x$, we have that A is contractible, therefore x = y is also contractible, and thus inhabited.

Proposition thus deserve their name: they are formulas which can be proved in a unique way (when they can).

Path spaces of propositions

Lemma ([Uni13, Lemma 3.11.10]) A proposition A has contractible path spaces: isContr(x = y) for xy : A.

Proof.

Suppose given xy:A. By previous proposition, we have isContr A. Therefore isContr(x=y).

21

Proposition

General fact

Whenever you introduce something which looks like a predicate, you should check that this is a family of propositions: what matters is that bla(x) holds and not which proof of bla(x) we gave.

In the following, we will assume this:

Temporary axiom

We assume function extensionality: given functions $f g : A \rightarrow B$ if

$$(x:A) \rightarrow f x = g x$$

then f = g.

It is "temporary", because it will follow from univalence.

Being a contractible is a proposition

Proposition ([Uni13, Lemma 3.3.5])

Being contractible is a proposition: isProp (isContr A).

Proof.

Suppose given two proofs (x, p) and (y, q) of isContr A. We have py : x = x and we need to show

$$p = \sum_{p \mid y}^{\lambda x.(y:A) \to x=y} q$$

By funext this amounts to show, for z : A

transport
$$(\lambda x.(y:A) \rightarrow x = y)(py)pz = qz$$

in y = z. But A is contractile, therefore x = z also, which is thus a proposition.

Being a proposition is a proposition

Proposition ([Uni13, Lemma 3.3.5])
Being a proposition is a proposition: isProp (isProp A).

Proof.

Suppose given proofs P and Q of $(x y : A) \rightarrow x = y$. By funext, given x y : A, we need to show

$$P x y = Q x y$$

in x = y. but A is a proposition, therefore x = y is contractible, and thus a proposition.

Subtypes

Given a type A and a family $P:A\to\mathcal{U}$ of propositions, we can form the **subtype** $\Sigma(x:A).P\times$ of A.

Proposition ([Uni13, Lemma 3.5.1]) The canonical inclusion / first projection fst : $\Sigma A.P \rightarrow A$ is an "injection".

Proof.

Suppose given (x, π) and (y, ρ) in $\Sigma A.P$ together with p: x = y. We can construct an equality between them by constructing

transport
$$P p \pi = \rho$$

which follows from the fact that P is a proposition.

HProp

The type of **propositions** is

$$\mathsf{HProp} \quad \hat{=} \quad \Sigma(A:\mathcal{U}). \ \mathsf{isProp} \ A$$

This is a subtype of \mathcal{U} .

Closure properties: product

We have seen that 0 / 1 are propositions, understood as \bot / \top . What about connectives?

Proposition

Propositions are closed under \times . We thus have an induced operation

$$\wedge : \mathsf{HProp} \to \mathsf{HProp} \to \mathsf{HProp}$$

Proof.

Given A and B which are propositions and (x, y) and (x', y') in $A \times B$, we have

- p: x = x' since A is a proposition
- q: y = y' since B is a proposition

and thus pair p q : (x, y) = (x', y').

Closure properties: implication

Proposition

The type $A \rightarrow B$ is a proposition when B is. We thus have an induced operation

$$\Rightarrow$$
: HProp \rightarrow HProp

Proof.

Given $f g : A \to B$, we want to show f = g. By funext it is enough to show f x = g x for an arbitrary x : A, which holds because B is a proposition.

In particular negation is always a proposition:

$$\neg A \quad \hat{=} \quad A \rightarrow \bot$$

Closure properties: universal quantification

Previous theorem generalizes to depedent types:

Proposition

Given a type A and a family $B:A\to\mathcal{U}$ of propositions, the type

$$\Pi(x:A).Bx$$

is a proposition. We thus have an induced operation

$$\forall: (A:\mathcal{U}) \rightarrow (B:A \rightarrow \mathsf{HProp}) \rightarrow \mathsf{HProp}$$

Propositional extensionality

We define equivalence as

$$A \Leftrightarrow B \quad \hat{=} \quad (A \Rightarrow B) \land (B \Rightarrow A)$$

The proposition extensionality principle [WR27, Chu40] states that

$$(A \Leftrightarrow B) \rightarrow (A = B)$$

This principle is compatible with the current theory, and in fact will be implied by **univalence** which is a generalization of it.

Closure properties: coproducts

Are propositions closed under coproducts?

No: $2 = 1 \sqcup 1$ is not a set.

Proposition

Given propositions A and B such that $\neg (A \times B)$, we have $A \sqcup B$ a proposition

Proof.

Given elements $xx': A \sqcup B$, we want to show that x = x':

X	x'	x = x'
a	a'	we have $a = a'$ by A proposition
b	<i>b</i> ′	we have $b = b'$ by B proposition
a	<i>b</i> ′	impossible by $\neg(A \times B)$
a [′]	b	we have $a = a'$ by A proposition we have $b = b'$ by B proposition impossible by $\neg (A \times B)$ impossible by $\neg (A \times B)$

Closure properties: dependent sums

Propositions are not closed under Σ -types: given a family $B:A\to\mathcal{U}$ of proposition,

$$\Sigma(x:A).Bx$$

is not a proposition in general. For instance,

$$\mathbb{N} = \Sigma(x : \mathbb{N}).1$$

is not a proposition.

Propositional truncation

In order to correct this, we need an operation which turns a type A into a proposition $||A||_{-1}$:

- when A = 0, we expect $||A||_{-1} = 0$,
- otherwise, we expect $||A||_{-1}$ to be contractible.

Excepting that we cannot reason like this in intuitionistic logic.

Instead, we will introduce $\|-\|_{-1}$ as a new type constructor!

Propositional logic

Constructor:

$$\|-\|_{-1}:\mathcal{U} o\mathcal{U}$$

Introduction rules:

$$|-|_{-1}:A\to \|A\|_{-1}$$
 pt: isProp ($\|A\|_{-1}$)

The recursor is (the eliminator is not more useful)

$$\operatorname{rec}: (B:\mathcal{U}) \to (A \to B) \to \operatorname{isProp} B \to \|A\|_{-1} \to B$$

Informally, if you have an $a : ||A||_{-1}$ and you are trying to prove a proposition B, you can safely assume that you actually have a : A.

Otherwise said $a: ||A||_{-1}$ is in a box that you are only allowed to open when proving a proposition. Computation rule is

$$\operatorname{rec} B f \operatorname{pt} |a|_{-1} = f a$$

34

Merely

We say that A merely holds when we have $||A||_{-1}$.

The missing connectives

We can thus define, for A and B propositions,

$$A \vee B \quad \hat{=} \quad \|A \sqcup B\|_{-1}$$

and for $A:\mathcal{U}$ and $B:A\to\mathcal{U}$ a family of propositions,

$$\exists (x:A).Bx \quad \hat{=} \quad \|\Sigma(x:A).Bx\|_{-1}$$

The Curry-Howard correspondence

Logic	Type theory	Propositions
Formula	Туре	Proposition
Т	1	1
\perp	0	0
$A \wedge B$	$A \times B$	$A \times B$
$A \Rightarrow B$	A o B	A o B
$A \vee B$	$A \sqcup B$	$ A \sqcup B _{-1}$
$\forall (x:A).B(x)$	$(x:A) \rightarrow B(x)$	$(x:A) \rightarrow B(x)$
$\exists (x:A).B(x)$	$\Sigma(x:A).B(x)$	$\ \Sigma(x:A).B(x)\ _{-1}$

Path connected types

connected

connected component

the connected component is connected

 S^1 is path connected $(y:A) \rightarrow ||x=y||_{-1}$

connected component (subtypes are embeddings) [Uni13, Lemma 3.5.1]

the image

Double negation

Propositional truncation is close to double negation: there is a canonical map

$$||A||_{-1} \rightarrow \neg \neg A$$

The converse does not hold unless A is "classical" in the sense that $\neg \neg A \rightarrow A$.

Propositional truncation is thus an "intuitionistic" variant of double negation.

The law of excluded middle......

General excluded middle is inconsistent......

The axiom of choice

The propositional truncation forgets abuts proofs only remember provability.

However, we can nevertheless sometimes extract information from it.

Extracting from truncation

Proposition ([Uni13, Exercise 3.19])

Suppose that $P: \mathbb{N} \to \mathcal{U}$ is a decidable proposition: for $n: \mathbb{N}$, we have $P \cap \sqcup \neg (P \cap n)$ and is $Prop(P \cap n)$. Then

 $\exists (n:\mathbb{N}).P \, n \to \Sigma(n:\mathbb{N}).P \, n$

Proof. Consider the predicate is the series of the predicate is the proposition and thus $\Sigma(n:\mathbb{N})$. is First n is also a proposition. We can then construct a function which, given a solution, finds the first one:

findFirst :
$$(m : \mathbb{N}) \to P \ m \to \Sigma(n : \mathbb{N})$$
. isFirst n

Now, suppose given $\exists (n : \mathbb{N}).P \ n$ i.e. $\|\Sigma(n : \mathbb{N}).P \ n\|_{-1}$ and want $\Sigma(n : \mathbb{N})$. is First n. Since this is a proposition, we can suppose given and element of $\Sigma(n : \mathbb{N}).P \ n$. By find First, we can construct an element of $\Sigma(n : \mathbb{N})$. is First n and thus $\Sigma(n : \mathbb{N}).P \ n$.

Agda notation

In Agda, $||A||_{-1}$ is noted

$$\parallel$$
 A \parallel_1

(apparently "-" is difficult to type).

Propositional truncation: implementation

One way of implementing propositional truncation is axiomatically which we can do in Agda using rewriting rules:

```
postulate
   \|_{-}\|_{1}: Type \rightarrow Type
   |\_|_1 : \{A : Type\} \rightarrow A \rightarrow ||A||_1
   isPropPropTrunc : {A : Type} → isProp || A ||<sub>1</sub>
   propTrunc-rec :
      \{A : Type\} \{B : Type\} \rightarrow isProp B \rightarrow (A \rightarrow B) \rightarrow (\|A\|_1 \rightarrow B)
   propTrunc-beta :
      {A : Type} {B : Type}
      (P : isProp B) (f : A \rightarrow B) (x : A) \rightarrow propTrunc-rec P f | x |_1 \equiv f x
```

Propositional truncation: implementation

Another (better) way is to use higher inductive types (once we have them):

```
data \|_{-}\|_{1} (A : Type) : Type where \|_{-}\|_{1} : A \rightarrow \| A \|_{1} squash \|_{1} : (x y : \| A \|_{1}) \rightarrow x \equiv y
```

Note: this is a recursive type.

$$\|\operatorname{Bool}\|_{-1} = \bigcup_{\mathsf{true}} \mathsf{false}$$

Propositional truncation: impredicative encoding

A last way to encode propositional truncation is the **impredicative encoding** which consists in defining truncation by its recursion principle:

$$\|A\|_{-1}^{\ell} \quad \hat{=} \quad (B:\mathcal{U}_{\ell}) o \mathsf{isProp} \ B o (A o B) o B$$

This can be shown to be a proposition (because B is) and the inclusion is

$$|x|_{-1} B \pi f = f x$$

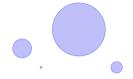
However, we can only eliminate at a specified level $\ell!$

Part III

Sets

Sets

A set is a collection of points (or, rather, contractible types):



We thus define a **set** to be a type *A* satisfying

$$\mathsf{isSet}\ A \triangleq (x\,y:A) \to \mathsf{isProp}\,(x=y)$$

For instance:

- are sets: 0, 1, Bool, N, HProp, ...
- are not sets: S^n with n > 0, ...

Booleans are sets

Proposition(?)

The type Bool is a set.

Proof.

We have to show $(x y : Bool) \rightarrow (p q : x \rightarrow y) \rightarrow p = q$.

By induction on q, it is enough to show $(x : Bool) \rightarrow (p : x \rightarrow x) \rightarrow p = refl.$

With univalence, we will be able to show that $(x : Bool) \rightarrow isContr(x = x)$, but we do not have the tools to show this directly for now. Another proof follows.

Propositions are sets

```
Proposition ([Uni13, Lemma 3.3.4]) Any proposition A is a set: isProp A \rightarrow isSet A.
```

Proof.

Suppose given a proposition A, xy : A and pq : x = y. We have seen that x = y is contractible and thus a proposition. Thus p = q.

Being a set is a proposition

```
Proposition ([Uni13, Lemma 3.3.5])
Being a set for a given type is a proposition: isProp (isSet A).
```

Proof.

We want to show $isProp((x y : Bool) \rightarrow isProp(x = y))$.

This amounts to show isProp(isProp(x = y)) for fixed x and y.

Which does hold.

Sets

We write

$$\mathsf{HSet} \quad \hat{=} \quad \Sigma(A:\mathcal{U}). \ \mathsf{isSet} \ A$$

for the type of sets.

Closure properties

We have that

- $A \times B$ is a set when A and B are sets
- $A \sqcup B$ is a set when A and B are sets
- $A \rightarrow B$ is a set when B is a set
- $(x : A) \rightarrow Bx$ is a set when the Bx are sets
- $\Sigma(x:A).Bx$ is a set when A and the Bx are sets

These operations thus induce operations on HSet.

In particular, given a set A and a predicate P, we have

$$\Sigma(x:A).Px$$

which plays the role of a subset.

Hedberg's theorem

A type *A* is **decidable** when $A \sqcup \neg A$ holds.

A type A is **discrete** when it has decidable equality: x = y is decidable for every x y : A.

The following is known as **Hedberg's theorem**:

Theorem ([Hed98],[Uni13, Theorem 7.2.5]) Every discrete type is a set.

Note: see [Esc04] if you are curious about topological terminology.

Hedberg's theorem

A type *A* is **stable** when $\neg \neg A \rightarrow A$.

A type A is separated when it has stable equality: x = y is stable for every xy : A.

Lemma

Any decidable type is stable.

Proof.

Suppose A is decidable, i.e. $A \sqcup \neg A$. Supposing $\neg \neg A$, we have to show A.

- If A holds then we conclude immediately.
- If $\neg A$ holds then we deduce \bot and thus A.

Corollary

Any discrete type is separated.

Hedberg's theorem

Lemma

Any separated type is a set.

Proof.

Suppose given two types p q : x = y in A. We want to show that they are equal. Instead, we will show that both are equal to a "canonical" one.

Since we have p: x = y, we have $\overline{p}: \neg \neg (x = y)$ and thus $\tilde{p}: x = y$ by separation. This path is canonical in the following sense. Because $\neg \neg (x = y)$ is a proposition, we have $\overline{p} = \overline{q}$ and thus $\tilde{p} = \tilde{q}$ (for arbitrary p and q in x = y).

Our aim is now to show that $p = \tilde{p}$. By induction on p, we have to show refl = refl, which has no reason to hold!

Instead, we show

$$p = \tilde{p} \cdot \tilde{\text{refl}} = \tilde{q} \cdot \tilde{\text{refl}} = q$$

57

The first equality is shown by induction on p, which amounts to refl = $\tilde{\text{refl}} \cdot \tilde{\text{refl}}$.

Examples of sets

Corollary

The types Bool, \mathbb{N} , Fin *n* are sets.

Proof.

For instance, for Bool, it is enough to show that for xy: Bool, we have $(x = y) \sqcup \neg (x = y)$, which can be done by case analysis:

xy
$$(x = y) \sqcup \neg(x = y)$$
falsefalse $x = y$ by refltruetrue $x = y$ by reflfalsetrue $\neg(x = y)$ truefalse $\neg(x = y)$

Set truncation

.....

Connected components

We have

$$\pi_0(X) = \|X\|_0$$

The fundamental group

with set truncation

$$\pi_1(A) = \|\Omega A\|_0$$

Part IV

n-types

Groupoids

A groupoid is a type which has sets of paths:

isGroupoid
$$A = (x y : A) \rightarrow isSet(x = y)$$

For instance,

- sets are groupoids (Bool, N, etc.)
- S¹ is a groupoid
- S² is not a groupoid
- HSet is a groupoid

$$S^1 =$$

$$S^2 =$$

n-types [Uni13, Definition 7.1.1]

We define *n*-types as

- a (-2)-type is a contractible type,
- an (n+1)-type is a type A in which x=y is an n-type for every xy:A.

Formally,

isType
$$nA$$
 \triangleq
$$\begin{cases} \text{isContr } A & \text{if } n \triangleq -2, \\ (xy:A) \rightarrow \text{isType} (n-1)A & \text{otherwise.} \end{cases}$$

Proposition

Lemma ([Uni13, Lemma 3.11.10]) A(-1)-type is the same as a proposition.

Proof.

A proposition satisfies

$$(xy:A) \rightarrow (x=y)$$

a (-1)-type satisfies

$$(x y : A) \rightarrow \mathsf{isContr}(x = y)$$

Clearly, a (-1)-type is a proposition (project to the contraction center).

Conversely, we have seen that a proposition has contractible path spaces.

Being an n-type is a proposition

Theorem ([Uni13, Theorem 7.1.10]) Being an *n*-type is a proposition.

Proof.

By induction on *n*.

For the base case, we already know that being contractible is a proposition.

For the inductive case, we have to show

$$\mathsf{isProp}((x\,y:A)\to\mathsf{isType}\,(n-1)\,(x=y))$$

for which it is enough to show is Prop(isType (n-1)(x=y)) which is the induction hypothesis.

n-types are cumulative

Theorem ([Uni13, Theorem 7.1.7]) Every n-type is an (n + 1)-type.

Proof.

For the base case, we have to show that a contractible type has contractible path types, which we already did.

For the inductive case, we apply the induction hypothesis on x = y.

Closure of *n*-types

Theorem ([Uni13, Theorems 7.1.8 and 7.1.9]) We have that

- $A \times B$ is an n-type when A and B are
- $A \sqcup B$ is an *n*-type when A and B are
- $A \rightarrow B$ is an n-type when B is
- $\Sigma A.B$ is an n-type when A and the $B \times A$
- $\Pi A.B$ is an *n*-type when the $B \times$ are

Proof.

Not enough tools for now

The type of n-types

Theorem ([Uni13, Theorem 7.1.11]) The type of n-types is an (n + 1)-type.

Proof.

Not enough tools for now

69

Higher truncations

We can define the *n*-truncation $||A||_n$ of a type, which comes equipped with

$$|-|_n:A\to ||A||_n$$

Given an *n*-type B, a map $f: A \to B$ extends uniquely as a map $||A||_n \to B$:



Bibliography i

[Chu40] Alonzo Church.

A formulation of the simple theory of types.

The journal of symbolic logic, 5(2):56-68, 1940. doi:10.2307/2266170.

[Esc04] Martín Escardó.

Synthetic topology of data types and classical spaces.

Electronic Notes in Theoretical Computer Science, 87:21–156, 2004.

https://martinescardo.github.io/papers/entcs87.pdf, doi:10.1016/j.entcs.2004.09.017.

Bibliography ii

[Hed98] Michael Hedberg.

A coherence theorem for Martin-Löf's type theory.

Journal of Functional Programming, 8(4):413-436, 1998. doi:10.1017/S0956796898003153.

[Uni13] The Univalent Foundations Program.

Homotopy Type Theory: Univalent Foundations of Mathematics.

Institute for Advanced Study, 2013.

https://homotopytypetheory.org/book, arXiv:1308.0729.

Bibliography iii

[WR27] Alfred North Whitehead and Bertrand Russell.

Principia Mathematica to *56.

Cambridge University Press, 1927.

https://archive.org/details/

alfred-north-whitehead-bertrand-russel-principia-mathematica.-1/.