Dependent types

Samuel Mimram

2025

École polytechnique

The logical setting

We work in Martin-Löf type theory with

- ullet a hierarchy of universes: \mathcal{U}_i
- Π and Σ -types: $\Pi(x:A).P(x)$, $\Sigma(x:A).P(x)$
- natural numbers: N
- identity types: x = y

This implies that we also have

- functions types: $A \rightarrow B$
- products and coproducts: $A \times B$, $A \sqcup B$

When needed, we also require

higher inductive types

which subsume them all.

The logical setting

Here,

- we work in a semi-formal way (no sequent calculus)
- we need to introduce other constructions so that we have to know how it works
- we (informally) introduce the semantics of type constructions

Types

In type theory, everything has a **type**:

For instance:

$$3: \mathbb{N}$$
 $\lambda n.(n+1, true): \mathbb{N} \to \mathbb{N} \times \mathsf{Bool}$

In particular, we write \mathcal{U} for the type of all types

$$\mathbb{N}: \mathcal{U}$$
 Bool $\to \mathbb{N} \times \mathbb{N}: \mathcal{U}$

The type ${\cal U}$ can also be understood as the type of **propositions**

isEven :
$$\mathbb{N} \to \mathcal{U}$$

Semantically, the elements of \mathcal{U} are spaces.

Contexts

$$\Gamma = x_A : A_1, x_2 : A_2, \dots, x_n : A_n$$

TODO:
$$\Gamma \vdash A$$

$$\frac{A, B \vdash A}{A \vdash B \to A}$$
$$\vdash A \to B \to A$$

context is handled implicitly unless we really need to mention those

Equalities

There are two notions of equality in our type theory

- definitional equality: t = u
- propositional equality: t = u

Definitional equality is the identification performed implicitly by the proof assistant, e.g.

$$2 + 2 = 4$$
 $(\lambda n.n + 2) = 7$

Propositional equality is a proposition, for which we have explicit proof terms, e.g.

$$\Pi(m:\mathbb{N}).\Pi(n:\mathbb{N}).(m+n=n+m)$$

It will play a central role here.

Functions

We write

$$A \rightarrow B$$

for the type of functions from A to B.

Such a function can be defined by a λ -abstraction:

$$f: \mathbb{N} \to \mathbb{N}$$
 $f = \lambda n.(n+2)$

and we can apply $f: A \rightarrow B$ to a: A, written f a.

Moreover, those satisfy the rules of β -reduction and η -expansion

$$(\lambda x.t)u = t[u/x]$$
 $t = \lambda x.t x$

e.g.

$$(\lambda n.(n+2))$$
 3 $\hat{=}$ 3 + 2 $\sin \hat{=} \lambda x. \sin x$

Functions

Semantically, $f: A \rightarrow B$ should be understood as a *continuous* function, e.g.

$$f: S^1 \to S^1 \vee S^1$$

$$\mapsto \bigcirc$$

but not

Functions

A function

$$f: A \rightarrow \mathcal{U}$$

is called a type family.

It can also be seen as a continuous family of spaces. For instance,

$$f: I \to \mathcal{U}$$

 $x \mapsto S^1$

can be pictured as

Dependent functions

Given a type A and a type family $B: A \rightarrow \mathcal{U}$, we write

$$\Pi(x:A).B(x)$$
 or $(x:A) \to B(x)$

for the type of dependent functions.

For instance,

zeroes :
$$\Pi(n : \mathbb{N})$$
. Vec \mathbb{R} $n \mapsto [0., 0., \dots, 0.]$

Those generalize arrow types, e.g.

$$\mathbb{N} \to \mathbb{N}$$
 $\hat{=}$ $\Pi(x : \mathbb{N}).\mathbb{N}$

Type constructors

In order to specify a construction on types we need to specify

- 1. a type former: a formal operation on types
- 2. constructors: to create terms of the new type
- 3. eliminators: to use terms of the type
- 4. computation rules: how eliminator behave on constructors
- 5. uniqueness rules: how to express any term of the new type from constructors

(also congruence rules, which will not be mentioned here)

Note: we already did this for Π -types.

Products

Type former: $-\times -: \mathcal{U} \to \mathcal{U} \to \mathcal{U}$.

Constructor:

$$(-,-):A\to B\to A\times B$$

Eliminators:

$$fst: A \times B \to A \qquad \qquad snd: A \times B \to B$$

Computation rules (β -conversion):

$$fst(a,b) = a$$
 $snd(a,b) = b$

Uniqueness rules (η -conversion): for $x : A \times B$,

$$x \triangleq (\text{fst } x, \text{snd } x)$$

Products: semantics

Semantically, the space interpreting $A \times B$ is the cartesian product of A and B.

Writing

$$S^1 = \bigcirc$$

we have

$$I \times I =$$
 $\simeq \bullet$ $\times S^1 =$

$$S^1 \times I =$$
 \simeq

Coproducts

The coproduct or sum of two types is noted

 $A \sqcup B$

It corresponds to the disjoint union.

For instance,

$$S^1 \sqcup S^2 = \bigcirc$$

Coproducts: rules

Type former: $\sqcup : \mathcal{U} \to \mathcal{U} \to \mathcal{U}$.

Constructors:

$$\mathsf{inl}:A \to A \sqcup B$$

$$inr: B \rightarrow A \sqcup B$$

Eliminator:

$$\mathsf{elim} : (C : A \sqcup B \to \mathcal{U}) \to ((a : A) \to C \, (\mathsf{inl} \, a)) \to ((b : B) \to C \, (\mathsf{inr} \, b)) \to (x : A \sqcup B) \to C \, x$$

which corresponds to the inductive definition

$$h(\text{inl } a) \stackrel{.}{=} f a$$

 $h(\text{inr } b) \stackrel{.}{=} g b$

Computation rules:

elim
$$C f g (inl a) = f a$$

elim
$$C f g (inr b) = g b$$

Dependent sums

We would like to generalize coproducts to countable (or more) types:

$$A_1 \sqcup A_2 \sqcup \ldots$$

The two types can be encoded as a family

$$F: \mathsf{Bool} o \mathcal{U}$$

$$\mathsf{false} \mapsto A$$

$$\mathsf{true} \mapsto B$$

and their sum will be $\Sigma(x : Bool).Fx$.

The countable case is similarly encoded by

$$F: \mathbb{N} \to \mathcal{U}$$

and the sum is $\Sigma(n:\mathbb{N}).F$ n.

Dependent sums

Given a type A and a type family $B: A \to \mathcal{U}$, we have a Σ -type

$$\Sigma(x:A).B(x)$$
 or $(x:A)\times B(x)$

which can be understood as

- the coproduct indexed by A,
- the type of pairs (x, y) with x : A and y : B(x),
- the proofs that there exists an element of *A* satisfying *B*.

Dependent sums: rules

Type former: $\Sigma: (A:\mathcal{U}) \to (B:A \to \mathcal{U}) \to \mathcal{U}$.

Constructor:

$$(-,-):(x:A)\to B\,x\to \Sigma(x:A).B(x)$$

Eliminators:

$$\mathsf{fst}: \Sigma(\mathsf{x}:\mathsf{A}).\mathsf{B}(\mathsf{x}) \to \mathsf{A} \qquad \qquad \mathsf{snd}: (p:\Sigma(\mathsf{x}:\mathsf{A}).\mathsf{B}(\mathsf{x})) \to \mathsf{B}(\mathsf{fst}\;p)$$

Computation rules:

$$fst(a, b) = a$$
 $snd(a, b) = b$

Uniqueness rules: for $x : \Sigma(x : A).B(x)$,

$$x \triangleq (\text{fst } x, \text{snd } x)$$

We have seen that the semantics of $\Sigma \mathbb{N}.F$ for a family

$$F: \mathbb{N} \to \mathcal{U}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

is the disjoint union of the family (and the first projection is the vertical one).

In particular, for $A_i = A$, we obtain $\mathbb{N} \times A$:

More generally, for $A, B : \mathcal{U}, \Sigma(x : A).(\lambda x.B) = A \times B$.

In the continuous case, $\Sigma A.B$ is the **total space** of B.

For instance, with $B: I \to \mathcal{U}$ such that $B(i) = S^1$

we have $\Sigma I.B$ is the torus $I \times S^1$, i.e. S^1 .

Can we do more than trivial families of types? No and yes :)

Consider $B: A \to \mathcal{U}$. Given A which is connected all the fibers $B \times A$ have to be the same.

For instance, we have a family $B: S^1 \to \mathcal{U}$ with Bool as fibers:

We have

$$\Sigma(x:S^1).Bx = Bool \times S^1 = S^1 \sqcup S^1$$

However, the family can still be (globally) non-trivial.

We have another family $B: S^1 \to \mathcal{U}$ with fibers Bool:

$$U \longrightarrow f$$

$$\uparrow$$

$$S^1 \longrightarrow f$$

The total space is

$$\Sigma(x:S^1).Bx = S^1$$

and the projection map $\mathsf{fst}:\mathsf{S}^1\to\mathsf{S}^1$ is the "double speed" map.

real Hopf fibration $S^0 \rightarrow S^1 \rightarrow S^1$

Falsity

We have a type false noted

 \perp or (

whose semantics is the empty space.

There is no introduction rule!

The elimination rule is

 $\operatorname{rec}: \bot \to A$

Truth

We have a type true noted

op or 1

whose semantics is the space with one point.

The introduction rule is

$$\star$$
 : \top

The elimination rule is

$$\mathsf{rec}: (\top \to A) \to A$$

(this is quite useless).

Booleans

We have the type of booleans:

Bool

The introduction rules are

false : Bool true : Bool

The (dependent) eliminator is

 $\mathsf{elim} : (A : \mathsf{Bool} \to \mathcal{U}) \to A \, \mathsf{false} \to A \, \mathsf{true} \to (b : \mathsf{Bool}) \to A \, b$

Computation rules are

elim A t u false $\hat{=} t$

elim A t u true $\hat{=} u$

Uniqueness rules are

....TODO...

Natural numbers

We have a type of natural numbers

 \mathbb{N}

The introduction rules are

 $0:\mathbb{N}$ suc: $\mathbb{N} \to \mathbb{N}$

The eliminator is

$$\mathsf{elim}(A:\mathbb{N}\to\mathcal{U})\to A\,0\to ((n:\mathbb{N})\to A\,n\to A\,(\mathsf{suc}\,n))\to (n:\mathbb{N})\to A\,n$$

This is the usual recurrence!

Finite types

We have a type family

$$\mathsf{Fin}: \mathbb{N} \to \mathcal{U}$$

which to $n : \mathbb{N}$ associates the type

Fin n

with n elements $(0, 1, \ldots, n-1)$.

In particular,

$$\perp$$
 = Fin 0

$$\top = \mathsf{Fin} \; 1$$

$$Bool = Fin 2$$

Universes

The universe is written

 $\mathcal U$ or Type

its elements are types.

We have a problem however: if we set $\mathcal{U}:\mathcal{U}$ we have an inconsistency (intuitively, \mathcal{U} is too big to be a type).

In order to avoid this, we have a type \mathcal{U}_1 of "big types" and set $\mathcal{U}:\mathcal{U}_1$.

We have to continue like this

$$\mathcal{U} \triangleq \mathcal{U}_0 : \mathcal{U}_1 : \mathcal{U}_2 : \dots$$

Universes

All type formers are available on all universe levels ℓ , e.g.

$$-\times -: \mathcal{U}_{\ell} \to \mathcal{U}_{\ell} \to \mathcal{U}_{\ell}$$
$$A \quad B \quad \mapsto A \times B$$

Moreover, it is sometimes useful to allow for heterogeneous levels:

$$-\times -: \mathcal{U}_{\ell} \to \mathcal{U}_{\ell'} \to \mathcal{U}_{\ell \lor \ell'}$$

Identity types

Finally, the type which will be of main interest for us: identity types / propositional equality.

For any type A and x, y : A, we write

$$x = A y$$
 or $x = y$

for the type of proofs of identities/equalities/paths between x and y.

Identity types: rules

Type former:

$$-=-:(A:\mathcal{U})\to A\to A\to \mathcal{U}$$

Constructor:

$$\mathsf{refl}: (x:A) \to x = x$$

Eliminator:

J:
$$(A:\mathcal{U}) \to (x:A) \to (P:(y:A) \to x = y \to \mathcal{U}) \to P \times (\text{refl } x) \to (y:A) \to (p:x=y) \to P y p$$

Computation:

$$J A \times P r \times (refl \times) = r$$

Uniqueness: ???

Identity types: semantics

Given a type A and x, y : A, the type x = y is the type of paths form x to y in A.

This means continuous maps

$$p: I \rightarrow A$$

with I = [0, 1] such that p(0) = x and p(1) = y.

For this reason, J is sometimes called **path induction**: in order to prove a property on all paths, it is enough to prove it for refl.

Inductive types

Modern languages feature inductive types.

All the previous constructions can be implemented as particular inductive types, e.g.

```
data \mathbb{N} : Type where zero : \mathbb{N} suc : \mathbb{N} \to \mathbb{N} or data \_\sqcup\_ (A : Type) (B : Type) : Type where inl : \mathbb{A} \to \mathbb{A} \sqcup \mathbb{B} inr : \mathbb{B} \to \mathbb{A} \sqcup \mathbb{B}
```

Inductive types

Even the identity type can be defined as an inductive one:

```
data _{\equiv} {A : Type} (x : A) : (y : A) \rightarrow Type where refl : x \equiv x
```