
Identity types

Samuel Mimram

2025

École polytechnique



Identity types

Recall that in previous lesson we have seen identity types.

For t, u : A, we have a type
t = u

of proofs that t is the same as u (equalities/identities/paths).

On a semantic point of view,

• A corresponds to a space,
• t and u correspond to points in the space A,
• p : t = u corresponds to a path from t to u in A:

A
t up

1



Identity types

Type former:
− = − : (A : U) → A → A → U

Constructor:
refl : (x : A) → x = x

Eliminator:

J : (A : U) → (x : A) → (P : (y : A) → x = y → U) →
P x (refl x) →
(y : A) → (p : x = y) → P y p

Computation:
J Ax P r x (refl x) =̂ r

2



Identity types: J

We have
J : (A : U) → (x : A) → (P : (y : A) → x = y → U) →

P x (refl x) →
(y : A) → (p : x = y) → P y p

For instance, we can prove that equality is symmetric, i.e. the property

P : (y : A) → x = y → U
y p 7→ y = x

for given A : U and x : A by

sym =̂ J Ax P refl

This corresponds to a pattern matching:

sym : {A : Type} {x y : A} → x ≡ y → y ≡ x
sym refl = refl

3



Identity types: J

Similarly, we can prove that sym is involutive, i.e. the property

P : (y : A) → x = y → U
y p 7→ sym (sym p) = p

for given A : U and x : A by

sym =̂ J Ax P refl

namely, by the computation rule, we have

sym (sym refl) =̂ refl

4



UIP

Since identity types are introduced with refl only, do we get more than reflexivity?

This can be formulated as

• uniqueness of reflexivity proofs

URP : (x : A) → (p : x = x) → (p = refl)

• uniqueness of identity proofs

UIP : (x y : A) → (p q : x = y) → (p = q)

• K
K : (P : (x = x) → U) → P refl → (p : x = x) → P p

All are equivalent (see lab).

Can they be proved?
5



At first, it seems that the question was settled by the uniqueness rule.

6



Uniqueness rule

The uniqueness rule for booleans states that a function

f : (b : Bool) → A(b)

is entirely determined by the two values

f false : A(false) f true : A(true)

Similarly, we expect that a function

f : (y : A) → (p : x = y) → B(y , p)

is entirely determined by
f x refl : B(x , refl)

7



Uniqueness rule

We consider the following uniqueness rule: given x : A and

f : (y : A) → (p : x = y) → B(y , p)

we have
f =̂ J A x (f x refl)

This rule was actually present in Martin-Löf’s original type system [MLS84].

It implies the equality reflection rule, which is problematic in some ways.

8



Equality reflection rule

The equality reflection rule states that from a = b we can deduce a =̂ b.

The resulting type theory is called extensional type theory.

Lemma ([Str93, Theorem 1.1])
The uniqueness rule t =̂ J A x (t x refl) : (y : A) → (p : x = y) → B(y , p) implies
equality reflection.

Proof.
Suppose given p : x = y . Taking B =̂ A we have, with t =̂ λy .λp.x ,

λy .λp.x =̂ J Ax x

and with t =̂ λy .λp.y ,
λy .λp.y =̂ J Ax x

Thus,
x =̂ (λy .λp.x) y p =̂ (λy .λp.y) y p =̂ y

9



Equality reflection rule

Lemma
The equality reflection rule

Γ ⊢ p : x = y

Γ ⊢ x =̂ y

implies UIP.

Proof.
Consider the type

(x y : A) → (p : x = y) → (p = refl)

Note that this is well-typed because of the equality reflection rule!

By J, in order to prove this, it is enough to prove it for x =̂ y and p =̂ refl.

This can be done by refl.

10



Equality reflection rule

It seems that the issue is settled but...

Proposition ([Hof95, Theorem 3.2.1])
The equality reflection rule

Γ ⊢ p : x = y

Γ ⊢ x =̂ y

makes typechecking undecidable.

Because of this, the uniqueness rule for identities is almost never considered.

11



The groupoid model

The question of whether UIP holds remained opened for some time.

The question was settled by Hofmann and Streicher [HS98] who constructed a model in
which UIP is not validated, as we now sketch.

Don’t think we cannot prove what we want, but rather we have more models!

12



The groupoid model

In the set semantics of logic we interpret:

• a type A as a set JAK
• a term t : A as an element of JtK ∈ JAK

More generally, we interpret

• a dependent type x : A ⊢ B(x) as a function JBK : JAK → Set,
• a dependent term x : A ⊢ t : B(x) as a function JtK : (x : JAK) → JBK(x)

For instance, we interpret
x : A, y : A ⊢ x = y

as the function
JAK × JAK → Set

(x̃ , ỹ) 7→

{⋆} if x̃ = ỹ

∅ otherwise 13



The groupoid model

In the model of Hoffman and Streicher,
we interpret types as groupoids instead of sets.

14



The groupoid model

A category C consists of

• a set C0 of objects,
• a set C(A,B) of morphisms for every objects A and B,
• composition operations ◦ : C(B,C ) → C(A,B) → C(A,C )

• identities idA ∈ C(A,B)
such that composition is associative: for f : A → B , g : B → C and h : C → D,

h ◦ (g ◦ f ) = (h ◦ g) ◦ f

and identities are neutral elements: for f : A → B ,

idB ◦f = f = f ◦ idA

15



The groupoid model

In a category C, a morphism f : A → B is invertible when there exists a morphism
g : B → A such that g ◦ f = idA and f ◦ g = idB .

A category is a groupoid when every morphism is invertible.

For instance,

• the category Bij of sets and bijections,

• the category Z with one object, Z as morphisms and composition given by addition,

• . . .

16



The groupoid model

We interpret

• a type A as a groupoid JAK
• a term t : A as an object JtK ∈ JAK.

More generally, we interpret a type Γ ⊢ A as a functor JΓK → Gpd.

In particular, we interpret x : A, y : A ⊢ x = y as the functor

JAK × JAK → Gpd

which to objects x , y : JAK associates groupoid whose objects are morphisms in
JAK(x , y) and only trivial morphisms.

By taking JAK a groupoid such as Bij, we see that our model does not validate UIP!

(note: we are leaving out lots of details, see [HS98])

17



The space model

We have a more general semantics here were we interpret

• a type A as a space JAK,
• a term t : A as a point JtK : A.

More generally, we interpret

• a type Γ ⊢ A as a fibration JΓ ⊢ AK : JAK → JΓK,
• a term Γ ⊢ t : A as a section JtK : JΓK → JAK of the fibration JΓ ⊢ AK.

Setting this up precisely is quite subtle [Rie24]:

• MLTT with identity types can be modeled in model categories [GG08, AW09],
• Voevodsky constructed a model of HoTT in simplicial sets [KL21],
• Shulman extended this to ∞-toposes [Shu19].

18



The space model

In the model, we interpret

• a type A as a space (think: topological space),

• a term t : A as a point of A.

A
t

19



The space model: paths

A path p in a space A is a continuous map

p : I → A

with I = [0, 1]. The points p(0) and p(1) are its source and target.

Given x , y : A, we interpret the type x = y : A as the space of paths from x to y in A.

We thus interpret a term p : x = y as a path from x to y .

A
x yp

In particular, we interpret reflx : x = x as the constant path p : I → A with p(t) =̂ x .
20



The space model: paths between paths

Given points x , y : A and paths p, q : x = y , we can consider the type p = q.

Its points are homotopies between p and q, i.e. continuous deformations from p to q,
i.e. maps

α : I → I → A

such that

α 0 =̂ p α 1 =̂ q α t 0 =̂ x α t 1 =̂ y

Ax y

p

q

α A

α : I × I → A

x

x

x

y

y

y
p

q
21



The space model: paths between paths between paths

Given x , y : A, p, q : x = y , α, β : p = q, a path Ψ : α = β is a homotopy between
homotopies, i.e. a map

I → I → I → A

such that

Ψ 0 =̂ α Ψ 1 =̂ β Ψ t 0 =̂ p Ψ t 1 =̂ q

Ax y
α β

p

q

and so on... 22



The space model: path types

Let’s have a look at some path types.

• In 1, we have
(⋆ = ⋆) = 1

• In N, we have

(m = n) =

1 if m =̂ n

0 otherwise

• In I
x y

we have
(x = y) = ≃ 1

23



The space model: path types

Let’s have a look at some path types.

• In S1, we have

⋆

(⋆ = ⋆) ≃ Z

• In S2, we have

x y (x = y) = ? ̸= S1

24



The space model: J

The axiom

J : (A : U) → (x : A) → (P : (y : A) → x = y → U) →
P x (refl x) →
(y : A) → (p : x = y) → P y p

states that in order to prove a property P on a path p, we can always suppose that p is
refl provided that y is a generic point.

For instance, suppose that we want to prove UIP:

(x : A) → (p : x = x) → p = refl

x

p

which is URP. We cannot use J anymore! 25



The space model: J

In Agda, we can do this by using pattern matching. With

{-# OPTIONS --without-K #-}
UIP : {A : Type} {x y : A} (p q : x ≡ y) → p ≡ q
UIP p refl = ?

we have to prove

error: [SplitError.UnificationStuck]
I’m not sure if there should be a case for the constructor refl,
because I get stuck when trying to solve the following unification
problems (inferred index

?
= expected index):

x1
?
= x1

Possible reason why unification failed:
Cannot eliminate reflexive equation x1 = x1 of type A1 because K
has been disabled.

when checking that the expression ? has type p ≡ refl

26



Bibliography i

[AW09] Steve Awodey and Michael A Warren.
Homotopy theoretic models of identity types.
In Mathematical proceedings of the cambridge philosophical society, volume
146, pages 45–55. Cambridge University Press, 2009.
arXiv:0709.0248, doi:10.1017/S0305004108001783.

[GG08] Nicola Gambino and Richard Garner.
The identity type weak factorisation system.
Theoretical computer science, 409(1):94–109, 2008.
arXiv:0803.4349, doi:10.1016/j.tcs.2008.08.030.

27

https://arxiv.org/abs/0709.0248
https://doi.org/10.1017/S0305004108001783
https://arxiv.org/abs/0803.4349
https://doi.org/10.1016/j.tcs.2008.08.030


Bibliography ii

[Hof95] Martin Hofmann.
Extensional concepts in intensional type theory.
PhD thesis, University of Edinburgh, 1995.
https://era.ed.ac.uk/handle/1842/399.

[HS98] Martin Hofmann and Thomas Streicher.
The groupoid interpretation of type theory.
Twenty-five years of constructive type theory (Venice, 1995), 36:83–111,
1998.
https://ncatlab.org/nlab/files/
HofmannStreicherGroupoidInterpretation.pdf.

28

https://era.ed.ac.uk/handle/1842/399
https://ncatlab.org/nlab/files/HofmannStreicherGroupoidInterpretation.pdf
https://ncatlab.org/nlab/files/HofmannStreicherGroupoidInterpretation.pdf


Bibliography iii

[KL21] Krzysztof Kapulkin and Peter LeFanu Lumsdaine.
The simplicial model of univalent foundations (after Voevodsky).
Journal of the European Mathematical Society, 23(6):2071–2126, 2021.
arXiv:1211.2851, doi:10.4171/JEMS/1050.

[MLS84] Per Martin-Löf and Giovanni Sambin.
Intuitionistic type theory, volume 9.
Bibliopolis Naples, 1984.
https://archive-pml.github.io/martin-lof/pdfs/
Bibliopolis-Book-retypeset-1984.pdf.

29

https://arxiv.org/abs/1211.2851
https://doi.org/10.4171/JEMS/1050
https://archive-pml.github.io/martin-lof/pdfs/Bibliopolis-Book-retypeset-1984.pdf
https://archive-pml.github.io/martin-lof/pdfs/Bibliopolis-Book-retypeset-1984.pdf


Bibliography iv

[Rie24] Emily Riehl.
On the ∞-topos semantics of homotopy type theory.
Bulletin of the London Mathematical Society, 56(2):461–517, 2024.
arXiv:2212.06937, doi:10.1112/blms.12997.

[Shu19] Michael Shulman.
All (∞, 1)-toposes have strict univalent universes.
Preprint, 2019.
arXiv:1904.07004.

[Str93] Thomas Streicher.
Investigations into intensional type theory, 1993.
Habilitiation Thesis, Ludwig Maximilian Universität.

30

https://arxiv.org/abs/2212.06937
https://doi.org/10.1112/blms.12997
https://arxiv.org/abs/1904.07004

