Agda

Samuel Mimram

2025

Ecole polytechnique

Agda is a programming language / proof assistant:

e one directly write programs of given type (no tactics),

e in order to help the user one gradually fills holes.

As a first proof, consider:
open import Prelude
-- The product is commutative

x-comm : {A B : Type} (A x B) » (B x A)

x-comm (a , b) = (b , a)

As a first proof, consider:
open import Prelude
-- The product is commutative

x-comm : {A B : Type} (A x B) » (B x A)

x-comm (a , b) = (b , a)

We then type C-c C-1 in order to have Agda check this for us.

Agda syntax

We can import functions from other modules with

open import ModuleName

Agda syntax

We can import functions from other modules with
open import ModuleName

Comments are of the form

-- one line

or

{-
multiple
lines

-}

Agda syntax

For all functions, we declare the type and then the value:

f : {A : Type} - A -+ B

fx= ...

Agda syntax

For all functions, we declare the type and then the value:

f : {A : Type} - A -+ B

fx= ...

Named standard arguments are (x : A) and implicit arguments are {x : A}.

Agda syntax

For all functions, we declare the type and then the value:

f : {A : Type} - A -+ B

fx= ...

Named standard arguments are (x : A) and implicit arguments are {x : A}.

All functions are recursive.

Agda syntax

For all functions, we declare the type and then the value:

f : {A : Type} - A -+ B

fx= ...

Named standard arguments are (x : A) and implicit arguments are {x : A}.
All functions are recursive.

We can use the notation _ in order to have Agda guess part of the term.

Agda syntax

Agda allows for UTF-8 symbols which are mostly typed like in IATEX:

X \times

W \uplus

T \top
- \neg

— \to
3 \ex

I \Pi
L \Sigma

A \Gl

= \equiv

N \bN
m \ged

Agda syntax

Agda allows for UTF-8 symbols which are mostly typed like in IATEX:

I \Pi
L \Sigma

A \Gl

= \equiv

N \bN
m \ged

— \to
3 \ex

x \times | T \top

- \neg

W \uplus

Agda is picky about spaces:

e m + n is an addition
e m+n is an identifier name

Agda syntax

Agda allows for UTF-8 symbols which are mostly typed like in IATEX:
A \Gl

= \equiv

N \bN
m \ged

I \Pi
L \Sigma

— \to
3 \ex

T \top
- \neg

X \times

W \uplus

Agda is picky about spaces:

e m + nis an addition

e m+n is an identifier name
The reason is that we can define new infix operators, e.g.
+_ : N=-N=N

Zero + n =n
sucm +n = suc (m + n)

Agda syntax

In practice it is almost impossible to write a whole proof directly.

Agda offers holes which are typed as 7.

Agda shortcuts

We then have shortcuts to help us in proofs:

C-c C-1 typecheck and highlight the current file

C-c C-, get information about the hole under the cursor
C-c C-. same as above + the type of the proposed filler
C-c C-space give a solution

C-c C-c case analysis on a variable

C-c C-r refine the hole

C-c C-a automatic fill

middle click go to the definition of the term

Inductive types

We can define inductive types

Inductive types

We can define inductive types

data N : Set where

zero : N

suc : N = N

Inductive types

We can define inductive types

data N : Set where

zero : N

suc : N - N
Constructors are injective: Agda “knows" that

e zero is always different from suc n

e suc m is the same as suc n iff m is the same as n

Inductive types

The identity type can also be defined as an inductive type:

data _=_ {A : Type} (x : A) : (y : A) - Type where

refl : x = x

Local definitions

We can have local definitions with where:

10

Local definitions

We can have local definitions with where:

quadruple : N =+ N

quadruple n = double (double n)
where
double : N =+ N
double zero = zero

double (suc n) = suc (suc (double n))

10

Universes

Agda features universes:

11

Universes

Agda features universes:

id : {¢ : Level} {A : Type ¢} = A = A

id a = a

11

Universes

Agda features universes:

id : {¢ : Level} {A : Type ¢} = A = A

id a = a
We have supremum of levels:

arr : {f ¢> : Level} (A : Type ¢) (B : Type ¢’) -+ Type ({-max ¢ {’)
arr AB=A-B

11

Universes

Agda features universes:

id : {¢ : Level} {A : Type ¢} = A = A

id a = a
We have supremum of levels:

arr : {f ¢> : Level} (A : Type ¢) (B : Type ¢’) -+ Type ({-max ¢ {’)
arr AB=A-B

Agda can generate implicit arguments:

private variable
¢ £ : Level

arr : (A : Type ¢) (B : Type ¢’) = Type ({-max ¢ £’)
arr A B =A -~ B 1

Capturing implicit arguments

We can capture implicit arguments

id : {¢ : Level} {A : Type ¢} » A + A
id {/} {A} a = a

or

id : {¢ : Level} {A : Type ¢} = A = A
id {A =AY a=a

12

Unnamed functions

It is possible to define unnamed functions:

13

Unnamed functions

It is possible to define unnamed functions:

id : {¢ : Level} {A : Type ¢/} + A =+ A

id = A x @ X

13

Unnamed functions

It is possible to define unnamed functions:

id : {¢ : Level} {A : Type ¢/} + A =+ A

id=Ax 2 x
We have a special syntax for pattern matching:

not : Bool - Bool

not = A { true -+ false ; false - true }

(it is generally preferable to use where).

13

We can define modules with

14

We can define modules with

module Int where

int : Type

int

add : int - int - int
add

I

Note the two spaces at the beginning of lines!

By default all files define modules.

14

Modules

Anonymous modules with parameters are sometimes useful:

15

Anonymous modules with parameters are sometimes useful:

module _ {¢ ¢’ : Level} (A : Type ¢) (B : Type {’) where

f:A-B
f:
g : B~ A
g:

15

equational reasoning

16

