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The logical setting

We work in Martin-Löf type theory with

• a hierarchy of universes: Ui

• Π- and Σ-types: Π(x : A).P(x), Σ(x : A).P(x)

• natural numbers: N
• identity types: x = y

This implies that we also have

• functions types: A → B

• products and coproducts: A× B , A ⊔ B

When needed, we also require

• higher inductive types

which subsume them all.
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The logical setting

Here,

• we work in a semi-formal way (no sequent calculus)

• we need to introduce other constructions so that we have to know how it works

• we (informally) introduce the semantics of type constructions
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Types

In type theory, everything has a type:

t : A

For instance:

3 : N λn.(n + 1, true) : N → N× Bool

In particular, we write U for the type of all types

N : U Bool → N× N : U

The type U can also be understood as the type of propositions

isEven : N → U

Semantically, the elements of U are spaces.
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Contexts

Γ =̂ xA : A1, x2 : A2, . . . , xn : An

TODO: Γ ⊢ A

A,B ⊢ A

A ⊢ B → A

⊢ A → B → A

context is handled implicitly unless we really need to mention those
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Equalities

There are two notions of equality in our type theory

• definitional equality: t =̂ u

• propositional equality: t = u

Definitional equality is the identification performed implicitly by the proof assistant, e.g.

2 + 2 =̂ 4 (λn.n + 2) 5 =̂ 7

Propositional equality is a proposition, for which we have explicit proof terms, e.g.

Π(m : N).Π(n : N).(m + n = n +m)

It will play a central role here.
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Functions

We write
A → B

for the type of functions from A to B .

Such a function can be defined by a λ-abstraction:

f : N → N f =̂ λn.(n + 2)

and we can apply f : A → B to a : A, written f a.

Moreover, those satisfy the rules of β-reduction and η-expansion

(λx .t)u =̂ t[u/x ] t =̂ λx .t x

e.g.
(λn.(n + 2)) 3 =̂ 3 + 2 sin =̂ λx . sin x
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Functions

Semantically, f : A → B should be understood as a continuous function, e.g.

f : S1 → S1 ∨ S1

7→

but not

f : S1 → Bool

7→

true

false
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Functions

A function
f : A → U

is called a type family.

It can also be seen as a continuous family of spaces. For instance,

f : I → U
x 7→ S1

can be pictured as

xI

↑

U S1
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Dependent functions

Given a type A and a type family B : A → U , we write

Π(x : A).B(x) or (x : A) → B(x)

for the type of dependent functions.

For instance,
zeroes : Π(n : N). Vec R n

n 7→ [0., 0., . . . , 0.]

Those generalize arrow types, e.g.

N → N =̂ Π(x : N).N
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Type constructors

In order to specify a construction on types we need to specify

1. a type former: a formal operation on types

2. constructors: to create terms of the new type

3. eliminators: to use terms of the type

4. computation rules: how eliminator behave on constructors

5. uniqueness rules: how to express any term of the new type from constructors

(also congruence rules, which will not be mentioned here)

Note: we already did this for Π-types.
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Products

Type former: −×− : U → U → U .

Constructor:
(−,−) : A → B → A× B

Eliminators:
fst : A× B → A snd : A× B → B

Computation rules (β-conversion):

fst (a, b) =̂ a snd (a, b) =̂ b

Uniqueness rules (η-conversion): for x : A× B ,

x =̂ (fst x , snd x)
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Products: semantics

Semantically, the space interpreting A× B is the cartesian product of A and B .

Writing

I = ≃ • S1 =

we have

I× I = ≃ • S1 × I = ≃

S1 × S1 =
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Coproducts

The coproduct or sum of two types is noted

A ⊔ B

It corresponds to the disjoint union.

For instance,

S1 ⊔ S2 =
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Coproducts: rules

Type former: ⊔ : U → U → U .

Constructors:

inl : A → A ⊔ B inr : B → A ⊔ B

Eliminator:

elim : (C : A⊔B → U) → ((a : A) → C (inl a)) → ((b : B) → C (inr b)) → (x : A⊔B) → C x

which corresponds to the inductive definition

h(inl a) =̂ f a

h(inr b) =̂ g b

Computation rules:

elim C f g (inl a) =̂ f a elim C f g (inr b) =̂ g b
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Dependent sums

We would like to generalize coproducts to countable (or more) types:

A1 ⊔ A2 ⊔ . . .

The two types can be encoded as a family

F : Bool → U
false 7→ A

true 7→ B
Bool

↑
U

false true

A B

and their sum will be Σ(x : Bool).F x .

The countable case is similarly encoded by

F : N → U N
↑
U

0

A0

1

A1

2

A2

. . .

. . .

and the sum is Σ(n : N).F n.
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Dependent sums

Given a type A and a type family B : A → U , we have a Σ-type

Σ(x : A).B(x) or (x : A)× B(x)

which can be understood as

• the coproduct indexed by A,

• the type of pairs (x , y) with x : A and y : B(x),

• the proofs that there exists an element of A satisfying B .
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Dependent sums: rules

Type former: Σ : (A : U) → (B : A → U) → U .

Constructor:
(−,−) : (x : A) → B x → Σ(x : A).B(x)

Eliminators:

fst : Σ(x : A).B(x) → A snd : (p : Σ(x : A).B(x)) → B(fst p)

Computation rules:
fst (a, b) =̂ a snd (a, b) =̂ b

Uniqueness rules: for x : Σ(x : A).B(x),

x =̂ (fst x , snd x)
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Dependent sums: semantics

We have seen that the semantics of ΣN.F for a family

F : N → U
N
↑
U

0

A0

1

A1

2

A2

. . .

. . .

is the disjoint union of the family (and the first projection is the vertical one).

In particular, for Ai = A, we obtain N× A:

N
↑
U

0

A

1

A

2

A

. . .

. . .

More generally, for A,B : U , Σ(x : A).(λx .B) = A× B .
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Dependent sums: semantics

In the continuous case, ΣA.B is the total space of B .

For instance, with B : I → U such that B(i) = S1

S1

i
I

↑

U

we have Σ I .B is the torus I× S1, i.e. S1.
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Dependent sums: semantics

Can we do more than trivial families of types? No and yes :)

Consider B : A → U . Given A which is connected all the fibers B x have to be the same.

For instance, we have a family B : S1 → U with Bool as fibers:

S1

↑

U

x

We have
Σ(x : S1).B x = Bool× S1 = S1 ⊔ S1
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Dependent sums: semantics

However, the family can still be (globally) non-trivial.

We have another family B : S1 → U with fibers Bool:

S1

↑

U

x

The total space is
Σ(x : S1).B x = S1

and the projection map fst : S1 → S1 is the “double speed” map.

real Hopf fibration S0 → S1 → S1
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Falsity

We have a type false noted

⊥ or 0

whose semantics is the empty space.

There is no introduction rule!

The elimination rule is
rec : ⊥ → A
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Truth

We have a type true noted

⊤ or 1

whose semantics is the space with one point.

The introduction rule is
⋆ : ⊤

The elimination rule is
rec : (⊤ → A) → A

(this is quite useless).
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Booleans

We have the type of booleans:
Bool

The introduction rules are

false : Bool true : Bool

The (dependent) eliminator is

elim : (A : Bool → U) → A false → A true → (b : Bool) → Ab

Computation rules are

elim A t u false =̂ t elim A t u true =̂ u

Uniqueness rules are
....TODO...
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Natural numbers

We have a type of natural numbers
N

The introduction rules are

0 : N suc : N → N

The eliminator is

elim(A : N → U) → A 0 → ((n : N) → An → A (suc n)) → (n : N) → An

This is the usual recurrence!
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Finite types

We have a type family
Fin : N → U

which to n : N associates the type
Fin n

with n elements (0, 1, . . . , n − 1).

In particular,

⊥ = Fin 0 ⊤ = Fin 1 Bool = Fin 2
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Universes

The universe is written
U or Type

its elements are types.

We have a problem however: if we set U : U we have an inconsistency
(intuitively, U is too big to be a type).

In order to avoid this, we have a type U1 of “big types” and set U : U1.

We have to continue like this

U =̂ U0 : U1 : U2 : . . .
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Universes

All type formers are available on all universe levels ℓ, e.g.

−×− : Uℓ → Uℓ → Uℓ

A B 7→ A× B

Moreover, it is sometimes useful to allow for heterogeneous levels:

−×− : Uℓ → Uℓ′ → Uℓ∨ℓ′
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Identity types

Finally, the type which will be of main interest for us:
identity types / propositional equality.

For any type A and x , y : A, we write

x =A y or x = y

for the type of proofs of identities/equalities/paths between x and y .
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Identity types: rules

Type former:
− = − : (A : U) → A → A → U

Constructor:
refl : (x : A) → x = x

Eliminator:

J : (A : U) → (x : A) → (P : (y : A) → x = y → U) →
P x (refl x) →
(y : A) → (p : x = y) → P y p

Computation:
J Ax P r x (refl x) =̂ r

Uniqueness: ???
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Identity types: semantics

Given a type A and x , y : A, the type x = y is the type of paths form x to y in A.

This means continuous maps
p : I → A

with I = [0, 1] such that p(0) = x and p(1) = y .

For this reason, J is sometimes called path induction: in order to prove a property on
all paths, it is enough to prove it for refl.
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Inductive types

Modern languages feature inductive types.

All the previous constructions can be implemented as particular inductive types, e.g.

data N : Type where
zero : N
suc : N → N

or

data _⊔_ (A : Type) (B : Type) : Type where
inl : A → A ⊔ B
inr : B → A ⊔ B
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Inductive types

Even the identity type can be defined as an inductive one:

data _≡_ {A : Type} (x : A) : (y : A) → Type where
refl : x ≡ x
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