
Agda

Samuel Mimram

2025

École polytechnique



Agda

Agda is a programming language / proof assistant:

• one directly write programs of given type (no tactics),

• in order to help the user one gradually fills holes.

1



First proof

As a first proof, consider:

open import Prelude

-- The product is commutative
×-comm : {A B : Type} (A × B) → (B × A)
×-comm (a , b) = (b , a)

We then type C-c C-l in order to have Agda check this for us.

2



Agda syntax

We can import functions from other modules with

open import ModuleName

Comments are of the form

-- one line

or

{-
multiple
lines
-}

3



Agda syntax

For all functions, we declare the type and then the value:

f : {A : Type} → A → B
f x = ...

Named standard arguments are (x : A) and implicit arguments are {x : A}.

All functions are recursive.

We can use the notation _ in order to have Agda guess part of the term.

4



Agda syntax

Agda allows for UTF-8 symbols which are mostly typed like in LATEX:

× \times ⊤ \top → \to Π \Pi λ \Gl N \bN
⊎ \uplus ¬ \neg ∃ \ex Σ \Sigma ≡ \equiv ■ \qed

Agda is picky about spaces:

• m + n is an addition
• m+n is an identifier name

The reason is that we can define new infix operators, e.g.

_+_ : N → N → N
zero + n = n
suc m + n = suc (m + n)

5



Agda syntax

In practice it is almost impossible to write a whole proof directly.

Agda offers holes which are typed as ?.

6



Agda shortcuts

We then have shortcuts to help us in proofs:

C-c C-l typecheck and highlight the current file
C-c C-, get information about the hole under the cursor
C-c C-. same as above + the type of the proposed filler
C-c C-space give a solution
C-c C-c case analysis on a variable
C-c C-r refine the hole
C-c C-a automatic fill
middle click go to the definition of the term

7



Inductive types

We can define inductive types

data N : Set where
zero : N
suc : N → N

Constructors are injective: Agda “knows” that

• zero is always different from suc n

• suc m is the same as suc n iff m is the same as n

8



Inductive types

The identity type can also be defined as an inductive type:

data _≡_ {A : Type} (x : A) : (y : A) → Type where
refl : x ≡ x

9



Local definitions

We can have local definitions with where:

quadruple : N → N
quadruple n = double (double n)

where
double : N → N
double zero = zero
double (suc n) = suc (suc (double n))

10



Universes

Agda features universes:

id : {ℓ : Level} {A : Type ℓ} → A → A
id a = a

We have supremum of levels:

arr : {ℓ ℓ’ : Level} (A : Type ℓ) (B : Type ℓ’) → Type (ℓ-max ℓ ℓ’)
arr A B = A → B

Agda can generate implicit arguments:

private variable
ℓ ℓ’ : Level

arr : (A : Type ℓ) (B : Type ℓ’) → Type (ℓ-max ℓ ℓ’)
arr A B = A → B 11



Capturing implicit arguments

We can capture implicit arguments

id : {ℓ : Level} {A : Type ℓ} → A → A
id {ℓ} {A} a = a

or

id : {ℓ : Level} {A : Type ℓ} → A → A
id {A = A} a = a

12



Unnamed functions

It is possible to define unnamed functions:

id : {ℓ : Level} {A : Type ℓ} → A → A
id = λ x → x

We have a special syntax for pattern matching:

not : Bool → Bool
not = λ { true → false ; false → true }

(it is generally preferable to use where).

13



Modules

We can define modules with

module Int where
int : Type
int = ...

add : int → int → int
add = ...

Note the two spaces at the beginning of lines!

By default all files define modules.

14



Modules

Anonymous modules with parameters are sometimes useful:

module _ {ℓ ℓ’ : Level} (A : Type ℓ) (B : Type ℓ’) where
f : A → B
f = ...

g : B → A
g = ...

15



equational reasoning

16


