
Operations on identity types

Samuel Mimram

2025

École polytechnique



Operations on identity types

We now see that we can define most of the expected operations involving identity types.

Warning
The naming of stuff is slightly different in the HoTT book and in the cubical Agda
library.

I will use HoTT book notation in the slides and cubical Agda in the labs.

1



Symmetry

Given a path p : I → A there is a “symmetric path” p− : I → A defined by
p−(t) = p(1 − t):

x y

We have seen that we can define this in HoTT using J:

sym : (x : A) → (y : A) → (x = y) → (y = x)

x 7→ J Ax (λyp.y = x) refl

More informally, in order to define sym on an arbitrary path p : x = y , by induction
on p it is enough to define it for y =̂ x and p =̂ refl, which we do using refl.

This proves that equality is symmetric.

2



Transitivity / concatenation

We can also show that equality is transitive, which amounts to concatenation of paths:

x y

p

qq

In order to define the concatenation p · q : x = z of paths p : x = y and q : y = z , by
induction on q it is enough to define when z =̂ y and q =̂ refl : y = y , in which case we
define it as p.

Geometrically, this corresponds to the concatenation of paths p : I → A and q : I → A

defined by

(p · q)(t) =

p(2t) if 0 ≤ t ≤ 1/2

q(2t − 1) if 1/2 ≤ t ≤ 2

3



Concatenation

Note that this is not the only way we could define concatenation:

• p · refl =̂ p

• refl ·p =̂ p

• refl · refl =̂ refl

They are not definitionally equal, but they can be proved to be propositionally equal.

4



Laws for concatenation

We have the following operation on paths: constant path (refl), concatenation (p · q),
symmetry (p−).

Proposition ([Uni13, Section 2.1])
The above operations satisfy the expected laws: for p : x = y , q : y = z and r : z = w ,

refl ·p = p (p · q) · r = p · (q · r) p · p− = refl (p · q)− = q− · p−

p · refl = p p− · p = refl (p−)− = p

For instance, we have p · refl = p by definition so that we can take refl.

To show refl ·p = p, by induction on p it is enough to show refl · refl = refl which holds
by previous point.

Other are proved similarly by induction on paths (see the lab).
5



The fundamental ∞-groupoid of a space

It seems that this states that to any type/space we can associate a groupoid such that

• the objects are the points x : A,

• the morphisms x → y are the paths p : x = y ,

• identities are given by refl and composition by concatenation,

• we have seen that the axioms are satisfied:

refl ·p = p p · refl = p (p · q) · r = p · (q · r)

and we have inverses.

However this is not exactly the case because “axioms” are homotopies!

6



The fundamental ∞-groupoid of a space

Consider the space

A =̂ x y

we have a path p : x = y , i.e. a function p : I → A which can be pictured as

0 1
tx

y
p(t)

0 1
tx

y
p(t)

we also have refl : x = x pictured on the left.

Their concatenation is refl ·p ∼ p:

0 1
tx

y
p(t)

∼

0 1
tx

y
p(t)

7



The fundamental ∞-groupoid of a space

A space induces an ∞-groupoid [Lum10, VDBG11]: we have

• 0-cells: the points of x : A

• 1-cells: the paths p : x = y in A

• 2-cells: the homotopies α : p = q : x = y between paths in A

• . . .

such that

• composition of n-cells is unital and associative up to (n+1)-cells
• the unitality and associativity satisfy coherence laws up to higher cells, etc.

(((p · q) · r) · s) (p · (q · r)) · s

p · ((q · r) · s)

(p · q) · (r · s) p · (q · (r · s))
8



Grothendieck’s homotopy hypothesis

In fact, the ∞-groupoid is expected to contain all the relevant information of the space:

Hypothesis
The Grothendieck homotopy hypothesis [Gro83] states that spaces should be
equivalent to ∞-groupoids.

Note: we would have to detail what we mean by “space”, by “∞-groupoid” and by
“equivalent”, which is out of the scope of this course. There are various answers for
that, and the hypothesis has been proved for some of them.

9



Congruence

An important property of equality is that it is a congruence:

Proposition
Given a function f : A → B and an equality p : x = y in A, we have an equality
f (x) = f (y).

Proof.
By induction on p, it is enough to show that we have f (x) = f (x), done by refl.

We therefore have a function

ap : (A → B) → {x y : A} → (x = y) → (f (x) = f (y))

also named cong in Agda, which can be read as

• we can apply a function to a path,
• all functions induce functors between the corresponding ∞-groupoids.

10



Congruence: continuity

Geometrically, ap also means that every function is continuous:

A B
f

x

y

p

f x

f y

ap f p

11



Congruence: properties

Proposition ([Uni13, Lemma 2.2.2])
We have that:

• ap is compatible with the groupoid structure:

ap f (p · q) = (ap f p) · (ap f q) ap f refl = refl ap f p− = (ap f p)−

A B
f

x
p

y

q

z

f x

f y

f z

ap f p

ap f q

ap f (p · q)

• ap is compatible with composition:

ap (g ◦ f ) p = ap g (ap f p) ap id p = p

A B C
f g

x

p

y

f x

ap f p

f y

g (f x)

g (f y)

12



Substitutivity

An important property of equality is that it is substitutive:
given a property P : A → U , if x satisfies P and x = y then y also satisfies P .

Ex: in Q, we have that 4/2 is an integer and 4/2 = 6/3 therefore 6/3 is also an integer.

Proposition
We have a function called transport or subst in Agda:

transport : {A : U} → (P : A → U) → {x y : A} → (x = y) → P x → P y

Proof.
By induction, it is enough to provide a function P x → P x and we take id.

13



Difference between booleans

Proposition
In Bool, we have ¬(false = true).

Proof.
Suppose given p : false = true. Consider the function

F : Bool → U
false 7→ 1

true 7→ ⊥

By transport, we have
transport F p : 1 → ⊥

We thus have ⊥ by applying it to ⋆ : 1.

14



Leibniz equality

This property of indiscernability of identicals can be taken as the definition of
Leibniz equality [Lei86]: on A, we define

(x
L
= y) =̂ ((P : A → U) → P x → P y)

Lemma
This is a symmetric relation.

Proof.
Suppose x

L
= y . Given P : A → U such that P y , we have to show P x .

Consider the property Q(y) =̂ P y → P x . We have Q(x) =̂ P x → P y by id, therefore
Q(y) =̂ P y → P x because x

L
= y , and we deduce P x since we have P y .

In fact, Leibniz equality is logically equivalent to identity [ACD+20]:
(x

L
= y) ↔ (x = y) 15



Let’s provide a geometric interpretation for transport.

16



Type families

A type family is a function
B : A → U

which can be thought of as a family of spaces B x continuously indexed by x : A

x

B xΣA.B

A

fst

and Σ(x : A).B x is the total space.

17



Transport

Given a type family B : A → U the transport (or subst) operation associates to a
path p : x = y in A a function

p∗ : B x → B y

which can be pictured as

x y

p

B x

x̃

B y
p∗x̃

U

A

B

18



Transport

By ap all the fibers have to be equal when A is connected, but the transport can still be
non-trivial!

For instance, consider the non-trivial fibration B : S1 → U with B x =̂ Bool.

p

U

S1

B

x

false

true

We have
p∗ false = true

19



Transport: properties

Transport satisfies the expected properties:

Proposition ([Uni13, Lemma 2.3.9])
For p : x = y and q : y = z in A, and x̃ : B x , we have

(p · q)∗ x̃ = q∗(p∗ x̃)

x y z

p q

B x B y B z

x̃ p∗x̃U

A

B

20



Transport: properties

Proposition ([Uni13, Lemma 2.3.10])
Given f : A′ → A, B : A → U , p : x = y in A′ and x̃ : B x ,

transport (B ◦ f ) p x̃ = transport B (ap f p) x̃

x y

ap f p

p
f x f y

B x B y

x̃ p∗x̃U

A

A′
f

B

21



Transport: a variant

We have the following variant of transport

transport : (B : A → U) → {x y : A} → (x = y) → B x → B y

sometimes called coe for coercion and noted transport in Agda:

coe : A = B → A → B

Proposition
The functions transport and coe are logically equivalent.

Proof.
We have

coe p x = transport (λX .X ) p x

transport b p x̃ = coe (ap B p) x̃
22



Type families are fibrations

Proposition ([Uni13, Lemma 2.3.2])
Consider a type family B : A → U , the map

fst : Σ(x : A).B x → A

is a fibration: given a path p : x = y and x̃ : B x , there is a path

p̃ : (x , x̃) = (y , p∗ x̃)

such that ap fst p̃ = p.

x y

p

x̃ p∗x̃

p̃
ΣA.B

A

fst

1 ΣA.B

I A

x

x̃

fst

p

p̃

23



Dependent application

We have the congruence/application function

ap : {AB : U} → (f : A → B) → {x y : A} → (p : x = y) → f x = f y

We would now like to generalize it to the dependent case

apd : {A : U} {B : A → U} → (f : (x : A) → B x) → {x y : A} → (p : x = y) → f x = f y

We want to have a path between elements of B x and B y which is not allowed,
but intuitively fine because we have a path p : x = y .

x y

p

B x B y

f x f yapd f p
U

A

B

24



Dependent application

One way out is to define from
f : (x : A) → B x

the application to the total space

F : A → ΣA.B

x 7→ (x , f x)

which is a section of fst : ΣA.B → A, i.e. fst ◦F (x) =̂ x , and use ap on f̃ .

x y

p

B x B y

f x

f y
apd f pΣA.B

A

fstf

But we loose the fact that we are over p! 25



Dependent application [Uni13, Lemma 2.3.4]

A better idea is to encode the path apd f p as a path in B y .

x y

p

B x B y

f x

f y

apd f p

p∗(f x)
p̃

apd f pΣA.B

A

fstf

and we define

apd : (f : (x : A) → B x) → {x y : A} → (p : x = y) → p∗(f x) = f y

by induction by
apd f refl =̂ reflf x

26



Paths over

More generally, given x = y in A, B : A → U , x̃ : B x and ỹ : B y , the type of paths
in B over p between x̃ and ỹ is

x̃ =B
p ỹ =̂ p∗ x̃ = ỹ

which can be pictured as

x y

p

B x B y

x̃

ỹ

p∗(f x)
p̃

U

A

B

27



Paths in product types [Uni13, Section 2.6]

Suppose given x x ′ : A and y y ′ : B .

A path p : (x , y) = (x ′, y ′) induces paths

ap fst p : x = x ′ ap snd p : y = y ′

Conversely, we have a function

pair= : (x = x ′) → (y = y ′) → (x , y) = (x ′, y ′)

which is defined by path induction and is useful to construct paths in products.

28



Path in dependent sum types [Uni13, Section 2.7]

Suppose given x x ′ : A, y : B x and y ′ : B x ′.

A path p : (x , y) = (x ′, y ′) induces paths

ap fst p : x = x ′ ap snd p : y =B
p y ′

Conversely, we have a function

pair= : (p : x = x ′) → (y =B
p y ′) → (x , y) = (x ′, y ′)

x x ′
ap fst p

B x

y

B y

y ′
ap snd p

U

A

B

29



Transporting paths

Proposition ([Uni13, Lemma 2.11.2])
Given paths p : a = x and q : x = y , we have

transport (λx .a = x) q p = p · q

Similarly, given paths p : x = a and q : x = y , we have

transport (λx .a = x) q p = q− · p

Similarly, given paths p : x = x and q : x = y , we have

transport (λx .x = x) q p = q− · p · q

x y

a

q

p

a

x y

p

q

x y

x y

p

q

q
Proof.
By path induction on p. 30



Transporting paths

More generally,

Proposition ([Uni13, Lemma 2.11.3])
Given f g : A → B , p : f x = g x in B and q : x = y in A,

transport (λx .f x = g x) q p = (ap f q)− · p · ap g q

in f y = g y .

31



Transporting functions

Writing N for the unary natural number and B for the binary ones, we have

p : N = B

By transport, we obtain

coe p : N → B coe p− : B → N

Writing suc : N → N for the successor function, by transport we have

transport (λX .X → X ) p suc : B → B

This function is

transport (λX .X → X ) p suc = (coe p) ◦ suc ◦(coe p−)

32



Transporting functions

Proposition
Given a function f : A → B and paths p : A = A′ and q : B = B ′, we have

transport (λX .A → X ) q f = coe q ◦ f
transport (λX .X → B) p f = f ◦ coe p−

33



Transporting functions

Proposition ([Uni13, (2.9.4)])
Given type families A : X → U and B : X → U , a path p : x = y in X and a function
f : Ax → B x , we have

transport (λx .Ax → B x) p f = transport B p ◦ f ◦ transport Ap−

x

p

yX

A x

B x

f

Ay

B y

zp−∗ z

f (p−∗ z) p∗(f (p
−
∗ z))

34



Bibliography i

[ACD+20] Andreas Abel, Jesper Cockx, Dominique Devriese, Amin Timany, and Philip
Wadler.
Leibniz equality is isomorphic to Martin-Löf identity, parametrically.
Journal of Functional Programming, 30, 2020.
doi:10.1017/S0956796820000155.

[Gro83] Alexander Grothendieck.
Pursuing stacks, 1983.
Letter to Daniel Quillen.
arXiv:2111.01000.

35

https://doi.org/10.1017/S0956796820000155
https://arxiv.org/abs/2111.01000


Bibliography ii

[Lei86] Gottfried Wilhelm Leibniz.
Discours de métaphysique.
1686.

[Lum10] Peter LeFanu Lumsdaine.
Weak omega-categories from intensional type theory.
Logical Methods in Computer Science, 6, 2010.
arXiv:0812.0409, doi:10.2168/LMCS-6(3:24)2010.

[Uni13] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study, 2013.
https://homotopytypetheory.org/book, arXiv:1308.0729.

36

https://arxiv.org/abs/0812.0409
https://doi.org/10.2168/LMCS-6(3:24)2010
https://homotopytypetheory.org/book
https://arxiv.org/abs/1308.0729


Bibliography iii

[VDBG11] Benno Van Den Berg and Richard Garner.
Types are weak ω-groupoids.
Proceedings of the london mathematical society, 102(2):370–394, 2011.
arXiv:0812.0298, doi:10.1112/plms/pdq026.

37

https://arxiv.org/abs/0812.0298
https://doi.org/10.1112/plms/pdq026

