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Identity types

Recall that in previous lesson we have seen identity types.

For t, u : A, we have a type
t = u

of proofs that t is the same as u (equalities/identities/paths).

On a semantic point of view,

• A corresponds to a space,
• t and u correspond to points in the space A,
• p : t = u corresponds to a path from t to u in A:

A
t up
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Identity types

Type former:
− = − : (A : U) → A → A → U

Constructor:
refl : (x : A) → x = x

Eliminator:

J : (A : U) → (x : A) → (P : (y : A) → x = y → U) →
P x (refl x) →
(y : A) → (p : x = y) → P y p

Computation:
J Ax P r x (refl x) =̂ r
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Identity types: J

We have
J : (A : U) → (x : A) → (P : (y : A) → x = y → U) →

P x (refl x) →
(y : A) → (p : x = y) → P y p

For instance, we can prove that equality is symmetric, i.e. the property

P : (y : A) → x = y → U
y p 7→ y = x

for given A : U and x : A by

sym =̂ J Ax P refl

This corresponds to a pattern matching:

sym : {A : Type} {x y : A} → x ≡ y → y ≡ x
sym refl = refl
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Identity types: J

Similarly, we can prove that sym is involutive, i.e. the property

P : (y : A) → x = y → U
y p 7→ sym (sym p) = p

for given A : U and x : A by

sym =̂ J Ax P refl

namely, by the computation rule, we have

sym (sym refl) =̂ refl
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UIP

Since identity types are introduced with refl only, do we get more than reflexivity?

This can be formulated as

• uniqueness of reflexivity proofs

URP : (x : A) → (p : x = x) → (p = refl)

• uniqueness of identity proofs

UIP : (x y : A) → (p q : x = y) → (p = q)

• K
K : (P : (x = x) → U) → P refl → (p : x = x) → P p

All are equivalent (see lab).

Can they be proved?
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At first, it seems that the question was settled by the uniqueness rule.
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Uniqueness rule

The uniqueness rule for booleans states that a function

f : (b : Bool) → A(b)

is entirely determined by the two values

f false : A(false) f true : A(true)

Similarly, we expect that a function

f : (y : A) → (p : x = y) → B(y , p)

is entirely determined by
f x refl : B(x , refl)
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Uniqueness rule

We consider the following uniqueness rule: given x : A and

f : (y : A) → (p : x = y) → B(y , p)

we have
f =̂ J A x (f x refl)

This rule was actually present in Martin-Löf’s original type system [MLS84].

It implies the equality reflection rule, which is problematic in some ways.
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Equality reflection rule

The equality reflection rule states that from a = b we can deduce a =̂ b.

The resulting type theory is called extensional type theory.

Lemma ([Str93, Theorem 1.1])
The uniqueness rule t =̂ J A x (t x refl) : (y : A) → (p : x = y) → B(y , p) implies
equality reflection.

Proof.
Suppose given p : x = y . Taking B =̂ A we have, with t =̂ λy .λp.x ,

λy .λp.x =̂ J Ax x

and with t =̂ λy .λp.y ,
λy .λp.y =̂ J Ax x

Thus,
x =̂ (λy .λp.x) y p =̂ (λy .λp.y) y p =̂ y
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Equality reflection rule

Lemma
The equality reflection rule

Γ ⊢ p : x = y

Γ ⊢ x =̂ y

implies UIP.

Proof.
Consider the type

(x y : A) → (p : x = y) → (p = refl)

Note that this is well-typed because of the equality reflection rule!

By J, in order to prove this, it is enough to prove it for x =̂ y and p =̂ refl.

This can be done by refl.
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Equality reflection rule

It seems that the issue is settled but...

Proposition ([Hof95, Theorem 3.2.1])
The equality reflection rule

Γ ⊢ p : x = y

Γ ⊢ x =̂ y

makes typechecking undecidable.

Because of this, the uniqueness rule for identities is almost never considered.
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The groupoid model

The question of whether UIP holds remained opened for some time.

The question was settled by Hofmann and Streicher [HS98] who constructed a model in
which UIP is not validated, as we now sketch.

Don’t think we cannot prove what we want, but rather we have more models!
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The groupoid model

In the set semantics of logic we interpret:

• a type A as a set JAK
• a term t : A as an element of JtK ∈ JAK

More generally, we interpret

• a dependent type x : A ⊢ B(x) as a function JBK : JAK → Set,
• a dependent term x : A ⊢ t : B(x) as a function JtK : (x : JAK) → JBK(x)

For instance, we interpret
x : A, y : A ⊢ x = y

as the function
JAK × JAK → Set

(x̃ , ỹ) 7→

{⋆} if x̃ = ỹ

∅ otherwise 13



The groupoid model

In the model of Hoffman and Streicher,
we interpret types as groupoids instead of sets.
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The groupoid model

A category C consists of

• a set C0 of objects,
• a set C(A,B) of morphisms for every objects A and B,
• composition operations ◦ : C(B,C ) → C(A,B) → C(A,C )

• identities idA ∈ C(A,B)
such that composition is associative: for f : A → B , g : B → C and h : C → D,

h ◦ (g ◦ f ) = (h ◦ g) ◦ f

and identities are neutral elements: for f : A → B ,

idB ◦f = f = f ◦ idA
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The groupoid model

In a category C, a morphism f : A → B is invertible when there exists a morphism
g : B → A such that g ◦ f = idA and f ◦ g = idB .

A category is a groupoid when every morphism is invertible.

For instance,

• the category Bij of sets and bijections,

• the category Z with one object, Z as morphisms and composition given by addition,

• . . .
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The groupoid model

We interpret

• a type A as a groupoid JAK
• a term t : A as an object JtK ∈ JAK.

More generally, we interpret a type Γ ⊢ A as a functor JΓK → Gpd.

In particular, we interpret x : A, y : A ⊢ x = y as the functor

JAK × JAK → Gpd

which to objects x , y : JAK associates groupoid whose objects are morphisms in
JAK(x , y) and only trivial morphisms.

By taking JAK a groupoid such as Bij, we see that our model does not validate UIP!

(note: we are leaving out lots of details, see [HS98])
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The space model

We have a more general semantics here were we interpret

• a type A as a space JAK,
• a term t : A as a point JtK : A.

More generally, we interpret

• a type Γ ⊢ A as a fibration JΓ ⊢ AK : JAK → JΓK,
• a term Γ ⊢ t : A as a section JtK : JΓK → JAK of the fibration JΓ ⊢ AK.

Setting this up precisely is quite subtle [Rie24]:

• MLTT with identity types can be modeled in model categories [GG08, AW09],
• Voevodsky constructed a model of HoTT in simplicial sets [KL21],
• Shulman extended this to ∞-toposes [Shu19].
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The space model

In the model, we interpret

• a type A as a space (think: topological space),

• a term t : A as a point of A.

A
t
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The space model: paths

A path p in a space A is a continuous map

p : I → A

with I = [0, 1]. The points p(0) and p(1) are its source and target.

Given x , y : A, we interpret the type x = y : A as the space of paths from x to y in A.

We thus interpret a term p : x = y as a path from x to y .

A
x yp

In particular, we interpret reflx : x = x as the constant path p : I → A with p(t) =̂ x .
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The space model: paths between paths

Given points x , y : A and paths p, q : x = y , we can consider the type p = q.

Its points are homotopies between p and q, i.e. continuous deformations from p to q,
i.e. maps

α : I → I → A

such that

α 0 =̂ p α 1 =̂ q α t 0 =̂ x α t 1 =̂ y

Ax y

p

q

α A

α : I × I → A

x

x

x

y

y

y
p

q
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The space model: paths between paths between paths

Given x , y : A, p, q : x = y , α, β : p = q, a path Ψ : α = β is a homotopy between
homotopies, i.e. a map

I → I → I → A

such that

Ψ 0 =̂ α Ψ 1 =̂ β Ψ t 0 =̂ p Ψ t 1 =̂ q

Ax y
α β

p

q

and so on... 22



The space model: path types

Let’s have a look at some path types.

• In 1, we have
(⋆ = ⋆) = 1

• In N, we have

(m = n) =

1 if m =̂ n

0 otherwise

• In I
x y

we have
(x = y) = ≃ 1
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The space model: path types

Let’s have a look at some path types.

• In S1, we have

⋆

(⋆ = ⋆) ≃ Z

• In S2, we have

x y (x = y) = ? ̸= S1
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The space model: J

The axiom

J : (A : U) → (x : A) → (P : (y : A) → x = y → U) →
P x (refl x) →
(y : A) → (p : x = y) → P y p

states that in order to prove a property P on a path p, we can always suppose that p is
refl provided that y is a generic point.

For instance, suppose that we want to prove UIP:

(x : A) → (p : x = x) → p = refl

x

p

which is URP. We cannot use J anymore! 25



The space model: J

In Agda, we can do this by using pattern matching. With

{-# OPTIONS --without-K #-}
UIP : {A : Type} {x y : A} (p q : x ≡ y) → p ≡ q
UIP p refl = ?

we have to prove

error: [SplitError.UnificationStuck]
I’m not sure if there should be a case for the constructor refl,
because I get stuck when trying to solve the following unification
problems (inferred index

?
= expected index):

x1
?
= x1

Possible reason why unification failed:
Cannot eliminate reflexive equation x1 = x1 of type A1 because K
has been disabled.

when checking that the expression ? has type p ≡ refl
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