CSC_51051_EP: Simply typed λ -calculus

Samuel Mimram

2024

École polytechnique

Part I

Introduction

What we have done so far.

- 1. We have seen that types in OCaml could intuitively be interpreted as formulas.
- 2. We have formally defined what is a formula and a proof.
- 3. We have formally defined the core of a functional language (λ -calculus).

and now we put it all together:

4. We define a typing system for λ -calculus and show that it corresponds precisely to building proofs.

In other words,

PROGRAM = PROOF

In other words,

PROGRAM = PROOF

Or, more precisely, there is a bijection between

- types and formulas,
- programs of type A and proofs of A,

In other words,

PROGRAM = PROOF

Or, more precisely, there is a bijection between

- types and formulas,
- programs of type A and proofs of A,
- reductions of programs and cut elimination.

The core

In order to have things as simple as possible, we will first focus on functions.

But, we will see that it extends to more realistic programming languages.

Part II

Simply typed λ -calculus

Simple types

The simple types are generated by the grammar

$$A, B ::= X \mid A \rightarrow B$$

where X is a variable.

For instance, we have a type

$$(X \rightarrow Y) \rightarrow X$$

which roughly corresponds to OCaml's

Simple types

The simple types are generated by the grammar

$$A, B ::= X \mid A \rightarrow B$$

where X is a variable.

For instance, we have a type

$$(X \to Y) \to X$$

which roughly corresponds to OCaml's

By convention, arrows are associated on the right:

$$X \to Y \to Z$$
 = $X \to (Y \to Z)$

Terms

The programs we considers are λ -terms generated by the grammar

$$t, u ::= x \mid t u \mid \lambda x^A.t$$

where x is a variable and A is a type.

All the abstractions carry the type of the abstracted variable:

$$\lambda x^{\text{int}}.x$$

corresponds to OCaml's

fun
$$(x : int) \rightarrow x$$

7

Terms

The programs we considers are λ -terms generated by the grammar

$$t, u ::= x \mid t u \mid \lambda x^A.t$$

where x is a variable and A is a type.

$$\lambda x^{\text{int}}.x$$

corresponds to OCaml's

fun
$$(x : int) \rightarrow x$$

This is called **Church style**.

Terms

The programs we considers are λ -terms generated by the grammar

$$t, u ::= x \mid t u \mid \lambda x . t$$

where x is a variable and A is a type.

$$\lambda x$$
 .x

corresponds to OCaml's

fun
$$x \rightarrow x$$

This is called **Church style** (the other one being *Curry style*).

We are now going assign types to terms. For instance, the type of

term	type
$\lambda x^A.x$	

We are now going assign types to terms. For instance, the type of

term	type
$\lambda x^A.x$	A o A

We are now going assign types to terms. For instance, the type of

term type
$$\lambda x^{A}.x \quad A \to A$$

$$\lambda f^{A \to A}.\lambda x^{A}.f(fx)$$

We are now going assign types to terms. For instance, the type of

$$\begin{array}{c|c} \text{term} & \text{type} \\ \hline \lambda x^A.x & A \to A \\ \lambda f^{A \to A}.\lambda x^A.f(fx) & (A \to A) \to A \to A \end{array}$$

We are now going assign types to terms. For instance, the type of

$$\begin{array}{c|c} \text{term} & \text{type} \\ \hline \lambda x^A.x & A \to A \\ \lambda f^{A \to A}.\lambda x^A.f(fx) & (A \to A) \to A \to A \\ \lambda x^A.xx & \end{array}$$

We are now going assign types to terms. For instance, the type of

$$\begin{array}{c|cc} \text{term} & \text{type} \\ \hline \lambda x^A.x & A \to A \\ \lambda f^{A \to A}.\lambda x^A.f(fx) & (A \to A) \to A \to A \\ \lambda x^A.xx & \text{not well-typed!} \end{array}$$

$$x_1: A_1, \ldots, x_n: A_n$$

of pairs consisting of a variable x_i and a type A_i .

It can be read as "I assume that the variable x_i has type A_i for every index i".

$$x_1:A_1,\ldots,x_n:A_n$$

of pairs consisting of a variable x_i and a type A_i .

It can be read as "I assume that the variable x_i has type A_i for every index i".

The **domain** of the context Γ is $dom(\Gamma) = \{x_1, \dots, x_n\}$.

$$x_1:A_1,\ldots,x_n:A_n$$

of pairs consisting of a variable x_i and a type A_i .

It can be read as "I assume that the variable x_i has type A_i for every index i".

The **domain** of the context Γ is $dom(\Gamma) = \{x_1, \dots, x_n\}$.

Given $x \in dom(\Gamma)$ we write $\Gamma(x)$ for the type of x:

$$(\Gamma, x : A)(x) = A \qquad (\Gamma, y : A)(x) = \Gamma(x)$$

$$x_1 : A_1, \ldots, x_n : A_n$$

of pairs consisting of a variable x_i and a type A_i .

It can be read as "I assume that the variable x_i has type A_i for every index i".

The **domain** of the context Γ is $dom(\Gamma) = \{x_1, \dots, x_n\}$.

Given $x \in dom(\Gamma)$ we write $\Gamma(x)$ for the type of x:

$$(\Gamma, x : A)(x) = A \qquad (\Gamma, y : A)(x) = \Gamma(x)$$

(note that a variable might occur multiple times).

Sequents

A sequent is a triple noted

 $\Gamma \vdash t : A$

where

- t is a term,
- A is a type.

Read as "under the typing assumptions for the variables in Γ , the term t has type A".

Typing rules

The typing rules are

$$\frac{\Gamma, x : \Gamma(x)}{\Gamma \vdash x : \Gamma(x)} (ax)$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^{A} \cdot t : A \to B} (\to_{I})$$

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} (\to_{E})$$

with $x \in dom(\Gamma)$ for (ax).

Typing rules

The typing rules are

$$\frac{\Gamma, x : \Gamma(x)}{\Gamma \vdash x : \Gamma(x)} (ax)$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^{A} \cdot t : A \to B} (\to_{I})$$

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} (\to_{E})$$

with $x \in dom(\Gamma)$ for (ax).

Note that depending on the term only one rule applies.

We say that a term t has type A in context Γ when $\Gamma \vdash t : A$ is derivable.

We say that a term t has type A in context Γ when $\Gamma \vdash t : A$ is derivable.

We say that a term t has type A when $\vdash t : A$ is derivable.

For instance we claim that

$$\lambda f^{A \to A} . \lambda x^A . f(fx)$$
 has type $(A \to A) \to A \to A$

which means that

$$\vdash \lambda f^{A \to A}.\lambda x^{A}.f(fx): (A \to A) \to A \to A$$

is derivable.

$$\vdash \lambda f^{A \to A}.\lambda x^{A}.f(fx): (A \to A) \to A \to A$$

$$\frac{f: A \to A \vdash \lambda x^{A}.f(fx): A \to A}{\vdash \lambda f^{A \to A}.\lambda x^{A}.f(fx): (A \to A) \to A \to A} (\to_{\mathsf{I}})$$

$$\frac{f: A \to A, x: A \vdash f(fx): A}{f: A \to A \vdash \lambda x^{A}.f(fx): A \to A} \xrightarrow{(\to_{1})}$$
$$\vdash \lambda f^{A \to A}.\lambda x^{A}.f(fx): (A \to A) \to A \to A$$

$$\frac{F \vdash f : A \to A \qquad \qquad (\to_{\mathsf{E}})}{f : A \to A, x : A \vdash f(fx) : A} \qquad (\to_{\mathsf{E}})$$

$$\frac{f : A \to A \vdash \lambda x^{A}.f(fx) : A \to A}{\vdash \lambda f^{A \to A}.\lambda x^{A}.f(fx) : (A \to A) \to A} \qquad (\to_{\mathsf{I}})$$

$$\frac{\overline{\Gamma \vdash f : A \to A} \text{ (ax)}}{f : A \to A, x : A \vdash f(fx) : A} (\to_{\mathsf{E}})$$

$$\frac{f : A \to A, x : A \vdash f(fx) : A}{f : A \to A \vdash \lambda x^{A}.f(fx) : A \to A} (\to_{\mathsf{I}})$$

$$\vdash \lambda f^{A \to A}.\lambda x^{A}.f(fx) : (A \to A) \to A \to A$$

$$\frac{\frac{\Gamma \vdash f : A \to A}{\Gamma \vdash f : A \to A} \qquad \frac{\Gamma \vdash x : A}{\Gamma \vdash f : A \to A} \qquad (\to_{\mathsf{E}})}{\frac{f : A \to A, x : A \vdash f(fx) : A}{(\to_{\mathsf{E}})}} \qquad (\to_{\mathsf{E}})}$$

$$\frac{f : A \to A \vdash \lambda x^{A}.f(fx) : A \to A}{\vdash \lambda f^{A \to A}.\lambda x^{A}.f(fx) : (A \to A) \to A \to A} \qquad (\to_{\mathsf{I}})$$

$$\frac{ \frac{}{\Gamma \vdash f : A \to A} \text{ (ax)} \qquad \frac{}{\Gamma \vdash f : A \to A} \text{ (ax)} \qquad \Gamma \vdash x : A}{} \qquad (\to_{\mathsf{E}}) \\
\frac{ f : A \to A, x : A \vdash f(fx) : A}{} \qquad (\to_{\mathsf{E}}) \\
\frac{ f : A \to A \vdash \lambda x^{A}.f(fx) : A \to A}{} \qquad (\to_{\mathsf{I}}) \\
\frac{ \vdash \lambda f^{A \to A}.\lambda x^{A}.f(fx) : (A \to A) \to A \to A}{} \qquad (\to_{\mathsf{I}}) \\
}$$

An example of typing derivation

$$\frac{\frac{\Gamma \vdash f : A \to A}{\Gamma \vdash F : A \to A} \text{(ax)} \qquad \frac{\overline{\Gamma \vdash F : A \to A}}{\Gamma \vdash A : A} \text{(ax)}}{\frac{\Gamma \vdash f : A \to A}{\Gamma \vdash A : A}} \xrightarrow{(\to_{\mathsf{E}})} \frac{(\to_{\mathsf{E}})}{(\to_{\mathsf{E}})}$$

$$\frac{f : A \to A, x : A \vdash f(fx) : A}{f : A \to A \vdash \lambda x^{A}.f(fx) : A \to A} \xrightarrow{(\to_{\mathsf{I}})} \frac{(\to_{\mathsf{I}})}{(\to_{\mathsf{I}})}$$

$$\frac{f : A \to A \vdash \lambda x^{A}.f(fx) : A \to A}{(\to_{\mathsf{I}})} \xrightarrow{(\to_{\mathsf{I}})} \frac{(\to_{\mathsf{I}})}{(\to_{\mathsf{I}})}$$

Typing and α -conversion

Lemma

Two α -convertible terms have the same type.

Typing and α -conversion

Lemma

Two α -convertible terms have the same type.

This is the reason why we defined $\Gamma(x)$ to be the type of the *rightmost* occurrence of x:

$$\frac{\overline{x:A,y:B\vdash y:B}}{\overline{x:A\vdash \lambda y^B.y:B\to B}} \xrightarrow{(\to_{\mathsf{I}})} \frac{(\to_{\mathsf{I}})}{\vdash \lambda x^A.\lambda y^B.y:A\to B\to B} \xrightarrow{(\to_{\mathsf{I}})}$$

Typing and α -conversion

Lemma

Two α -convertible terms have the same type.

This is the reason why we defined $\Gamma(x)$ to be the type of the *rightmost* occurrence of x:

$$\frac{\overline{x:A,x:B\vdash x:B}}{x:A\vdash \lambda x^B.x:B\to B} \xrightarrow{(\to_{\mathsf{I}})} \frac{}{\vdash \lambda x^A.\lambda x^B.x:A\to B\to B} \xrightarrow{(\to_{\mathsf{I}})}$$

Weakening

The typing system satisfies the usual structural properties.

For instance, the weakening rule is admissible:

Proposition

If $\Gamma \vdash t : A$ is derivable then $\Gamma, \Delta \vdash t : A$ is also derivable, provided that $dom(\Delta) \cap dom(\Gamma) = \emptyset$.

A term admits at most one type:

Theorem

If $\Gamma \vdash t : A$ and $\Gamma \vdash t : A'$ are derivable then A = A' (and the two proofs are the same!).

A term admits at most one type:

Theorem

If $\Gamma \vdash t : A$ and $\Gamma \vdash t : A'$ are derivable then A = A' (and the two proofs are the same!).

Proof.

By induction on the term t.

A term admits at most one type:

Theorem

If $\Gamma \vdash t : A$ and $\Gamma \vdash t : A'$ are derivable then A = A' (and the two proofs are the same!).

Proof.

By induction on the term t.

We recall that the typing rules are:

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash x : \Gamma(x)} \text{ (ax)} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^A . t : A \to B} \text{ (\to_I)} \qquad \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} \text{ (\to_E)}$$

A term admits at most one type:

Theorem

If $\Gamma \vdash t : A$ and $\Gamma \vdash t : A'$ are derivable then A = A' (and the two proofs are the same!).

Proof.

By induction on the term t.

• If t = x then the two derivations are necessarily

$$\frac{}{\Gamma \vdash x : \Gamma(x)}$$
 (ax)

and
$$A = A' = \Gamma(x)$$

A term admits at most one type:

Theorem

If $\Gamma \vdash t : A$ and $\Gamma \vdash t : A'$ are derivable then A = A' (and the two proofs are the same!).

Proof.

By induction on the term t.

• If $t = \lambda x^B \cdot u$ then the two derivations are necessarily of the form

$$\frac{\Gamma, x : B \vdash t : C}{\Gamma \vdash \lambda x^B . t : B \to C} (\to_{\mathsf{I}}) \qquad \frac{\Gamma, x : B \vdash t : C'}{\Gamma \vdash \lambda x^B . t : B \to C'} (\to_{\mathsf{I}})$$

by induction hypothesis we have C = C' and thus $A = (B \rightarrow C) = (B \rightarrow C') = A'$.

A term admits at most one type:

Theorem

If $\Gamma \vdash t : A$ and $\Gamma \vdash t : A'$ are derivable then A = A' (and the two proofs are the same!).

Proof.

By induction on the term t.

• If t = u v then the two derivations are necessarily of the form

$$\frac{\Gamma \vdash t : B \to A \qquad \Gamma \vdash u : B}{\Gamma \vdash t u : A} \; (\to_{\mathsf{E}}) \qquad \qquad \frac{\Gamma \vdash t : B' \to A' \qquad \Gamma \vdash u : B'}{\Gamma \vdash t u : A'} \; (\to_{\mathsf{E}})$$

by induction hypothesis we have $(B \to A) = (B' \to A')$ and thus A = A'.

The fact that we used Church style is important here!

The fact that we used Church style is important here!

In Curry style, this is a small variant:

$$\frac{\Gamma \vdash x : \Gamma(x)}{\Gamma \vdash x : \Gamma(x)} \text{ (ax) } \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} \text{ (\rightarrow_{I})} \qquad \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} \text{ (\rightarrow_{E})}$$

The fact that we used Church style is important here!

In Curry style, this is a small variant:

$$\frac{\Gamma \vdash x : \Gamma(x)}{\Gamma \vdash x : \Gamma(x)} \text{ (ax) } \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} \text{ (\rightarrow_{I})} \qquad \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} \text{ (\rightarrow_{E})}$$

but types are not unique anymore,

The fact that we used Church style is important here!

In Curry style, this is a small variant:

$$\frac{\Gamma \vdash x : \Gamma(x)}{\Gamma \vdash x : \Gamma(x)} \text{ (ax) } \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} \text{ (} \to_{\mathsf{I}} \text{)} \qquad \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} \text{ (} \to_{\mathsf{E}} \text{)}$$

but types are not unique anymore, e.g. $\lambda x.x$ has types

$$A \rightarrow A$$
 $(A \rightarrow B) \rightarrow (A \rightarrow B)$ etc.

In fact, we have more.

We observed earlier that one rule applies on a given term:

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash x : \Gamma(x)} \text{ (ax)} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^A . t : A \to B} \text{ (}\to_{\mathsf{I}}\text{)} \qquad \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} \text{ (}\to_{\mathsf{E}}\text{)}$$

Theorem

Given a derivable judgment $\Gamma \vdash t : A$, there is exactly one way to derive it.

Typing problems

If a term admits a type, there is only one and we can compute it!

As a consequence, the three following problems are decidable: given Γ and t,

- *type checking*: determine whether $\Gamma \vdash t : A$ is derivable,
- *typability*: determine whether there exists an A such that $\Gamma \vdash t : A$ is derivable,
- type inference: construct an A such that $\Gamma \vdash t : A$ is derivable.

```
(** Types. *)
```

```
(** Types. *)

type ty =
    | TVar of string
    | Arr of ty * ty
```

```
(** Types. *)

type ty =
    | TVar of string
    | Arr of ty * ty

(** Terms. *)
```

```
(** Types. *)
type ty =
  | TVar of string
  | Arr of ty * ty
(** Terms. *)
type term =
  | Var of string
  | App of term * term
  | Abs of string * ty * term
```

```
(** Types. *)
type ty =
  | TVar of string
  | Arr of ty * ty
(** Terms. *)
type term =
  | Var of string
  | App of term * term
  | Abs of string * ty * term
(** Environments. *)
```

```
(** Types. *)
type ty =
  | TVar of string
  | Arr of ty * ty
(** Terms. *)
type term =
  | Var of string
  | App of term * term
  | Abs of string * ty * term
(** Environments. *)
type context = (string * ty) list
```

```
exception Type_error

(** Type inference. *)
```

```
exception Type_error

(** Type inference. *)

let rec infer env t =
  match t with
```

```
exception Type_error

(** Type inference. *)

let rec infer env t =
  match t with
```

```
exception Type_error

(** Type inference. *)

let rec infer env t =
   match t with
   | Var x -> (try List.assoc x env with Not_found -> raise Type_error)
```

```
exception Type_error

(** Type inference. *)

let rec infer env t =
   match t with
   | Var x -> (try List.assoc x env with Not_found -> raise Type_error)
```

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash x : \Gamma(x)} \text{ (ax)} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^A . t : A \to B} \text{ (\rightarrow_1)}$$

```
exception Type_error

(** Type inference. *)

let rec infer env t =
   match t with
   | Var x -> (try List.assoc x env with Not_found -> raise Type_error)
   | Abs (x, a, t) -> Arr (a, infer ((x,a)::env) t)
```

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash x : \Gamma(x)} \text{ (ax) } \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^A . t : A \to B} \text{ (} \to_{\mathsf{I}} \text{)}$$

```
exception Type_error

(** Type inference. *)

let rec infer env t =
   match t with
   | Var x -> (try List.assoc x env with Not_found -> raise Type_error)
   | Abs (x, a, t) -> Arr (a, infer ((x,a)::env) t)
```

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash x : \Gamma(x)} \text{ (ax)} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^A \cdot t : A \to B} \text{ (} \to_{\mathsf{I}} \text{)}$$

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} (\to_{\mathsf{E}})$$

```
exception Type_error
(** Type inference. *)
let rec infer env t =
   match t with
   | Var x -> (try List.assoc x env with Not_found -> raise Type_error)
   Abs (x, a, t) \rightarrow Arr (a, infer ((x,a)::env) t)
   | App (t, u) ->
       match infer env t with
        | Arr (a, b) -> check u a; b
        | _ -> raise Type_error
\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash x : \Gamma(x)} \text{ (ax)} \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^A \cdot t : A \to B} \text{ (}\to_{\mathsf{I}}\text{)}
```

```
(** Type checking. *)
```

```
(** Type checking. *)
and check env t a =
  if infer env t <> a then raise Type_error
```

```
(** Type checking. *)
and check env t a =
  if infer env t <> a then raise Type_error
(** Typability. *)
```

```
(** Type checking. *)
and check env t a =
  if infer env t <> a then raise Type_error
(** Typability. *)
let typable env t =
  try let _ = infer env t in true
  with Type_error -> false
```

Part III

The Curry-Howard correspondence

The Curry-Howard correspondence is the observation that

• a type is the same as a formula in the implicative fragment of logic:

$$(A \rightarrow B) \rightarrow A \rightarrow B$$
 corresponds to $(A \Rightarrow B) \Rightarrow A \Rightarrow B$

• a typing derivation for simply typed λ -calculus is the same as a proof in NJ (implicative fragment).

typing logic
$$\frac{\Gamma, x : A, \Gamma' \vdash x : A}{\Gamma, x : A, \Gamma' \vdash x : A} \stackrel{\text{(ax)}}{=} \frac{\Gamma, A, \Gamma' \vdash A}{\Gamma, A, \Gamma' \vdash A} \stackrel{\text{(ax)}}{=} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \stackrel{\text{(\Rightarrow_1)}}{=} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \stackrel{\text{(\Rightarrow_1)}}{=} \frac{\Gamma \vdash A}{\Gamma \vdash B} \stackrel{\text{(\Rightarrow_1)}}{=} \frac{\Gamma \vdash A}{\Gamma \vdash B} \stackrel{\text{(\Rightarrow_2)}}{=} \frac{\Gamma}{\Gamma} \stackrel{\text{(\Rightarrow_2)}}{=} \frac{\Gamma}{\Gamma} \stackrel{\text{(\Rightarrow_2)}}{=} \frac{\Gamma}{\Gamma} \stackrel{\text{(\Rightarrow_2)}}{=} \frac{\Gamma}{\Gamma} \stackrel{\text{(\Rightarrow_2)}}{=} \frac{\Gamma}{\Gamma} \stackrel{\text{(\Rightarrow_2)}}{=} \frac{\Gamma}{\Gamma$$

The "term-erasing procedure" consists, starting from a typing derivation, in removing all the variables and terms (and replacing \rightarrow by \Rightarrow):

$$\frac{f: A \to B, x: A \vdash f: A \to B}{f: A \to B, x: A \vdash x: A} \xrightarrow{\text{(ax)}} \frac{f: A \to B, x: A \vdash x: A}{f: A \to B, x: A \vdash fx: B} \xrightarrow{\text{(\to_{E})}} \frac{f: A \to B \vdash \lambda x^A.fx: A \to B}{\vdash \lambda f^{A \to B}.\lambda x^A.fx: (A \to B) \to A \to B} \xrightarrow{\text{(\to_{E})}} \frac{(\to_{\mathsf{E}})}{(\to_{\mathsf{E}})}$$

The "term-erasing procedure" consists, starting from a typing derivation, in removing all the variables and terms (and replacing \rightarrow by \Rightarrow):

The "term-erasing procedure" consists, starting from a typing derivation, in removing all the variables and terms (and replacing \rightarrow by \Rightarrow):

Lemma

Given a typing derivation, its term-erasure is a valid proof in NJ.

Proof.

Immediate induction.

Lemma

Conversely, given a proof π of $A_1, \ldots, A_n \vdash A$ in NJ, we can construct a typing derivation of $x_1 : A_1, \ldots, x_n : A_n \vdash t : A$, for some term t, whose term-erasure is π .

Proof.

By induction on π .

Lemma

Conversely, given a proof π of $A_1, \ldots, A_n \vdash A$ in NJ, we can construct a typing derivation of $x_1 : A_1, \ldots, x_n : A_n \vdash t : A$, for some term t, whose term-erasure is π .

Proof.

It the last rule is

$$\frac{}{\Gamma,A,\Gamma'\vdash A}(\mathsf{ax})$$

then we construct

$$\frac{}{\Gamma, x: A, \Gamma' \vdash x: A}$$
 (ax)

Lemma

Conversely, given a proof π of $A_1, \ldots, A_n \vdash A$ in NJ, we can construct a typing derivation of $x_1 : A_1, \ldots, x_n : A_n \vdash t : A$, for some term t, whose term-erasure is π .

Proof.

If the last rule is
$$\frac{\frac{\pi}{\Gamma \vdash A \Rightarrow B} \qquad \frac{\pi'}{\Gamma \vdash A}}{\Gamma \vdash B} (\Rightarrow_{\mathsf{E}})$$

then, by induction hypothesis, we have $\cfrac{\vdots}{\Gamma \vdash t : A \to B}$ and $\cfrac{\vdots}{\Gamma \vdash u : A}$

and we construct
$$\frac{\vdots}{\Gamma \vdash t : A \to B} \qquad \frac{\vdots}{\Gamma \vdash u : A} (\to_{\mathsf{I}}).$$

Lemma

Conversely, given a proof π of $A_1, \ldots, A_n \vdash A$ in NJ, we can construct a typing derivation of $x_1 : A_1, \ldots, x_n : A_n \vdash t : A$, for some term t, whose term-erasure is π .

Proof.

If the last rule is
$$\frac{\frac{\pi}{\Gamma, A \vdash B}}{\Gamma \vdash A \Rightarrow B} (\Rightarrow_{I})$$

then by induction hypothesis we have $\frac{:}{\Gamma, x : A \vdash t : B}$

and we construct
$$\frac{\vdots}{\Gamma, x : A \vdash t : B} (\rightarrow_{I}).$$

$$\frac{f: A \to B, \quad A \vdash \quad A \to B}{f: A \to B, \quad A \vdash \quad A} \xrightarrow{\text{(ax)}} \frac{f: A \to B, \quad A \vdash \quad A}{f: A \to B, \quad A \vdash \quad B} \xrightarrow{\text{(\to_{E})}} \frac{(\to_{\mathsf{E}})}{(\to_{\mathsf{I}})}$$

$$\frac{f: A \to B \vdash \quad A \to B}{\vdash \quad (A \to B) \to A \to B} \xrightarrow{\text{(\to_{I})}} \xrightarrow{\text{(\to_{I})}}$$

$$\frac{f: A \to B, x: A \vdash A \to B}{f: A \to B, x: A \vdash A} \xrightarrow{\text{(ax)}} \frac{f: A \to B, x: A \vdash A}{f: A \to B, x: A \vdash B} \xrightarrow{\text{(\to_{E})}} \xrightarrow{\text{(\to_{E})}} \frac{f: A \to B \vdash A \to B}{(A \to B) \to A \to B}$$

$$\frac{f: A \to B, x: A \vdash f: A \to B}{f: A \to B, x: A \vdash A} \xrightarrow{\text{(ax)}} \frac{f: A \to B, x: A \vdash A}{f: A \to B, x: A \vdash B} \xrightarrow{\text{(\to_{E})}} \xrightarrow{\text{(\to_{E})}} \frac{(\to_{\mathsf{E}})}{(\to_{\mathsf{I}})}$$

$$\vdash \qquad \qquad (A \to B) \to A \to B$$

$$\frac{f: A \to B, x: A \vdash f: A \to B}{f: A \to B, x: A \vdash x: A} \xrightarrow{\text{(ax)}} \frac{f: A \to B, x: A \vdash x: A}{f: A \to B, x: A \vdash B} \xrightarrow{\text{(\to_E)}} \xrightarrow{\text{(\to_E)}} \frac{f: A \to B \vdash A \to B}{(A \to B) \to A \to B} \xrightarrow{\text{(\to_E)}} \xrightarrow{\text{(\to_E)}}$$

$$\frac{f: A \to B, x: A \vdash f: A \to B}{f: A \to B, x: A \vdash x: A} \xrightarrow{\text{(ax)}} \frac{f: A \to B, x: A \vdash x: A}{(\to_{\mathsf{E}})} \xrightarrow{\text{(\to_{E})}} \frac{f: A \to B, x: A \vdash fx: B}{(\to_{\mathsf{I}})} \xrightarrow{\text{(\to_{I})}} \xrightarrow{\text{($$$

$$\frac{f: A \to B, x: A \vdash f: A \to B}{f: A \to B, x: A \vdash x: A} \xrightarrow{\text{(ax)}} \frac{f: A \to B, x: A \vdash x: A}{f: A \to B, x: A \vdash x: A} \xrightarrow{\text{(be)}} \frac{f: A \to B \vdash \lambda x^A. fx: A \to B}{(A \to B) \to A \to B} \xrightarrow{\text{(be)}}$$

$$\frac{f: A \to B, x: A \vdash f: A \to B}{f: A \to B, x: A \vdash x: A} \xrightarrow{\text{(ax)}} \frac{f: A \to B, x: A \vdash x: A}{f: A \to B, x: A \vdash x: A} \xrightarrow{\text{(}\to_{\mathsf{E}})} \frac{(\to_{\mathsf{E}})}{(\to_{\mathsf{I}})}$$

$$\frac{f: A \to B \vdash \lambda x^{A}.fx: A \to B}{\vdash \lambda f^{A \to B}.\lambda x^{A}.fx: (A \to B) \to A \to B} \xrightarrow{\text{(}\to_{\mathsf{I}})}$$

Theorem

There is a bijection between

- typable λ -terms (up to α -conversion),
- typing derivations of λ -terms,
- proofs in the implicative fragment of NJ.

Theorem

There is a bijection between

- typable λ -terms (up to α -conversion),
- typing derivations of λ -terms,
- proofs in the implicative fragment of NJ.

In other words,

PROGRAM = PROOF

In particular, $\lambda\text{-terms}$ can be considered as proof witnesses:

— you: Hey, the formula A is true!

In particular, λ -terms can be considered as $proof\ witnesses$:

- you: Hey, the formula A is true!
- me: Why should I believe you?

In particular, λ -terms can be considered as *proof witnesses*:

- you: Hey, the formula A is true!
- me: Why should I believe you?
- you: Here is a term t witnessing for that.

In particular, λ -terms can be considered as $proof\ witnesses$:

- you: Hey, the formula A is true!
- me: Why should I believe you?
- you: Here is a term t witnessing for that.
- *me*: Let me typecheck that...

In particular, λ -terms can be considered as *proof witnesses*:

- you: Hey, the formula A is true!
- me: Why should I believe you?
- you: Here is a term t witnessing for that.
- *me*: Let me typecheck that...
- me: Ok, now I believe you!

Part IV

Other connectives

Other connectives

The correspondence extends to other logical connectives too!

The general idea is that for each connective we can introduce in λ -calculus

- constructions to create a value of this type (= introduction rules)
- constructions to use a value of this type (= elimination rules)

with appropriate reduction rules (= cut elimination).

We extend the syntax of $\lambda\text{-terms}$ with

We extend the syntax of λ -terms with

$$t, u ::= \ldots \mid \langle t, u \rangle \mid \pi_{\mathsf{I}}(t) \mid \pi_{\mathsf{r}}(t)$$

together with the reduction rules

We extend the syntax of λ -terms with

$$t, u ::= \ldots \mid \langle t, u \rangle \mid \pi_{\mathsf{I}}(t) \mid \pi_{\mathsf{r}}(t)$$

together with the reduction rules

$$\pi_{\mathsf{I}}\left(\langle t, u \rangle\right) \longrightarrow t \qquad \qquad \pi_{\mathsf{r}}\left(\langle t, u \rangle\right) \longrightarrow u$$

```
(** Terms. *)
type term =
    | Var of string
    | App of term * term
    | Abs of string * ty * term
```

```
(** Terms. *)
type term =
    | Var of string
    | App of term * term
    | Abs of string * ty * term
    | Pair of term * term
    | Fst of term
    | Snd of term
```

We extends the syntax of types with

$$A, B ::= \ldots \mid A \times B$$

and add the typing rules

We extends the syntax of types with

$$A, B ::= \ldots \mid A \times B$$

and add the typing rules

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash u : B}{\Gamma \vdash \langle t, u \rangle : A \times B} (\times_{\mathsf{I}})$$

$$\frac{\Gamma \vdash t : A \times B}{\Gamma \vdash \pi_{\mathsf{I}}(t) : A} (\times_{\mathsf{E}}^{\mathsf{I}}) \qquad \frac{\Gamma \vdash t : A \times B}{\Gamma \vdash \pi_{\mathsf{r}}(t) : B} (\times_{\mathsf{E}}^{\mathsf{r}})$$

We extends the syntax of types with

$$A, B ::= \ldots \mid A \times B$$

and add the typing rules

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash \qquad A \land B} \ (\land_{\mathsf{I}})$$

$$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} (\land_{\mathsf{E}}^{\mathsf{r}})$$

Unit

We extend the syntax of λ -terms with

$$t$$
 ::= ... $|\langle\rangle$

(no reduction rule), extend the syntax of types with

Unit

We extend the syntax of λ -terms with

$$t$$
 ::= ... $|\langle\rangle$

(no reduction rule), extend the syntax of types with

$$A$$
 ::= ... | 1

Unit

We extend the syntax of λ -terms with

$$t$$
 ::= ... $|\langle\rangle$

(no reduction rule), extend the syntax of types with

$$A$$
 ::= ... | 1

$$\frac{}{\Gamma \vdash \langle
angle : 1}$$
 (1₁)

Unit

We extend the syntax of λ -terms with

$$t$$
 ::= ... $|\langle\rangle$

(no reduction rule), extend the syntax of types with

$$A$$
 ::= ... | 1

We now want to add coproducts types A + B, which corresponds to the formula $A \vee B$.

Recall that in OCaml the corresponding type is implemented with

We now want to add coproducts types A + B, which corresponds to the formula $A \vee B$.

Recall that in OCaml the corresponding type is implemented with

```
type ('a,'b) coprod =
    | Left of 'a
    | Right of 'b
```

and a typical program using those is of the form

We now want to add coproducts types A + B, which corresponds to the formula $A \vee B$.

Recall that in OCaml the corresponding type is implemented with

```
type ('a,'b) coprod =
   | Left of 'a
   | Right of 'b
```

and a typical program using those is of the form

```
match t with
| Left x -> u
| Right y -> v
```

If we do not want to use matching, we can program once for all the function

```
let case t u v =
  match t with
  | Left x -> u x
  | Right y -> v y
```

which is the *eliminator* for coproducts.

We extend the syntax of λ -terms with

We extend the syntax of λ -terms with

$$t ::= \ldots \mid \iota_{|}(t) \mid \iota_{r}(t) \mid \mathsf{case}(t, x \mapsto u, y \mapsto v)$$

together with the reduction rules

We extend the syntax of λ -terms with

$$t ::= \ldots \mid \iota_{\mathsf{I}}(t) \mid \iota_{\mathsf{r}}(t) \mid \mathsf{case}(t, x \mapsto u, y \mapsto v)$$

together with the reduction rules

$$case(\iota_{l}(t), x \mapsto u, y \mapsto v) \longrightarrow u[t/x]$$
$$case(\iota_{r}(t), x \mapsto u, y \mapsto v) \longrightarrow v[t/y]$$

Note: the reduction rules thus say that

```
match Left t with
| Left x -> u
| Right y -> v
reduces to
```

Note: the reduction rules thus say that

```
match Left t with
| Left x -> u
| Right y -> v
reduces to
```

u[t/x]

Note: the reduction rules thus say that

and similarly for Right.

We extend the syntax of types with

$$A, B ::= \ldots \mid A+B$$

We extend the syntax of types with

$$A, B ::= \ldots \mid A+B$$

$$\frac{\Gamma \vdash t : A + B \qquad \Gamma, x : A \vdash u : C \qquad \Gamma, y : B \vdash v : C}{\Gamma \vdash \mathsf{case}(t, x \mapsto u, y \mapsto v) : C} \ (+_{\mathsf{E}})$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash \iota_{\mathsf{I}}(t) : A + B} \left(+_{\mathsf{I}}^{\mathsf{I}}\right) \qquad \frac{\Gamma \vdash t : B}{\Gamma \vdash \iota_{\mathsf{r}}(t) : A + B} \left(+_{\mathsf{I}}^{\mathsf{r}}\right)$$

We extend the syntax of types with

$$A, B ::= \ldots \mid A+B$$

$$\frac{\Gamma \vdash \quad A \lor B \quad \Gamma, \quad A \vdash \quad C \quad \Gamma, \quad B \vdash \quad C}{\Gamma \vdash} \ (\lor_{\mathsf{E}})$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} (\lor_{i}^{l}) \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} (\lor_{i}^{r})$$

Note that in OCaml, the type of our function

```
let case t u v =
  match t with
  | Left x -> u x
  | Right y -> v y
is
```

Note that in OCaml, the type of our function

```
let case t u v =
  match t with
  | Left x -> u x
  | Right y -> v y
is
('a, 'b) coprod -> ('a -> 'c) -> ('b -> 'c) -> 'c
which can be read logically as
```

Note that in OCaml, the type of our function

```
let case t u v =
  match t with
   | Left x -> u x
   | Right y -> v y
is
('a, 'b) coprod -> ('a -> 'c) -> ('b -> 'c) -> 'c
which can be read logically as
                          (A \lor B) \Rightarrow (A \Rightarrow C) \Rightarrow (B \Rightarrow C) \Rightarrow C
```

There is a slight problem: what's wrong if we try to perform type inference?

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash \iota_{\mathsf{I}}(t) : A + B} (+_{\mathsf{I}}^{\mathsf{I}}) \qquad \frac{\Gamma \vdash t : B}{\Gamma \vdash \iota_{\mathsf{r}}(t) : A + B} (+_{\mathsf{I}}^{\mathsf{r}})$$

There is a slight problem: what's wrong if we try to perform type inference?

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash \iota_{\mathsf{I}}(t) : A + B} \left(+_{\mathsf{I}}^{\mathsf{I}}\right) \qquad \frac{\Gamma \vdash t : B}{\Gamma \vdash \iota_{\mathsf{r}}(t) : A + B} \left(+_{\mathsf{I}}^{\mathsf{r}}\right)$$

For instance, what is the type of $\iota_{l}(\lambda x^{A}.x)$?

There is a slight problem: what's wrong if we try to perform type inference?

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash \iota_{\mathsf{I}}(t) : A + B} \; (+_{\mathsf{I}}^{\mathsf{I}}) \qquad \qquad \frac{\Gamma \vdash t : B}{\Gamma \vdash \iota_{\mathsf{r}}(t) : A + B} \; (+_{\mathsf{I}}^{\mathsf{r}})$$

For instance, what is the type of $\iota_1(\lambda x^A.x)$?

It is like Church vs Curry, we need more typing information:

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash \iota_{l}^{B}(t) : A + B} (+_{l}^{l}) \qquad \frac{\Gamma \vdash t : B}{\Gamma \vdash \iota_{r}^{A}(t) : A + B} (+_{l}^{r})$$

Note that a term

$$case(t, x \mapsto u, y \mapsto v)$$

should be considered up to α -conversion (we can rename x and y), which means extra care when implementing substitution.

Note that a term

$$\mathsf{case}(t, \mathsf{x} \mapsto \mathsf{u}, \mathsf{y} \mapsto \mathsf{v})$$

should be considered up to α -conversion (we can rename x and y), which means extra care when implementing substitution.

Instead, it is often easier to implement the variant with actual functions

Note that a term

$$\mathsf{case}(t, \mathsf{x} \mapsto \mathsf{u}, \mathsf{y} \mapsto \mathsf{v})$$

should be considered up to α -conversion (we can rename x and y), which means extra care when implementing substitution.

Instead, it is often easier to implement the variant with actual functions

which is typed as

$$\frac{\Gamma \vdash t : A + B \qquad \Gamma \vdash u : A \to C \qquad \Gamma \vdash v : B \to C}{\Gamma \vdash \mathsf{case}(t, u, v) : C} \ (+_{\mathsf{E}})$$

Note that a term

$$case(t, x \mapsto u, y \mapsto v)$$

should be considered up to α -conversion (we can rename x and y), which means extra care when implementing substitution.

Instead, it is often easier to implement the variant with actual functions

which is typed as

$$\frac{\Gamma \vdash t : A + B \qquad \Gamma \vdash u : A \to C \qquad \Gamma \vdash v : B \to C}{\Gamma \vdash \mathsf{case}(t, u, v) : C} \ (+_{\mathsf{E}})$$

instead of

$$\frac{\Gamma \vdash t : A + B \qquad \Gamma, x : A \vdash u : C \qquad \Gamma, y : B \vdash v : C}{\Gamma \vdash \mathsf{case}(t, x \mapsto u, y \mapsto v) : C} \ (+_{\mathsf{E}})$$

In the previous slide we agreed that, instead of writing

$$\mathsf{case}(t, x \mapsto u, y \mapsto v)$$

we should write

$$case(t, \lambda x.u, \lambda y.v)$$

There is however a problem:

In the previous slide we agreed that, instead of writing

$$\mathsf{case}(t, x \mapsto u, y \mapsto v)$$

we should write

$$case(t, \lambda x.u, \lambda y.v)$$

There is however a problem: we do not have a type for the abstracted variables x and y!

In the previous slide we agreed that, instead of writing

$$\mathsf{case}(t, \mathsf{x} \mapsto \mathsf{u}, \mathsf{y} \mapsto \mathsf{v})$$

we should write

$$case(t, \lambda x.u, \lambda y.v)$$

There is however a problem: we do not have a type for the abstracted variables x and y!

However, it is fine to allow λ -terms without types (à la Curry) here because we can guess them when typing:

$$\frac{\vdots}{\frac{\Gamma, x : A \vdash u : C}{\Gamma \vdash \lambda x. u : A \to C}} (\to_{\mathsf{I}}) \qquad \frac{\vdots}{\frac{\Gamma, y : A \vdash v : C}{\Gamma \vdash \lambda y. v : B \to C}} (\to_{\mathsf{I}}) \\ \qquad \Gamma \vdash \mathsf{case}(t, \lambda x. u, \lambda y. v) : C} (+_{\mathsf{E}})$$

This is easily implemented using two (mutually recursive) functions:

- inference e.g. we can infer that $\lambda x^A \cdot t$ has type $A \to B$
- checking e.g. we can check that $\lambda x.t$ has type $A \rightarrow B$

Empty type

We extend the syntax of λ -terms with

$$t ::= \ldots \mid case(t)$$

(no reduction rule), extend the syntax of types with

$$A$$
 ::= ... | 0

Empty type

We extend the syntax of λ -terms with

$$t$$
 ::= ... | case(t)

(no reduction rule), extend the syntax of types with

$$A ::= \ldots \mid 0$$

$$\frac{\Gamma \vdash t : 0}{\Gamma \vdash \mathsf{case}(t) : A} \, (0_{\mathsf{E}})$$

Empty type

We extend the syntax of λ -terms with

$$t ::= \ldots \mid \mathsf{case}(t)$$

(no reduction rule), extend the syntax of types with

$$A ::= \ldots \mid 0$$

$$\frac{\Gamma \vdash \quad \perp}{\Gamma \vdash \quad A} \, (\perp_{\mathsf{E}})$$

All together

If we add them all together, we want more reduction rules:

$$\operatorname{case}^{A \to B}(t) \, u \longrightarrow \operatorname{case}^B(t)$$

$$\pi_{\mathsf{I}}(\operatorname{case}^{A \times B}(t)) \longrightarrow \operatorname{case}^A(t)$$

$$\pi_{\mathsf{r}}(\operatorname{case}^{A \times B}(t)) \longrightarrow \operatorname{case}^B(t)$$

$$\operatorname{case}(\operatorname{case}^{A+B}(t), x \mapsto u, y \mapsto v) \longrightarrow \operatorname{case}^C(t)$$

$$\operatorname{case}^A(\operatorname{case}^0(t)) \longrightarrow \operatorname{case}^A(t)$$

$$\operatorname{case}(t, x \mapsto u, y \mapsto v) \, w \longrightarrow \operatorname{case}(t, x \mapsto uw, y \mapsto vw)$$

$$\pi_{\mathsf{I}}(\operatorname{case}(t, x \mapsto u, y \mapsto v)) \longrightarrow \operatorname{case}(t, x \mapsto \pi_{\mathsf{I}}(u), y \mapsto \pi_{\mathsf{I}}(v))$$

$$\pi_{\mathsf{r}}(\operatorname{case}(t, x \mapsto u, y \mapsto v)) \longrightarrow \operatorname{case}(t, x \mapsto \pi_{\mathsf{r}}(u), y \mapsto \pi_{\mathsf{r}}(v))$$

$$\operatorname{case}^C(\operatorname{case}(t, x \mapsto u, y \mapsto v)) \longrightarrow \operatorname{case}(t, x \mapsto \operatorname{case}^C(u), y \mapsto \operatorname{case}^C(v))$$

$$\operatorname{case}(\operatorname{case}(t, x \mapsto u, y \mapsto v), x' \mapsto u', y' \mapsto v') \longrightarrow \operatorname{case}(t, x \mapsto \operatorname{case}(u, x' \mapsto u', y' \mapsto v'), y_{49} \mapsto y')$$

Natural numbers

In OCaml, natural numbers can be defined as

so that factorial can be implemented with

Natural numbers

In OCaml, natural numbers can be defined as type nat = | Zero | Succ of nat so that factorial can be implemented with let rec fact n = match n with | Zero -> Succ Zero | Succ n -> mult (Succ n) (fact n)

The "recurrence principle" / eliminator can then be defined as

The "recurrence principle" / eliminator can then be defined as

```
let rec recursor n z s =
  match n with
  | Zero -> z
  | Succ n -> s n (recursor n z s)

of type

val recursor : nat -> 'a -> (nat -> 'a -> 'a) -> 'a = <fun>
```

The "recurrence principle" / eliminator can then be defined as

```
let rec recursor n z s =
  match n with
  | Zero -> z
  | Succ n -> s n (recursor n z s)
of type
val recursor : nat -> 'a -> (nat -> 'a -> 'a) -> 'a = <fun>
so that factorial can be programmed as
```

The "recurrence principle" / eliminator can then be defined as let rec recursor n z s = match n with | Zero -> z | Succ n -> s n (recursor n z s) of type val recursor : nat \rightarrow 'a \rightarrow (nat \rightarrow 'a \rightarrow 'a) \rightarrow 'a = $\langle \text{fun} \rangle$ so that factorial can be programmed as let fact n = recursor n (Succ Zero) (fun n r -> mult (Succ n) r)

We extend the syntax of λ -terms with

```
t ::= ... |
```

We extend the syntax of λ -terms with

$$t ::= \ldots \mid \mathsf{Z} \mid \mathsf{S}(t) \mid \mathsf{rec}(t, u, xy \mapsto v)$$

We extend the syntax of λ -terms with

$$t ::= \ldots \mid \mathsf{Z} \mid \mathsf{S}(t) \mid \mathsf{rec}(t, u, xy \mapsto v)$$

and add the reduction rules

We extend the syntax of λ -terms with

$$t ::= \ldots \mid Z \mid S(t) \mid rec(t, u, xy \mapsto v)$$

and add the reduction rules

$$\operatorname{rec}(\mathsf{Z},z,xy\mapsto s)\longrightarrow z$$

 $\operatorname{rec}(\mathsf{S}(n),z,xy\mapsto s)\longrightarrow s[n/x,\operatorname{rec}(n,z,xy\mapsto s)/y]$

We extend the syntax of types with

$$A, B ::= \ldots \mid \mathsf{Nat}$$

We extend the syntax of types with

$$A, B ::= \ldots \mid \mathsf{Nat}$$

and add the typing rules

We extend the syntax of types with

$$A, B ::= \ldots \mid \mathsf{Nat}$$

and add the typing rules

$$\frac{\Gamma \vdash t : \mathsf{Nat}}{\Gamma \vdash \mathsf{Z} : \mathsf{Nat}} \qquad \frac{\Gamma \vdash t : \mathsf{Nat}}{\Gamma \vdash \mathsf{S}(t) : \mathsf{Nat}}$$

$$\frac{\Gamma \vdash n : \mathsf{Nat} \qquad \Gamma \vdash z : A \qquad \Gamma, x : \mathsf{Nat}, y : A \vdash s : A}{\Gamma \vdash \mathsf{rec}(n, z, xy \mapsto s) : A}$$

We extend the syntax of types with

$$A, B ::= \ldots \mid \mathsf{Nat}$$

and add the typing rules

$$\frac{}{\Gamma \vdash \quad \mathsf{Nat}} \qquad \frac{}{\Gamma \vdash \quad \mathsf{Nat}} \qquad \frac{}{$$

Part V

Dynamics of Curry-Howard

Cut elimination

Remember that a **cut** in a proof is an elimination rule whose principal premise is an introduction rule.

$$\frac{\frac{\pi}{\Gamma \vdash A} \quad \frac{\pi'}{\Gamma \vdash B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \quad (\land_{E}^{l})} \quad \frac{\frac{\pi}{\Gamma, A \vdash B}}{\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B}} (\Rightarrow_{I}) \quad \frac{\pi'}{\Gamma \vdash A} (\Rightarrow_{E})$$

Such a proof is intuitively doing "useless work" and we have seen that we could gradually remove all the cuts from a proof.

For instance, the cuts related to conjunction can be eliminated with

$$\frac{\frac{\pi}{\Gamma \vdash A} \qquad \frac{\pi'}{\Gamma \vdash B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad (\land_{\mathsf{E}})} \qquad \rightsquigarrow$$

$$\frac{\frac{\pi}{\Gamma \vdash A} \qquad \frac{\pi'}{\Gamma \vdash B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \qquad (\land_{\mathsf{E}})} \qquad \rightsquigarrow$$

For instance, the cuts related to conjunction can be eliminated with

$$\frac{\frac{\pi}{\Gamma \vdash A} \qquad \frac{\pi'}{\Gamma \vdash B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad (\land_{\mathsf{E}})} \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A}$$

$$\frac{\frac{\pi}{\Gamma \vdash A} \qquad \frac{\pi'}{\Gamma \vdash B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \qquad (\land_{\mathsf{E}})} \qquad \rightsquigarrow \qquad \frac{\pi'}{\Gamma \vdash B}$$

For instance, the cuts related to conjunction can be eliminated with

$$\frac{\frac{\pi}{\Gamma \vdash A} \qquad \frac{\pi'}{\Gamma \vdash B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad (\land_{E})} \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A}$$

$$\frac{\frac{\pi}{\Gamma \vdash A} \qquad \frac{\pi'}{\Gamma \vdash B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \qquad (\land_{E})} \qquad \rightsquigarrow \qquad \frac{\pi'}{\Gamma \vdash B}$$

What it the computational contents of this transformation?

$$\frac{\frac{\pi}{\Gamma \vdash A} \qquad \frac{\pi'}{\Gamma \vdash B}}{\frac{\Gamma \vdash}{\Gamma \vdash} \qquad A \land B} \qquad (\land_{\mathsf{I}}) \qquad \leadsto \qquad \frac{\pi}{\Gamma \vdash} \qquad A$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A} \qquad \frac{\pi'}{\Gamma \vdash \qquad B}}{\Gamma \vdash \qquad A \land B} \stackrel{(\land_{\mathsf{I}})}{(\land_{\mathsf{E}})} \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash \qquad A}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A} \qquad \frac{\pi'}{\Gamma \vdash u : B}}{\frac{\Gamma \vdash}{\Gamma \vdash} \qquad A \land B} (\land_{\mathsf{E}}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash} \qquad A}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A} \qquad \frac{\pi'}{\Gamma \vdash u : B}}{\frac{\Gamma \vdash \langle t, u \rangle : A \land B}{\Gamma \vdash} \qquad (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash} \qquad A}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A} \qquad \frac{\pi'}{\Gamma \vdash u : B}}{\frac{\Gamma \vdash \langle t, u \rangle : A \land B}{\Gamma \vdash \pi_{\mathsf{I}} \langle t, u \rangle : A}} (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A} \frac{\pi'}{\Gamma \vdash u : B}}{\frac{\Gamma \vdash \langle t, u \rangle : A \land B}{\Gamma \vdash \pi_{\mathsf{I}} \langle t, u \rangle : A}} (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash t : A}$$

One of the cut-elimination rules is

$$\frac{\frac{\pi}{\Gamma \vdash t : A} \frac{\pi'}{\Gamma \vdash u : B}}{\frac{\Gamma \vdash \langle t, u \rangle : A \land B}{\Gamma \vdash \pi_{\mathsf{I}} \langle t, u \rangle : A}} (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash t : A}$$

In other words, it transforms a subterm

$$\pi_{\mathsf{I}}\langle t, u \rangle \longrightarrow_{\beta} t$$

which is the reduction rule!

The cut elimination rule for \Rightarrow is

$$\frac{\frac{\pi}{\Gamma, A \vdash B}}{\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B}} (\Rightarrow_{\mathsf{I}}) \qquad \frac{\pi'}{\Gamma \vdash A} (\Rightarrow_{\mathsf{E}}) \qquad \rightsquigarrow$$

The cut elimination rule for \Rightarrow is

$$\frac{\frac{\pi}{\Gamma, A \vdash B}}{\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B}} (\Rightarrow_{\mathsf{I}}) \qquad \frac{\pi'}{\Gamma \vdash A} (\Rightarrow_{\mathsf{E}}) \qquad \rightsquigarrow \qquad \frac{\pi[\pi'/A]}{\Gamma \vdash B}$$

where $\pi[\pi'/A]$ is π where we have replaced all axioms on A

$$\frac{w(\pi')}{\Gamma, A, \Gamma' \vdash A}$$
 (ax) by $\frac{w(\pi')}{\Gamma, \Gamma' \vdash A}$

where $w(\pi')$ is an appropriate weakening of π .

$$\frac{\frac{\Gamma, A \vdash A}{\Gamma \vdash A \Rightarrow A} (\Rightarrow_{\mathsf{I}}) \qquad \frac{\pi}{\Gamma \vdash A}}{\Gamma \vdash A} (\Rightarrow_{\mathsf{E}}) \qquad \rightsquigarrow$$

$$\frac{\frac{\Gamma, A \vdash A}{\Gamma \vdash A \Rightarrow A} (\Rightarrow_{\mathsf{I}}) \qquad \frac{\pi}{\Gamma \vdash A}}{\Gamma \vdash A} (\Rightarrow_{\mathsf{E}}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A}$$

$$\frac{\frac{\overline{\Gamma, x : A \vdash A} (ax)}{\Gamma \vdash A \Rightarrow A} (\Rightarrow_{l}) \qquad \frac{\pi}{\Gamma \vdash A}}{\Gamma \vdash A} (\Rightarrow_{E}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A}$$

$$\frac{\overline{\Gamma, x : A \vdash x : A} \stackrel{\text{(ax)}}{}}{\Gamma \vdash A \Rightarrow A} \stackrel{\text{(\Rightarrow_1)}}{} \frac{\pi}{\Gamma \vdash A} \stackrel{\text{(\Rightarrow_E)}}{} (\Rightarrow_E) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A}$$

$$\frac{\overline{\Gamma, x : A \vdash x : A}}{\Gamma \vdash \lambda x^{A}.x : A \Rightarrow A} \overset{\text{(ax)}}{(\Rightarrow_{\mathsf{I}})} \qquad \frac{\pi}{\Gamma \vdash A} \\ \xrightarrow{\Gamma \vdash A} \overset{\text{(ax)}}{(\Rightarrow_{\mathsf{E}})} \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A}$$

$$\frac{\frac{\Gamma, x : A \vdash x : A}{\Gamma \vdash \lambda x^{A}.x : A \Rightarrow A} \overset{\text{(ax)}}{(\Rightarrow_{\mathsf{I}})} \qquad \frac{\pi}{\Gamma \vdash t : A}}{\Gamma \vdash \qquad A} \overset{\text{(\Rightarrow_{E})}}{(\Rightarrow_{\mathsf{E}})} \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash \qquad A}$$

$$\frac{\overline{\Gamma, x : A \vdash x : A}}{\Gamma \vdash \lambda x^{A}.x : A \Rightarrow A} \overset{(\Rightarrow_{l})}{(\Rightarrow_{l})} \qquad \frac{\pi}{\Gamma \vdash t : A}$$

$$\Gamma \vdash (\lambda x^{A}.x)t : A \qquad (\Rightarrow_{E}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A}$$

$$\frac{\overline{\Gamma, x : A \vdash x : A}}{\Gamma \vdash \lambda x^{A}.x : A \Rightarrow A} \overset{(\Rightarrow_{1})}{(\Rightarrow_{1})} \qquad \frac{\pi}{\Gamma \vdash t : A}$$

$$\Gamma \vdash (\lambda x^{A}.x)t : A \qquad (\Rightarrow_{E}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash t : A}$$

For instance, we can eliminate the cut

$$\frac{\overline{\Gamma, x : A \vdash x : A}}{\Gamma \vdash \lambda x^{A}.x : A \Rightarrow A} \overset{(\Rightarrow_{l})}{(\Rightarrow_{l})} \qquad \frac{\pi}{\Gamma \vdash t : A}$$

$$\Gamma \vdash (\lambda x^{A}.x)t : A \qquad (\Rightarrow_{E}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash t : A}$$

In other words,

$$(\lambda x^A.x)t \longrightarrow_{\beta} t$$

which is the β -reduction rule!

More generally, we have

$$\frac{\frac{\pi}{\Gamma, x : A \vdash B}}{\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B}} (\Rightarrow_{\mathsf{I}}) \qquad \frac{\pi'}{\Gamma \vdash A} (\Rightarrow_{\mathsf{E}}) \qquad \rightsquigarrow \qquad \frac{\pi[\pi'/A]}{\Gamma \vdash B}$$

$$\frac{\frac{\pi}{\Gamma, x : A \vdash t : B}}{\frac{\Gamma \vdash}{\Gamma \vdash} A \Rightarrow B} (\Rightarrow_{\mathsf{I}}) \qquad \frac{\pi'}{\Gamma \vdash} \qquad (\Rightarrow_{\mathsf{E}}) \qquad \rightsquigarrow \qquad \frac{\pi[\pi'/A]}{\Gamma \vdash} \qquad B$$

$$\frac{\frac{\pi}{\Gamma, x : A \vdash t : B}}{\frac{\Gamma \vdash \lambda x^{A}.t : A \Rightarrow B}{\Gamma \vdash}} (\Rightarrow_{\mathsf{I}}) \qquad \frac{\pi'}{\Gamma \vdash} \qquad (\Rightarrow_{\mathsf{E}}) \qquad \rightsquigarrow \qquad \frac{\pi[\pi'/A]}{\Gamma \vdash} \qquad B$$

$$\frac{\frac{\pi}{\Gamma, x : A \vdash t : B}}{\Gamma \vdash \lambda x^{A}.t : A \Rightarrow B} (\Rightarrow_{I}) \qquad \frac{\pi'}{\Gamma \vdash u : A} (\Rightarrow_{E}) \qquad \rightsquigarrow \qquad \frac{\pi[\pi'/A]}{\Gamma \vdash B}$$

$$\frac{\frac{\pi}{\Gamma, x : A \vdash t : B}}{\frac{\Gamma \vdash \lambda x^{A}.t : A \Rightarrow B}{\Gamma \vdash (\lambda x^{A}.t)u : B}} (\Rightarrow_{\mathsf{E}}) \qquad \xrightarrow{\pi} \frac{\pi[\pi'/A]}{\Gamma \vdash B}$$

$$\frac{\frac{\pi}{\Gamma, x : A \vdash t : B}}{\frac{\Gamma \vdash \lambda x^{A}.t : A \Rightarrow B}{\Gamma \vdash (\lambda x^{A}.t)u : B}} (\Rightarrow_{\mathsf{I}}) \qquad \frac{\pi'}{\Gamma \vdash u : A} (\Rightarrow_{\mathsf{E}}) \qquad \rightsquigarrow \qquad \frac{\pi[\pi'/A]}{\Gamma \vdash t[u/x] : B}$$

More generally, we have

$$\frac{\frac{\pi}{\Gamma, x : A \vdash t : B}}{\frac{\Gamma \vdash \lambda x^{A}.t : A \Rightarrow B}{\Gamma \vdash (\lambda x^{A}.t)u : B}} (\Rightarrow_{\mathsf{E}}) \qquad \xrightarrow{\pi[\pi'/A]} \frac{\pi[\pi'/A]}{\Gamma \vdash t[u/x] : B}$$
other words,

In other words.

$$(\lambda x^A.t)u \longrightarrow_{\beta} t[u/x]$$

which is the β -reduction rule!

Cut elimination and reduction

Suppose given a term t of type A in a context Γ , its typing derivation

$$\frac{\pi}{\Gamma \vdash t : A}$$

can be seen as a proof in NJ. We have shown that

Cut elimination and reduction

Suppose given a term t of type A in a context Γ , its typing derivation

$$\frac{\pi}{\Gamma \vdash t : A}$$

can be seen as a proof in NJ. We have shown that

Theorem

The cut elimination steps of π are in correspondence with the β -reduction steps of t.

This means that for every β -reduction $t \longrightarrow_{\beta} t'$ there is a derivation π' of $\Gamma \vdash t' : A$

$$\frac{\pi}{\Gamma \vdash t : A} \qquad \rightsquigarrow \qquad \frac{\pi'}{\Gamma \vdash t' : A}$$

which is obtained by a cut elimination step from π , and conversely every cut-elimination step from π is of this form.

Subject reduction

In particular, we have shown the **subject reduction** property: typing is compatible with β -reduction.

Theorem

If $\Gamma \vdash t : A$ is derivable and $t \longrightarrow_{\beta} t'$ then $\Gamma \vdash t' : A$ is also derivable.

Subject reduction

In particular, we have shown the **subject reduction** property: typing is compatible with β -reduction.

Theorem

If $\Gamma \vdash t : A$ is derivable and $t \longrightarrow_{\beta} t'$ then $\Gamma \vdash t' : A$ is also derivable.

For instance,

$$\frac{\overline{\Gamma, x : A \vdash x : A} \text{ (ax)}}{\Gamma \vdash \lambda x^{A}.x : A \to A} \text{ (\to_{I})} \qquad \frac{\pi}{\Gamma \vdash t : B} \\ \vdash (\lambda x^{A}.x)t : B \qquad \qquad \longrightarrow \qquad \frac{\pi}{\Gamma \vdash t : B}$$

The Curry-Howard correspondence

We can add a third level to the correspondence:

Theorem

There is a bijection between

- 1. types and formulas,
- 2. λ -terms of type A and proofs of A in NJ,

The Curry-Howard correspondence

We can add a third level to the correspondence:

Theorem

There is a bijection between

- 1. types and formulas,
- 2. λ -terms of type A and proofs of A in NJ,
- 3. reduction steps and cut elimination steps.

The Curry-Howard correspondence

We can add a third level to the correspondence:

Theorem

There is a bijection between

- 1. types and formulas,
- **2.** λ -terms of type **A** and proofs of **A** in NJ,
- 3. reduction steps and cut elimination steps.

Using a function in programming is the same as using a lemma in mathematics!

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

$$\frac{\frac{\pi}{\Gamma \vdash A \Rightarrow B}}{\frac{\Gamma, A \vdash A \Rightarrow B}{\Gamma, A \vdash B}} \text{ (wk)} \qquad \frac{\Gamma, A \vdash A}{\Gamma, A \vdash B} \text{ (\Rightarrow_{E})}$$

$$\frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash A \Rightarrow B} \qquad (\Rightarrow_{I}) \qquad $\leadsto$$$

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

$$\frac{\frac{\pi}{\Gamma \vdash A \Rightarrow B}}{\frac{\Gamma, A \vdash A \Rightarrow B}{\Gamma, A \vdash B}} \text{ (wk)} \qquad \frac{\Gamma, A \vdash A}{\Gamma, A \vdash A} \text{ (\Rightarrow_{E})}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \text{ (\Rightarrow_{I})} \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A \Rightarrow B}$$

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

$$\frac{\frac{\pi}{\Gamma \vdash A \Rightarrow B}}{\frac{\Gamma, x : A \vdash A \Rightarrow B}{\Gamma, x : A \vdash B}} \text{ (wk)} \qquad \frac{\frac{\pi}{\Gamma, x : A \vdash A}}{\frac{\Gamma, x : A \vdash B}{\Gamma \vdash A \Rightarrow B}} \text{ (\Rightarrow_{E})} \qquad \stackrel{\pi}{} \qquad \frac{\pi}{\Gamma \vdash A \Rightarrow B}$$

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

$$\frac{\frac{\pi}{\Gamma \vdash t : A \Rightarrow B}}{\frac{\Gamma, x : A \vdash A \Rightarrow B}{\Gamma, x : A \vdash B}} \text{ (wk)} \qquad \frac{\frac{\pi}{\Gamma, x : A \vdash A}}{\frac{\Gamma, x : A \vdash B}{\Gamma \vdash A \Rightarrow B}} \text{ (\Rightarrow_{E})} \qquad \stackrel{\pi}{} \qquad \frac{\pi}{\Gamma \vdash A \Rightarrow B}$$

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

$$\frac{\frac{\pi}{\Gamma \vdash t : A \Rightarrow B}}{\frac{\Gamma, x : A \vdash t : A \Rightarrow B}{\Gamma, x : A \vdash B}} \text{ (wk)} \qquad \frac{\frac{\pi}{\Gamma, x : A \vdash A}}{\frac{\Gamma, x : A \vdash B}{\Gamma \vdash A \Rightarrow B}} \text{ (\Rightarrow_{E})} \qquad \xrightarrow{\pi}$$

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

$$\frac{\frac{\pi}{\Gamma \vdash t : A \Rightarrow B}}{\frac{\Gamma, x : A \vdash t : A \Rightarrow B}{\Gamma, x : A \vdash B}} \text{ (wk)} \qquad \frac{\frac{\pi}{\Gamma, x : A \vdash x : A}}{\frac{\Gamma, x : A \vdash B}{\Gamma \vdash A \Rightarrow B}} \text{ (\Rightarrow_{E})} \qquad \xrightarrow{\pi}$$

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

$$\frac{\frac{\pi}{\Gamma \vdash t : A \Rightarrow B}}{\frac{\Gamma, x : A \vdash t : A \Rightarrow B}{\Gamma, x : A \vdash tx : B}} \text{ (wk)} \qquad \frac{\pi}{\Gamma, x : A \vdash x : A} \text{ (ax)}$$

$$\frac{\Gamma, x : A \vdash t : A \Rightarrow B}{\Gamma \vdash A \Rightarrow B} \text{ (\Rightarrow_{I})} \qquad \stackrel{\pi}{} \qquad \frac{\pi}{\Gamma \vdash A \Rightarrow B}$$

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

$$\frac{\frac{\pi}{\Gamma \vdash t : A \Rightarrow B}}{\frac{\Gamma, x : A \vdash t : A \Rightarrow B}{\Gamma, x : A \vdash tx : B}} (wk) \qquad \frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash x : A} (\Rightarrow_{E})$$

$$\frac{\Gamma, x : A \vdash tx : B}{\Gamma \vdash \lambda x^{A} . tx : A \Rightarrow B} (\Rightarrow_{I}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A \Rightarrow B}$$

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

$$\frac{\frac{\pi}{\Gamma \vdash t : A \Rightarrow B}}{\frac{\Gamma, x : A \vdash t : A \Rightarrow B}{\Gamma, x : A \vdash t : A \Rightarrow B}} \text{ (wk)} \qquad \frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash x : A} \text{ (ax)}$$

$$\frac{\Gamma, x : A \vdash t : A \Rightarrow B}{\Gamma \vdash \lambda x^{A} \cdot tx : A \Rightarrow B} \text{ (\Rightarrow_{L})} \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash t : A \Rightarrow B}$$

A cut is an elimination of an introduction of some connective.

What if we try to do the converse (introduction of an elimination)?

For implication,

$$\frac{\frac{\pi}{\Gamma \vdash t : A \Rightarrow B}}{\frac{\Gamma, x : A \vdash t : A \Rightarrow B}{\Gamma, x : A \vdash tx : B}} (wk) \qquad \frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash x : A} (ax) \\
\frac{\Gamma, x : A \vdash t : A \Rightarrow B}{\Gamma \vdash \lambda x^{A} \cdot tx : A \Rightarrow B} (\Rightarrow_{\mathsf{I}}) \qquad \Rightarrow \qquad \frac{\pi}{\Gamma \vdash t : A \Rightarrow B}$$

In other words, we recover η -reduction:

$$\lambda x^A . tx \longrightarrow_{\eta} t$$

$$\frac{\frac{\pi}{\Gamma \vdash A \land B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \land B}} (\land_{E}^{I}) \qquad \frac{\frac{\pi}{\Gamma \vdash A \land B}}{\frac{\Gamma \vdash A \land B}{\Gamma \vdash A \land B}} (\land_{I}^{r}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A \land B}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash L : A \land B}{\Gamma \vdash A}} (\land_{E}^{l}) \qquad \frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash B}{\Gamma \vdash B}} (\land_{I}^{r}) \qquad \longrightarrow \qquad \frac{\pi}{\Gamma \vdash A \land B}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash \pi_{\mathsf{I}}(t) : A}{\Gamma \vdash}} (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash B}{\Gamma \vdash}} (\land_{\mathsf{I}}^{\mathsf{r}}) \qquad \qquad \Rightarrow \qquad \frac{\pi}{\Gamma \vdash} \qquad A \land B$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash \pi_{\mathsf{I}}(t) : A}{\Gamma \vdash}} (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash \pi_{\mathsf{r}}(t) : B}{\Gamma \vdash}} (\land_{\mathsf{I}}^{\mathsf{r}}) \qquad \qquad \frac{\pi}{\Gamma \vdash} \qquad \frac{\pi}{\Gamma \vdash} \qquad A \land B}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash \pi_{\mathsf{I}}(t) : A}{\Gamma \vdash \pi_{\mathsf{r}}(t) : A}} (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash \pi_{\mathsf{r}}(t) : B}{\Gamma \vdash \pi_{\mathsf{r}}(t) : B}} (\land_{\mathsf{I}}^{\mathsf{r}}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A \land B}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash \pi_{\mathsf{I}}(t) : A}{\Gamma \vdash \pi_{\mathsf{r}}(t) : A}} (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash \pi_{\mathsf{r}}(t) : B}{\Gamma \vdash \pi_{\mathsf{r}}(t) : B}} (\land_{\mathsf{I}}^{\mathsf{r}}) \qquad \qquad \longrightarrow \qquad \frac{\pi}{\Gamma \vdash t : A \land B}$$

This also works for other connectives:

$$\frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash \pi_{\mathsf{I}}(t) : A}{\Gamma \vdash \pi_{\mathsf{r}}(t) : A}} (\land_{\mathsf{E}}^{\mathsf{I}}) \qquad \frac{\frac{\pi}{\Gamma \vdash t : A \land B}}{\frac{\Gamma \vdash \pi_{\mathsf{r}}(t) : B}{\Gamma \vdash \pi_{\mathsf{r}}(t) : B}} (\land_{\mathsf{E}}^{\mathsf{r}}) \qquad \qquad \longrightarrow \qquad \frac{\pi}{\Gamma \vdash t : A \land B}$$

In other words, the η -reduction rule for products is

$$\langle \pi_{\mathsf{I}}(t), \pi_{\mathsf{r}}(t) \rangle \longrightarrow_{\eta} t$$

Part VI

Classical logic

For a long time, people thought that this correspondence could not be extended to classical logic.

It turns out that it actually does (Parigot's $\lambda\mu$ -calculus): classical logic is **constructive**!

This gives rise to strange languages, relying heavily on a variant of exceptions.

We have seen that classical logic could be obtained from intuitionistic one by adding the principle of elimination of double negation:

$$\neg \neg A \Rightarrow A$$

We have seen that classical logic could be obtained from intuitionistic one by adding the principle of elimination of double negation:

$$\neg \neg A \Rightarrow A$$

This can be equivalently implemented by adding the rule

$$\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \ (\neg \neg_{\mathsf{E}})$$

We have seen that classical logic could be obtained from intuitionistic one by adding the principle of elimination of double negation:

$$\neg \neg A \Rightarrow A$$

This can be equivalently implemented by adding the rule

$$\frac{\Gamma \vdash t : \neg \neg A}{\Gamma \vdash \mathcal{C}(t) : A} (\neg \neg_{\mathsf{E}})$$

This suggests that we should add a new construction \mathcal{C} .

For the introduction rule, recall that we have shown:

Lemma

The following rule is admissible

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}$$

For the introduction rule, recall that we have shown:

Lemma

The following rule is admissible

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}$$

Proof.

For the introduction rule, recall that we have shown:

Lemma

The following rule is admissible

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}$$

Proof.

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash \neg \neg A} (\neg_{\mathsf{I}})$$

For the introduction rule, recall that we have shown:

Lemma

The following rule is admissible

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}$$

Proof.

$$\frac{\Gamma, \neg A \vdash \neg A}{\Gamma, \neg A \vdash \bot} \frac{\Gamma, \neg A \vdash A}{(\neg_{\mathsf{E}})} \frac{(\neg_{\mathsf{E}})}{(\neg_{\mathsf{I}})}$$

For the introduction rule, recall that we have shown:

Lemma

The following rule is admissible

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}$$

Proof.

$$\frac{\overline{\Gamma, \neg A \vdash \neg A}^{\text{(ax)}} \qquad \Gamma, \neg A \vdash A}{\Gamma, \neg A \vdash \bot}^{\text{(}\neg_{\text{E}}\text{)}}$$

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash \neg \neg A}^{\text{(}\neg_{\text{E}}\text{)}}$$

For the introduction rule, recall that we have shown:

Lemma

The following rule is admissible

$$\frac{\Gamma \vdash A}{\Gamma \vdash \neg \neg A}$$

Proof.

$$\frac{\frac{\pi}{\Gamma, \neg A \vdash \neg A} \text{ (ax)} \qquad \frac{\frac{\pi}{\Gamma \vdash A}}{\Gamma, \neg A \vdash A} \text{ (wk)}}{\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash \neg \neg A} \text{ (¬E)}}$$

Remembering that

$$\neg A = A \Rightarrow \bot$$

$$\frac{\Gamma, \quad A \Rightarrow \bot \vdash \quad A \Rightarrow \bot}{\Gamma, \quad A \Rightarrow \bot \vdash \quad A} (ax) \qquad \frac{\Gamma}{\Gamma, \quad A \Rightarrow \bot \vdash \quad A} (wk) \\
\frac{\Gamma, \quad A \Rightarrow \bot \vdash \quad \bot}{\Gamma \vdash \quad (A \Rightarrow \bot) \Rightarrow \bot} (\Rightarrow_{I})$$

Remembering that

$$\neg A = A \Rightarrow \bot$$

$$\frac{\frac{\pi}{\Gamma, k : A \Rightarrow \bot \vdash A \Rightarrow \bot}}{\frac{\Gamma, k : A \Rightarrow \bot \vdash A}{\Gamma, k : A \Rightarrow \bot \vdash A}} \xrightarrow{\text{(wk)}} \frac{\Gamma, k : A \Rightarrow \bot \vdash A}{\Gamma, k : A \Rightarrow \bot \vdash A} \xrightarrow{\text{(sh)}} \frac{(\Rightarrow_{\mathsf{E}})}{(\Rightarrow_{\mathsf{E}})}$$

Remembering that

$$\neg A = A \Rightarrow \bot$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A}}{\frac{\Gamma, k : A \Rightarrow \bot \vdash k : A \Rightarrow \bot}{\Gamma, k : A \Rightarrow \bot \vdash}} \xrightarrow{\text{(wk)}} \frac{\frac{\pi}{\Gamma, k : A \Rightarrow \bot \vdash} \xrightarrow{\text{(wk)}}}{\Gamma, k : A \Rightarrow \bot \vdash} \xrightarrow{\text{(\Rightarrow_{E})}} \frac{(\Rightarrow_{\mathsf{E}})}{(\Rightarrow_{\mathsf{E}})}$$

Remembering that

$$\neg A = A \Rightarrow \bot$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A}}{\frac{\Gamma, k : A \Rightarrow \bot \vdash k : A \Rightarrow \bot}{\Gamma, k : A \Rightarrow \bot \vdash t : A}} (wk) \frac{\Gamma, k : A \Rightarrow \bot \vdash t : A}{\Gamma, k : A \Rightarrow \bot \vdash} (\Rightarrow_{\mathsf{E}})$$

$$\frac{\Gamma, k : A \Rightarrow \bot \vdash \bot}{\Gamma \vdash} (A \Rightarrow \bot) \Rightarrow \bot (\Rightarrow_{\mathsf{E}})$$

Remembering that

$$\neg A = A \Rightarrow \bot$$

$$\frac{\frac{\pi}{\Gamma, k : A \Rightarrow \bot \vdash k : A \Rightarrow \bot} (ax) \qquad \frac{\frac{\pi}{\Gamma \vdash t : A}}{\Gamma, k : A \Rightarrow \bot \vdash t : A} (wk)}{\frac{\Gamma, k : A \Rightarrow \bot \vdash k t : \bot}{\Gamma \vdash} (\Rightarrow_{\mathsf{I}})}$$

Remembering that

$$\neg A = A \Rightarrow \bot$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A}}{\frac{\Gamma, k : A \Rightarrow \bot \vdash k : A \Rightarrow \bot}{\Gamma, k : A \Rightarrow \bot \vdash k : A}} (wk) \frac{\frac{\pi}{\Gamma, k : A \Rightarrow \bot \vdash t : A}}{\frac{\Gamma, k : A \Rightarrow \bot \vdash k : \bot}{\Gamma \vdash \lambda k^{A \Rightarrow \bot} . k : (A \Rightarrow \bot) \Rightarrow \bot}} (\Rightarrow_{\mathsf{I}})$$

$$\frac{\frac{\pi}{\Gamma \vdash A}}{\frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}} \stackrel{(\neg \neg_{\mathsf{I}})}{(\neg \neg_{\mathsf{E}})} \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash A}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A}}{\frac{\Gamma \vdash}{\Gamma \vdash} \qquad \frac{\neg \neg A}{A}} (\neg \neg I) \qquad \qquad \longrightarrow \qquad \frac{\pi}{\Gamma \vdash t : A}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A}}{\frac{\Gamma \vdash \lambda k^{\neg A}.k \ t : \neg \neg A}{\Gamma \vdash} (\neg \neg_{\mathsf{E}})} \xrightarrow{\sim} \frac{\pi}{\Gamma \vdash t : A}$$

$$\frac{\frac{\pi}{\Gamma \vdash t : A}}{\frac{\Gamma \vdash \lambda k^{\neg A}.k \ t : \neg \neg A}{\Gamma \vdash \mathcal{C}(\lambda k^{\neg A}.k \ t) : A}} (\neg \neg_{\mathsf{E}}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash t : A}$$

The cut elimination procedure should give

$$\frac{\frac{\pi}{\Gamma \vdash t : A}}{\frac{\Gamma \vdash \lambda k^{\neg A}.k \ t : \neg \neg A}{\Gamma \vdash \mathcal{C}(\lambda k^{\neg A}.k \ t) : A}} (\neg \neg_{\mathsf{E}}) \qquad \rightsquigarrow \qquad \frac{\pi}{\Gamma \vdash t : A}$$

In other words,

$$\mathcal{C}(\lambda k^{\neg A}.k\ t) \qquad \longrightarrow_{\beta} \qquad t$$

The reduction rule is

$$\mathcal{C}(\lambda k^{\neg A}.k\ t) \qquad \longrightarrow_{\beta} \qquad t$$

The reduction rule is

$$\mathcal{C}(\lambda k^{\neg A}.k\ t) \qquad \longrightarrow_{\beta} \qquad t$$

When we apply this function k to some argument t the function C will discard the computation and return the argument t,

The reduction rule is

$$\mathcal{C}(\lambda k^{\neg A}.k\ t) \qquad \longrightarrow_{\beta} \qquad t$$

When we apply this function k to some argument t the function C will discard the computation and return the argument t, which only makes sense when $k \notin FV(t)!$

The reduction rule is

$$C(\lambda k^{\neg A}.k t) \longrightarrow_{\beta} t$$

When we apply this function k to some argument t the function C will discard the computation and return the argument t, which only makes sense when $k \notin FV(t)$! Generally, reduction looks like this:

$$\mathcal{C}(\lambda k^{\neg A}.u) \longrightarrow_{\beta} \mathcal{C}(\lambda k^{\neg A}.u_1) \longrightarrow_{\beta} \mathcal{C}(\lambda k^{\neg A}.u_2) \longrightarrow_{\beta} \ldots \longrightarrow_{\beta} \mathcal{C}(\lambda k^{\neg A}.k\ t) \longrightarrow_{\beta} t$$

The reduction rule is

$$C(\lambda k^{\neg A}.k t) \longrightarrow_{\beta} t$$

When we apply this function k to some argument t the function C will discard the computation and return the argument t, which only makes sense when $k \notin FV(t)$! Generally, reduction looks like this:

$$\mathcal{C}(\lambda k^{\neg A}.u) \longrightarrow_{\beta} \mathcal{C}(\lambda k^{\neg A}.u_1) \longrightarrow_{\beta} \mathcal{C}(\lambda k^{\neg A}.u_2) \longrightarrow_{\beta} \ldots \longrightarrow_{\beta} \mathcal{C}(\lambda k^{\neg A}.k\ t) \longrightarrow_{\beta} t$$

We can read

$$\mathcal{C}(\ldots) = \text{try } \ldots \text{ catch } x \rightarrow x$$
 $k = \text{raise}$

The reduction rule is

$$C(\lambda k^{\neg A}.k t) \longrightarrow_{\beta} t$$

When we apply this function k to some argument t the function C will discard the computation and return the argument t, which only makes sense when $k \notin FV(t)$! Generally, reduction looks like this:

$$\mathcal{C}(\lambda k^{\neg A}.u) \longrightarrow_{\beta} \mathcal{C}(\lambda k^{\neg A}.u_1) \longrightarrow_{\beta} \mathcal{C}(\lambda k^{\neg A}.u_2) \longrightarrow_{\beta} \ldots \longrightarrow_{\beta} \mathcal{C}(\lambda k^{\neg A}.k\ t) \longrightarrow_{\beta} t$$

We can read

$$\mathcal{C}(\ldots) = \text{try } \ldots \text{ catch } x \rightarrow x$$
 $k = \text{raise}$

Each time we catch a different raise function is created.

In order for things to work properly, three rules are actually needed:

• the previous catch / raise reduction: for $k \notin FV(t)$,

$$C(\lambda k^{\neg A}.k\ t) \longrightarrow_{\beta} t$$

In order for things to work properly, three rules are actually needed:

• the previous catch / raise reduction: for $k \notin FV(t)$,

$$C(\lambda k^{\neg A}.k\ t) \longrightarrow_{\beta} t$$

• re-raising is the same as raising:

$$\mathcal{C}(\lambda k^{\neg A}.k\,\mathcal{C}(\lambda k'^{\neg A}.t)) \longrightarrow_{\beta} \mathcal{C}(\lambda k''^{\neg A}.t[k''/k,k''/k'])$$

In order for things to work properly, three rules are actually needed:

• the previous catch / raise reduction: for $k \notin FV(t)$,

$$C(\lambda k^{\neg A}.k\ t) \longrightarrow_{\beta} t$$

re-raising is the same as raising:

$$\mathcal{C}(\lambda k^{\neg A}.k\,\mathcal{C}(\lambda k'^{\neg A}.t)) \longrightarrow_{\beta} \mathcal{C}(\lambda k''^{\neg A}.t[k''/k,k''/k'])$$

application goes through catch:

$$C(\lambda k^{\neg (A \to B)}.t) u \longrightarrow_{\beta} C(\lambda k'^{\neg B}.t[\lambda f^{A \to B}.k(f u)/k])$$

Call-cc

The operator \mathcal{C} is due to Felleisen.

A well-known variant is call-cc cc (for call with current continuation) which is typed as

$$cc: (\neg A \rightarrow A) \rightarrow A$$

$$\frac{\qquad \qquad \vdash \neg\neg(\neg A \lor A)}{\qquad \qquad \vdash \neg A \lor A} \qquad (\neg\neg_{\mathsf{E}})$$

$$\frac{\neg(\neg A \lor A) \vdash \bot}{\vdash \neg \neg(\neg A \lor A)} (\neg I)$$

$$\vdash \neg A \lor A$$

$$\frac{\neg(\neg A \lor A) \vdash \neg A \lor A}{\neg(\neg A \lor A) \vdash \bot} (\neg_{\mathsf{E}})$$

$$\frac{\neg(\neg A \lor A) \vdash \bot}{\vdash \neg \neg(\neg A \lor A)} (\neg_{\mathsf{E}})$$

$$\frac{}{\vdash \neg \neg A \lor A} (\neg_{\mathsf{E}})$$

$$\frac{\neg(\neg A \lor A) \vdash \neg A}{\neg(\neg A \lor A) \vdash \neg A \lor A} (\lor_{1}^{1})$$

$$\frac{\neg(\neg A \lor A) \vdash \bot}{\vdash \neg \neg(\neg A \lor A)} (\neg_{E})$$

$$\frac{\vdash \neg \neg(\neg A \lor A)}{\vdash \neg A \lor A} (\neg_{E})$$

$$\frac{\neg(\neg A \lor A), A \vdash \bot}{\neg(\neg A \lor A) \vdash \neg A} (\neg_{1})$$

$$\frac{\neg(\neg A \lor A) \vdash \neg A \lor A}{\neg(\neg A \lor A) \vdash \bot} (\neg_{E})$$

$$\frac{\neg(\neg A \lor A) \vdash \bot}{\vdash \neg \neg(\neg A \lor A)} (\neg_{E})$$

$$\frac{\vdash \neg \neg(\neg A \lor A)}{\vdash \neg A \lor A} (\neg_{E})$$

$$\frac{\neg(\neg A \lor A), A \vdash \neg A \lor A}{\neg(\neg A \lor A), A \vdash \bot} (\neg E)$$

$$\frac{\neg(\neg A \lor A), A \vdash \bot}{\neg(\neg A \lor A) \vdash \neg A} (\lor_{1}^{1})$$

$$\frac{\neg(\neg A \lor A) \vdash \neg A \lor A}{\neg(\neg A \lor A) \vdash \bot} (\neg E)$$

$$\frac{\vdash \neg \neg(\neg A \lor A)}{\vdash \neg A \lor A} (\neg E)$$

$$\frac{\neg(\neg A \lor A), A \vdash A}{\neg(\neg A \lor A), A \vdash \neg A \lor A} (\lor_{1}^{r})$$

$$\frac{\neg(\neg A \lor A), A \vdash \bot}{\neg(\neg A \lor A), A \vdash \bot} (\neg_{E})$$

$$\frac{\neg(\neg A \lor A) \vdash \neg A}{\neg(\neg A \lor A) \vdash \neg A \lor A} (\lor_{1}^{l})$$

$$\frac{\neg(\neg A \lor A) \vdash \bot}{\vdash \neg \neg(\neg A \lor A)} (\neg_{E})$$

$$\frac{\vdash \neg \neg(\neg A \lor A)}{\vdash \neg A \lor A} (\neg_{E})$$

radie is
$$\frac{-(\neg A \lor A), A \vdash A}{\neg (\neg A \lor A), A \vdash \neg A \lor A} (\lor_{\mathsf{I}}^{\mathsf{r}})$$

$$\frac{\neg (\neg A \lor A), A \vdash \neg A \lor A}{\neg (\neg A \lor A), A \vdash \bot} (\neg_{\mathsf{I}})$$

$$\frac{\neg (\neg A \lor A) \vdash \neg A}{\neg (\neg A \lor A) \vdash \neg A \lor A} (\lor_{\mathsf{I}}^{\mathsf{I}})$$

$$\frac{\neg (\neg A \lor A) \vdash \neg A \lor A}{\neg (\neg A \lor A) \vdash \bot} (\neg_{\mathsf{I}})$$

$$\frac{\vdash \neg \neg (\neg A \lor A)}{\vdash \neg A \lor A} (\neg_{\mathsf{I}})$$

A term for excluded middle is

$$\frac{k : \neg(\neg A \lor A), a : A \vdash A}{k : \neg(\neg A \lor A), a : A \vdash \neg A \lor A} (\lor_{1}^{r}) \\
\frac{k : \neg(\neg A \lor A), a : A \vdash \neg A \lor A}{k : \neg(\neg A \lor A), a : A \vdash \bot} (\neg_{E}) \\
\frac{k : \neg(\neg A \lor A) \vdash \neg A}{k : \neg(\neg A \lor A) \vdash \neg A \lor A} (\lor_{1}^{l}) \\
\frac{k : \neg(\neg A \lor A) \vdash \bot}{k : \neg(\neg A \lor A) \vdash \bot} (\neg_{E}) \\
\frac{\neg(\neg A \lor A)}{\vdash \neg A \lor A} (\neg_{E})$$

ided middle is
$$\frac{\overline{k : \neg(\neg A \lor A), a : A \vdash a : A}}{\overline{k : \neg(\neg A \lor A), a : A \vdash} \qquad \neg A \lor A} (\lor_{1}^{r})$$

$$\frac{\overline{k : \neg(\neg A \lor A), a : A \vdash} \qquad \neg A \lor A}{\overline{k : \neg(\neg A \lor A) \vdash} \qquad \neg A} (\neg_{E})$$

$$\frac{\overline{k : \neg(\neg A \lor A) \vdash} \qquad \neg A}{\overline{k : \neg(\neg A \lor A) \vdash} \qquad \neg A \lor A} (\lor_{1}^{r})$$

$$\frac{\overline{k : \neg(\neg A \lor A) \vdash} \qquad \neg A \lor A}{\overline{k : \neg(\neg A \lor A) \vdash} \qquad \neg \neg(\neg A \lor A)} (\neg_{E})$$

$$\frac{\overline{k : \neg(\neg A \lor A) \vdash} \qquad \neg \neg(\neg A \lor A)}{\overline{k : \neg(\neg A \lor A) \vdash} \qquad \neg \neg(\neg A \lor A)} (\neg \neg_{E})$$

ided middle is
$$\frac{k : \neg(\neg A \lor A), a : A \vdash a : A}{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A} (\lor_{1}^{r})$$

$$\frac{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}{k : \neg(\neg A \lor A) \vdash} (\neg_{E})$$

$$\frac{k : \neg(\neg A \lor A) \vdash}{k : \neg(\neg A \lor A) \vdash} (\neg_{I})$$

$$\frac{k : \neg(\neg A \lor A) \vdash}{k : \neg(\neg A \lor A) \vdash} (\neg_{E})$$

$$\frac{k : \neg(\neg A \lor A) \vdash}{\vdash} (\neg_{I})$$

$$\frac{\neg A \lor A}{\vdash} (\neg_{I})$$

$$\frac{\neg A \lor A}{\vdash} (\neg_{I})$$

uded middle is
$$\frac{\overline{k : \neg(\neg A \lor A), a : A \vdash a : A}}{\overline{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}} \overset{\text{(\vee_{1}^{r}$)}}{(\neg E)}$$

$$\frac{\overline{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}}{\overline{k : \neg(\neg A \lor A) \vdash}} \overset{\text{(\neg_{1}$)}}{(\neg E)}$$

$$\frac{\overline{k : \neg(\neg A \lor A) \vdash}}{\overline{k : \neg(\neg A \lor A) \vdash}} \overset{\text{(\neg_{1}$)}}{(\neg E)}$$

$$\frac{\overline{k : \neg(\neg A \lor A) \vdash}}{\overline{k : \neg(\neg A \lor A) \vdash}} \overset{\text{(\neg_{1}$)}}{(\neg \neg E)}$$

$$\frac{\frac{1}{k : \neg(\neg A \lor A), a : A \vdash a : A}}{\frac{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}}}{\frac{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \bot}{k : \neg(\neg A \lor A) \vdash \lambda a^{A}.k \,\iota_{r}(a) : \neg A}}} (\neg E)}{\frac{k : \neg(\neg A \lor A) \vdash}{k : \neg(\neg A \lor A) \vdash}}{\frac{k : \neg(\neg A \lor A) \vdash}{k : \neg(\neg A \lor A) \vdash}} (\neg E)}}$$

$$\frac{\frac{k:\neg(\neg A \lor A), a: A \vdash a: A}{k:\neg(\neg A \lor A), a: A \vdash \iota_{r}(a): \neg A \lor A}}{\frac{k:\neg(\neg A \lor A), a: A \vdash \iota_{r}(a): \neg A \lor A}{k:\neg(\neg A \lor A), a: A \vdash k \iota_{r}(a): \bot}} (\neg_{E})} \frac{k:\neg(\neg A \lor A), a: A \vdash k \iota_{r}(a): \bot}{\frac{k:\neg(\neg A \lor A) \vdash \lambda a^{A}.k \iota_{r}(a): \neg A}{k:\neg(\neg A \lor A) \vdash \iota_{l}(\lambda a^{A}.k \iota_{r}(a)): \neg A \lor A}} (\neg_{l})}{\frac{k:\neg(\neg A \lor A) \vdash}{\vdash}} \frac{\neg \neg(\neg A \lor A)}{\neg \neg(\neg A \lor A)} (\neg_{E})}{\neg \neg (\neg A \lor A)}$$

$$\frac{\frac{1}{k : \neg(\neg A \lor A), a : A \vdash a : A}}{\frac{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}}}{\frac{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \bot}{k : \neg(\neg A \lor A) \vdash \lambda a^{A}.k \,\iota_{r}(a) : \neg A}}} (\neg_{E})}{\frac{k : \neg(\neg A \lor A) \vdash \iota_{l}(\lambda a^{A}.k \,\iota_{r}(a)) : \neg A \lor A}}{k : \neg(\neg A \lor A) \vdash k \,\iota_{l}(\lambda a^{A}.k \,\iota_{r}(a)) : \bot}} (\neg_{E})}{\frac{k : \neg(\neg A \lor A) \vdash k \,\iota_{l}(\lambda a^{A}.k \,\iota_{r}(a)) : \bot}{\neg \neg(\neg A \lor A)}} (\neg_{E})}$$

$$\frac{\frac{1}{k : \neg(\neg A \lor A), a : A \vdash a : A}}{\frac{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}}}{\frac{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \bot}{k : \neg(\neg A \lor A) \vdash \lambda a^{A}.k \, \iota_{r}(a) : \neg A}}}{\frac{k : \neg(\neg A \lor A) \vdash \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \neg A \lor A}{k : \neg(\neg A \lor A) \vdash \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \neg A \lor A}}}{\frac{k : \neg(\neg A \lor A) \vdash \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \bot}{k : \neg(\neg A \lor A) \vdash k \, \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \bot}}}{\frac{\vdash \lambda k^{\neg(\neg A \lor A)}.k \, \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \neg \neg(\neg A \lor A)}{\neg A \lor A}}}}{\frac{\neg \neg \vdash}{\neg A \lor A}}$$

$$\frac{\frac{1}{k : \neg(\neg A \lor A), a : A \vdash a : A}}{\frac{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \neg A \lor A}}}{\frac{k : \neg(\neg A \lor A), a : A \vdash \iota_{r}(a) : \bot}{k : \neg(\neg A \lor A) \vdash \lambda a^{A}.k \, \iota_{r}(a) : \bot}}}{\frac{k : \neg(\neg A \lor A) \vdash \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \neg A}{k : \neg(\neg A \lor A) \vdash \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \neg A \lor A}}}{\frac{k : \neg(\neg A \lor A) \vdash \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \bot}{k : \neg(\neg A \lor A) \vdash k \, \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \bot}}}}{\frac{\vdash \lambda k^{\neg(\neg A \lor A)}.k \, \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a)) : \neg \neg(\neg A \lor A)}}{\vdash \mathcal{C}(\lambda k^{\neg(\neg A \lor A)}.k \, \iota_{l}(\lambda a^{A}.k \, \iota_{r}(a))) : \neg A \lor A}}}}$$

Part VII

Strong normalization

A term t is strongly normalizing (or SN, or terminating) if there is no infinite sequence of reductions starting from t:

$$t \longrightarrow_{\beta} t_1 \longrightarrow_{\beta} t_2 \longrightarrow_{\beta} t_3 \longrightarrow_{\beta} \dots$$

Theorem (Strong normalization)

The simply-typed λ -calculus is strongly normalizing: given a typable λ -term t, there is no infinite sequence of β -reductions starting from t.

Theorem (Strong normalization)

The simply-typed λ -calculus is strongly normalizing: given a typable λ -term t, there is no infinite sequence of β -reductions starting from t.

For instance, the λ -term

$$(\lambda x.xx)(\lambda x.xx)$$

is <u>not</u> typable.

Theorem (Strong normalization)

The simply-typed λ -calculus is strongly normalizing: given a typable λ -term t, there is no infinite sequence of β -reductions starting from t.

```
For instance, the \lambda-term
                                    (\lambda x.xx)(\lambda x.xx)
is not typable.
# let omega = (fun x \rightarrow x x) (fun x \rightarrow x x);;
Error: This expression has type 'a -> 'b
        but an expression was expected of type 'a
        The type variable 'a occurs inside 'a -> 'b
```

Deciding β -equivalence

Recall that β -equivalence is the smallest equivalence relation generated by β -reduction.

This means that $t = \beta u$ when there exists a sequence of reductions

$$t \stackrel{*}{\longleftarrow} t_1 \stackrel{*}{\longrightarrow} t_2 \stackrel{*}{\longleftarrow} t_3 \stackrel{*}{\longrightarrow} t_4 \stackrel{*}{\longleftarrow} \dots \stackrel{*}{\longrightarrow} u$$

How can we decide whether two terms are β -equivalent or not?

(remember this is undecidable for untyped λ -calculus)

A first simplification:

Theorem (Church-Rosser)

Two terms t and u are β -equivalent iff and only if there exists w such that

$$t \xrightarrow{*}_{\beta} w_{\beta} \xleftarrow{*} u$$

Proof.

The only if part is obvious. Suppose that we have

we show the result by induction on n. For n = 0, t = u and the result is immediate.

A first simplification:

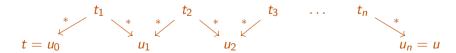
Theorem (Church-Rosser)

Two terms t and u are β -equivalent iff and only if there exists w such that

$$t \xrightarrow{*}_{\beta} w_{\beta} \xleftarrow{*} u$$

Proof.

The only if part is obvious. Suppose that we have



Otherwise.

A first simplification:

Theorem (Church-Rosser)

Two terms t and u are β -equivalent iff and only if there exists w such that

$$t \xrightarrow{*}_{\beta} w_{\beta} \xleftarrow{*} u$$

Proof.

The only if part is obvious. Suppose that we have



Otherwise, by confluence

A first simplification:

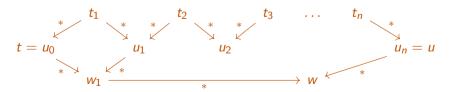
Theorem (Church-Rosser)

Two terms t and u are β -equivalent iff and only if there exists w such that

$$t \stackrel{*}{\longrightarrow}_{\beta} w_{\beta} \stackrel{*}{\longleftarrow} u$$

Proof.

The only if part is obvious. Suppose that we have



Otherwise, by confluence and induction hypothesis.

Joinability

We thus left with deciding whether two terms t and u are joinable, i.e. whether there exists w such that

$$t \xrightarrow{*}_{\beta} w_{\beta} \xleftarrow{*} u$$

A term t is a **normal form** when there is no t' such that $t \longrightarrow_{\beta} t'$.

A term t is a **normal form** when there is no t' such that $t \longrightarrow_{\beta} t'$.

Lemma

Every typable term \mathbf{t} is β -equivalent to a normal form $\hat{\mathbf{t}}$.

Proof.

A term t is a **normal form** when there is no t' such that $t \longrightarrow_{\beta} t'$.

Lemma

Every typable term \mathbf{t} is β -equivalent to a normal form $\hat{\mathbf{t}}$.

Proof.

Given a term t reduce it as much as possible:

$$t \longrightarrow_{\beta} t_1 \longrightarrow_{\beta} t_2 \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} t_n = \hat{t}$$

This process will stop because typable terms are strongly normalizing and t_n is a normal form.

A term t is a **normal form** when there is no t' such that $t \longrightarrow_{\beta} t'$.

Lemma

Every typable term \mathbf{t} is β -equivalent to a normal form $\hat{\mathbf{t}}$.

Proof.

Given a term t reduce it as much as possible:

$$t \longrightarrow_{\beta} t_1 \longrightarrow_{\beta} t_2 \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} t_n = \hat{t}$$

This process will stop because typable terms are strongly normalizing and t_n is a normal form.

Strongly normalizing: any sequence of reductions will eventually lead to a normal form.

Lemma

Two normal forms t and u are β -equivalent iff they are equal.

Proof.

Lemma

Two normal forms t and u are β -equivalent iff they are equal.

Proof.

The only if part is obvious. For the if part, by the Church-Rosser theorem we have

$$t \xrightarrow{*}_{\beta} w_{\beta} \xleftarrow{*} u$$

but since t and u are normal forms, we actually have

$$t = w = u$$

Deciding β -equivalence

Suppose given two typable terms t and u. The following are equivalent

- $t ==_{\beta} u$
- $\hat{t} =_{\beta} \hat{u}$
- $\hat{t} = \hat{u}$

Which can be pictured as

Extensions

This still holds for extensions of λ -calculus: products, coproducts, natural numbers, etc.

In particular, for natural numbers it is important that the recursive calls are performed on smaller numbers, which ensures termination.

Part VIII

Type inference à la Curry

Curry style λ -calculus

In Curry style, λ -terms are

$$t ::= x \mid t u \mid \lambda x.t$$

and the rules are

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

Curry style λ -calculus

In Curry style, λ -terms are

$$t ::= x \mid t u \mid \lambda x.t$$

and the rules are

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

A term can have multiple types:

$$\frac{\overline{x:A \vdash x:A}}{\vdash \lambda x.x:A \to A} \stackrel{\text{(ax)}}{(\to_{\mathsf{I}})} \qquad \frac{\overline{x:A \to A \vdash x:A \to A}}{\vdash \lambda x.x:(A \to A) \to (A \to A)} \stackrel{\text{(ax)}}{(\to_{\mathsf{I}})}$$

Curry style λ -calculus

In Curry style, λ -terms are

$$t ::= x \mid t \mid u \mid \lambda x.t$$

and the rules are

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

A term can have multiple types:

$$\frac{\overline{x:A \vdash x:A}}{\vdash \lambda x.x:A \to A} \stackrel{\text{(ax)}}{(\to_{\mathsf{I}})} \qquad \frac{\overline{x:A \to A \vdash x:A \to A}}{\vdash \lambda x.x:(A \to A) \to (A \to A)} \stackrel{\text{(ax)}}{(\to_{\mathsf{I}})}$$

How do we compute all those types?

Substitutions

A substitution is a function which to type variables associate terms. For instance

$$\sigma(X) = A \to B$$

$$\sigma(Y) = A$$

Substitutions

A substitution is a function which to type variables associate terms. For instance

$$\sigma(X) = A \to B$$
 $\sigma(Y) = A$

We write $A[\sigma]$ for the type A where variables have been replaced according to σ :

$$(X \to Y)[\sigma] = (A \to B) \to A$$

Type equation systems

A type equation system is a finite set

$$E = \{A_1 \neq B_1, \dots, A_n \neq B_n\}$$

of pairs of types A_i and B_i .

Type equation systems

A type equation system is a finite set

$$E = \{A_1 \neq B_1, \dots, A_n \neq B_n\}$$

of pairs of types A_i and B_i .

A substitution σ is a solution of E if

$$A_i[\sigma] = B_i[\sigma]$$

for every index *i*.

Type equation systems

A type equation system is a finite set

$$E = \{A_1 \neq B_1, \dots, A_n \neq B_n\}$$

of pairs of types A_i and B_i .

A substitution σ is a solution of E if

$$A_i[\sigma] = B_i[\sigma]$$

for every index *i*.

For instance, a solution of

$$\{(X \to Y) \not\equiv (Z \to (Z \to Z))\}$$

Type equation systems

A type equation system is a finite set

$$E = \{A_1 \neq B_1, \dots, A_n \neq B_n\}$$

of pairs of types A_i and B_i .

A substitution σ is a solution of E if

$$A_i[\sigma] = B_i[\sigma]$$

for every index *i*.

For instance, a solution of

$$\{(X \to Y) \not\supseteq (Z \to (Z \to Z))\}$$

is
$$\sigma(X) = Z$$
, $\sigma(Y) = Z \rightarrow Z$.

Type equation systems

A type equation system is a finite set

$$E = \{A_1 \neq B_1, \dots, A_n \neq B_n\}$$

of pairs of types A_i and B_i .

A substitution σ is a solution of E if

$$A_i[\sigma] = B_i[\sigma]$$

for every index *i*.

For instance, a solution of

$$\{(X \to Y) \not= Y\}$$

Type equation systems

A type equation system is a finite set

$$E = \{A_1 \neq B_1, \dots, A_n \neq B_n\}$$

of pairs of types A_i and B_i .

A substitution σ is a solution of E if

$$A_i[\sigma] = B_i[\sigma]$$

for every index i.

For instance, a solution of

$$\{(X \to Y) \neq Y\}$$

does not exist.

We are going to associate to each term t

- a type A_t
- an equation system E_t

such that

- t is typable iff E_t has a solution σ ,
- in which case the $A_t[\sigma]$ are the possible types of t.

The rules

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

suggest that

- to every term variable x, we associate a type variable X_x ,
- to every term t, we associate a type A_t ,
- ullet to every term t, we associate an equation system E_t

$$E_{x} = A_{x} = A_{t u} = E_{t u} = A_{t u} = E_{\lambda x.t} = A_{\lambda x.t} = E_{\lambda x.t}$$

The rules

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

suggest that

- to every term variable x, we associate a type variable X_x ,
- to every term t, we associate a type A_t ,
- ullet to every term t, we associate an equation system E_t

$$E_{x} = \emptyset$$
 $A_{x} =$
 $E_{t u} =$ $A_{t u} =$
 $E_{\lambda x.t} =$ $A_{\lambda x.t} =$

The rules

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

suggest that

- to every term variable x, we associate a type variable X_x ,
- to every term t, we associate a type A_t ,
- ullet to every term t, we associate an equation system E_t

$$E_{x} = \emptyset$$
 $A_{x} = X_{x}$
 $E_{t u} =$ $A_{t u} =$
 $E_{\lambda x.t} =$ $A_{\lambda x.t} =$

The rules

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

suggest that

- ullet to every term variable x, we associate a type variable X_x ,
- to every term t, we associate a type A_t ,
- ullet to every term t, we associate an equation system E_t

$$E_{x} = \emptyset$$
 $A_{x} = X_{x}$
 $E_{tu} = E_{t} \cup E_{u} \cup \{A_{t} \neq (A_{u} \rightarrow X)\}$ $A_{tu} = E_{\lambda x.t} = A_{\lambda x.t} = A_{\lambda x.t}$

The rules

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

suggest that

- ullet to every term variable x, we associate a type variable X_x ,
- to every term t, we associate a type A_t ,
- ullet to every term t, we associate an equation system E_t

$$E_X = \emptyset$$
 $A_X = X_X$ $E_{t\,u} = E_t \cup E_u \cup \{A_t \not\supseteq (A_u \to X)\}$ $A_{t\,u} = X$ with X fresh $E_{\lambda x.t} =$ $A_{\lambda x.t} =$

The rules

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

suggest that

- ullet to every term variable x, we associate a type variable X_x ,
- to every term t, we associate a type A_t ,
- ullet to every term t, we associate an equation system E_t

$$E_X = \emptyset$$
 $A_X = X_X$ $E_{t\,u} = E_t \cup E_u \cup \{A_t \not\ni (A_u \to X)\}$ $A_{t\,u} = X$ with X fresh $E_{\lambda x.t} = E_t$ $A_{\lambda x.t} =$

The rules

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : B} (\to_{\mathsf{E}}) \qquad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

suggest that

- to every term variable x, we associate a type variable X_x ,
- to every term t, we associate a type A_t ,
- ullet to every term t, we associate an equation system E_t

$$E_X = \emptyset$$
 $A_X = X_X$ $E_{t\,u} = E_t \cup E_u \cup \{A_t \not\ni (A_u \to X)\}$ $A_{t\,u} = X$ with X fresh $E_{\lambda x.t} = E_t$ $A_{\lambda x.t} = X_X \to A_t$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

we have

$$E_{\mathsf{x}} = \emptyset$$

 $A_{x} = X_{x}$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

$$E_{\times} = \emptyset$$

$$E_{x} = \emptyset$$

$$E_{\lambda x, x} = \emptyset$$

$$A_{x} = X_{x}$$

$$A_{\lambda x, x} = X_{x} \to X_{x}$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

$$E_{x} = \emptyset$$

$$E_{\lambda x.x} = \emptyset$$

$$E_{f(\lambda x.x)} = \{X_{f} \neq (X_{x} \to X_{x}) \to X\}$$

$$A_{x} = X_{x}$$

$$A_{\lambda x.x} = X_{x} \to X_{x}$$

$$A_{f(\lambda x.x)} = X$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

$$E_{X} = \emptyset$$

$$E_{\lambda X,X} = \emptyset$$

$$E_{f(\lambda X,X)} = \{X_{f} \neq (X_{X} \to X_{X}) \to X\}$$

$$A_{f(\lambda X,X)} = X_{f} \Rightarrow X_$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

$$E_{X} = \emptyset$$

$$E_{\lambda X,X} = \emptyset$$

$$E_{f(\lambda X,X)} = \{X_{f} \neq (X_{X} \rightarrow X_{X}) \rightarrow X\}$$

$$A_{f(\lambda X,X)} = X_{f} \neq (X_{X} \rightarrow X_{X}) \rightarrow X$$

$$A_{f(\lambda X,X)} = X$$

$$A_{f(\lambda X,X)} = X$$

$$A_{f(f(\lambda X,X))} = \{X_{f} \neq (X_{X} \rightarrow X_{X}) \rightarrow X, X_{f} \neq X \rightarrow Y\}$$

$$A_{f(f(\lambda X,X))} = Y$$

$$A_{\lambda f,f(f(\lambda X,X))} = X_{f} \rightarrow Y$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

we have

$$E_{\lambda f, f(f(\lambda x, x))} = \{X_f \not= (X_x \to X_x) \to X, X_f \not= X \to Y\} \quad A_{\lambda f, f(f(\lambda x, x))} = X_f \to Y$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

we have

$$E_{\lambda f, f(f(\lambda x. x))} = \{X_f \not\supseteq (X_x \to X_x) \to X, X_f \not\supseteq X \to Y\} \quad A_{\lambda f, f(f(\lambda x. x))} = X_f \to Y$$

$$\sigma(X_{\times})=A$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

we have

$$E_{\lambda f, f(f(\lambda x, x))} = \{X_f \not= (X_x \to X_x) \to X, X_f \not= X \to Y\} \quad A_{\lambda f, f(f(\lambda x, x))} = X_f \to Y$$

$$\sigma(X_X) = A \quad \sigma(X) = A \to A$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

we have

$$E_{\lambda f, f(f(\lambda x. x))} = \{X_f \not\supseteq (X_x \to X_x) \to X, X_f \not\supseteq X \to Y\} \quad A_{\lambda f, f(f(\lambda x. x))} = X_f \to Y$$

$$\sigma(X_X) = A \quad \sigma(X) = A \rightarrow A \quad \sigma(Y) = A \rightarrow A$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

we have

$$E_{\lambda f, f(f(\lambda x. x))} = \{X_f \not\supseteq (X_x \to X_x) \to X, X_f \not\supseteq X \to Y\} \quad A_{\lambda f, f(f(\lambda x. x))} = X_f \to Y$$

$$\sigma(X_{\mathsf{X}}) = A \quad \sigma(X) = A \to A \quad \sigma(Y) = A \to A \quad \sigma(X_{\mathsf{f}}) = (A \to A) \to (A \to A)$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

we have

$$E_{\lambda f, f(f(\lambda x. x))} = \{X_f \not\supseteq (X_x \to X_x) \to X, X_f \not\supseteq X \to Y\} \quad A_{\lambda f, f(f(\lambda x. x))} = X_f \to Y$$

A solution is

$$\sigma(X_{\mathsf{x}}) = A \quad \sigma(X) = A \to A \quad \sigma(Y) = A \to A \quad \sigma(X_{\mathsf{f}}) = (A \to A) \to (A \to A)$$

The resulting type is

$$(X_f \to Y)[\sigma] = ((A \to A) \to (A \to A)) \to A \to A$$

For instance, consider

$$t = \lambda f. f(f(\lambda x. x))$$

we have

$$E_{\lambda f, f(f(\lambda x, x))} = \{X_f \not= (X_x \to X_x) \to X, X_f \not= X \to Y\} \quad A_{\lambda f, f(f(\lambda x, x))} = X_f \to Y$$

A solution is

$$\sigma(X_{\mathsf{x}}) = A \quad \sigma(X) = A \to A \quad \sigma(Y) = A \to A \quad \sigma(X_{\mathsf{f}}) = (A \to A) \to (A \to A)$$

The resulting type is

$$(X_f \to Y)[\sigma] = ((A \to A) \to (A \to A)) \to A \to A$$

to be compared with

Note that the previous solution works for which ever type A we choose.

Therefore there is an infinite number of solutions!

Theorem We have

- if $\Gamma \vdash t : A$ then there is a solution σ of E_t such that $A = A_t[\sigma]$ and $\Gamma(x) = \sigma(X_x)$ for every variable $x \in FV(t)$,
- for every solution σ of E_t , if we write Γ for a context such that $\Gamma(x) = \sigma(x)$ for every free variable $x \in FV(t)$, then $\Gamma \vdash t : A_t[\sigma]$ is derivable.

Otherwise said, there is a bijection between

- solutions σ of E_t ,
- pairs (Γ, A) such that $\Gamma \vdash t : A$ is derivable.

Unification

The **unification** algorithm takes a type equation system E and produces a solution σ when there exists one, in polynomial time.

Unification

The **unification** algorithm takes a type equation system E and produces a solution σ when there exists one, in polynomial time.

Moreover, this solution is the most general one: any other solution au satisfies

$$\tau = \tau' \circ \sigma$$

Unification

The unification algorithm takes a type equation system E and produces a solution σ when there exists one, in polynomial time.

Moreover, this solution is the *most general one*: any other solution au satisfies

$$\tau = \tau' \circ \sigma$$

We can therefore compute a most general type for Curry-style λ -terms in P-time!

Part IX

Bidirectional typechecking

Looking closely at the operations we perform during type-checking there are two phases.

- Type inference: we guess the type of a term.
- Type checking: we check that a term has a given type.

For instance, consider the type inference of

$$\frac{x: \mathbb{N} \vdash x: \mathbb{N}}{\vdash \lambda x^{\mathbb{N}}.x: \mathbb{N} \to \mathbb{N}} \qquad \vdash 5: \mathbb{N}}$$
$$\vdash (\lambda x^{\mathbb{N}}.x)5: \mathbb{N}$$

Bidirectional typechecking formalizes this two phases, allowing to add type annotations (we could mix Church and Curry style).

We consider Curry-style terms with type annotations:

$$t ::= x \mid t u \mid \lambda x.t \mid (x : A)$$

We consider Curry-style terms with type annotations:

$$t ::= x \mid t \mid u \mid \lambda x.t \mid (x : A)$$

We consider two kind of sequents:

- $\Gamma \vdash t \Rightarrow A$: the term t allows to synthesize the type A (type inference),
- $\Gamma \vdash t \Leftarrow A$: the term t allows checks against the type A (type checking).

We consider Curry-style terms with type annotations:

$$t ::= x \mid t \mid u \mid \lambda x.t \mid (x : A)$$

We consider two kind of sequents:

- $\Gamma \vdash t \Rightarrow A$: the term t allows to synthesize the type A (type inference),
- $\Gamma \vdash t \Leftarrow A$: the term t allows checks against the type A (type checking).

We can then orient the typing rules

$$\Gamma \vdash t : A$$
 as $\Gamma \vdash t \Rightarrow A$ or $\Gamma \vdash t : \Leftarrow A$

Orientation of the base rules

• variable: we already have the information in the context

$$\Gamma \vdash x \Rightarrow \Gamma(x)$$
 (ax)

Orientation of the base rules

• variable: we already have the information in the context

$$\Gamma \vdash x \Rightarrow \Gamma(x)$$
 (ax)

 application: we cannot come up with B, we have to check the type of the argument

$$\frac{\Gamma \vdash t \Rightarrow A \to B \qquad \Gamma \vdash u \Leftarrow A}{\Gamma \vdash t \, u : B} \, (\to_{\mathsf{E}})$$

Orientation of the base rules

• variable: we already have the information in the context

$$\Gamma \vdash x \Rightarrow \Gamma(x)$$
 (ax)

• application: we cannot come up with *B*, we have to check the type of the argument

$$\frac{\Gamma \vdash t \Rightarrow A \to B \qquad \Gamma \vdash u \Leftarrow A}{\Gamma \vdash t \, u : B} \, (\to_{\mathsf{E}})$$

• abstraction: we cannot come up with A in Curry style (and typing is not unique)

$$\frac{\Gamma, x : A \vdash t \Leftarrow B}{\Gamma \vdash \lambda x . t \Leftarrow A \to B} (\to_{\mathsf{I}})$$

We have two new rules:

• subsumption: if we can infer then we can check

$$\frac{\Gamma \vdash t \Rightarrow A}{\Gamma \vdash t \Leftarrow A}$$

We have two new rules:

• subsumption: if we can infer then we can check

$$\frac{\Gamma \vdash t \Rightarrow A}{\Gamma \vdash t \Leftarrow A}$$

casting:

$$\frac{\Gamma \vdash t \Leftarrow A}{\Gamma \vdash (t : A) \Rightarrow A}$$

$$\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) \, 5 \, 7 \Rightarrow \mathbb{R}$$

$$\Gamma \vdash \mathsf{mean}\left(\lambda x.x imes x\right) \mathsf{5} \Rightarrow \mathbb{R} \to \mathbb{R}$$

$$\Gamma \vdash 7 \Leftarrow \mathbb{R}$$

 $\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) \, 5 \, 7 \Rightarrow \mathbb{R}$

$$\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) \, 5 \Rightarrow \mathbb{R} \to \mathbb{R}$$

$$\Gamma \vdash 7 \Rightarrow \mathbb{R}$$

$$\Gamma \vdash 7 \Leftrightarrow \mathbb{R}$$

 $\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) \, 5 \, 7 \Rightarrow \mathbb{R}$

$$\begin{array}{c} \hline \Gamma \vdash \mathsf{mean} \, (\lambda x. x \times x) \, \mathsf{5} \Rightarrow \mathbb{R} & \hline \Gamma \vdash \mathsf{7} \Rightarrow \mathbb{R} \\ \hline \Gamma \vdash \mathsf{mean} \, (\lambda x. x \times x) \, \mathsf{5} \, \mathsf{7} \Rightarrow \mathbb{R} \\ \hline \end{array}$$

$$\begin{array}{ccc} \Gamma \vdash \mathsf{mean} \, (\lambda x. x \times x) \Rightarrow \mathbb{R} \to \mathbb{R} & \vdots & \overline{\Gamma \vdash 7 \Rightarrow \mathbb{R}} \\ \hline \Gamma \vdash \mathsf{mean} \, (\lambda x. x \times x) \, 5 \Rightarrow \mathbb{R} \to \mathbb{R} & \vdots & \overline{\Gamma \vdash 7 \Rightarrow \mathbb{R}} \\ \hline \Gamma \vdash \mathsf{mean} \, (\lambda x. x \times x) \, 5 \, 7 \Rightarrow \mathbb{R} & \overline{\Gamma} \vdash \overline{\Gamma} & \overline{\Gamma} &$$

$$\frac{\Gamma \vdash \mathsf{mean} \Rightarrow (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to \mathbb{R} \qquad \Gamma \vdash \lambda x. x \Leftarrow \mathbb{R} \to \mathbb{R}}{\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) \Rightarrow \mathbb{R} \to \mathbb{R} \to \mathbb{R}} \qquad \vdots \qquad \frac{\Gamma \vdash 7 \Rightarrow \mathbb{R}}{\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) 5 \Rightarrow \mathbb{R} \to \mathbb{R}} \qquad \qquad \Gamma \vdash 7 \Leftarrow \mathbb{R}}$$

$$\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) 5 \Rightarrow \mathbb{R}$$

$$\frac{\Gamma, x : \mathbb{R} \vdash x \Leftarrow \mathbb{R}}{\Gamma \vdash \mathsf{mean} \Rightarrow (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to \mathbb{R}} \qquad \frac{\Gamma, x : \mathbb{R} \vdash x \Leftarrow \mathbb{R}}{\Gamma \vdash \lambda x . x \Leftarrow \mathbb{R} \to \mathbb{R}}$$

$$\frac{\Gamma \vdash \mathsf{mean} (\lambda x . x \times x) \Rightarrow \mathbb{R} \to \mathbb{R}}{\Gamma \vdash \mathsf{mean} (\lambda x . x \times x) 5 \Rightarrow \mathbb{R} \to \mathbb{R}} \qquad \vdots \qquad \frac{\Gamma \vdash 7 \Rightarrow \mathbb{R}}{\Gamma \vdash 7 \Leftarrow \mathbb{R}}$$

$$\Gamma \vdash \mathsf{mean} (\lambda x . x \times x) 5 7 \Rightarrow \mathbb{R}$$

$$\frac{\Gamma, x : \mathbb{R} \vdash x \Rightarrow \mathbb{R}}{\Gamma, x : \mathbb{R} \vdash x \Leftarrow \mathbb{R}}$$

$$\frac{\Gamma \vdash \mathsf{mean} \Rightarrow (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to \mathbb{R}}{\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) \Rightarrow \mathbb{R} \to \mathbb{R}}$$

$$\frac{\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) \Rightarrow \mathbb{R} \to \mathbb{R}}{\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) 5 \Rightarrow \mathbb{R} \to \mathbb{R}}$$

$$\frac{\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) 5 \Rightarrow \mathbb{R}}{\Gamma \vdash \mathsf{mean} (\lambda x. x \times x) 5 7 \Rightarrow \mathbb{R}}$$

$$\frac{\overline{\Gamma, x : \mathbb{R} \vdash x \Rightarrow \mathbb{R}}}{\Gamma, x : \mathbb{R} \vdash x \Leftarrow \mathbb{R}}$$

$$\frac{\Gamma \vdash \mathsf{mean} \Rightarrow (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to \mathbb{R}}{\Gamma \vdash \lambda x . x \Leftarrow \mathbb{R} \to \mathbb{R}}$$

$$\frac{\Gamma \vdash \mathsf{mean} (\lambda x . x \times x) \Rightarrow \mathbb{R} \to \mathbb{R}}{\Gamma \vdash \mathsf{mean} (\lambda x . x \times x) 5 \Rightarrow \mathbb{R} \to \mathbb{R}}$$

$$\frac{\Gamma \vdash \mathsf{mean} (\lambda x . x \times x) 5 7 \Rightarrow \mathbb{R}}{\Gamma \vdash \mathsf{mean} (\lambda x . x \times x) 5 7 \Rightarrow \mathbb{R}}$$

If we try to define the mean function as

$$\lambda fxy.(fx+fy)/2$$

we cannot infer its type: we can only check the type of functions (i.e. when they are used as arguments of other functions).

If we try to define the mean function as

$$\lambda fxy.(fx+fy)/2$$

we cannot infer its type: we can only check the type of functions (i.e. when they are used as arguments of other functions).

In order to define it, we have to provide its type

mean =
$$(\lambda f x y.(f x + f y)/2 : (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to \mathbb{R} \to \mathbb{R})$$

If we try to define the mean function as

$$\lambda fxy.(fx+fy)/2$$

we cannot infer its type: we can only check the type of functions (i.e. when they are used as arguments of other functions).

In order to define it, we have to provide its type

mean =
$$(\lambda f x y.(f x + f y)/2 : (\mathbb{R} \to \mathbb{R}) \to \mathbb{R} \to \mathbb{R} \to \mathbb{R})$$

In Agda, the syntax for such definitions will be

mean :
$$(R \rightarrow R) \rightarrow R \rightarrow R \rightarrow R$$

mean f x y = $(x + y) / 2$

The implementation is pretty direct.

We define types

```
type ty =
    | TVar of string
    | Arr of ty * ty
```

The implementation is pretty direct.

```
We define types
type ty =
  | TVar of string
  | Arr of ty * ty
and terms:
type term =
  | Var of string
  | App of term * term
  | Abs of string * term
  | Cast of term * ty
```

```
(** Type inference. *)
let rec infer env = function
  | Var x ->
    (try List.assoc x env
     with Not_found ->
          raise Type_error)
  | App (t, u) ->
      match infer env t with
      | Arr (a, b) -> check env u a; b
      | _ -> raise Type_error
  | Abs (x, t) -> raise Cannot_infer
  | Cast (t, a) -> check env t a; a
```

```
(** Type inference. *)
                                       (** Type checking. *)
let rec infer env = function
                                       and check env t a =
  | Var x ->
                                         match t , a with
                                         | Abs (x, t) , Arr (a, b) ->
    (try List.assoc x env
     with Not_found ->
                                           check ((x, a)::env) t b
         raise Type_error)
                                         -> if infer env t <> a then
  | App (t, u) ->
                                                  raise Type_error
      match infer env t with
      | Arr (a, b) -> check env u a; b
      | _ -> raise Type_error
  | Abs (x, t) -> raise Cannot_infer
  | Cast (t, a) -> check env t a; a
```

Part X

Proof of strong normalization

Strong normalization

We now want to prove

Theorem

Typed λ -terms are **strongly normalizing**.

Given a term t which is typable, there is no infinite sequence of reductions

$$t \longrightarrow_{\beta} t_1 \longrightarrow_{\beta} t_2 \longrightarrow_{\beta} \dots$$

A naive try would be by induction on the derivation of $\Gamma \vdash t : A$.

If the last rule is

$$\frac{}{\Gamma \vdash x : A}$$
 (ax)

x is clearly strongly normalizing.

A naive try would be by induction on the derivation of $\Gamma \vdash t : A$.

If the last rule is

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^A . t : A \to B} (\to_{\mathsf{I}})$$

A sequence of reductions is of the form

A naive try would be by induction on the derivation of $\Gamma \vdash t : A$.

If the last rule is

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x^A . t : A \to B} (\to_{\mathsf{I}})$$

A sequence of reductions is of the form

$$\lambda x.t \longrightarrow_{\beta} \lambda x.t_1 \longrightarrow_{\beta} \lambda x.t_2 \longrightarrow_{\beta} \dots$$

with

$$t \longrightarrow_{\beta} t_1 \longrightarrow_{\beta} t_2 \longrightarrow_{\beta} \dots$$

and we conclude by induction hypothesis.

A naive try would be by induction on the derivation of $\Gamma \vdash t : A$.

If the last rule is

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} (\to_{\mathsf{E}})$$

A reduction starting from t u can be of the form

A naive try would be by induction on the derivation of $\Gamma \vdash t : A$.

If the last rule is

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} (\to_{\mathsf{E}})$$

A reduction starting from tu can be of the form

$$t u \longrightarrow t' u$$
 or $t u \longrightarrow t u'$

but also

$$(\lambda x.t)u \longrightarrow t[u/x]$$

e.g. II, for which we cannot say anything.

Instead, we take an optimistic approach and defined, for each type A, a set

 R_A

of terms, the reducibility candidates for the type A, such that

- for every term t of type A (in whichever context), we have $t \in R_A$,
- the terms of R_A are obviously terminating.

NB:

- the definition has to be carefully crafted in order to be able to reason by induction,
- the terms of R_A are not necessarily of type A (although we could).

We define R_A by induction on A by

We define R_A by induction on A by

• in the case of a variable,

```
R_X = \{t \mid t \text{ is strongly normalizing}\}
```

We define R_A by induction on A by

• in the case of a variable,

$$R_X = \{t \mid t \text{ is strongly normalizing}\}$$

• in the case of an arrow,

$$R_{A \to B} = \{t \mid \text{for every } u \in R_A, \text{ we have } t u \in R_B\}$$

We define R_A by induction on A by

• in the case of a variable,

$$R_X = \{t \mid t \text{ is strongly normalizing}\}$$

• in the case of an arrow,

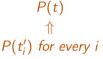
$$R_{A \to B} = \{t \mid \text{for every } u \in R_A, \text{ we have } t u \in R_B\}$$

We still have to show that

- a term $t \in R_A$ is strongly normalizing,
- if $\Gamma \vdash t : A$ is derivable then $t \in R_A$.

Proposition

Suppose given a property P(t) on terms. Suppose that, for any term t, if P(t') for every t' with $t \longrightarrow_{\beta} t'$, then P(t):



Then P(t) holds for every SN term t.

Proposition

Suppose given a property P(t) on terms. Suppose that, for any term t, if P(t') for every t' with $t \longrightarrow_{\beta} t'$, then P(t):

Then P(t) holds for every SN term t.

Proof.

By contraposition. Suppose that P(t) does not hold for some SN term t.

Proposition

Suppose given a property P(t) on terms. Suppose that, for any term t, if P(t') for every t' with $t \longrightarrow_{\beta} t'$, then P(t):

Then P(t) holds for every SN term t.

Proof.

By contraposition. Suppose that P(t) does not hold for some SN term t.

• then there exists t_1 with $t \longrightarrow_{\beta} t_1$ such that $P(t_1)$ does not hold,

Proposition

Suppose given a property P(t) on terms. Suppose that, for any term t, if P(t') for every t' with $t \longrightarrow_{\beta} t'$, then P(t):

Then P(t) holds for every SN term t.

Proof.

By contraposition. Suppose that P(t) does not hold for some SN term t.

- then there exists t_1 with $t \longrightarrow_{\beta} t_1$ such that $P(t_1)$ does not hold,
- then there exists t_2 with $t_1 \longrightarrow_{\beta} t_2$ such that $P(t_2)$ does not hold,

Induction for SN terms

Proposition

Suppose given a property P(t) on terms. Suppose that, for any term t, if P(t') for every t' with $t \longrightarrow_{\beta} t'$, then P(t):

Then P(t) holds for every SN term t.

Proof.

By contraposition. Suppose that P(t) does not hold for some SN term t.

- then there exists t_1 with $t \longrightarrow_{\beta} t_1$ such that $P(t_1)$ does not hold,
- then there exists t_2 with $t_1 \longrightarrow_{\beta} t_2$ such that $P(t_2)$ does not hold,
- . . .

Induction for SN terms

Proposition

Suppose given a property P(t) on terms. Suppose that, for any term t, if P(t') for every t' with $t \longrightarrow_{\beta} t'$, then P(t):

Then P(t) holds for every SN term t.

Proof.

By contraposition. Suppose that P(t) does not hold for some SN term t.

- then there exists t_1 with $t \longrightarrow_{\beta} t_1$ such that $P(t_1)$ does not hold,
- then there exists t_2 with $t_1 \longrightarrow_{\beta} t_2$ such that $P(t_2)$ does not hold,
- ...

Contradiction: we have an infinite sequence of reductions starting from t.

Neutral terms

A term t is **neutral** when it is not an abstraction:

$$t = t_1 t_2$$
 or $t = x$

Neutral terms

A term t is **neutral** when it is not an abstraction:

$$t = t_1 t_2$$
 or $t = x$

A neutral term does not interact with its context:

Lemma

Given terms t and u with t neutral, the only possible reductions of t u are

- $t u \longrightarrow_{\beta} t' u$ with $t \longrightarrow_{\beta} t'$,
- $t u \longrightarrow_{\beta} t u'$ with $u \longrightarrow_{\beta} u'$.

Lemma

```
(CR1) If t \in R_A then t is strongly normalizing.
```

```
(CR2) If t \in R_A and t \longrightarrow_{\beta} t' then t' \in R_A.
```

(CR3) If t is neutral, and for every t' such that $t \longrightarrow_{\beta} t'$ we have $t' \in R_A$, then $t \in R_A$.

Lemma

- (CR1) If $t \in R_A$ then t is strongly normalizing.
- (CR2) If $t \in R_A$ and $t \longrightarrow_{\beta} t'$ then $t' \in R_A$.
- (CR3) If t is neutral, and for every t' such that $t \longrightarrow_{\beta} t'$ we have $t' \in R_A$, then $t \in R_A$.

Proof.

By induction on A. If A = X is a variable then:

- (CR1) is true by definition of R_X .
- (CR2) If $t \longrightarrow_{\beta} t'$ and t is SN then t' is SN.
- (CR3) If t reduces only in SN terms then it is SN.

Lemma

- (CR1) If $t \in R_A$ then t is strongly normalizing.
- (CR2) If $t \in R_A$ and $t \longrightarrow_{\beta} t'$ then $t' \in R_A$.
- (CR3) If t is neutral, and for every t' such that $t \longrightarrow_{\beta} t'$ we have $t' \in R_A$, then $t \in R_A$.

Proof.

Consider the case $A \rightarrow B$.

(CR1) Fix $t \in R_{A \to B}$.

We have $x \in R_A$ by (CR3), therefore $t \times R_B$ and is thus SN by (CR1). Any infinite reduction $t \longrightarrow_{\beta} t_1 \longrightarrow_{\beta} t_2 \longrightarrow_{\beta} \dots$ would induce an infinite reduction $t \times K \longrightarrow_{\beta} t_1 \times K \longrightarrow_{\beta} t_2 \times K \longrightarrow_{\beta} \dots$ with $t \times R_B$, which is impossible. Thus t is SN

Lemma

- (CR1) If $t \in R_A$ then t is strongly normalizing.
- (CR2) If $t \in R_A$ and $t \longrightarrow_{\beta} t'$ then $t' \in R_A$.
- (CR3) If t is neutral, and for every t' such that $t \longrightarrow_{\beta} t'$ we have $t' \in R_A$, then $t \in R_A$.

Proof.

Consider the case $A \rightarrow B$.

(CR2) Fix $t \in R_{A \to B}$ with $t \longrightarrow_{\beta} t'$. Given $u \in R_A$, we have $t u \in R_B$ and $t u \longrightarrow_{\beta} t' u$, therefore $t' u \in R_B$ by (CR2). Therefore $t' \in R_{A \to B}$ by definition of $R_{A \to B}$.

Lemma

- (CR1) If $t \in R_A$ then t is strongly normalizing.
- (CR2) If $t \in R_A$ and $t \longrightarrow_{\beta} t'$ then $t' \in R_A$.
- (CR3) If t is neutral, and for every t' such that $t \longrightarrow_{\beta} t'$ we have $t' \in R_A$, then $t \in R_A$.

Proof.

Consider the case $A \rightarrow B$.

(CR3) Fix t neutral satisfying the property.

Given $u \in R_A$, u is SN by (CR1), and we can reason by induction on it.

Since t is neutral the term t u reduces either to

- t'u with $t \longrightarrow_{\beta} t'$: we have $t' \in R_{A \to B}$ and thus $t'u \in R_B$,
- t u' with $u \longrightarrow_{\beta} u'$: we have $u' \in R_A$ by (CR2), and therefore $t u' \in R_B$ by IH.

The term t u is neutral and is thus in R_B by (CR3) at type B.

Lemma

Given a term t and types A and B, if $t[u/x] \in R_B$ for every $u \in R_A$, then $\lambda x.t \in R_{A \to B}$.

Proof.

Since $x \in R_A$ by (CR3) at A, we have $t = t[x/x] \in R_B$ and thus $t \in R_B$ and is thus strongly normalizing by (CR1).

Given $u \in R_A$, we show that $(\lambda x.t)u \in R_B$ by induction on (t, u). The term $(\lambda x.t)u$ can reduce to

Lemma

Given a term t and types A and B, if $t[u/x] \in R_B$ for every $u \in R_A$, then $\lambda x.t \in R_{A \to B}$.

Proof.

Since $x \in R_A$ by (CR3) at A, we have $t = t[x/x] \in R_B$ and thus $t \in R_B$ and is thus strongly normalizing by (CR1).

Given $u \in R_A$, we show that $(\lambda x.t)u \in R_B$ by induction on (t, u). The term $(\lambda x.t)u$ can reduce to

• t[u/x]: in R_B by hypothesis,

Lemma

Given a term t and types A and B, if $t[u/x] \in R_B$ for every $u \in R_A$, then $\lambda x.t \in R_{A \to B}$.

Proof.

Since $x \in R_A$ by (CR3) at A, we have $t = t[x/x] \in R_B$ and thus $t \in R_B$ and is thus strongly normalizing by (CR1).

Given $u \in R_A$, we show that $(\lambda x.t)u \in R_B$ by induction on (t, u). The term $(\lambda x.t)u$ can reduce to

- t[u/x]: in R_B by hypothesis,
- $(\lambda x.t')u$ with $t \longrightarrow_{\beta} t'$: in R_B by induction hypothesis,

Lemma

Given a term t and types A and B, if $t[u/x] \in R_B$ for every $u \in R_A$, then $\lambda x.t \in R_{A \to B}$.

Proof.

Since $x \in R_A$ by (CR3) at A, we have $t = t[x/x] \in R_B$ and thus $t \in R_B$ and is thus strongly normalizing by (CR1).

Given $u \in R_A$, we show that $(\lambda x.t)u \in R_B$ by induction on (t, u). The term $(\lambda x.t)u$ can reduce to

- t[u/x]: in R_B by hypothesis,
- $(\lambda x.t')u$ with $t \longrightarrow_{\beta} t'$: in R_B by induction hypothesis,
- $(\lambda x.t)u'$ with $u \longrightarrow_{\beta} u'$: in R_B by induction hypothesis.

Lemma

Given a term t and types A and B, if $t[u/x] \in R_B$ for every $u \in R_A$, then $\lambda x.t \in R_{A \to B}$.

Proof.

Since $x \in R_A$ by (CR3) at A, we have $t = t[x/x] \in R_B$ and thus $t \in R_B$ and is thus strongly normalizing by (CR1).

Given $u \in R_A$, we show that $(\lambda x.t)u \in R_B$ by induction on (t, u). The term $(\lambda x.t)u$ can reduce to

- t[u/x]: in R_B by hypothesis,
- $(\lambda x.t')u$ with $t \longrightarrow_{\beta} t'$: in R_B by induction hypothesis,
- $(\lambda x.t)u'$ with $u \longrightarrow_{\beta} u'$: in R_B by induction hypothesis.

The term $(\lambda x.t)u$ is neutral and reduces to terms in R_B . By (CR3), it belongs to R_B .

Finally, we would like to show that

Theorem

Given t such that $\Gamma \vdash t : A$ is derivable, we have $t \in R_A$.

Proof.

By induction on the derivation of $\Gamma \vdash t : A$.

Finally, we would like to show that

Theorem

Given t such that $\Gamma \vdash t : A$ is derivable, we have $t \in R_A$.

Proof.

By induction on the derivation of $\Gamma \vdash t : A$.

• If the last rule is

$$\frac{}{\Gamma \vdash x : A}$$
 (ax)

Then x is neutral and reduces only to terms in R_A (it does not reduce).

By (CR3)
$$x \in R_A$$
.

Finally, we would like to show that

Theorem

Given t such that $\Gamma \vdash t : A$ is derivable, we have $t \in R_A$.

Proof.

By induction on the derivation of $\Gamma \vdash t : A$.

• If the last rule is

$$\frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash t u : B} (\to_{\mathsf{E}})$$

By IH, we have $t \in R_{A \to B}$ and $u \in R_A$.

Therefore $t u \in R_B$ by definition of $R_{A \to B}$.

Finally, we would like to show that

Theorem

Given t such that $\Gamma \vdash t : A$ is derivable, we have $t \in R_A$.

Proof.

By induction on the derivation of $\Gamma \vdash t : A$.

• If the last rule is

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

By IH, we have $t \in R_A$. And... ????

Finally, we would like to show that

Theorem

Given t such that $\Gamma \vdash t : A$ is derivable, we have $t \in R_A$.

Proof.

By induction on the derivation of $\Gamma \vdash t : A$.

• If the last rule is

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

By IH, we have
$$t \in R_A$$
. And... ????

We actually need a stronger induction hypothesis! (so that we can use previous lemma)

Proposition

Given t such that $x_1: A_1, \ldots, x_n: A_n \vdash t: A$ is derivable, and for every terms $u_i \in R_{A_i}$, we have $t[\underline{u}/\underline{x}] = t[u_1/x_1, \ldots, u_n/x_n] \in R_A$.

Proof.

By induction on the derivation of $\Gamma \vdash t : A$.

Proposition

Given t such that $x_1: A_1, \ldots, x_n: A_n \vdash t: A$ is derivable, and for every terms $u_i \in R_{A_i}$, we have $t[\underline{u}/\underline{x}] = t[u_1/x_1, \ldots, u_n/x_n] \in R_A$.

Proof.

By induction on the derivation of $\Gamma \vdash t : A$.

• If the last rule is

$$\frac{}{\Gamma \vdash x_i : A}$$
 (ax)

The
$$x_i[\underline{u}/\underline{x}] = u_i \in R_{A_i}$$
.

Proposition

Given t such that $x_1: A_1, \ldots, x_n: A_n \vdash t: A$ is derivable, and for every terms $u_i \in R_{A_i}$, we have $t[\underline{u}/\underline{x}] = t[u_1/x_1, \ldots, u_n/x_n] \in R_A$.

Proof.

By induction on the derivation of $\Gamma \vdash t : A$.

• If the last rule is

$$\frac{\Gamma \vdash t_1 : A \to B \qquad \Gamma \vdash t_2 : A}{\Gamma \vdash t_1 \; t_2 : B} \; (\to_{\mathsf{E}})$$

By IH, we have $t_1[\underline{u}/\underline{x}] \in R_{A \to B}$ and $t_2[\underline{u}/\underline{x}] \in R_A$. Therefore $(t_1 t_2)[\underline{u}/\underline{x}] = (t_1[\underline{u}/\underline{x}])(t_2[\underline{u}/\underline{x}]) \in R_B$ by definition of $R_{A \to B}$.

Proposition

Given t such that $x_1: A_1, \ldots, x_n: A_n \vdash t: A$ is derivable, and for every terms $u_i \in R_{A_i}$, we have $t[\underline{u}/\underline{x}] = t[u_1/x_1, \ldots, u_n/x_n] \in R_A$.

Proof.

By induction on the derivation of $\Gamma \vdash t : A$.

If the last rule is

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} (\to_{\mathsf{I}})$$

By IH, we have $(t[\underline{u}/\underline{x}])[v/x] = t[\underline{u}/\underline{x}, v/x] \in R_B$ for every $v \in R_A$. Therefore, $\lambda x.t \in R_{A\to B}$ by previous lemma.

Theorem

For every t such that $\Gamma \vdash t : A$ is derivable, we have $t \in R_A$.

Proof.

Suppose $\Gamma = x_1 : A_1, \dots, x_n : A_n$.

By (CR3), we have $x_i \in R_{A_i}$.

By previous proposition, we have $t = t[x_1/x_1, \dots, x_n/x_n] \in R_A$.

Strong normalizablility

Theorem

For every term t such that $\Gamma \vdash t : A$ is derivable, t is strongly normalizable.

Proof.

We have $t \in R_A$, and thus t is SN by (CR1).