Homotopy levels

Samuel Mimram
2025

Ecole polytechnique

Homotopy levels

In topology, we have the spheres:

O Q

and the disks

.

which come equipped with a canonical inclusion
" S"— D"

Note: all disks are contractile and thus homotopy equivalent to a point, i.e. D"

Homotopy levels

Given a space A, an n-sphere in Aisamap o :S" — A

An n-sphere is contractible when this maps extends to 1:

S 75 A

1

A type is an n-type (or n-truncated) when all its k-spheres are contractible for k > n.

Homotopy levels

For instance, in a O-type all k-spheres are contractible:

@

A 0O-type is thus a space in which between any two points there is at most one path

(up to homotopy).

This kind of observation can be used in order to define n-types in a nice way.

Homotopy levels

In low dimensions, n-types have names
-2 contractible types

-1 propositions

0 sets

1 groupoids

We will begin by studying those before the general case.

Part |

Contractible types

Contractible types

A type A is contractible when it satisfies
isContr A = X(x:A)N(y:A).(x=y)

The point x is the center of contraction.

Contractible types

The canonical example of a contractible type is 1.

Namely, we can show
isContr1 = X(x:1).N(y:1).(x=y)

by

with f defined by induction by

fily:1)= (x=y)
* > refl

This is fact, essentially, the only contractible type.

is not contractible

Lemma
Bool is not contractible.

Proof.
Suppose that Bool is contractible. There is a point by : Bool and a family of paths

p:(b:Bool) = by =b

We thus have

ptrue)” false
() by =2 false

true

but we know that this is not the case. O

is not contractible

It might seem that

I>

Sl

is contractible, but this is not the casel

Namely, we have to construct a function
1
(y:S) = (x=y)
which, as any function, has to be continuous.

In topology, this is the difference between a contractible and path connected space.

Path spaces of contractible types

You might have the false impression that everything can be solved with J / path
induction:

Proposition?
Given a contractible type A and paths pg: x = y, we have p = gq.

Proof.
By path induction on g, it is enough to show that for every path p : x = x we have
p = refl. We cannot do a path induction on p! O

10

Path spaces of contractible types

Proposition ([Unil3, Lemma 3.11.10])

Given a contractible type A and x y : A, we have that x = y is contractible.

Proof.

We have a center of contraction xp : A and family of paths p: (x : A) = xo = x.

For x = y, we choose as center of contraction go = (px)™ - (py).

Suppose given a path g : x = y, we need to show py = q.

By path induction on g, it is enough to show (px)~ - (p x) = refl which does hold.

Alternatively, by apd [Unil3, Lemma 2.3.4] and transport in path types [Unil3, Lemma

2.11.2], we have py = transport (Ax.xo = x) g (px) = px-q

and we conclude by groupoid laws. O
X q y

px:Zpy

X0 11

Path spaces of contractible types

Proposition ([Unil3, Lemma 3.11.10])
Given a contractible space A and x y : A, we have that x = y is contractible.

This also shows that S! is not contractible:

Clearly x = y is not contractible!

12

Singletons

Given x : A, we define the type singleton at x as
singl x = X(y:A).(x=y)

At first it might seem that singl x is the connected component of x in A.
This is not the case because we keep the information of the path!

TODO: circle............ (not the connected component) helix

13

Proposition ([Unil3, Lemma 3.11.8])
Given x : A, the type singl x = X(y : A).(x = y) is contractible.

Proof.
As center of contraction, we take (x, refl).

Suppose given (y, p) with p : x = y, we need to show (x, refl) = (y, p) in
Y(y : A).(x = y). This can be done by taking p : x = y and constructing a path

q : transport (Ay.x = y) p refl = p
By transport in path types [Unil3, Lemma 2.11.2], we have
transport (Ay.x = y) p refl = refl -p

and we conclude by unitality. O

14

The contractible type

Are there contractible types other than 17

For now, we do not have a way to show that isContr A — (A=1) or even | = 1.

But we will once we assume univalence, so that you can safely suppose this.

15

Part |l

Propositions

16

A type A is a proposition when it satisfies

isProp A = (xy:A)—(x=y)

For instance,

0 is a proposition

1 is a proposition
e Bool and N are not propositions

e S" are not propositions

17

Contractible propositions

Lemma
Every contractible type is a proposition.

Proof.
Given a contractible type A and xy : A, we know that x = y is contractible and thus
inhabited.
More explicitly, writing (xo, p) for the contraction of A, with p: (x: A) — (xo = x), we
can take

X) xo =% y O

18

Propositions as contractible types

What does a proposition look like? It is either empty or contractible. Excepting that we
cannot say this like this in intuitionistic logic:

isProp A — (A= 0) UisContr A

is not expected to hold.

Namely, take A to be “the n-th Turing machine halts": this is a proposition!

19

Propositions as contractible types

However one can show that

Lemma
For A : U, we have that isProp A is logically equivalent to A — isContr A.

Proof.
Suppose p : isProp A and x : A, then we can contract A with (x, \y.pxy).

Conversely suppose f : A — isContr A. Given xy : A, we have to show x = y.
By f x, we have that A is contractible, therefore x = y is also contractible, and thus
inhabited. O

Proposition thus deserve their name: they are formulas which can be proved in a unique
way (when they can).

20

Path spaces of propositions

Lemma ([Unil3, Lemma 3.11.10]2
A proposition A has contractible path spaces: isContr (x = y) for xy : A.

Proof.
Suppose given x y : A. By previous proposition, we have isContr A. Therefore

isContr(x = y).

21

General fact
Whenever you introduce something which looks like a predicate, you should check that

this is a family of propositions: what matters is that bla(x) holds and not which proof

of bla(x) we gave.

In the following, we will assume this:

Temporary axiom
We assume function extensionality: given functions f g: A — B if

(x:A)—>fx=gx

then f = g.

It is “temporary”, because it will follow from univalence.

22

Being a contractible is a proposition

Proposition ([Unil3, Lemma 3.3.5])
Being contractible is a proposition: isProp (isContr A).

Proof.
Suppose given two proofs (x, p) and (y, q) of isContr A. We have py : x = x and we

need to show

Ax.(y:A =
p :p>;(y)—rx=y g

By funext this amounts to show, for z : A
transport (Ax.(y : A) = x=y)(py)pz=qz

in y = z. But A is contractile, therefore x = z also, which is thus a proposition. O

23

Being a proposition is a proposition

Proposition ([Unil3, Lemma 3.3.5])
Being a proposition is a proposition: isProp (isProp A).
Proof.
Suppose given proofs P and Q of (xy : A) — x = y. By funext, given xy : A, we need
to show
Pxy=Qxy

in x = y. but A is a proposition, therefore x = y is contractible, and thus a
proposition.]

24

Subtypes

Given a type A and a family P : A — U of propositions, we can form the subtype
Y(x: A).Px of A

Proposition ([Unil3, Lemma 3.5.1])
The canonical inclusion / first projection fst : YA.P — A is an “injection”.

Proof.
Suppose given (x,m) and (y, p) in ZA.P together with p : x = y. We can construct an

equality between them by constructing
transport Ppm = p

which follows from the fact that P is a proposition. O

25

The type of propositions is
HProp = X(A:U).isProp A

This is a subtype of U.

26

Closure properties: product

We have seen that 0 / 1 are propositions, understood as 1. / T.
What about connectives?

Proposition
Propositions are closed under x. We thus have an induced operation

A : HProp — HProp — HProp

Proof.
Given A and B which are propositions and (x, y) and (x’,y’) in A x B, we have

e p: x = x' since A is a proposition

e g:y =y since B is a proposition
and thus pair= pqg: (x,y) = (¥, y'). O

27

Closure properties: implication

Proposition
The type A — B is a proposition when B is. We thus have an induced operation

= : HProp — HProp — HProp

Proof.
Given f g : A— B, we want to show f = g. By funext it is enough to show f x = g x
for an arbitrary x : A, which holds because B is a proposition. O

In particular negation is always a proposition:

A 2 Ao

28

Closure properties: universal quantification

Previous theorem generalizes to depedent types:

Proposition
Given a type A and a family B : A — U of propositions, the type

M(x:A).Bx
is a proposition. We thus have an induced operation

V:(A:U)— (B:A— HProp) — HProp

29

Propositional extensionality

We define equivalence as
AsB = (A= B)A(B=A)
The proposition extensionality principle [WR27, Chu40] states that
(A= B) —» (A= B)

This principle is compatible with the current theory, and in fact will be implied by
univalence which is a generalization of it.

30

Closure properties: coproducts

Are propositions closed under coproducts?
No: 2 =111 is not a set.

Proposition
Given propositions A and B such that —(A x B), we have AL B a proposition

Proof.
Given elements x x’ : AU B, we want to show that x = x’:

x | X | x=x

a | a | we have a = a2’ by A proposition
b | b’ | we have b = b’ by B proposition
a | b’ | impossible by =(A x B)

a' | b | impossible by =(A x B)

Closure properties: dependent sums

Propositions are not closed under X-types: given a family B : A — U of proposition,
Y(x:A).Bx
is not a proposition in general. For instance,
N = X(x:N)1

is not a proposition.

32

Propositional truncation

In order to correct this, we need an operation which turns a type A into a proposition
[A[l -1

e when A =0, we expect ||A]|-1 =0,

e otherwise, we expect ||A||_; to be contractible.

Excepting that we cannot reason like this in intuitionistic logic.

Instead, we will introduce || — ||_1 as a new type constructor!

33

Propositional logic

Constructor:
| =1l-1:U—=>U

Introduction rules:

| —|-1: A= JJA]| 21 pt : isProp (||Al|-1)
The recursor is (the eliminator is not more useful)

rec: (B:U)— (A— B) —isProp B — ||A|-1 — B

Informally, if you have an a: ||A||—1 and you are trying to prove a proposition B, you
can safely assume that you actually have a: A.

Otherwise said a : ||A||—1 is in a box that you are only allowed to open when proving a
proposition. Computation rule is

Bfptla-1 = f
rec pt |a|—1 a "

e

We say that A merely holds when we have ||A||_;.

35

The missing connectives

We can thus define, for A and B propositions,
AvB = ||JAUB|-1

and for A: U and B : A — U a family of propositions,

>

d(x : A).Bx IIZ(x : A).Bx]||-1

36

The Curry-Howard correspondence

Logic

Type theory

Propositions

Formula

Type

1

0

Ax B

A—B

AUB

(x: A) = B(x)
Y(x:A).B(x)

Proposition

1

0

Ax B

A—B

JAL B

(x : A) = B(x)
IZ(x : A).B()| 1

37

Path connected types

connected

connected component

the connected component is connected

S! is path connected (y : A) — |x = y|| 1

connected component (subtypes are embeddings) [Unil3, Lemma 3.5.1]

the image

38

Double negation

Propositional truncation is close to double negation: there is a canonical map
[Al -1 — ——A

The converse does not hold unless A is “classical” in the sense that =——A — A.

Propositional truncation is thus an “intuitionistic” variant of double negation.

39

The law of excluded middle........

General excluded middle is inconsistent

40

The axiom of choice

41

The propositional truncation forgets abuts proofs only remember provability.

However, we can nevertheless sometimes extract information from it.

42

Extracting from truncation

Proposition ([Unil3, Exercise 3.19])
Suppose that P : N — U is a decidable proposition: for n: N, we have P n LI —(P n)

and isProp (P n). Then
I(n:N).Pn— X(n:N).Pn
Proof.
@rsgg;aéyrtr%rpr%oﬁéateﬁs@)ir&rrfc_rn@#wcmmﬁ iN)=Mn < n— —(Pm)). Thisis a

proposition and thus ¥(n : N).isFirst n is also a proposition. We can then construct a

function which, given a solution, finds the first one:
findFirst : (m: N) — Pm — X(n: N).isFirst n

Now, suppose given 3(n: N).Pni.e. ||X(n:N).Pn|—1 and want X(n : N).isFirst n.
Since this is a proposition, we can suppose given and element of ¥(n : N).P n. By
findFirst, we can construct an element of ¥(n : N).isFirst n and thus X(n: N).Pn. O

43

In Agda,

A||-1 is noted
A s

(apparently “~" is difficult to type).

a4

Propositional truncation: implementation

One way of implementing propositional truncation is axiomatically which we can do in

Agda using rewriting rules:

postulate
|-l : Type - Type
bt €A Type} = A= | A [
isPropPropTrunc : {A : Type} - isProp | A |1
propTrunc-rec :
{A : Type} {B : Type} - isProp B =+ (A + B) = (|| A [= B)
propTrunc-beta :

{A : Type} {B : Type}
(P : isProp B) (f : A » B) (x : A) - propTrunc-rec P f | x | = £ x

45

Propositional truncation: implementation

Another (better) way is to use higher inductive types (once we have them):

data ||_||1 (A : Type) : Type where
[l A AL
squash; : (xy : || A1) » x =

Il
<

Note: this is a recursive type.

|Bool |1 =
ue alse

46

Propositional truncation: impredicative encoding

A last way to encode propositional truncation is the impredicative encoding which
consists in defining truncation by its recursion principle:

IAIY, = (B:U) — isProp B— (A— B) — B
This can be shown to be a proposition (because B is) and the inclusion is
|x|-1Bwf = fx

However, we can only eliminate at a specified level /!

47

Part Il

Sets

48

A set is a collection of points (or, rather, contractible types):

We thus define a set to be a type A satisfying
isSet A= (xy : A) — isProp (x = y)
For instance:

e are sets: 0, 1, Bool, N, HProp, ...
e are not sets: S” with n >0, ...
49

Booleans are sets

Proposition(?)
The type Bool is a set.

Proof.
We have to show (xy : Bool) = (pg:x —y) = p=g.

By induction on g, it is enough to show (x : Bool) — (p : x — x) — p = refl.
With univalence, we will be able to show that (x : Bool) — isContr(x = x), but we do
not have the tools to show this directly for now. Another proof follows. O

50

Propositions are sets

Proposition ([Unil3, Lemma 3.3.4])
Any proposition A is a set: isProp A — isSet A.

Proof.
Suppose given a proposition A, xy : Aand pg: x = y. We have seen that x =y is

contractible and thus a proposition. Thus p = g. O

51

Being a set is a proposition

Proposition ([Unil3, Lemma 3.3.5])
Being a set for a given type is a proposition: isProp (isSet A).

Proof.
We want to show isProp((x y : Bool) — isProp(x = y)).

This amounts to show isProp(isProp(x = y)) for fixed x and y.
Which does hold. O

52

We write
HSet = XY (A:U).isSet A

for the type of sets.

53

Closure properties

We have that

e A x Bis a set when A and B are sets

e ALl B is a set when A and B are sets

e A— Bis aset when B is a set

e (x:A) — Bx is a set when the B x are sets

® >(x:A).Bxis aset when A and the B x are sets

These operations thus induce operations on HSet.

In particular, given a set A and a predicate P, we have
Y(x:A).Px
which plays the role of a subset.

54

Hedberg’s theorem

A type A is decidable when A LI =A holds.
A type A is discrete when it has decidable equality: x = y is decidable for every x y : A.

The following is known as Hedberg's theorem:

Theorem ([Hed98],[Unil3, Theorem 7.2.5])
Every discrete type is a set.

Note: see [Esc04] if you are curious about topological terminology.

55

Hedberg’s theorem

A type A is stable when ——A — A.

A type A is separated when it has stable equality: x = y is stable for every xy : A.

Lemma
Any decidable type is stable.

Proof.
Suppose A is decidable, i.e. AL —A. Supposing ——A, we have to show A.

e If A holds then we conclude immediately.

e If =A holds then we deduce L and thus A. O

Corollary
Any discrete type is separated.

56

Hedberg’s theorem

Lemma
Any separated type is a set.

Proof.
Suppose given two types pg: x = y in A. We want to show that they are equal.
Instead, we will show that both are equal to a “canonical” one.

Since we have p : x =y, we have p: =—(x = y) and thus p : x = y by separation.
This path is canonical in the following sense. Because =—(x = y) is a proposition, we
have p = @ and thus p = § (for arbitrary p and q in x = y).

Our aim is now to show that p = 5. By induction on p, we have to show refl = refl,
which has no reason to hold!

Instead, we show
p=p-refl =g-refl =g

The first equality is shown by induction on p, which amounts to refl = refl - refl . O >

Examples of sets

Corollary
The types Bool, N, Fin n are sets.

Proof.
For instance, for Bool, it is enough to show that for x y : Bool, we have

(x = y) U —(x = y), which can be done by case analysis:

x |y |[(x=y)u-(x=y)
false | false | x = y by refl

true | true | x = y by refl
false | true | =(x =y)

true | false | =(x = y)

58

Set truncation

59

Connected components

We have
mo(X) = [[X|lo

60

The fundamental group

with set truncation
m1(A) = [|QA]|o

61

Part 1V

n-types

62

A groupoid is a type which has sets of paths:

isGroupoid A = (xy: A) — isSet(x = y)

For instance,
e sets are groupoids (Bool, N, etc.)
e Stis a groupoid
e 52 is not a groupoid
e HSet is a groupoid

O @

63

-types [Unil3, Definition 7.1.1]

We define n-types as

e a (—2)-type is a contractible type,
e an (n—+ 1)-type is a type A in which x = y is an n-type for every xy : A.
Formally,

_ ~ isContr A if n= -2,
isType nA =
(xy : A) —isType(n—1)A otherwise.

64

Lemma ([Unil3, Lemma 3.11.10])
A (—1)-type is the same as a proposition.

Proof.
A proposition satisfies

(xy:A) = (x=y)

a (—1)-type satisfies
(xy:A) —isContr(x = y)

Clearly, a (—1)-type is a proposition (project to the contraction center).
Conversely, we have seen that a proposition has contractible path spaces. O

65

Being an -type is a proposition

Theorem ([Unil3, Theorem 7.1.10])
Being an n-type is a proposition.

Proof.
By induction on n.

For the base case, we already know that being contractible is a proposition.

For the inductive case, we have to show
isProp((xy : A) = isType(n—1)(x =y))

for which it is enough to show isProp(isType (n — 1) (x = y)) which is the induction
hypothesis. O]

66

-types are cumulative

Theorem ([Unil3, Theorem 7.1.7])
Every n-type is an (n + 1)-type.

Proof.
For the base case, we have to show that a contractible type has contractible path types,

which we already did.

For the inductive case, we apply the induction hypothesis on x = y. O

67

Closure of -types

Theorem ([Unil3, Theorems 7.1.8 and 7.1.9])
We have that

e A x B is an n-type when A and B are

e ALIB is an n-type when A and B are

e A — B is an n-type when B is

e Y A.B is an n-type when A and the B x are
e [1A.B is an n-type when the B x are

Proof.
Not enough tools for now O

68

The type of -types

Theorem (JUnllS Theorem 7.1.11))
The type of n-types is an (n + 1)-type.

Proof.
Not enough tools for now O

69

Higher truncations

We can define the n-truncation ||A||, of a type, which comes equipped with

[=l A= (Al

Given an n-type B, a map f : A — B extends uniquely as a map ||Al|, — B:

A—— B

70

Bibliography i

[Chu40] Alonzo Church.
A formulation of the simple theory of types.
The journal of symbolic logic, 5(2):56-68, 1940.
doi:10.2307/2266170.

[Esc04] Martin Escardé.
Synthetic topology of data types and classical spaces.
Electronic Notes in Theoretical Computer Science, 87:21-156, 2004.
https://martinescardo.github.io/papers/entcs87.pdf,
doi:10.1016/j.entcs.2004.09.017.

71

https://doi.org/10.2307/2266170
https://martinescardo.github.io/papers/entcs87.pdf
https://doi.org/10.1016/j.entcs.2004.09.017

Bibliography ii

[Hed98] Michael Hedberg.
A coherence theorem for Martin-Lof’s type theory.
Journal of Functional Programming, 8(4):413-436, 1998.
doi:10.1017/S0956796898003153.

[Uni13] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013.
https://homotopytypetheory.org/book, arXiv:1308.0729.

72

https://doi.org/10.1017/S0956796898003153
https://homotopytypetheory.org/book
https://arxiv.org/abs/1308.0729

Bibliography iii

[WR27] Alfred North Whitehead and Bertrand Russell.
Principia Mathematica to *56.
Cambridge University Press, 1927.
https://archive.org/details/

alfred-north-whitehead-bertrand-russel-principia-mathematica.-1/

73

https://archive.org/details/alfred-north-whitehead-bertrand-russel-principia-mathematica.-1/
https://archive.org/details/alfred-north-whitehead-bertrand-russel-principia-mathematica.-1/

	Contractible types
	Propositions
	Sets
	n-types

