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Part I

Introduction

1



Curry-Howard on steroids

We have seen that types can be seen as formulas and programs as proofs:

'a -> 'a * 'b corresponds to A ⇒ A ∧ B

and this language is a subset of OCaml (λ-calculus).

We are now going to see and use Agda, which is a programming language in which
types are much more expressive than propositional logic.
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Curry-Howard on steroids

For instance, the type of division in OCaml is

int -> int -> int * int

We are going to be able to give it a type such as

(m : int) → (n : int) → Σ(q : int).Σ(r : int).((m = nq + r)× (r < n))

which can be read as the formula

∀m ∈ int.∀n ∈ int.∃q ∈ int.∃r ∈ int.((m = nq + r) ∧ (r < n))
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Proof assistants

A proof assistant is a software which helps you writing proofs:

1. it checks that your proof is actually correct (type checking),

2. it provides you tools to gradually elaborate a proof,

3. it provide tools to automate some parts of the proofs,

4. it provide you a way to execute the proofs or extract code (Curry-Howard).

Most well-known proof assistants: Agda, Coq, Isabelle, Lean, etc.
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Pros and cons

Once you prove a program, you are 100% sure that your proof is correct or that your
program satisfies the specification.

But there is a price to pay: every case has to be handled in full details which means
that it takes quite much time (and money).

In particular, type inference is undecidable so that we have to somehow explain how to
type the term.
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Safety

In theory, once you make your proof in a proof assistant you are sure that your proof is
correct, excepting that:

• the theory might be wrong

quite unlikely

• the implementation of the proof assistant might be buggy

unlikely: de Bruijn criterion + self-formalization
e.g. https://github.com/coq-contribs/coq-in-coq

• the specification might be wrong or imprecise

this does happen

6

https://github.com/coq-contribs/coq-in-coq


Safety

In theory, once you make your proof in a proof assistant you are sure that your proof is
correct, excepting that:

• the theory might be wrong

quite unlikely

• the implementation of the proof assistant might be buggy

unlikely: de Bruijn criterion + self-formalization
e.g. https://github.com/coq-contribs/coq-in-coq

• the specification might be wrong or imprecise

this does happen

6

https://github.com/coq-contribs/coq-in-coq


Safety

In theory, once you make your proof in a proof assistant you are sure that your proof is
correct, excepting that:

• the theory might be wrong

quite unlikely

• the implementation of the proof assistant might be buggy

unlikely: de Bruijn criterion + self-formalization
e.g. https://github.com/coq-contribs/coq-in-coq

• the specification might be wrong or imprecise

this does happen

6

https://github.com/coq-contribs/coq-in-coq


Safety

In theory, once you make your proof in a proof assistant you are sure that your proof is
correct, excepting that:

• the theory might be wrong

quite unlikely

• the implementation of the proof assistant might be buggy

unlikely: de Bruijn criterion + self-formalization
e.g. https://github.com/coq-contribs/coq-in-coq

• the specification might be wrong or imprecise

this does happen

6

https://github.com/coq-contribs/coq-in-coq


Safety

In theory, once you make your proof in a proof assistant you are sure that your proof is
correct, excepting that:

• the theory might be wrong
quite unlikely

• the implementation of the proof assistant might be buggy

unlikely: de Bruijn criterion + self-formalization
e.g. https://github.com/coq-contribs/coq-in-coq

• the specification might be wrong or imprecise

this does happen

6

https://github.com/coq-contribs/coq-in-coq


Safety

In theory, once you make your proof in a proof assistant you are sure that your proof is
correct, excepting that:

• the theory might be wrong
quite unlikely

• the implementation of the proof assistant might be buggy
unlikely: de Bruijn criterion + self-formalization
e.g. https://github.com/coq-contribs/coq-in-coq

• the specification might be wrong or imprecise

this does happen

6

https://github.com/coq-contribs/coq-in-coq


Safety

In theory, once you make your proof in a proof assistant you are sure that your proof is
correct, excepting that:

• the theory might be wrong
quite unlikely

• the implementation of the proof assistant might be buggy
unlikely: de Bruijn criterion + self-formalization
e.g. https://github.com/coq-contribs/coq-in-coq

• the specification might be wrong or imprecise
this does happen

6

https://github.com/coq-contribs/coq-in-coq


Agda

Starting from now we are going to use Agda:

• we introduce the programming language,

• we explain the theory behind it (expanding on previous courses),

• in labs, you will get to the point of proving (simple) algorithms.

It might seem quite some syntax to absorb but you should get used to it with the labs.

We chose it because

• it is Curry-Howard in its purest form,

• it is really minimal: we define everything (e.g. product or equality) from a very
restricted number of basic constructions.
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Part II

A first proof
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Commutativity of the product in OCaml

Recall from the first course that the formula

(A ∧ B) ⇒ (B ∧ A)

can be proved in λ-calculus by

λpA∧B .⟨πr(p), πl(p)⟩

and can be proved in OCaml by

# let prod_com (a , b) = (b , a);;
val prod_com : 'a * 'b -> 'b * 'a = <fun>

We can do the same in Agda.
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Our first proof

open import Data.Product

-- The product is commutative
×-comm : (A B : Set) → (A × B) → (B × A)
×-comm A B (a , b) = (b , a)

Note: modules import, comments, utf-8 symbols, type / function definition, matching,
Set, spaces, dependent types, two interpretations (Curry-Howard).
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Inputting the code

In order to type Agda code you should use Emacs or VSCode with appropriate support.

Agda is fond of the use of funny symbols:

• × is typed \times (VSCode: *times),
• → is typed \to (VSCode: *to),...

Once you have finished typing the code, you should type

C-c C-l

(control+c then control+l) in order to have Agda

1. load our code (do it whenever you changed the file),
2. highlight your code,
3. check that it is correct.
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Table of symbols

For reference, the common symbols are:

∧ \and ⊤ \top → \to ∀ \all Π \Pi λ \Gl
∨ \or ⊥ \bot ¬ \neg ∃ \ex Σ \Sigma ≡ \equiv

and some other useful ones are

N \bN × \times ⩽ \le ∈ \in ⊎ \uplus :: \:: ■ \qed
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Spaces

Agda is very picky about spaces: they are needed around operations.

This means that
x + y

is an addition, whereas
x+y

is an identifier.
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Programs with holes

In practice, it is almost impossible to directly write a full Agda program correctly.

We generally proceed by refinement by writing

?

which is a hole meaning “I’ll see later how I can fill that”.

For instance, in our example, we would write

×-comm : (A B : Set) → (A × B) → (B × A)
×-comm A B p = ?
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Shortcuts

×-comm : (A B : Set) → (A × B) → (B × A)
×-comm A B p = ?

We then have shortcuts to help us in proofs:

C-c C-l typecheck and highlight the current file
C-c C-, get information about the hole under the cursor
C-c C-. same as above + the type of the proposed filler
C-c C-space give a solution
C-c C-c case analysis on a variable
C-c C-r refine the hole
C-c C-a automatic fill
middle click definition of the term

NB: we can fill holes with expressions containing ?
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Set

In Agda everything has to have a type.

Therefore, they have introduced a type

Set

such that the values of this type are types: this is the type of all types.

(yes, this sounds wonderful and scaring at the same time)

(more on this later on)
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Part III

Arrow types
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Arrow types

The type for “usual” functions is

A → B

which can either be read as

• the type of functions which take an x of type A and return something of type B :

A -> B

• an implication:
A ⇒ B

18



Arrow types

For instance, we can prove
A ⇒ (A ⇒ B) ⇒ B

by

thm : (A B : Set) → A → (A → B) → B
thm A B a f = f a
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Implicit arguments

The arguments A and B have to be given each time, which is kind of heavy:

open import Data.Nat

p : N × N
p = ×-comm N N (5 , 4)

Fortunately, we can make them implicit:

×-comm : {A B : Set} → (A × B) → (B × A)
×-comm (a , b) = b , a

p : N × N
p = ×-comm (5 , 4)

NB: we can check the resulting value for p with C-c C-n.
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Arrow types: λ

The identity can be written as:

id : {A : Set} → A → A
id a = a

We can also make anonymous functions:

id : {A : Set} → A → A
id = λ a → a

This is akin OCaml:

let id x = x
let id = fun x -> x

21
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Part IV

Inductive types
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Inductive types: booleans

We can define inductive types, e.g. booleans:

data Bool : Set where
false : Bool
true : Bool

not : Bool → Bool
not false = true
not true = false

NB: we can see that automatic fill is not a good idea!

In the standard library: Data.Bool.
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Inductive types: natural numbers

Similarly, how do we define natural numbers?

data N : Set where
zero : N
suc : N → N
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Similarly, how do we define natural numbers?

data N : Set where
zero : N
suc : N → N

We define addition by induction by

add : N → N → N
add zero n = n
add (suc m) n = suc (add m n)

x : N
x = add (suc zero) (suc (suc zero))

Note that we can call recursively ourselves.
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Inductive types: natural numbers

Similarly, how do we define natural numbers?

data N : Set where
zero : N
suc : N → N

Or better, we can use infix notation:

_+_ : N → N → N
zero + n = n
suc m + n = suc (m + n)

x : N
x = (suc zero) + (suc (suc zero))

24



Inductive types: natural numbers

Similarly, how do we define natural numbers?

data N : Set where
zero : N
suc : N → N

And we can add more sugar for numbers:

_+_ : N → N → N
zero + n = n
suc m + n = suc (m + n)

{-# BUILTIN NATURAL N #-}

x : N
x = 3 + 2 24



Inductive types: natural numbers

Similarly, how do we define natural numbers?

data N : Set where
zero : N
suc : N → N

In the standard library: Data.Nat.
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Inductive types: natural numbers

Similarly, how do we define natural numbers?

data N : Set where
zero : N
suc : N → N

There is also a syntax for anonymous functions with pattern matching:

add : N → N → N
add = λ { zero n → zero ; (suc m) n → suc (add m n) }
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Inductive types: natural numbers

Similarly, how do we define natural numbers?

data N : Set where
zero : N
suc : N → N

The inductive definition intuitively means that N is the smallest set of terms such that

• zero belongs to N,

• if n belongs to N then there is a new term suc n which belongs to N.

In particular, constructors are injective:

• zero is never the same as suc n,

• if suc m is the same as suc n then necessarily m is the same as n.

24
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Termination

In Agda, all functions must terminate:

_+_ : N → N → N
zero + n = n
suc m + n = suc m + n

gives rise to the error

Termination checking failed for the following functions:
_+_

Problematic calls:
suc m + n

25
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Termination

Allowing functions to be non-terminating would make the system incoherent:

{-# TERMINATING #-}
anything : {A : Set} → N → A
anything n = anything (suc n)

From which we can deduce pretty much whatever we want:

open import Relation.Binary.PropositionalEquality

absurd : 0 ≡ 1
absurd = anything 25
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Termination

Note that because of termination all functions are total in Agda: given an argument,
they always produce an output.

(this is not the case in OCaml for instance)
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Termination

Theorem
Agda is a programming language in which every programmable function is total,
therefore there is a total computable function which cannot be implemented.

Proof.

• we can enumerate all the functions N → N programmable in Agda: fn,

• the function g : N× N → N such that g(n, k) = fn(k) is computable,

• suppose that g can be implemented in Agda (otherwise we conclude),

• then consider the function d : N → N such that d(n) = g(n, n) + 1,

• this function can be implemented thus d = fi ,

• and we have d(i) =

g(i , i) + 1 =

fi (i) + 1 =

d(i) + 1

.
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• then consider the function d : N → N such that d(n) = g(n, n) + 1,

• this function can be implemented thus d = fi ,

• and we have d(i) =
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Termination

Nevertheless, we can reason on all computable functions (including non-terminating
ones) by considering the reduction in an interpreter instead of implementing them
directly in Agda.

In practice, the only thing which will fail is when trying to prove something like the
correctness of Agda in Agda.
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Bignum bakeoff

TODO: https://djm.cc/bignum-results.txt https://github.com/rcls/busy
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Inductive types: truth

How do we define the type for truth?

data ⊤ : Set where
tt : ⊤

In the standard library: Data.Unit.

We can show a theorem with it:

⊤-intro : {A : Set} → A → ⊤
⊤-intro a = tt
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Inductive types: falsity

How do we define the type for falsity?

data ⊥ : Set where

In the standard library: Data.Empty.

We can show a theorem with it:

⊥-elim : {A : Set} → ⊥ → A
⊥-elim ()
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Lists

We can define polymorphic types such as lists:

In the standard library: Data.List.
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Lists

We can define polymorphic types such as lists:

data List (A : Set) : Set where
nil : List A
cons : A → List A → List A

In the standard library: Data.List.
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We can define polymorphic types such as lists:
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Lists

Usual functions such as concatenation can then be defined inductively:

concat : {A : Set} → List A → List A → List A
concat [] m = m
concat (x :: l) m = x :: (concat l m)
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Lists

We can program a function which computes the tail of a list:

tail : {A : Set} → List A → List A
tail [] = []
tail (x :: l) = l

but for the head we have a real problem:

head : {A : Set} → List A → A
head [] = ???
head (x :: l) = x
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Lists

We could use the Maybe type (= ’a option in OCaml):

data Maybe (A : Set) : Set where
just : A → Maybe A
nothing : Maybe A

(Data.Maybe in the standard library) and program

head : {A : Set} → List A → Maybe A
head [] = nothing
head (x :: l) = just x

But this is not practical: we have to match to see whether we have just or a nothing
each time we use it. It would be much better to restrict the function to non-empty lists!
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Part V

Dependent types

37



Dependent types

In Agda, we have polymorphic types where a type depends on another type:

List A

We also have dependent types where a type depends on a term:

Vec A n
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Vectors

We can define the type of vectors which are lists of a given length:

data Vec (A : Set) : (n : N) → Set where
[] : Vec A zero
_::_ : {n : N} → A → Vec A n → Vec A (suc n)

In the type Vec, we have both

• a parameter: A

• an index: n

Indices are roughly the same as parameters, excepting they can vary between
constructors.
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Dependent functions

In a dependent function, the returned type depends on the input:

(x : A) → B

where x is allowed to occur in B.

From a logical point of view, this can be read as

∀x ∈ A.B

In particular, when x does not occur in B, we can simply write

A → B

NB: for multiple abstractions, we can write

(x y : A) → B instead of (x : A) → (y : A) → B
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Dependent functions

For instance, we can program a function which returns a vector of n zeros:

zeros : (n : N) → Vec N n
zeros zero = []
zeros (suc n) = 0 :: (zeros n)

Note that typing ensures that the resulting list is of the right length!

zeros : (n : N) → Vec N n
zeros zero = []
zeros (suc n) = zeros n

raises the following error:

n != suc n of type N
when checking that the expression zeros n has type Vec N (suc n)

41



Dependent functions

For instance, we can program a function which returns a vector of n zeros:

zeros : (n : N) → Vec N n
zeros zero = []
zeros (suc n) = 0 :: (zeros n)

Note that typing ensures that the resulting list is of the right length!

zeros : (n : N) → Vec N n
zeros zero = []
zeros (suc n) = zeros n

raises the following error:

n != suc n of type N
when checking that the expression zeros n has type Vec N (suc n)

41



Dependent functions

For instance, we can program a function which returns a vector of n zeros:

zeros : (n : N) → Vec N n
zeros zero = []
zeros (suc n) = 0 :: (zeros n)

Note that typing ensures that the resulting list is of the right length!

zeros : (n : N) → Vec N n
zeros zero = []
zeros (suc n) = zeros n

raises the following error:

n != suc n of type N
when checking that the expression zeros n has type Vec N (suc n)

41



Dependent pattern matching

Agda implements an algorithm of dependent pattern matching: it automatically
removes the cases which are not possible because of typing.

For instance, let’s program the head function on vectors:

head : {A : Set} {n : N} → Vec A (suc n) → A
head (x :: l) = x

There is no case for [] in the pattern matching!
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Typechecking and reduction

We can also program concatenation:

concat : {A : Set} → {m n : N} → Vec A m → Vec A n → Vec A (m + n)
concat [] l' = l'
concat (x :: l) l' = x :: (concat l l')

Note that in the first case, we provide a Vec A n instead of a Vec A (0 + n):
the terms are considered modulo reduction!

This is also visible on the following test:

l : Vec N (3 + 1)
l = concat (0 :: (0 :: [])) (0 :: (0 :: []))

(a vector of length 2 + 2 is a vector of length 3 + 1).
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Finite sets

The use of vectors has solved the problem for head, but suppose that we want to define
the function ith:

ith : {A : Set} → (i : N) → {n : N} → (l : Vec A n) → A
ith i l = ?

What is the problem?
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The use of vectors has solved the problem for head, but suppose that we want to define
the function ith:

ith : {A : Set} → (i : N) → {n : N} → (l : Vec A n) → A
ith i l = ?

What is the problem?

We could add an extra condition, but this is a bit heavy on the long run:

ith : {A : Set} → (i : N) → {n : N} → (l : Vec A n) → (p : i < n) → A
ith zero (x :: l) p = x
ith (suc i) (x :: l) p = ith i l (⩽-pred p)
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Finite set

Consider the sets
Fn = {0, . . . , n − 1}

an inductive definition is given by
F0 = ∅

and

This means that

• 0 belongs to any set Fn+1,

• any element of Fn induces an element of Fn+1.
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Finite sets

It is thus natural, elegant and practical to define the type

of natural numbers between 0 (inclusive) and n (exclusive), see Data.Fin.

We can then define

ith : {A : Set} → {n : N} → Fin n → Vec A n → A
ith zero (x :: l) = x
ith (suc i) (x :: l) = ith i l
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Part VI

Logic
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So far, we have seen that Agda is a very expressive programming language.

By Curry-Howard, we can also see it as a proof assistant.

In order to do real logic, we need some more connectives and in particular

equality.
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Implication

Recall that implication
A ⇒ B

is

(non-dependent) arrow type

A → B
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Implication

Recall that implication
A ⇒ B

is (non-dependent) arrow type

A → B
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Truth and falsity

Recall that the types for truth and falsity are respectively

data ⊤ : Set where
tt : ⊤

and

data ⊥ : Set where

In Data.Unit and Data.Empty.
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Negation

As usual, negation can be defined as

¬ : Set → Set
¬ A = A → ⊥

In Relation.Nullary.

Note how wonderful it is to have a type Set.
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Conjunction

Conjunction is given by

product:

and we have already seen this in our first example:

×-comm : {A B : Set} → (A × B) → (B × A)
×-comm (a , b) = (b , a)

Projections are defined by pattern-matching:

fst : {A B : Set} → A × B → A
fst (a , b) = a

which is a proof of (A ∧ B) ⇒ A.
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Disjunction

Disjunction is given by

coproduct:

data _⊎_ (A B : Set) : Set where
left : A → A ⊎ B
right : B → A ⊎ B

It is also commutative:

⊎-comm : {A B : Set} → A ⊎ B → B ⊎ A
⊎-comm (left a) = right a
⊎-comm (right b) = left b
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Decidable types

Recall that we are in intuitionistic logic: A ⊎ ¬ A does not hold for every type A.

A type for which this holds is called decidable:

Dec : Set → Set
Dec A = A ⊎ ¬ A

We will see an example later on.
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Decidable types

Recall that we are in intuitionistic logic: A ⊎ ¬ A does not hold for every type A.

A type for which this holds is called decidable:

Dec : Set → Set
Dec A = A ⊎ ¬ A

We will see an example later on.
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Predicates

Usually, a predicate P on a set A is encoded as

a function

A → {0, 1}

In Agda, we could thus encode a predicate on a type A as a function

A → bool

This is however not satisfactory, why?
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Predicates

The standard way of encoding a predicate P on a type A is as an element of type

A → Set

Given a term a of type A, the type

P a

is the type of all proofs such that P a holds.
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Predicates

We can define predicates inductively and reason about them by pattern matching!

For instance, let’s define a predicate on natural numbers corresponding to “being even”:

data Even : N → Set where
even-zero : Even zero
even-suc : {n : N} → Even n → Even (suc (suc n))
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For instance, let’s define a predicate on natural numbers corresponding to “being even”:

data Even : N → Set where
even-zero : Even zero
even-suc : {n : N} → Even n → Even (suc (suc n))

We can then show that 4 is even:

four-even : Even (suc (suc (suc (suc zero))))
four-even = even-suc (even-suc even-zero)

57



Predicates

We can define predicates inductively and reason about them by pattern matching!

For instance, let’s define a predicate on natural numbers corresponding to “being even”:

data Even : N → Set where
even-zero : Even zero
even-suc : {n : N} → Even n → Even (suc (suc n))

We can then show that 1 is not even:

one-not-even : Even (suc zero) → ⊥
one-not-even ()
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Predicates

We can define predicates inductively and reason about them by pattern matching!

For instance, let’s define a predicate on natural numbers corresponding to “being even”:

data Even : N → Set where
even-zero : Even zero
even-suc : {n : N} → Even n → Even (suc (suc n))

We can then show that 3 is not even:

three-not-even : Even (suc (suc (suc zero))) → ⊥
three-not-even (even-suc ())
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Predicates

We can similarly define predicates with other arities.

For instance, the order on natural numbers is

data _⩽_ : N → N → Set where
z⩽n : {n : N} → zero ⩽ n
s⩽s : {m n : N} → m ⩽ n → suc m ⩽ suc n
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Predicates

We can similarly define predicates with other arities.

For instance, the order on natural numbers is

data _⩽_ : N → N → Set where
z⩽n : {n : N} → zero ⩽ n
s⩽s : {m n : N} → m ⩽ n → suc m ⩽ suc n
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Predicates

We can similarly define predicates with other arities.

For instance, the order on natural numbers is

data _⩽_ : N → N → Set where
z⩽n : {n : N} → zero ⩽ n
s⩽s : {m n : N} → m ⩽ n → suc m ⩽ suc n

and we can show that it is transitive by

⩽-trans : {m n o : N} → m ⩽ n → n ⩽ o → m ⩽ o
⩽-trans z⩽s l = z⩽s
⩽-trans (s⩽s k) (s⩽s l) = s⩽s (⩽-trans k l)
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Predicates

We can similarly define predicates with other arities.

For instance, the order on natural numbers is

data _⩽_ : N → N → Set where
z⩽n : {n : N} → zero ⩽ n
s⩽s : {m n : N} → m ⩽ n → suc m ⩽ suc n

Note that it could also be defined as a function, but this is less natural:

_⩽_ : N → N → Set
zero ⩽ n = ⊤
suc m ⩽ zero = ⊥
suc m ⩽ suc n = m ⩽ n
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Equality

Magically, we can even define propositional equality:

What’s going to happen when we reason by induction on equality?

Note that there are two notions of equality in Agda:

• definitional equality: terms are considered up to β-reduction (e.g. 2+2 = 3+1),

• propositional equality: the one above.

It is defined in Relation.Binary.PropositionalEquality.
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Basic properties of equality

Let’s show some basic properties of equality. It is

• reflexive: this is what the refl constructor is saying,

• symmetric:

sym : {A : Set} {x y : A} → x ≡ y → y ≡ x
sym refl = refl

• transitive:

trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
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Basic properties of equality

Equality is a congruence:

cong : {A B : Set} {x y : A} (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl

For instance,

cong12 : {m n : N} → m ≡ n → (m + 12) ≡ (n + 12)
cong12 p = cong (λ k → k + 12) p
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Basic properties of equality

We can use this to show that addition is associative:
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Basic properties of equality

We can use this to show that addition is associative:

+-assoc : (m n p : N) → ((m + n) + p) ≡ (m + (n + p))
+-assoc zero n p = refl
+-assoc (suc m) n p = cong suc (+-assoc m n p)
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Substitutivity

A last important property is that equality is substitutive:

subst : {A : Set} (P : A → Set) → {x y : A} → x ≡ y → P x → P y
subst P refl p = p

If two things are equal and one satisfies a property then the other also does.

This is also sometimes called transport.
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A last important property is that equality is substitutive:

subst : {A : Set} (P : A → Set) → {x y : A} → x ≡ y → P x → P y
subst P refl p = p
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Coercion

In particular, we can coerce a term of a given type into one of some equal type:
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Coercion

In particular, we can coerce a term of a given type into one of some equal type:

coe : {A B : Set} → A ≡ B → A → B
coe refl x = x
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Coercion

In particular, we can coerce a term of a given type into one of some equal type:

coe : {A B : Set} → A ≡ B → A → B
coe e x = subst (λ A → A) e x

64



Decidability

Recall the definition of A being decidable:

Dec A = A ⊎ ¬ A
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For instance, on booleans, equality is decidable:
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Decidability

Recall the definition of A being decidable:

Dec A = A ⊎ ¬ A

For instance, on booleans, equality is decidable:

Bool-≡-dec : (a b : Bool) → Dec (a ≡ b)
Bool-≡-dec false false = left refl
Bool-≡-dec false true = right (λ ())
Bool-≡-dec true false = right (λ ())
Bool-≡-dec true true = left refl
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Decidability

Recall the definition of A being decidable:

Dec A = A ⊎ ¬ A

For instance, on natural numbers, equality is decidable:
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Decidability

Recall the definition of A being decidable:

Dec A = A ⊎ ¬ A

For instance, on natural numbers, equality is decidable:

N-≡-dec : (m n : N) → Dec (m ≡ n)
N-≡-dec zero zero = left refl
N-≡-dec zero (suc n) = right (λ ())
N-≡-dec (suc m) zero = right (λ ())
N-≡-dec (suc m) (suc n) with N-≡-dec m n
N-≡-dec (suc m) (suc n) | left e = left (cong suc e)
N-≡-dec (suc m) (suc n) | right e' = right (λ e → e' (suc-injective e))
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Auxiliary matching

We have learned a new syntax to match on auxiliary computations:

f : A → B
f x with e
... | v = result
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Decidability

Equality is not always decidable.

For instance,

how would we decide the equality of two functions N → N?

By the way, equality on functions is not extensional, we only have the implication

extfun : {A B : Set} → {f g : A → B} → f ≡ g → (a : A) → f a ≡ g a
extfun refl a = refl

but not the converse

funext : {A B : Set} → {f g : A → B} → ((a : A) → f a ≡ g a) → f ≡ g
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Part VII

Extrinsic vs intrinsic proofs
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Extrinsic vs intrinsic proofs

There are two approaches when proving that a program is correct.

• Extrinsic approach:

1. we program the function we are interested in,
2. we show that it is correct.

• Intrinsic approach: we directly define the function we are interested in with a type
which guarantees its correctness.

69



Extrinsic vs intrinsic proofs

There are two approaches when proving that a program is correct.

• Extrinsic approach:
1. we program the function we are interested in,

2. we show that it is correct.

• Intrinsic approach: we directly define the function we are interested in with a type
which guarantees its correctness.

69



Extrinsic vs intrinsic proofs

There are two approaches when proving that a program is correct.

• Extrinsic approach:
1. we program the function we are interested in,
2. we show that it is correct.

• Intrinsic approach: we directly define the function we are interested in with a type
which guarantees its correctness.

69



Extrinsic vs intrinsic proofs

There are two approaches when proving that a program is correct.

• Extrinsic approach:
1. we program the function we are interested in,
2. we show that it is correct.

• Intrinsic approach: we directly define the function we are interested in with a type
which guarantees its correctness.

69



Length of concatenation: extrinsic approach

Suppose that we want to show that concatenation adds the length of lists.

We define the length function on lists:

length : {A : Set} → List A → N
length [] = 0
length (x :: l) = 1 + (length l)

and show that the property is satisfied:

concat-length : {A : Set} → (k l : List A) →
length (concat k l) ≡ length k + length l

concat-length [] l = refl
concat-length (x :: k) l = cong suc (concat-length k l)
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Length of concatenation: intrinsic approach

In the intrinsic approach, we define an adapted type (vectors = lists of given length)
and meaningfully type concatenation:

concat : {A : Set} → {m n : N} → Vec A m → Vec A n → Vec A (m + n)
concat [] l' = l'
concat (x :: l) l' = x :: (concat l l')
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Part VIII

Dependent sums
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Dependent sums

For vectors, we were easily able to inductively define a type of lists of a given length.

This case is however particular: given

• a type A : Set,
• a predicate P : A → Set,

we would like to define the set of elements a of type A such that P a holds.

In set-theoretic notation: {a ∈ A | P a}.

Because we are constructive, we want to implement it as pairs consisting of

• an element a of type A,
• an element p of type P a.

Looks like a product!
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Dependent sums

The type for products is

The type for dependent sums is

data dsum (A : Set) (P : A → Set) : Set where
pair : (a : A) → P a → dsum A P

Defined in Data.Product.
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Dependent sums

The type for products is

data prod (A B : Set) : Set where
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Dependent sums

The type for products is

data _×_ (A B : Set) : Set where
_,_ : A → B → A × B

The type for dependent sums is

data Σ (A : Set) (P : A → Set) : Set where
_,_ : (a : A) → P a → Σ A P
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The type for products is
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Dependent sums

The dependent sums can be noted

• in Agda: Σ A P,

• in maths:
∑

a∈A P(a),
• in set theory: {a ∈ A | P a},
• in logic: ∃a ∈ A.(P a).

(this is a constructive variant of those)

Note that products are a particular case of dependent sum:

A × B = Σ A (λ _ → B )

like in maths, we have
m × n =

∑
i∈{1,...,m}

ni
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Vectors

We could have defined vectors as

Vec' : Set → N → Set
Vec' A n = Σ (List A) (λ l → length l ≡ n)

In theory, this is as powerful as the above type.

In practice, the less

in

equalities you have the better you are.
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Vectors

We could have defined finite sets as

Fin' : N → Set
Fin' n = Σ N (λ i → i < n)

In theory, this is as powerful as the above type.

In practice, the less inequalities you have the better you are.
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Division

The usual way of implementing Euclidean division in OCaml:

let rec euclid m n =
if m < n then (0, m) else

let (q, r) = euclid (m - n) n in
(q + 1, r)

The type for division in the intrinsic approach in Agda would be:

div : (m n : N) → Σ N (λ q → Σ N (λ r → (m ≡ n * q + r) × (r < n)))
div m n = ?

Why can’t we directly translate the above code?
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Half of even numbers

Remember that we have defined the predicate of being even inductively as

data Even : N → Set where
even-zero : Even zero
even-suc : {n : N} → Even n → Even (suc (suc n))

We can then show that every even number has a half by induction by

even-half : {n : N} → Even n → Σ N (λ m → m + m ≡ n)
even-half even-zero = zero , refl
even-half (even-suc e) with even-half e
even-half (even-suc _) | m , e = (suc m) , cong suc (trans (+-suc m m) (cong suc e))

We can finally compute the half of four by normalizing

two : Σ N _
two = even-half four-even
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Dependent product types

The Agda type

(a : A) → B

is called a dependent product type and noted∏
a∈A

B(a)
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Dependent sum and product types

The dependent sum and product types are satisfy dual properties:

Sum Product

Agda Σ A (λ a → B) (a : A) → B

Maths
∑

a∈A B(a)
∏

a∈A B(a)

Logic ∃a ∈ A.B(a) ∀a ∈ A.B(a)

Non-dependent A× B A ⇒ B

80



Part IX

Records
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Records

Records are tuples with named fields.

For instance, we can model a person by

(** A person: first name, last name, age, height *)
type person = string * string * float * float

This is not very practical because:

• we can confuse between fields

• it is not easy to extract fields
let (first, last, age, height) = person in ...

• the resulting code is not very robust (reordering fields, adding new fields, etc.)
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Records

Records are tuples with named fields.

We thus define

type person =
{

first : string;
last : string;
age : float;
height : float

}

and we can access to the age by

let a = person.age in ...
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Pairs

The usual definition of the product of types is

data _×_ (A B : Set) : Set where
_,_ : A → B → A × B

But we could alternatively define it as a record:

record _×_ (A : Set) (B : Set) : Set where
field

fst : A
snd : B

and use it as expected:

proj1 : {A B : Set} → prod A B → A
proj1 p = prod.fst p
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Pairs

If we define products as

record _×_ (A : Set) (B : Set) : Set where

field
fst : A
snd : B

constructing values is heavy:

pair : {A B : Set} → A → B → prod A B
pair a b = record { fst = a ; snd = b }
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Pairs

If we define products as

record _×_ (A : Set) (B : Set) : Set where
constructor _,_
field

fst : A
snd : B

constructing values is easy:

pair : {A B : Set} → A → B → prod A B
pair a b = a , b
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Records

As usual in Agda, everything is dependent.

This means that the type of a field can depend on a previous field!
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Groups

For instance, we can define groups as

record Group : Set1 where
field

X : Set
_·_ : X → X → X
e : X
i : X → X
assoc : (x y z : X) → (x · y) · z ≡ x · (y · z)
unit-l : (x : X) → e · x ≡ x
unit-r : (x : X) → x · e ≡ x
inv-l : (x : X) → i x · x ≡ e
inv-r : (x : X) → x · i x ≡ e
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Groups

We can then show classical math results:

inv-u-l : {G : Group} → (x x' y : X) → x · y ≡ e → x' · y ≡ e → x ≡ x'
inv-u-l x x' y p q = trans (sym (unit-r x)) ?

but this quickly gets difficult to read.

Fortunately, Agda has a syntax for you!
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Groups

We can then show classical math results:

inv-u-l : {G : Group} → (x x' y : X) → x · y ≡ e → x' · y ≡ e → x ≡ x'
inv-u-l x x' y p q = begin

x ≡〈 sym (unit-r x) 〉
x · e ≡〈 cong (λ y → x · y) (sym (inv-r y)) 〉
x · (y · i y) ≡〈 sym (assoc x y (i y)) 〉
(x · y) · i y ≡〈 cong (λ x → x · i y) p 〉
e · i y ≡〈 cong (λ x → x · i y) (sym q) 〉
(x' · y) · i y ≡〈 assoc x' y (i y) 〉
x' · (y · i y) ≡〈 cong (λ y → x' · y) (inv-r y) 〉
x' · e ≡〈 unit-r x' 〉
x' ■
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