
CSC_51051_EP: Simply typed λ-calculus

Samuel Mimram

2025

École polytechnique

Part I

Introduction

1

Putting it all together

What we have done so far.

1. We have seen that types in OCaml could intuitively be interpreted as formulas.

2. We have formally defined what is a formula and a proof.

3. We have formally defined the core of a functional language (λ-calculus).

and now we put it all together:

4. We define a typing system for λ-calculus and show that it corresponds precisely to
building proofs.

2

Putting it all together

In other words,

PROGRAM = PROOF

Or, more precisely, there is a bijection between

• types and formulas,

• programs of type A and proofs of A,

• reductions of programs and cut elimination.

3

The core

In order to have things as simple as possible, we will first focus on functions.

But, we will see that it extends to more realistic programming languages.

4

Part II

Simply typed λ-calculus

5

Simple types

The simple types are generated by the grammar

A,B ::= X | A→ B

where X is a variable.

For instance, we have a type
(X → Y)→ X

which roughly corresponds to OCaml’s

(’a -> ’b) -> ’a

By convention, arrows are associated on the right:

X → Y → Z = X → (Y → Z)
6

Terms

The programs we considers are λ-terms generated by the grammar

t, u ::= x | t u | λx .t

where x is a variable and A is a type.

All the abstractions carry the type of the abstracted variable:

λx .x

corresponds to OCaml’s
fun x -> x

This is called Church style.
7

Typing

We are now going assign types to terms. For instance, the type of

term type
λxA.x A→ A

λf A→A.λxA.f (fx) (A→ A)→ A→ A

λxA.xx not well-typed!

As usual, we will formulate this by using inference rules on sequents.

8

Contexts

A context Γ is a list
x1 : A1, . . . , xn : An

of pairs consisting of a variable xi and a type Ai .

It can be read as “I assume that the variable xi has type Ai for every index i”.

The domain of the context Γ is dom(Γ) = {x1, . . . , xn}.

Given x ∈ dom(Γ) we write Γ(x) for the type of x :

(Γ, x : A)(x) = A (Γ, y : A)(x) = Γ(x)

(note that a variable might occur multiple times).

9

Sequents

A sequent is a triple noted
Γ ⊢ t : A

where

• Γ is a context,

• t is a term,

• A is a type.

Read as “under the typing assumptions for the variables in Γ, the term t has type A”.

10

Typing rules

The typing rules are

Γ ⊢ x : Γ(x)
(ax)

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A→ B
(→I)

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ t u : B
(→E)

with x ∈ dom(Γ) for (ax).

Note that depending on the term only one rule applies.
11

Typing

We say that a term t has type A in context Γ when Γ ⊢ t : A is derivable.

We say that a term t has type A when ⊢ t : A is derivable.

12

An example of typing derivation

For instance we claim that

λf A→A.λxA.f (fx) has type (A→ A)→ A→ A

which means that
⊢ λf A→A.λxA.f (fx) : (A→ A)→ A→ A

is derivable.

13

An example of typing derivation

Γ ⊢ f : A→ A
(ax)

Γ ⊢ f : A→ A
(ax)

Γ ⊢ x : A
(ax)

Γ ⊢ fx : A
(→E)

f : A→ A, x : A ⊢ f (fx) : A
(→E)

f : A→ A ⊢ λxA.f (fx) : A→ A
(→I)

⊢ λf A→A.λxA.f (fx) : (A→ A)→ A→ A
(→I)

14

Typing and α-conversion

Lemma
Two α-convertible terms have the same type.

This is the reason why we defined Γ(x) to be the type of the rightmost occurrence of x :

x : A, x : B ⊢ x : B
(ax)

x : A ⊢ λxB .x : B → B
(→I)

⊢ λxA.λxB .x : A→ B → B
(→I)

15

Weakening

The typing system satisfies the usual structural properties.

For instance, the weakening rule is admissible:

Proposition
If Γ ⊢ t : A is derivable then Γ,∆ ⊢ t : A is also derivable,
provided that dom(∆) ∩ dom(Γ) = ∅.

16

Uniqueness of typing

A term admits at most one type:

Theorem
If Γ ⊢ t : A and Γ ⊢ t : A′ are derivable then A = A′ (and the two proofs are the same!).

Proof.
By induction on the term t.

• If t = u v then the two derivations are necessarily of the form

Γ ⊢ t : B → A Γ ⊢ u : B

Γ ⊢ t u : A
(→E)

Γ ⊢ t : B ′ → A′ Γ ⊢ u : B ′

Γ ⊢ t u : A′ (→E)

by induction hypothesis we have (B → A) = (B ′ → A′)

and thus A = A′.

17

Uniqueness of typing

The fact that we used Church style is important here!

In Curry style, this is a small variant:

Γ ⊢ x : Γ(x)
(ax)

Γ, x : A ⊢ t : B

Γ ⊢ λx .t : A→ B
(→I)

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ t u : B
(→E)

but types are not unique anymore, e.g. λx .x has types

A→ A (A→ B)→ (A→ B) etc.

18

Uniqueness of typing

In fact, we have more.

We observed earlier that one rule applies on a given term:

Γ ⊢ x : Γ(x)
(ax)

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A→ B
(→I)

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ t u : B
(→E)

Theorem
Given a derivable judgment Γ ⊢ t : A, there is exactly one way to derive it.

19

Typing problems

If a term admits a type, there is only one and we can compute it!

As a consequence, the three following problems are decidable: given Γ and t,

• type checking: determine whether Γ ⊢ t : A is derivable,

• typability: determine whether there exists an A such that Γ ⊢ t : A is derivable,

• type inference: construct an A such that Γ ⊢ t : A is derivable.

20

Type inference and checking

(** Types. *)

type ty =
| TVar of string
| Arr of ty * ty

(** Terms. *)

type term =
| Var of string
| App of term * term
| Abs of string * ty * term

(** Environments. *)

type context = (string * ty) list
21

Type inference and checking

exception Type_error

(** Type inference. *)

let rec infer env t =
match t with
| Var x -> (try List.assoc x env with Not_found -> raise Type_error)
| Abs (x, a, t) -> Arr (a, infer ((x,a)::env) t)
| App (t, u) ->

match infer env t with
| Arr (a, b) -> check u a; b
| _ -> raise Type_error

Γ ⊢ x : Γ(x)
(ax)

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A→ B
(→I)

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ t u : B
(→E)

22

Type inference and checking

(** Type checking. *)

and check env t a =
if infer env t <> a then raise Type_error

(** Typability. *)

let typable env t =
try let _ = infer env t in true
with Type_error -> false

23

Part III

The Curry-Howard
correspondence

24

The Curry-Howard correspondence

The Curry-Howard correspondence is the observation that

• a type is the same as a formula in the implicative fragment of logic:

(A→ B)→ A→ B corresponds to (A⇒ B)⇒ A⇒ B

• a typing derivation for simply typed λ-calculus is the same as a proof in NJ
(implicative fragment).

25

The Curry-Howard correspondence

typing logic

Γ, x : A, Γ′ ⊢ x : A
(ax)

Γ,A, Γ′ ⊢ A
(ax)

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A→ B
(→I)

Γ,A ⊢ B

Γ ⊢ A⇒ B
(⇒I)

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ t u : B
(→E)

Γ ⊢ A⇒ B Γ ⊢ A

Γ ⊢ B
(⇒E)

26

The Curry-Howard correspondence

The “term-erasing procedure” consists, starting from a typing derivation, in removing
all the variables and terms (and replacing → by ⇒):

f : A→ B, x : A ⊢ f : A→ B
(ax)

f : A→ B, x : A ⊢ x : A
(ax)

f : A→ B, x : A ⊢ fx : B
(→E)

f : A→ B ⊢ λxA.fx : A→ B
(→I)

⊢ λf A→B .λxA.fx : (A→ B)→ A→ B
(→I)

Lemma
Given a typing derivation, its term-erasure is a valid proof in NJ.

Proof.
Immediate induction.

27

The Curry-Howard correspondence

Lemma
Conversely, given a proof π of A1, . . . ,An ⊢ A in NJ, we can construct a typing
derivation of x1 : A1, . . . , xn : An ⊢ t : A, for some term t, whose term-erasure is π.

Proof.

If the last rule is

π

Γ,A ⊢ B

Γ ⊢ A⇒ B
(⇒I)

then by induction hypothesis we have

...

Γ, x : A ⊢ t : B

and we construct

...

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A→ B
(→I).

28

The Curry-Howard correspondence

In the previous proof we did not have any choice for the terms (up to α-conversion):

f : A→ B, x : A ⊢ f : A→ B
(ax)

f : A→ B, x : A ⊢ x : A
(ax)

f : A→ B, x : A ⊢ fx : B
(→E)

f : A→ B ⊢ λxA.fx : A→ B
(→I)

⊢ λf A→B .λxA.fx : (A→ B)→ A→ B
(→I)

29

The Curry-Howard correspondence

Theorem
There is a bijection between

• typable λ-terms (up to α-conversion),

• typing derivations of λ-terms,

• proofs in the implicative fragment of NJ.

In other words,

PROGRAM = PROOF

30

The Curry-Howard correspondence

In particular, λ-terms can be considered as proof witnesses:

— you: Hey, the formula A is true!

— me: Why should I believe you?

— you: Here is a term t witnessing for that.

— me: Let me typecheck that...

— me: Ok, now I believe you!

31

Part IV

Other connectives

32

Other connectives

The correspondence extends to other logical connectives too!

The general idea is that for each connective we can introduce in λ-calculus

• constructions to create a value of this type (= introduction rules)

• constructions to use a value of this type (= elimination rules)

with appropriate reduction rules (= cut elimination).

33

Products

We extend the syntax of λ-terms with

t, u ::= . . . | ⟨t, u⟩ | πl(t) | πr(t)

together with the reduction rules

πl (⟨t, u⟩) −→ t πr (⟨t, u⟩) −→ u

34

Products

(** Terms. *)
type term =

| Var of string
| App of term * term
| Abs of string * ty * term

| Pair of term * term
| Fst of term
| Snd of term

35

Products

We extends the syntax of types with

A,B ::= . . . | A× B

and add the typing rules
Γ ⊢ t : A Γ ⊢ u : B

Γ ⊢ ⟨t, u⟩ : A× B
(×I)

Γ ⊢ t : A× B

Γ ⊢ πl(t) : A
(×l

E)
Γ ⊢ t : A× B

Γ ⊢ πr(t) : B
(×r

E)

36

Unit

We extend the syntax of λ-terms with

t ::= . . . | ⟨⟩

(no reduction rule), extend the syntax of types with

A ::= . . . | 1

and add the typing rule

Γ ⊢ ⟨⟩ : 1
(1I)

37

Coproducts

We now want to add coproducts types A+ B , which corresponds to the formula A ∨ B .

Recall that in OCaml the corresponding type is implemented with

type ('a,'b) coprod =
| Left of 'a
| Right of 'b

and a typical program using those is of the form

match t with
| Left x -> u
| Right y -> v

38

Coproducts

If we do not want to use matching, we can program once for all the function

let case t u v =
match t with
| Left x -> u x
| Right y -> v y

which is the eliminator for coproducts.

39

Coproducts

We extend the syntax of λ-terms with

t ::= . . . | ιl(t) | ιr(t) | case(t, x 7→ u, y 7→ v)

together with the reduction rules

case(ιl(t), x 7→ u, y 7→ v) −→ u[t/x]

case(ιr(t), x 7→ u, y 7→ v) −→ v [t/y]

40

Coproducts

Note: the reduction rules thus say that

match Left t with
| Left x -> u
| Right y -> v

reduces to
u[t/x]

and similarly for Right.

41

Coproducts

We extend the syntax of types with

A,B ::= . . . | A+ B

and add the typing rules

Γ ⊢ t : A+ B Γ, x : A ⊢ u : C Γ, y : B ⊢ v : C

Γ ⊢ case(t, x 7→ u, y 7→ v) : C
(+E)

Γ ⊢ t : A

Γ ⊢ ιl(t) : A+ B
(+l

I)
Γ ⊢ t : B

Γ ⊢ ιr(t) : A+ B
(+r

I)

42

Coproducts

Note that in OCaml, the type of our function

let case t u v =
match t with
| Left x -> u x
| Right y -> v y

is

('a, 'b) coprod -> ('a -> 'c) -> ('b -> 'c) -> 'c

which can be read logically as

(A ∨ B)⇒ (A⇒ C)⇒ (B ⇒ C)⇒ C

43

Coproducts

There is a slight problem: what’s wrong if we try to perform type inference?

Γ ⊢ t : A

Γ ⊢ ιl(t) : A+ B
(+l

I)
Γ ⊢ t : B

Γ ⊢ ιr(t) : A+ B
(+r

I)

For instance, what is the type of ιl(λx
A.x)?

It is like Church vs Curry, we need more typing information:

Γ ⊢ t : A

Γ ⊢ ιBl (t) : A+ B
(+l

I)
Γ ⊢ t : B

Γ ⊢ ιAr (t) : A+ B
(+r

I)

44

Coproducts

Note that a term
case(t, x 7→ u, y 7→ v)

should be considered up to α-conversion (we can rename x and y), which means extra
care when implementing substitution.

Instead, it is often easier to implement the variant with actual functions

case(t, u, v)

which is typed as

Γ ⊢ t : A+ B Γ ⊢ u : A→ C Γ ⊢ v : B → C

Γ ⊢ case(t, u, v) : C
(+E)

instead of
Γ ⊢ t : A+ B Γ, x : A ⊢ u : C Γ, y : B ⊢ v : C

Γ ⊢ case(t, x 7→ u, y 7→ v) : C
(+E)

45

Coproducts

In the previous slide we agreed that, instead of writing

case(t, x 7→ u, y 7→ v)

we should write
case(t, λx .u, λy .v)

There is however a problem: we do not have a type for the abstracted variables x and y !

However, it is fine to allow λ-terms without types (à la Curry) here
because we can guess them when typing:

Γ ⊢ t : A+ B

...

Γ, x : A ⊢ u : C

Γ ⊢ λx .u : A→ C
(→I)

...

Γ, y : A ⊢ v : C

Γ ⊢ λy .v : B → C
(→I)

Γ ⊢ case(t, λx .u, λy .v) : C
(+E)

46

Coproducts

This is easily implemented using two (mutually recursive) functions:

• inference
e.g. we can infer that λxA.t has type A→ B

• checking
e.g. we can check that λx .t has type A→ B

47

Empty type

We extend the syntax of λ-terms with

t ::= . . . | case(t)

(no reduction rule), extend the syntax of types with

A ::= . . . | 0

and add the typing rule
Γ ⊢ t : 0

Γ ⊢ case(t) : A
(0E)

48

All together

If we add them all together, we want more reduction rules:

caseA→B(t) u −→ caseB(t)

πl(case
A×B(t)) −→ caseA(t)

πr(case
A×B(t)) −→ caseB(t)

case(caseA+B(t), x 7→ u, y 7→ v) −→ caseC (t)

caseA(case0(t)) −→ caseA(t)

case(t, x 7→ u, y 7→ v)w −→ case(t, x 7→ uw , y 7→ vw)

πl(case(t, x 7→ u, y 7→ v)) −→ case(t, x 7→ πl(u), y 7→ πl(v))

πr(case(t, x 7→ u, y 7→ v)) −→ case(t, x 7→ πr(u), y 7→ πr(v))

caseC (case(t, x 7→ u, y 7→ v)) −→ case(t, x 7→ caseC (u), y 7→ caseC (v))

case(case(t, x 7→ u, y 7→ v), x ′ 7→ u′, y ′ 7→ v ′) −→ case(t, x 7→ case(u, x ′ 7→ u′, y ′ 7→ v ′), y 7→ case(v , x ′ 7→ u′, y ′ 7→ v ′))
49

Natural numbers

In OCaml, natural numbers can be defined as

type nat =
| Zero
| Succ of nat

so that factorial can be implemented with

let rec fact n =
match n with
| Zero -> Succ Zero
| Succ n -> mult (Succ n) (fact n)

50

Natural numbers

The “recurrence principle” / eliminator can then be defined as

let rec recursor n z s =
match n with
| Zero -> z
| Succ n -> s n (recursor n z s)

of type

val recursor : nat -> 'a -> (nat -> 'a -> 'a) -> 'a = <fun>

so that factorial can be programmed as

let fact n =
recursor n (Succ Zero) (fun n r -> mult (Succ n) r)

51

Natural numbers

We extend the syntax of λ-terms with

t ::= . . . | Z | S(t) | rec(t, u, xy 7→ v)

and add the reduction rules

rec(Z, z , xy 7→ s) −→ z

rec(S(n), z , xy 7→ s) −→ s[n/x , rec(n, z , xy 7→ s)/y]

52

Natural numbers

We extend the syntax of types with

A,B ::= . . . | Nat

and add the typing rules

Γ ⊢ Z : Nat

Γ ⊢ t : Nat

Γ ⊢ S(t) : Nat

Γ ⊢ n : Nat Γ ⊢ z : A Γ, x : Nat, y : A ⊢ s : A

Γ ⊢ rec(n, z , xy 7→ s) : A

53

Part V

Dynamics of Curry-Howard

54

Cut elimination

Remember that a cut in a proof is an elimination rule whose principal premise is an
introduction rule.

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E)

π

Γ,A ⊢ B

Γ ⊢ A⇒ B
(⇒I)

π′

Γ ⊢ A

Γ ⊢ B
(⇒E)

Such a proof is intuitively doing “useless work” and we have seen that we could
gradually remove all the cuts from a proof.

55

Cut elimination: conjunction

For instance, the cuts related to conjunction can be eliminated with

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ A
(∧l

E) ⇝
π

Γ ⊢ A

π

Γ ⊢ A

π′

Γ ⊢ B

Γ ⊢ A ∧ B
(∧I)

Γ ⊢ B
(∧r

E) ⇝
π′

Γ ⊢ B

What it the computational contents of this transformation? 56

Cut elimination: conjunction

One of the cut-elimination rules is

π

Γ ⊢ t : A

π′

Γ ⊢ u : B

Γ ⊢ ⟨t, u⟩ : A ∧ B
(∧I)

Γ ⊢ πl ⟨t, u⟩ : A
(∧l

E) ⇝
π

Γ ⊢ t : A

In other words, it transforms a subterm

πl ⟨t, u⟩ −→β t

which is the reduction rule!

57

Cut elimination: implication

The cut elimination rule for ⇒ is

π

Γ,A ⊢ B

Γ ⊢ A⇒ B
(⇒I)

π′

Γ ⊢ A

Γ ⊢ B
(⇒E) ⇝

π[π′/A]

Γ ⊢ B

where π[π′/A] is π where we have replaced all axioms on A

Γ,A, Γ′ ⊢ A
(ax) by

w(π′)

Γ, Γ′ ⊢ A

where w(π′) is an appropriate weakening of π.

58

Cut elimination: implication

For instance, we can eliminate the cut

Γ, x : A ⊢ x : A
(ax)

Γ ⊢ λxA.x : A⇒ A
(⇒I)

π

Γ ⊢ t : A

Γ ⊢ (λxA.x)t : A
(⇒E) ⇝

π

Γ ⊢ t : A

In other words,
(λxA.x)t −→β t

which is the β-reduction rule!

59

Cut elimination: implication

More generally, we have

π

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A⇒ B
(⇒I)

π′

Γ ⊢ u : A

Γ ⊢ (λxA.t)u : B
(⇒E) ⇝

π[π′/A]

Γ ⊢ t[u/x] : B

In other words,
(λxA.t)u −→β t[u/x]

which is the β-reduction rule!

60

Cut elimination and reduction

Suppose given a term t of type A in a context Γ, its typing derivation

π

Γ ⊢ t : A

can be seen as a proof in NJ. We have shown that

Theorem
The cut elimination steps of π are in correspondence with the β-reduction steps of t.

This means that for every β-reduction t −→β t ′ there is a derivation π′ of Γ ⊢ t ′ : A

π

Γ ⊢ t : A
⇝

π′

Γ ⊢ t ′ : A

which is obtained by a cut elimination step from π, and conversely every cut-elimination
step from π is of this form.

61

Subject reduction

In particular, we have shown the subject reduction property:
typing is compatible with β-reduction.

Theorem
If Γ ⊢ t : A is derivable and t −→β t ′ then Γ ⊢ t ′ : A is also derivable.

For instance,

Γ, x : A ⊢ x : A
(ax)

Γ ⊢ λxA.x : A→ A
(→I)

π

Γ ⊢ t : B

⊢ (λxA.x)t : B
(→E) ⇝

π

Γ ⊢ t : B

62

The Curry-Howard correspondence

We can add a third level to the correspondence:

Theorem
There is a bijection between

1. types and formulas,

2. λ-terms of type A and proofs of A in NJ,

3. reduction steps and cut elimination steps.

Using a function in programming is the same as using a lemma in mathematics!

63

A variant of cuts

A cut is an elimination of an introduction of some connective.
What if we try to do the converse (introduction of an elimination)?

For implication,

π

Γ ⊢ t : A⇒ B

Γ, x : A ⊢ t : A⇒ B
(wk)

Γ, x : A ⊢ x : A
(ax)

Γ, x : A ⊢ tx : B
(⇒E)

Γ ⊢ λxA.tx : A⇒ B
(⇒I) ⇝

π

Γ ⊢ t : A⇒ B

In other words, we recover η-reduction:

λxA.tx −→η t
64

A variant of cuts

This also works for other connectives:

π

Γ ⊢ t : A ∧ B

Γ ⊢ πl(t) : A
(∧l

E)

π

Γ ⊢ t : A ∧ B

Γ ⊢ πr(t) : B
(∧r

E)

Γ ⊢ ⟨πl(t), πr(t)⟩ : A ∧ B
(∧I) ⇝

π

Γ ⊢ t : A ∧ B

In other words, the η-reduction rule for products is

⟨πl(t), πr(t)⟩ −→η t

65

Part VI

Classical logic

66

Classical logic

For a long time, people thought that this correspondence could not be extended to
classical logic.

It turns out that it actually does (Parigot’s λµ-calculus): classical logic is constructive!

This gives rise to strange languages, relying heavily on a variant of exceptions.

67

Classical logic

We have seen that classical logic could be obtained from intuitionistic one by adding
the principle of elimination of double negation:

¬¬A⇒ A

This can be equivalently implemented by adding the rule

Γ ⊢ t : ¬¬A
Γ ⊢ C(t) : A

(¬¬E)

This suggests that we should add a new construction C.
68

Classical logic

For the introduction rule, recall that we have shown:

Lemma
The following rule is admissible

Γ ⊢ A

Γ ⊢ ¬¬A

Proof.
Suppose that we have a proof π of Γ ⊢ A, then we have

Γ,¬A ⊢ ¬A
(ax)

π

Γ ⊢ A

Γ,¬A ⊢ A
(wk)

Γ,¬A ⊢ ⊥
(¬E)

Γ ⊢ ¬¬A
(¬I)

69

Classical logic

Remembering that
¬A = A⇒ ⊥

we already have an introduction rule for double negation:

Γ, k : A⇒ ⊥ ⊢ k : A⇒ ⊥
(ax)

π

Γ ⊢ t : A

Γ, k : A⇒ ⊥ ⊢ t : A
(wk)

Γ, k : A⇒ ⊥ ⊢ k t : ⊥
(⇒E)

Γ ⊢ λkA⇒⊥.k t : (A⇒ ⊥)⇒ ⊥
(⇒I)

70

Classical logic: reduction

The cut elimination procedure should give

π

Γ ⊢ t : A

Γ ⊢ λk¬A.k t : ¬¬A
(¬¬I)

Γ ⊢ C(λk¬A.k t) : A
(¬¬E) ⇝

π

Γ ⊢ t : A

In other words,
C(λk¬A.k t) −→β t

71

Classical logic: reduction

The reduction rule is
C(λk¬A.k t) −→β t

When we apply this function k to some argument t the function C will discard the
computation and return the argument t, which only makes sense when k ̸∈ FV(t)!

Generally, reduction looks like this:

C(λk¬A.u) −→β C(λk¬A.u1) −→β C(λk¬A.u2) −→β . . . −→β C(λk¬A.k t) −→β t

We can read

C(...) = try ... catch x -> x k = raise

Each time we catch a different raise function is created.

72

Classical logic: reduction

In order for things to work properly, three rules are actually needed:

• the previous catch / raise reduction: for k ̸∈ FV(t),

C(λk¬A.k t) −→β t

• re-raising is the same as raising:

C(λk¬A.k C(λk ′¬A.t)) −→β C(λk ′′¬A.t[k ′′/k, k ′′/k ′])

• application goes through catch:

C(λk¬(A→B).t) u −→β C(λk ′¬B .t[λf A→B .k (f u)/k])

73

Call-cc

The operator C is due to Felleisen.

A well-known variant is call-cc cc (for call with current continuation) which is typed as

cc : (¬A→ A)→ A

74

Classical logic: excluded middle

A proof for excluded middle is

` ¬A ∨ A
(¬¬E)

Classical logic: excluded middle

A proof for excluded middle is

` ¬¬(¬A ∨ A)
(¬I)

` ¬A ∨ A
(¬¬E)

Classical logic: excluded middle

A proof for excluded middle is

¬(¬A ∨ A) ` ⊥
(¬E)

` ¬¬(¬A ∨ A)
(¬I)

` ¬A ∨ A
(¬¬E)

Classical logic: excluded middle

A proof for excluded middle is

¬(¬A ∨ A) ` ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ` ⊥
(¬E)

` ¬¬(¬A ∨ A)
(¬I)

` ¬A ∨ A
(¬¬E)

Classical logic: excluded middle

A proof for excluded middle is

¬(¬A ∨ A) ` ¬A
(¬I)

¬(¬A ∨ A) ` ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ` ⊥
(¬E)

` ¬¬(¬A ∨ A)
(¬I)

` ¬A ∨ A
(¬¬E)

Classical logic: excluded middle

A proof for excluded middle is

¬(¬A ∨ A),A ` ⊥
(¬E)

¬(¬A ∨ A) ` ¬A
(¬I)

¬(¬A ∨ A) ` ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ` ⊥
(¬E)

` ¬¬(¬A ∨ A)
(¬I)

` ¬A ∨ A
(¬¬E)

Classical logic: excluded middle

A proof for excluded middle is

¬(¬A ∨ A),A ` ¬A ∨ A
(∨r

I)

¬(¬A ∨ A),A ` ⊥
(¬E)

¬(¬A ∨ A) ` ¬A
(¬I)

¬(¬A ∨ A) ` ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ` ⊥
(¬E)

` ¬¬(¬A ∨ A)
(¬I)

` ¬A ∨ A
(¬¬E)

Classical logic: excluded middle

A proof for excluded middle is

¬(¬A ∨ A),A ` A
(ax)

¬(¬A ∨ A),A ` ¬A ∨ A
(∨r

I)

¬(¬A ∨ A),A ` ⊥
(¬E)

¬(¬A ∨ A) ` ¬A
(¬I)

¬(¬A ∨ A) ` ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ` ⊥
(¬E)

` ¬¬(¬A ∨ A)
(¬I)

` ¬A ∨ A
(¬¬E)

Classical logic: excluded middle

A proof for excluded middle is

¬(¬A ∨ A),A ` A
(ax)

¬(¬A ∨ A),A ` ¬A ∨ A
(∨r

I)

¬(¬A ∨ A),A ` ⊥
(¬E)

¬(¬A ∨ A) ` ¬A
(¬I)

¬(¬A ∨ A) ` ¬A ∨ A
(∨l

I)

¬(¬A ∨ A) ` ⊥
(¬E)

` ¬¬(¬A ∨ A)
(¬I)

` ¬A ∨ A
(¬¬E)

Classical logic: excluded middle

A term for excluded middle is

k : ¬(¬A ∨ A), a : A ⊢ a : A
(ax)

k : ¬(¬A ∨ A), a : A ⊢ ιr(a) : ¬A ∨ A
(∨r

I)

k : ¬(¬A ∨ A), a : A ⊢ k ιr(a) : ⊥
(¬E)

k : ¬(¬A ∨ A) ⊢ λaA.k ιr(a) : ¬A
(¬I)

k : ¬(¬A ∨ A) ⊢ ιl(λa
A.k ιr(a)) : ¬A ∨ A

(∨l
I)

k : ¬(¬A ∨ A) ⊢ k ιl(λa
A.k ιr(a)) : ⊥

(¬E)

⊢ λk¬(¬A∨A).k ιl(λa
A.k ιr(a)) : ¬¬(¬A ∨ A)

(¬I)

⊢ C(λk¬(¬A∨A).k ιl(λaA.k ιr(a))) : ¬A ∨ A
(¬¬E)

75

Part VII

Strong normalization

76

Strong normalization

A term t is strongly normalizing (or SN, or terminating) if there is no infinite
sequence of reductions starting from t:

t −→β t1 −→β t2 −→β t3 −→β . . .

77

Strong normalization

Theorem (Strong normalization)
The simply-typed λ-calculus is strongly normalizing: given a typable λ-term t, there is
no infinite sequence of β-reductions starting from t.

For instance, the λ-term
(λx .xx)(λx .xx)

is not typable.

let omega = (fun x -> x x) (fun x -> x x);;
^

Error: This expression has type 'a -> 'b
but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

78

Deciding β-equivalence

Recall that β-equivalence is the smallest equivalence relation generated by β-reduction.

This means that t ===β u when there exists a sequence of reductions

t
∗←− t1

∗−→ t2
∗←− t3

∗−→ t4
∗←− . . .

∗−→ u

How can we decide whether two terms are β-equivalent or not?

(remember this is undecidable for untyped λ-calculus)

79

The Church-Rosser theorem

A first simplification:

Theorem (Church-Rosser)
Two terms t and u are β-equivalent iff and only if there exists w such that

t
∗−→β wβ

∗←− u

Proof.
The only if part is obvious. Suppose that we have

t1 t2 t3 . . . tn

t = u0 u1 u2 un = u

w1 w

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗

we show the result by induction on n. For n = 0, t = u and the result is immediate.
80

Joinability

We thus left with deciding whether two terms t and u are joinable,
i.e. whether there exists w such that

t
∗−→β wβ

∗←− u

81

Normal forms

A term t is a normal form when there is no t ′ such that t −→β t ′.

Lemma
Every typable term t is β-equivalent to a normal form t̂.

Proof.
Given a term t reduce it as much as possible:

t −→β t1 −→β t2 −→β · · · −→β tn = t̂

This process will stop because typable terms are strongly normalizing and tn is a normal
form.

Strongly normalizing: any sequence of reductions will eventually lead to a normal
form.

82

Normal forms

Lemma
Two normal forms t and u are β-equivalent iff they are equal.

Proof.
The only if part is obvious. For the if part, by the Church-Rosser theorem we have

t
∗−→β wβ

∗←− u

but since t and u are normal forms, we actually have

t = w = u

83

Deciding β-equivalence

Suppose given two typable terms t and u. The following are equivalent

• t ===β u

• t̂ ===β û

• t̂ = û

Which can be pictured as
t u

t̂ û

∗
∗
?

∗

?

84

Extensions

This still holds for extensions of λ-calculus: products, coproducts, natural numbers, etc.

In particular, for natural numbers it is important that the recursive calls are performed
on smaller numbers, which ensures termination.

85

Part VIII

Type inference à la Curry

86

Curry style λ-calculus

In Curry style, λ-terms are
t ::= x | t u | λx .t

and the rules are

Γ ⊢ x : Γ(x)
(ax)

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ t u : B
(→E)

Γ, x : A ⊢ t : B

Γ ⊢ λx .t : A→ B
(→I)

A term can have multiple types:

x : A ⊢ x : A
(ax)

⊢ λx .x : A→ A
(→I)

x : A→ A ⊢ x : A→ A
(ax)

⊢ λx .x : (A→ A)→ (A→ A)
(→I)

How do we compute all those types? 87

Substitutions

A substitution is a function which to type variables associate terms. For instance

σ(X) = A→ B σ(Y) = A

We write A[σ] for the type A where variables have been replaced according to σ:

(X → Y)[σ] = (A→ B)→ A

88

Type equation systems

A type equation system is a finite set

E = {A1 =? B1, . . . ,An =? Bn}
of pairs of types Ai and Bi .

A substitution σ is a solution of E if

Ai [σ] = Bi [σ]

for every index i .

For instance, a solution of
{(X → Y) =? Y }

does not exist.

89

Typing as solving constraints

We are going to associate to each term t

• a type At

• an equation system Et

such that

• t is typable iff Et has a solution σ,

• in which case the At [σ] are the possible types of t.

90

Typing as solving constraints

The rules

Γ ⊢ x : Γ(x)
(ax)

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ t u : B
(→E)

Γ, x : A ⊢ t : B

Γ ⊢ λx .t : A→ B
(→I)

suggest that

• to every term variable x , we associate a type variable Xx ,
• to every term t, we associate a type At ,
• to every term t, we associate an equation system Et

by induction by

Ex = ∅ Ax = Xx

Et u = Et ∪ Eu ∪ {At =? (Au → X)} At u = X with X fresh

Eλx .t = Et Aλx .t = Xx → At
91

Typing as solving constraints

For instance, consider
t = λf .f (f (λx .x))

we have

Ex = ∅ Ax = Xx

Eλx .x = ∅ Aλx .x = Xx → Xx

Ef (λx .x) = {Xf =? (Xx → Xx)→ X} Af (λx .x) = X

Ef (f (λx .x)) = {Xf =? (Xx → Xx)→ X ,Xf =? X → Y } Af (f (λx .x)) = Y

Eλf .f (f (λx .x)) = {Xf =? (Xx → Xx)→ X ,Xf =? X → Y } Aλf .f (f (λx .x)) = Xf → Y

92

Typing as solving constraints

For instance, consider
t = λf .f (f (λx .x))

we have

Eλf .f (f (λx .x)) = {Xf =? (Xx → Xx)→ X ,Xf =? X → Y } Aλf .f (f (λx .x)) = Xf → Y

A solution is

σ(Xx) = A σ(X) = A→ A σ(Y) = A→ A σ(Xf) = (A→ A)→ (A→ A)

The resulting type is

(Xf → Y)[σ] = ((A→ A)→ (A→ A))→ A→ A

to be compared with

fun f -> f (f (fun x -> x));;
- : (('a -> 'a) -> 'a -> 'a) -> 'a -> 'a = <fun> 93

Typing as solving constraints

Note that the previous solution works for which ever type A we choose.

Therefore there is an infinite number of solutions!

94

Typing as solving constraints

Theorem
We have

• if Γ ⊢ t : A then there is a solution σ of Et such that A = At [σ] and Γ(x) = σ(Xx)

for every variable x ∈ FV(t),

• for every solution σ of Et , if we write Γ for a context such that Γ(x) = σ(x) for
every free variable x ∈ FV(t), then Γ ⊢ t : At [σ] is derivable.

Otherwise said, there is a bijection between

• solutions σ of Et ,

• pairs (Γ,A) such that Γ ⊢ t : A is derivable.

95

Unification

The unification algorithm takes a type equation system E and produces a solution σ

when there exists one, in polynomial time.

Moreover, this solution is the most general one: any other solution τ satisfies

τ = τ ′ ◦ σ

We can therefore compute a most general type for Curry-style λ-terms in P-time!

96

Part IX

Bidirectional typechecking

97

Bidirectional typechecking

Looking closely at the operations we perform during type-checking there are two
phases.

• Type inference: we guess the type of a term.

• Type checking: we check that a term has a given type.

For instance, consider the type inference of

x : N ⊢ x : N

⊢ λxN.x : N→ N ⊢ 5 : N

⊢ (λxN.x)5 : N

98

Bidirectional typechecking

Bidirectional typechecking formalizes this two phases, allowing to add type
annotations (we could mix Church and Curry style).

99

Bidirectional typechecking

We consider Curry-style terms with type annotations:

t ::= x | t u | λx .t | (x : A)

We consider two kind of sequents:

• Γ ⊢ t ⇒ A: the term t allows to synthesize the type A (type inference),
• Γ ⊢ t ⇐ A: the term t allows checks against the type A (type checking).

We can then orient the typing rules

Γ ⊢ t : A as Γ ⊢ t ⇒ A or Γ ⊢ t :⇐ A

100

Bidirectional typechecking

Orientation of the base rules

• variable: we already have the information in the context

Γ ⊢ x ⇒ Γ(x)
(ax)

• application: we cannot come up with B , we have to check the type of the
argument

Γ ⊢ t ⇒ A→ B Γ ⊢ u ⇐ A

Γ ⊢ t u : B
(→E)

• abstraction: we cannot come up with A in Curry style (and typing is not unique)

Γ, x : A ⊢ t ⇐ B

Γ ⊢ λx .t ⇐ A→ B
(→I) 101

Bidirectional typechecking

We have two new rules:

• subsumption: if we can infer then we can check

Γ ⊢ t ⇒ A

Γ ⊢ t ⇐ A

• casting:
Γ ⊢ t ⇐ A

Γ ⊢ (t : A)⇒ A

102

Bidirectional typechecking

Γ ⊢ mean ⇒ (R → R) → R → R → R

Γ, x : R ⊢ x ⇒ R

Γ, x : R ⊢ x ⇐ R

Γ ⊢ λx .x ⇐ R → R

Γ ⊢ mean (λx .x × x) ⇒ R → R → R
...

Γ ⊢ mean (λx .x × x) 5 ⇒ R → R

Γ ⊢ 7 ⇒ R

Γ ⊢ 7 ⇐ R

Γ ⊢ mean (λx .x × x) 5 7 ⇒ R

103

Bidirectional typechecking

If we try to define the mean function as

λfxy .(f x + f y)/2

we cannot infer its type: we can only check the type of functions
(i.e. when they are used as arguments of other functions).

In order to define it, we have to provide its type

mean = (λfxy .(f x + f y)/2 : (R→ R)→ R→ R→ R)

In Agda, the syntax for such definitions will be

mean : (R → R) → R → R → R
mean f x y = (x + y) / 2

104

Implementation

The implementation is pretty direct.

We define types

type ty =
| TVar of string
| Arr of ty * ty

and terms:

type term =
| Var of string
| App of term * term
| Abs of string * term
| Cast of term * ty

105

Implementation

(** Type inference. *)
let rec infer env = function

| Var x ->
(try List.assoc x env
with Not_found ->

raise Type_error)
| App (t, u) ->

(
match infer env t with
| Arr (a, b) -> check env u a; b
| _ -> raise Type_error

)
| Abs (x, t) -> raise Cannot_infer
| Cast (t, a) -> check env t a; a

(** Type checking. *)
and check env t a =

match t , a with
| Abs (x, t) , Arr (a, b) ->

check ((x, a)::env) t b
| _ -> if infer env t <> a then

raise Type_error

106

Part X

Proof of strong normalization

107

Strong normalization

We now want to prove

Theorem
Typed λ-terms are strongly normalizing.

Given a term t which is typable, there is no infinite sequence of reductions

t −→β t1 −→β t2 −→β . . .

108

Proof of strong normalization: first attempt

A naive try would be by induction on the derivation of Γ ⊢ t : A.

If the last rule is

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ t u : B
(→E)

A reduction starting from t u can be of the form

t u −→ t ′ u or t u −→ t u′

but also
(λx .t)u −→ t[u/x]

e.g. I I, for which we cannot say anything.

109

Reducibility candidates

Instead, we take an optimistic approach and defined, for each type A, a set

RA

of terms, the reducibility candidates for the type A, such that

• for every term t of type A (in whichever context), we have t ∈ RA,

• the terms of RA are obviously terminating.

NB:

• the definition has to be carefully crafted in order to be able to reason by induction,

• the terms of RA are not necessarily of type A (although we could).

110

Reducibility candidates

We define RA by induction on A by

• in the case of a variable,

RX = {t | t is strongly normalizing}

• in the case of an arrow,

RA→B = {t | for every u ∈ RA, we have t u ∈ RB}

We still have to show that

• a term t ∈ RA is strongly normalizing,
• if Γ ⊢ t : A is derivable then t ∈ RA.

111

Induction for SN terms

Proposition
Suppose given a property P(t) on terms. Suppose that, for any term t, if P(t ′) for
every t ′ with t −→β t ′, then P(t):

t P(t)

t ′1 t ′2 t ′3 . . . t ′k P(t ′i) for every i

⇑

Then P(t) holds for every SN term t.
Proof.
By contraposition. Suppose that P(t) does not hold for some SN term t.

• then there exists t1 with t −→β t1 such that P(t1) does not hold,

• then there exists t2 with t1 −→β t2 such that P(t2) does not hold,

• . . .
Contradiction: we have an infinite sequence of reductions starting from t. 112

Neutral terms

A term t is neutral when it is not an abstraction:

t = t1 t2 or t = x

A neutral term does not interact with its context:

Lemma
Given terms t and u with t neutral, the only possible reductions of t u are

• t u −→β t ′ u with t −→β t ′,

• t u −→β t u′ with u −→β u′.

113

Reducibility candidates

Lemma

(CR1) If t ∈ RA then t is strongly normalizing.

(CR2) If t ∈ RA and t −→β t ′ then t ′ ∈ RA.

(CR3) If t is neutral, and for every t ′ such that t −→β t ′ we have t ′ ∈ RA, then t ∈ RA.

Proof.
Consider the case A→ B .

(CR3) Fix t neutral satisfying the property.
Given u ∈ RA, u is SN by (CR1), and we can reason by induction on it.
Since t is neutral the term t u reduces either to

• t ′ u with t −→β t ′: we have t ′ ∈ RA→B and thus t ′ u ∈ RB ,
• t u′ with u −→β u′: we have u′ ∈ RA by (CR2), and therefore t u′ ∈ RB by IH.

The term t u is neutral and is thus in RB by (CR3) at type B .
114

Reducibility candidates

Lemma
Given a term t and types A and B , if t[u/x] ∈ RB for every u ∈ RA, then λx .t ∈ RA→B .

Proof.
Since x ∈ RA by (CR3) at A, we have t = t[x/x] ∈ RB and thus t ∈ RB and is thus
strongly normalizing by (CR1).

Given u ∈ RA, we show that (λx .t)u ∈ RB by induction on (t, u). The term (λx .t)u

can reduce to

• t[u/x]: in RB by hypothesis,

• (λx .t ′)u with t −→β t ′: in RB by induction hypothesis,

• (λx .t)u′ with u −→β u′: in RB by induction hypothesis.

The term (λx .t)u is neutral and reduces to terms in RB .
By (CR3), it belongs to RB . 115

Reducibility candidates

Finally, we would like to show that

Theorem
Given t such that Γ ⊢ t : A is derivable, we have t ∈ RA.

Proof.
By induction on the derivation of Γ ⊢ t : A.

• If the last rule is
Γ, x : A ⊢ t : B

Γ ⊢ λx .t : A→ B
(→I)

By IH, we have t ∈ RA. And... ????

We actually need a stronger induction hypothesis!
(so that we can use previous lemma) 116

Reducibility candidates

Proposition
Given t such that x1 : A1, . . . , xn : An ⊢ t : A is derivable, and for every terms ui ∈ RAi

,
we have t[u/x] = t[u1/x1, . . . , un/xn] ∈ RA.

Proof.
By induction on the derivation of Γ ⊢ t : A.

• If the last rule is
Γ, x : A ⊢ t : B

Γ ⊢ λx .t : A→ B
(→I)

By IH, we have (t[u/x])[v/x] = t[u/x , v/x] ∈ RB for every v ∈ RA.
Therefore, λx .t ∈ RA→B by previous lemma.

117

Reducibility candidates

Theorem
For every t such that Γ ⊢ t : A is derivable, we have t ∈ RA.

Proof.
Suppose Γ = x1 : A1, . . . , xn : An.
By (CR3), we have xi ∈ RAi

.
By previous proposition, we have t = t[x1/x1, . . . , xn/xn] ∈ RA.

118

Strong normalizablility

Theorem
For every term t such that Γ ⊢ t : A is derivable, t is strongly normalizable.

Proof.
We have t ∈ RA, and thus t is SN by (CR1).

119

