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Part I

Equality

1



Identity types

Recall that in Agda, we have to notions of equality:

• definitional equality: we cannot distinguish between αβη-equivalent terms

• propositional equality: the ≡ predicate that we defined.

We call t ≡ u an identity type and sometimes write it IdA(t, u).

In case you forgot,

data _≡_ {A : Set} (x : A) : (y : A) → Set where
refl : x ≡ x

It is of course possible to directly give the rules satisfied by those types.
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Identity types

Note that definitional equality implies propositional equality: the rule

Γ ⊢ t = u : A

Γ ⊢ refl : IdA(t, u)

is admissible.
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Rules for identity types

Formation:
Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ IdA(t, u) : Type
(IdF)

Introduction:
Γ ⊢ t : A

Γ ⊢ refl(t) : IdA(t, t)
(IdI)
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Rules for identity types

Elimination:

Γ ⊢ p : IdA(t, u)

Γ, x : A, y : A, z : IdA(x , y) ⊢ B : Type Γ, x : A ⊢ r : B[x/x , x/y , refl(x)/z ]

Γ ⊢ J(p, xyz 7→ B, x 7→ r) : B[t/x , u/y , p/z ]
(IdE)

Computation:

Γ ⊢ t : A

Γ, x : A, y : A, z : IdA(x , y) ⊢ B : Type Γ, x : A ⊢ r : B[x/x , x/y , refl(x)/z ]

Γ ⊢ J(refl(t), xyz 7→ B, x 7→ r) = r [t/x ] : B[t/x , t/y , refl(t)/z ]
(IdC)

Uniqueness:

Γ, x : A, y : A, z : IdA(x , y) ⊢ B : Type Γ, x : A, y : A, z : IdA(x , y) ⊢ t : B

Γ, x : A, y : A, z : IdA(x , y) ⊢ J(z , xyz 7→ B, x 7→ t[x/y , refl(x)/z ]) = t : B
(IdU)

In Agda:

J : {A : Set} (B : (x y : A) → x ≡ y → Set) (r : (x : A) → B x x refl)
(t : A) (u : A) (p : t ≡ u) → B t u p

J B r t .t refl = r t 5



About the uniqueness rule

The uniqueness rule is problematic:

Γ, x : A, y : A, z : IdA(x , y) ⊢ B : Type Γ, x : A, y : A, z : IdA(x , y) ⊢ t : B

Γ, x : A, y : A, z : IdA(x , y) ⊢ J(z , xyz 7→ B, x 7→ t[x/y , refl(x)/z ]) = t : B
(IdU)

Namely, one can show that it implies the admissibility of equality reflection:

Γ ⊢ p : IdA(t, u)

Γ ⊢ t = u : A

which makes typechecking undecidable...

For this reason, it is usually not taken in account.
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Leibniz equality

The definition of equality proposed by Leibniz was that two things should be
considered as equal when they cannot be distinguished.

Formally, t and u of type A cannot be distinguished when
for every predicate P : A→ Type, if P t holds then P u holds.

In Agda, we can define the Leibniz equality by

_≡l_ : {A : Set} (x y : A) → Set1

_≡l_ {A} x y = (P : A → Set) → P x → P y

It is not clear at all that this is an equivalence relation, but we will see that it is the case.
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Leibniz equality

Two equal terms are undistinguishible:

leibniz : {A : Set} {x y : A} → x ≡ y → (P : A → Set) → P x → P y
leibniz refl P p = p

and two undistinguishible terms are equal:

leibniz' : {A : Set} {x y : A} → ((P : A → Set) → P x → P y) → x ≡ y
leibniz' {x = x} F = F (λ y → x ≡ y) refl
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Leibniz equality

Since equality ≡ is an equivalence relation, Leibniz equality also is.

This could also have been shown more directly, e.g.

leibniz-refl : {A : Set} {x : A} → ((P : A → Set) → P x → P x)
leibniz-refl {x = x} P p = p

and

leibniz-sym : {A : Set} {x y : A} →
((P : A → Set) → P x → P y) →
((P : A → Set) → P y → P x)

leibniz-sym {x = x} F P = F (λ y → (P y → P x)) (λ p → p)
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Part II

The axioms K and UIP
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Are proofs of identity unique?

An interesting question about identity types is:

are two proofs of t ≡ u necessarily the same?

in particular, is refl the only proof of t ≡ t?

In order to study this, we can formulate the two following axioms:

• UIP: uniqueness of identity proofs
UIP : Set1

UIP = {A : Set} {x y : A} (p q : x ≡ y) → p ≡ q
• K:

K : Set1

K = {A : Set} {x : A} (P : (x ≡ x) → Set) →
P refl → (p : x ≡ x) → P p 11



UIP vs K

Both axioms are equivalent:

UIP-K : UIP → K
UIP-K UIP P Pr p = subst P (UIP refl p) Pr

and

loop-eq : {A : Set} {x y : A} (p q : x ≡ y) →
trans (sym p) q ≡ refl → p ≡ q

loop-eq refl q h = sym h

x y

p

q

K-UIP : K → UIP
K-UIP K p q = loop-eq p q (K (λ r → r ≡ refl) refl (trans (sym p) q))
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Proving UIP

It turns out that by the usual proof technique, we can prove UIP:

UIP-proof : {A : Set} {x y : A} (p q : x ≡ y) → p ≡ q
UIP-proof refl refl = refl

and K:

K-proof : {A : Set} {x : A} (P : (x ≡ x) → Set) →
P refl → (p : x ≡ x) → P p

K-proof P Pr refl = Pr

So, case settled?
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Part III

Types as spaces
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With or without K?

Surprisingly, K cannot be proved using J only (without pattern matching):

J : {A : Set} (B : (x y : A) → x ≡ y → Set) (r : (x : A) → B x x refl)
(t : A) (u : A) (p : t ≡ u) → B t u p

J B r t .t refl = r t

If we try to translate the proof

K-proof : {A : Set} {x : A} (P : (x ≡ x) → Set) →
P refl → (p : x ≡ x) → P p

K-proof P Pr refl = Pr

we begin with something like

K : {A : Set} {x : A} (P : (x ≡ x) → Set) → P refl → (p : x ≡ x) → P p
K P Pr p = J (λ x y p → P p) ? ? ? ?

but this does not type because p is of type x ≡ y. 15



With or without K?

It turns out that there are models of dependent type theory
in which UIP/K is not validated.

In fact, the default pattern matching algorithm of Agda is too liberal!

A saner algorithm can be used by

{-# OPTIONS --without-K #-}

The reason why it is not activated by default is that this makes proofs more
complicated... but also more interesting!
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With or without K?

It makes your life easier, but if you have too much of it you run into problems.
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Types as spaces

In order to understand that, we should change our way of thinking:

0. in boolean logic: a type is either 0 or 1,

1. in logic with UIP: a type is a set
(e.g. Nat can be seen as the set of natural numbers)

...

∞. in logic without UIP: a type is a space
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Spaces

We will not precisely define what a space is, but you can think of it as

• a topological space, or

• something built up by gluing polyhedra (in arbitrary dimensions)

considered up to “deformation”.
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Paths

We write I for the segment
I = [0, 1]

with the euclidean topology.

A path from x to y in A is a continuous function

f : I → A

such that f (0) = x and f (1) = y .

In particular, given a point x ∈ A, there is always the constant path from x to x ,
defined by f (i) = x for i ∈ I .
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Identity types in spaces

The idea is that an

• a term t : A corresponds to a point in the space
• an equality p : IdA(t, u) is path between t and u

• an equality between equalities α : IdIdA(t,u)(p, q) is homotopy between p and q

• and so on.

t u

p

q
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Homotopy equivalence

Two functions f : A→ B and g : B → A between spaces are homotopic when

• f (x) can be deformed into g(x), i.e. there is a path from f (x) to g(x),

• in a way which is continuous in x .

We write this f ∼ g .

Two spaces A and B are homotopy equivalent when there is

f : A→ B and g : B → A

such that
g ◦ f ∼ idA and f ◦ g ∼ idB
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Homotopy equivalence

For instance, the following spaces are not homotopy equivalent:

f−→
←−
g

It can be shown that equivalent spaces always have the same number of “holes” in every
dimension (and this can even be taken as a definition).
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Homotopy type theory

Because it considers spaces up to homotopy equivalence, the resulting theory
is called homotopy type theory.

This point of view was introduced by Voevodsky (and other people) around 2006.

In order to make this clear, we write Type instead of Set in the following.
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Homotopy
Type Theory
Univalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM

INSTITUTE FOR ADVANCED STUDY

1
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Elimination on identity types

The elimination principle says that in order to show property depending on a path p, it
is enough to show it for the constant path refl.

If we consider spaces up to homotopy we should be careful!

I'm not sure if there should be a case for the constructor refl,
because I get stuck when trying to solve the following unification
problems (inferred index =? expected index):

x1 =? x1

Possible reason why unification failed:
Cannot eliminate reflexive equation x1 = x1 of type A1 because K
has been disabled.

when checking that the expression ? has type refl ≡ q
{-# OPTIONS --without-K #-}

UIP-proof : {A : Type} (x y : A) (p q : x ≡ y) → p ≡ q
UIP-proof x .x refl refl = refl 26



The structure of paths

Three important constructions on paths:

• we can build the constant path on a point (refl),

• we can concatenate paths:

_•_ : {x y z : A} → (p : x ≡ y) → (q : y ≡ z) → x ≡ z
refl • q = q

• we can compute the inverse of a path:

! : {x y : A} → x ≡ y → y ≡ x
! refl = refl
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The structure of paths

Moreover,

• concatenation is associative:
•-assoc : {x y z w : A} →

(p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) →
(p • q) • r ≡ p • (q • r)

•-assoc refl refl refl = refl

• admits constant paths as neutral elements,
• and inverses act as such:
•-inv-l : {x y : A} → (p : x ≡ y) → ! p • p ≡ refl
•-inv-l refl = refl
•-inv-r : {x y : A} → (p : x ≡ y) → p • ! p ≡ refl
•-inv-r refl = refl
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The structure of paths

This structure is like a group, excepting that we can only compose paths when their
target and source endpoints match: this is called a groupoid.

Moreover, note that the laws are not exactly satisfied: they are only so up to higher
paths...

29



Part IV

n-types
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Classifying types

Now that we have this idea that

TYPE = SPACE

and

equality proof = path

we can begin to think of a classification of types.
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Propositions

The most simple kind of types are propositions which we can think of as being either

• true = a point (or at least equivalent to a point), or

• false = empty.

We can define the type of propositions as

isProp : Type → Type
isProp A = (x y : A) → x ≡ y
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Propositions

For instance, the empty type is a proposition:

⊥-isProp : isProp ⊥
⊥-isProp ()

The unit type is also a proposition:

⊤-isProp : isProp ⊤
⊤-isProp tt tt = refl

But the booleans are not a proposition:

Bool-isnt-prop : ¬ (isProp Bool)
Bool-isnt-prop P with P true false
Bool-isnt-prop P | ()
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Propositions

We can even define the type of all propositions as

PROP : Type
PROP = Σ Type isProp

(we are really ignoring universes here)
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Propositions

A first, it might seem that the circle

is a proposition

isProp : Type → Type
isProp A = (x y : A) → x ≡ y

but it is not so, because all the functions we can write are continuous!
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Propositions

Propositions act very much like sets with 0 or 1 elements.
(up to some approximation because they are not classical!)

For instance, the product (= conjunction) of two such sets is also such:

0 1
0 0 0
1 0 1

Similarly, for any set A, the set A→ 0 of functions (= implications) contains either 1
or 0 elements (depending on whether A is empty or not). We thus expect ¬A to be a
proposition for any A.
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Propositions

We can show that the conjunction of two propositions is a proposition:

isProp-∧ : {A B : Type} → isProp A → isProp B → isProp (A × B)
isProp-∧ PA PB (a , b) (a' , b') with PA a a' , PB b b'
isProp-∧ PA PB (a , b) (.a , .b) | refl , refl = refl

However, we cannot prove that ¬A is a proposition

isProp-¬ : {A : Type} → isProp (¬ A)
isProp-¬ ¬x ¬y = ?

because we do not have any useful tool to show the equality of functions.
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Function extensionality

In fact, we need function extensionality:

postulate funext : {A : Type} {B : A → Type} → {f g : (x : A) → B x} →
((x : A) → f x ≡ g x) → f ≡ g

We already mentioned that this axiom was not reasonable, because we want to capture
intensional properties of functions.

However, in a homotopic setting, this does not say that f is the same as g, only that
one can be deformed to the other.

Moreover, we will see that it actually follows from the main (only?) axiom of homotopy
type theory: univalence.
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Propositions

We can now show that ¬A is a proposition:

isProp-¬ : {A : Type} → isProp (¬ A)
isProp-¬ ¬x ¬y = funext (λ x → ⊥-elim (¬x x))
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Propositions

The fact of being a proposition is itself a proposition:

isProp-isProp : {A : Type} → isProp (isProp A)

(set later on for the proof).
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Propositions

Note : we started Curry-Howard as

propositions = types

but what we really have is

propositions ⊆ types
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Sets

The next thing we can define are sets.

We should follow the idea that a set consists of points up to homotopy:

(typically the circle is not a set). We therefore define

isSet : Type → Type
isSet A = (x y : A) → isProp (x ≡ y)
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Sets

For instance, booleans form a set:

Bool-isSet : isSet Bool
Bool-isSet false .false refl refl = refl
Bool-isSet true .true refl refl = refl

as well as natural numbers:

suc-≡ : {m n : N} → (p : suc m ≡ suc n) →
Σ (m ≡ n) (λ q → cong suc q ≡ p)

suc-≡ refl = refl , refl

N-isSet : isSet N
N-isSet zero .zero refl refl = refl
N-isSet (suc x) .(suc x) refl p with (suc-≡ p)
... | q , e = trans (cong (cong suc) (N-isSet x x refl q)) e 43



Sets

More generally,

Theorem (Hedberg)
Any type with a decidable equality is a set.

44



Sets

Also, propositions are sets:

aProp-isSet : {A : Type} → isProp A → isSet A

45



1-types

We can notice a “pattern” (of length one...): a set is a type in which there is a at most
one equality (up to homotopy) between two elements:

isSet : Type → Type
isSet A = (x y : A) → isProp (x ≡ y)

We therefore define a 1-type as

is1Type : Type → Type
is1Type A = (x y : A) → isSet (x ≡ y)
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1-types

A 1-type is type in which there is at most one equality between two equalities:

• the circle is a 1-type:

• the disk is a 1-type:

• the sphere is not a 1-type:
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n-types

From now on, the definition of n-types is clear:

• a 0-type is a set (by convention),
• an (n + 1)-type is a type in which x ≡ y is an n-type for every elements x and y.

We have seen that a (−1)-type is a proposition:

isProp : Type → Type
isProp A = (x y : A) → x ≡ y

An (−2)-type is a contractible type:

isContr : Type → Type
isContr A = Σ A (λ x → (y : A) → x ≡ y)

A (−3)-type is a contractible type.
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(−2)-types

Again, it might seem that the circle

is a (−2)-type

isContr : Type → Type
isContr A = Σ A (λ x → (y : A) → x ≡ y)

but it is not so because functions have to be continuous.
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n-types

In Agda, we can thus define (starting at 0 instead of −2):

hasLevel : N → Type → Type
hasLevel zero A = isContr A
hasLevel (suc n) A = (x y : A) → hasLevel n (x ≡ y)
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n-types

We can show interesting properties such as:

Theorem
Any n-type is an (n + 1)-type.

cumulative : (n : N) {A : Type} → hasLevel n A → hasLevel (suc n) A
cumulative zero L x y =

(! (snd L x) • snd L y) , λ { refl → •-inv-l (snd L x) }
cumulative (suc n) L x y = cumulative n (L x y)

x y

c

p
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n-types

Or that

Theorem
Being an n-type is a proposition.

For instance,

isProp-isProp : {A : Type} → isProp (isProp A)
isProp-isProp {A = A} f g =

funext2 {f = f} {g = g} (λ x y → aProp-isSet g x y (f x y) (g x y))

where funext2 is function extensionality for functions with two arguments.
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Part V

Univalence
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Let’s see some other operations available with paths.
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Application

Functions respect identities (intuitively, because they are continuous):

ap : {A B : Type} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y
ap f refl = refl

In other words, we can apply a function to a path.

This is what we called cong before.
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Application

Lemma
Application is compatible with concatenation.

Proof.

•-ap : {A B : Type} {x y z : A} → (f : A → B) →
(p : x ≡ y) → (q : y ≡ z) → ap f (p • q) ≡ ap f p • ap f q

•-ap f refl q = refl
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Type families

A type family P : A → Type should be thought of as a collection of spaces P a for
each a : A which varies continuously in a:

A

Σ(x : A).B

B(x)
B(y)

a a′
p

b b′ = transport(p, b)

Given a path p in A from a to a′ and a point b in P a we expect that there is a unique
path in P whose “projection” on A is p.

We call its other end in P b, the transport of b along p. 57



Transport

Formally, the transport operation is defined as

transport : {A : Type} {x y : A} (P : A → Type) → x ≡ y → P x → P y
transport P refl x = x

This is what we called subst before.
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Transport

We can show that transporting a path along one of its end amounts to composing it
with the path:

transport-≡-r : {A : Type} {x y z : A} → (p : x ≡ y) (q : y ≡ z) →
transport (λ y → x ≡ y) q p ≡ (p • q)

transport-≡-r p refl = sym (•-unit-r p)

and similarly on the other side:

transport-≡-l : {A : Type} {x y z : A} → (p : x ≡ y) (q : y ≡ z) →
transport (λ y → y ≡ z) (! p) q ≡ (p • q)

transport-≡-l refl q = refl
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Dependent application

We have defined application of a function f : A→ B to a path p : x ≡ y in A:

ap : {A B : Type} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y

We would like to generalize this operation to a dependent function f : (a : A)→ B(a).

We are thus tempted to prove

apd : {A : Type} {B : A → Type} {x y : A} →
(f : (a : A) → B a) → x ≡ y → f x ≡ f y

What is the problem?

The correct definition of dependent application is

apd : {A : Type} {B : A → Type} {x y : A} → (f : (x : A) → B x) →
(p : x ≡ y) → transport B p (f x) ≡ f y

apd f refl = refl 60



Dependent application

Lemma
Every proposition A is a set:

aProp-isSet : {A : Type} → isProp A → isSet A
aProp-isSet {A} P x .x refl refl = ?

I'm not sure if there should be a case for the constructor refl,
because I get stuck when trying to solve the following unification
problems (inferred index =? expected index):

x1 =? x1

Possible reason why unification failed:
Cannot eliminate reflexive equation x1 = x1 of type A1 because K
has been disabled.

when checking that the expression ? has type refl ≡ q
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Dependent application

Lemma
Every proposition A is a set:

x y

p

q
≡

≡
f x f y

≡

Proof.
Given two paths p, q : x ≡ y , we have to show p ≡ q. Consider p and take a point z .
Since A is a proposition, we have a function f : (x : A)→ z ≡ x . In particular, we can
consider f x and f y . Using apd of f to p we get a path from transport (f x) p to f y

but the first is equal to f x · p. Therefore, f x · p ≡ f y , i.e. p ≡ (f x)−1 · f y . Similarly,
q ≡ (f x)−1 · f y , and finally p ≡ q.
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Dependent application

Note that in order to show that p ≡ (f x)−1 · f y , we could also have done an induction
on p and shown the result in the case where p is refl, i.e.

refl ≡ (f x)−1 · f x

which we have already shown.

Formally,

aProp-isSet : {A : Type} → isProp A → isSet A
aProp-isSet {A} P x y p q = trans (lem x p) (sym (lem x q))

where
lem : (z : A) (p : x ≡ y) → p ≡ ! (P z x) • (P z y)
lem z refl = sym (•-inv-l (P z x))
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Homotopy

Two functions are homotopic when they are extensionally equal:

_∼_ : {A : Type} {B : A → Type} (f g : (x : A) → B x) → Type
_∼_ {A} f g = (x : A) → f x ≡ g x

This relation is different from equality between functions
(if we do not assume function extensionality or some other axiom).

64



Equivalences

We can define the identity function on a type A by

id : {A : Type} → A → A
id x = x

We can define the composition of functions by

_◦_ : {A : Type} {B : Type} {C : Type} → (B → C) → (A → B) → (A → C)
(g ◦ f) x = g (f x)
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Equivalences

A function is an equivalence when

isEquiv : {A : Type} {B : Type} → (A → B) → Type
isEquiv {A} {B} f =

Σ (B → A) (λ g → (f ◦ g) ∼ id) × Σ (B → A) (λ g → (g ◦ f) ∼ id)

The type of equivalences between two types is

_≃_ : (A B : Type) → Type
A ≃ B = Σ (A → B) isEquiv
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Equivalences

It seems that we could have defined equivalences more simply as

isEquiv' : {A : Type} {B : Type} → (A → B) → Type
isEquiv' {A} {B} f = Σ (B → A) (λ g → (f ◦ g) ∼ id × (g ◦ f) ∼ id)

but this is not equivalent to the previous definition.

In fact this not the right definition, one way to see this is that we have

isEquiv-isProp : {A : Type} {B : Type} (f : A → B) → isProp (isEquiv f)

but there exists a function f : A → B such that this does not hold for isEquiv’.
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Univalence

It is easy to show that any two equal types are equivalent:

id-to-equiv : {A B : Type} → (A ≡ B) → (A ≃ B)
id-to-equiv refl = id , ((id , (λ _ → refl)) , id , (λ _ → refl))

The univalence axiom says that this map is itself an equivalence:

postulate univalence : (A B : Type) → isEquiv (id-to-equiv {A} {B})

Note that we need to be serious about (cumulative) universes here since we have an
equivalence between a small and a big type.
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Univalence

The most useful consequence of this is that we have a map

ua : {A B : Type} → (A ≃ B) → (A ≡ B)
ua {A} {B} f with univalence A B
ua {A} {B} f | (g , _) , _ = g f

which allows us to make an equality from an equivalence, for which we have the usual
tools such as transport.
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Unary and binary natural numbers

For instance, we can define binary natural numbers as

data Bin : Set where
b0 : Bin
b1 : List Bool → Bin

(the second being 1 followed by a reversed list of bits).

We can convert binary numbers into unary ones:

Bin-to-Nat : Bin → N
Bin-to-Nat b0 = 0
Bin-to-Nat (b1 []) = 1
Bin-to-Nat (b1 (x :: l)) = (if x then 1 else 0) + 2 * Bin-to-Nat (b1 l)
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Unary and binary natural numbers

This function can be shown to induce an equivalence between the two representations:

Bin-to-Nat-isEquiv : isEquiv (Bin-to-Nat)

We can therefore define addition on binary numbers from the one on unary numbers:

add : Bin → Bin → Bin
add = transport

(λ A → (A → A → A))
(sym (ua (Bin-to-Nat , Bin-to-Nat-isEquiv)))
_+_
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Univalence

In order to understand better univalence, it is simpler to take a variant of

id-to-equiv : {A B : Type} → (A ≡ B) → (A ≃ B)
id-to-equiv refl = id , ((id , (λ _ → refl)) , id , (λ _ → refl))

when defining

postulate univalence : (A B : Type) → isEquiv (id-to-equiv {A} {B})
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Univalence

Any path p : A ≡ B induces a coercion function

coe : {A B : Type} → (A ≡ B) → A → B
coe p x = transport (λ A → A) p x

which is easily seen to be an equivalence

coe-isEquiv : {A B : Type} (p : A ≡ B) → isEquiv (coe p)
coe-isEquiv refl = (id , (λ x → refl)) , (id , λ x → refl)

from which we define

id-to-equiv : {A B : Type} → (A ≡ B) → (A ≃ B)
id-to-equiv p = coe p , coe-isEquiv p

and

postulate univalence : (A B : Type) → isEquiv (id-to-equiv {A} {B}) 73



Univalence

The univalence axiom thus says that the function (elimination rule)

coe : (A ≡ B)→ (A ≃ B)

admits an “inverse” (introduction rule)

ua : (A ≃ B)→ (A ≡ B)

i.e.

• computation rule: for every equivalence f : A→ B and x : A

coe (ua f ) x ≡ f x

• uniqueness rule: for every p : A ≡ B ,

ua (coe p) ≡ p
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Univalence and classical logic

The univalence axiom is incompatible with classical logic: if we suppose that

¬¬A→ A

holds for every type A then we can prove ⊥.

The general idea of the proof is as follows:

• we have an equivalence f : Bool ≃ Bool exchanging true and false,

• by univalence, it induces a non-trivial path p : Bool ≡ Bool,

• the map ¬¬A→ A amounts to choosing and element a of A,

• by transport and happly we can show that we should have a ∼= not a,

• we therefore have true ≡ false from which we can deduce ⊥.
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Univalence and classical logic

However, there is no contradiction in supposing

¬¬A→ A

for every proposition A.
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Higher inductive types

For now, we don’t have many non-trivial 2-types at our disposal (excepting SET).

Namely, all the types we constructed up to now are sets
(natural numbers, lists over sets, etc.).

For instance, there is no easy way to construct something which looks like a circle.

In order to do so, we need a generalization of inductive types: higher inductive types.
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Higher inductive types

In an inductive type, we specify constructors which add elements to the type.

In a higher inductive type, we can also add identities between the elements of the type.

Those are not completely well understood (and implemented) as of now.
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Higher inductive types

For instance, we can define the circle
p

x y

as

data Circle : Type where
x : Circle
y : Circle
p : x ≡ y
q : x ≡ y

79



Higher inductive types

Recall that for booleans

data Bool : Type where
true : Bool
false : Bool

the recursion principle is that given

• a type A,
• an element t : A
• an element u : A

there exists a unique function
f : Bool→ A

such that f true = t and f false = u.
Exercise: define not. 80



Higher inductive types

If we consider the type

data Circle : Type where
base : Circle
loop : base ≡ base

the corresponding induction principle is that given

• a predicate P : Circle→ Type,
• an element b : P base,
• a path l : P base ≡ P base

there exists a (unique up to homotopy) function

f : (x : Circle)→ P x

such that f base = b and f loop = l .
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Suspension

The suspension of a type A is

data Susp (A : Type) : Type where
N : Susp A
S : Susp B
p : (x : A) → N ≡ S

In this way, we can construct the n-sphere for any dimension n...
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Propositional truncation

The propositional truncation of a type is

data Trunc (A : Type) : Type where
carrier : A → Trunc A
trivial : (x y : Trunc A) → x ≡ y

Lemma
For every type A, TruncA is a proposition.

It can be thought of as turning a type A into a proposition,
i.e. it is (equivalent to) a point when A is non-empty and a empty when A is empty.

However, this is done in an intuitionistic way (the above would rather be ¬¬A).
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Propositional truncation

The recursion principle says that given

• a type B ,

• a function g : A→ B ,

• a path x ≡ y for every x , y : B ,

there exists a unique function
f : TruncA→ B

such that f x = g x for x : A and given x , y : A, ap f sends the specified path from x to
y in A to the one between f x and f y in B .
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Propositional truncation

For instance, there is a canonical map from TruncA to ¬¬A induced by

• the map A→ ¬¬A sending x to λf .f x ,

• the fact that ¬¬A is a proposition.

It is an equivalence if and only if the logic is classical.
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