
CSC_51051_EP: Pure λ-calculus

Samuel Mimram

2024

École polytechnique

Part I

Introduction

1

Imperative programming

You are mostly used to imperative programming languages where programs consist in
sequences of instructions and modify a state.

public long factorial(int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

2

Functional programming

In functional programming, we manipulate functions, which can even be created on
the fly:

let rec map f l =
match l with
| [] -> []
| x::l' -> (f x)::(map f l')

let double_list l =
map (fun x -> 2 * x) l

So that

double_list [1; 2; 3];;
- : int list = [2; 4; 6]

3

Functional programming

We can define the multiplication function by

let mult x y = x * y

and then define doubling with

let double = mult 2

this is thanks to Curryfication which allows partial application:
the above definition is equivalent to

let mult = fun x -> fun y -> x * y

4

λ-calculus

We have seen how to describe the reduction for an imperative programming language.

How can we define this for functional programming languages?

The λ-calculus is the core of a functional programming language:
we focus on the functional part.

It is a subject of study per se, but it can be mixed with imperative features
(e.g. OCaml).

5

λ-calculus

We have seen how to describe the reduction for an imperative programming language.

How can we define this for functional programming languages?

The λ-calculus is the core of a functional programming language:
we focus on the functional part.

It is a subject of study per se, but it can be mixed with imperative features
(e.g. OCaml).

5

Variable binding

When we define a function
f (x) = 2× x

the name of the variable x does not matter:

f (y) = 2× y

is considered to be the same function.

We say that x is bound in the expression.

The relation which identifies two expressions differing only in renaming of bound
variable is called α-conversion.

6

Variable binding

When we define a function
f (x) = 2× x

the name of the variable x does not matter:

f (y) = 2× y

is considered to be the same function.

We say that x is bound in the expression.

The relation which identifies two expressions differing only in renaming of bound
variable is called α-conversion.

6

Variable binding

When we define a function
f (x) = 2× x

the name of the variable x does not matter:

f (y) = 2× y

is considered to be the same function.

We say that x is bound in the expression.

The relation which identifies two expressions differing only in renaming of bound
variable is called α-conversion.

6

Variable binding

There are many places where this phenomenon occurs in mathematics:

lim
x→∞

y

x

∫ 1

0
tx dt

n∑
i=0

ix

7

Variable binding

This looks like a detail, but it is quite important: consider

f (y) = lim
x→∞

y

x

Clearly, if I replace y by any arbitrary expression t (say, t = ln(sin(z))
√

2),

f (t) = lim
x→∞

t

x
= 0

But what about y = x?
f (x) = lim

x→∞

x

x
= lim

x→∞
1 = 1

We always implicitly make the assumption that bounded variables are fresh, i.e. do not
occur in substituted terms, which we can do up to α-conversion:

f (x) =
(
y 7→ lim

x→∞

y

x

)
(x) =

(
y 7→ lim

z→∞

y

z

)
(x) = lim

z→∞

x

z
= 0

8

Variable binding

This looks like a detail, but it is quite important: consider

f (y) = lim
x→∞

y

x

Clearly, if I replace y by any arbitrary expression t (say, t = ln(sin(z))
√

2),

f (t) = lim
x→∞

t

x
= 0

But what about y = x?
f (x) = lim

x→∞

x

x
= lim

x→∞
1 = 1

We always implicitly make the assumption that bounded variables are fresh, i.e. do not
occur in substituted terms, which we can do up to α-conversion:

f (x) =
(
y 7→ lim

x→∞

y

x

)
(x) =

(
y 7→ lim

z→∞

y

z

)
(x) = lim

z→∞

x

z
= 0

8

Variable binding

This looks like a detail, but it is quite important: consider

f (y) = lim
x→∞

y

x

Clearly, if I replace y by any arbitrary expression t (say, t = ln(sin(z))
√

2),

f (t) = lim
x→∞

t

x
= 0

But what about y = x?
f (x) = lim

x→∞

x

x
= lim

x→∞
1 = 1

We always implicitly make the assumption that bounded variables are fresh, i.e. do not
occur in substituted terms, which we can do up to α-conversion:

f (x) =
(
y 7→ lim

x→∞

y

x

)
(x)

=
(
y 7→ lim

z→∞

y

z

)
(x) = lim

z→∞

x

z
= 0

8

Variable binding

This looks like a detail, but it is quite important: consider

f (y) = lim
x→∞

y

x

Clearly, if I replace y by any arbitrary expression t (say, t = ln(sin(z))
√

2),

f (t) = lim
x→∞

t

x
= 0

But what about y = x?
f (x) = lim

x→∞

x

x
= lim

x→∞
1 = 1

We always implicitly make the assumption that bounded variables are fresh, i.e. do not
occur in substituted terms, which we can do up to α-conversion:

f (x) =
(
y 7→ lim

x→∞

y

x

)
(x) =

(
y 7→ lim

z→∞

y

z

)
(x)

= lim
z→∞

x

z
= 0

8

Variable binding

This looks like a detail, but it is quite important: consider

f (y) = lim
x→∞

y

x

Clearly, if I replace y by any arbitrary expression t (say, t = ln(sin(z))
√

2),

f (t) = lim
x→∞

t

x
= 0

But what about y = x?
f (x) = lim

x→∞

x

x
= lim

x→∞
1 = 1

We always implicitly make the assumption that bounded variables are fresh, i.e. do not
occur in substituted terms, which we can do up to α-conversion:

f (x) =
(
y 7→ lim

x→∞

y

x

)
(x) =

(
y 7→ lim

z→∞

y

z

)
(x) = lim

z→∞

x

z

= 0

8

Variable binding

This looks like a detail, but it is quite important: consider

f (y) = lim
x→∞

y

x

Clearly, if I replace y by any arbitrary expression t (say, t = ln(sin(z))
√

2),

f (t) = lim
x→∞

t

x
= 0

But what about y = x?
f (x) = lim

x→∞

x

x
= lim

x→∞
1 = 1

We always implicitly make the assumption that bounded variables are fresh, i.e. do not
occur in substituted terms, which we can do up to α-conversion:

f (x) =
(
y 7→ lim

x→∞

y

x

)
(x) =

(
y 7→ lim

z→∞

y

z

)
(x) = lim

z→∞

x

z
= 0

8

Variable binding

In mathematics, this is generally implicit, but when implementing we have to explicitly
take care of α-conversion: there is no easy way of automatically taking care of this.

Believe it or not, this is one of the most error prone issues to correctly handle.

9

The λ notation

Instead of the mathematical notation

x 7→ t

or the programming notation
fun x -> t

we write
λx .t

where x might occur in the term t, e.g.

λx .(2× x)

Moreover, we will always write

f = λx .t instead of f (x) = t

10

The λ notation

Instead of the mathematical notation

x 7→ t

or the programming notation
fun x -> t

we write
λx .t

where x might occur in the term t, e.g.

λx .(2× x)

Moreover, we will always write

f = λx .t instead of f (x) = t

10

The λ notation

Instead of the mathematical notation

x 7→ t

or the programming notation
fun x -> t

we write
λx .t

where x might occur in the term t, e.g.

λx .(2× x)

Moreover, we will always write

f = λx .t instead of f (x) = t

10

λ-calculus

The “squaring” function can be defined as

square = λx .(x × x)

We can then apply the function to an argument

square 3

which will reduce to
3× 3

as expected.

11

λ-calculus

The “squaring” function can be defined as

square = λx .(x × x)

We can then apply the function to an argument

square 3

which will reduce to
3× 3

as expected.

11

λ-calculus

We can also consider the function

mult = λx .λy .(x × y)

12

λ-calculus

We can also consider the function

mult = λx .λy .(x × y)

Note that it is a function which returns a function: we can consider

mult 3

which will reduce to
λy .(3× y)

and can further be applied to an argument:

(mult 3) 4 −→ (λy .(3× y)) 4 −→ 3× 4 = 12

For this reason, application is always implicitly bracketed on the left:

mult 3 4 = (mult 3) 4 ̸= mult (3 4)

12

λ-calculus

We can also consider the function

mult = λx .λy .(x × y)

Note that it is a function which returns a function: we can consider

mult 3

which will reduce to
λy .(3× y)

and can further be applied to an argument:

(mult 3) 4 −→ (λy .(3× y)) 4 −→ 3× 4 = 12

For this reason, application is always implicitly bracketed on the left:

mult 3 4 = (mult 3) 4 ̸= mult (3 4)

12

λ-calculus

We can also consider the function

mult = λx .λy .(x × y)

Note that it is a function which returns a function: we can consider

mult 3

which will reduce to
λy .(3× y)

and can further be applied to an argument:

(mult 3) 4 −→ (λy .(3× y)) 4 −→ 3× 4 = 12

For this reason, application is always implicitly bracketed on the left:

mult 3 4 = (mult 3) 4 ̸= mult (3 4) 12

λ-calculus

We can also consider the function

mult = λx .λy .(x × y)

We expect mult t to be multiplication by t.

We should not have
mult y −→ λy .(y × y)

but
mult y = (λx .λy .(x × y))y = (λx .λz .(x × z))y −→ λz .(y × z)

12

λ-calculus

We can also consider the function

mult = λx .λy .(x × y)

We expect mult t to be multiplication by t.

We should not have
mult y −→ λy .(y × y)

but
mult y = (λx .λy .(x × y))y = (λx .λz .(x × z))y −→ λz .(y × z)

12

Part II

λ-calculus

13

λ-calculus

This notation was invented by Church in the 1930s, looking for
new foundations of mathematics based on functions instead of sets.

The set of λ-terms is defined by the following grammar:

t, u ::= x | t u | λx .t

A λ-term is thus either

• a variable x ,
• an application t u,
• an abstraction λx .t.

For instance,

λx .x (λx .(xx))(λy .(yx)) λx .(λy .(x(λz .y)))
14

Conventions

By convention,

• application is associative on the left, i.e.

tuv = (tu)v

and not t(uv),
• application binds more tightly than abstraction, i.e.

λx .xy = λx .(xy)

and not (λx .x)y (this says that abstraction extends as far as possible on the right),
• we sometimes group abstractions, i.e.

λxyz .xz(yz) is read as λx .λy .λz .xz(yz)

15

Bound and free variables

We write FV(t) for the set of free variables of t, i.e. those which are not bound by a λ.

For instance,

FV(λx .x y z) =

{y , z}

FV((λx .x)x) =

{x}

FV((λx .x)(λy .y)) =

∅

Formally,

FV(x) =

{x}

FV(t u) =

FV(t) ∪ FV(u)

FV(λx .t) =

FV(t) \ {x}

16

Bound and free variables

We write FV(t) for the set of free variables of t, i.e. those which are not bound by a λ.

For instance,

FV(λx .x y z) = {y , z} FV((λx .x)x) =

{x}

FV((λx .x)(λy .y)) =

∅

Formally,

FV(x) =

{x}

FV(t u) =

FV(t) ∪ FV(u)

FV(λx .t) =

FV(t) \ {x}

16

Bound and free variables

We write FV(t) for the set of free variables of t, i.e. those which are not bound by a λ.

For instance,

FV(λx .x y z) = {y , z} FV((λx .x)x) = {x} FV((λx .x)(λy .y)) =

∅

Formally,

FV(x) =

{x}

FV(t u) =

FV(t) ∪ FV(u)

FV(λx .t) =

FV(t) \ {x}

16

Bound and free variables

We write FV(t) for the set of free variables of t, i.e. those which are not bound by a λ.

For instance,

FV(λx .x y z) = {y , z} FV((λx .x)x) = {x} FV((λx .x)(λy .y)) = ∅

Formally,

FV(x) =

{x}

FV(t u) =

FV(t) ∪ FV(u)

FV(λx .t) =

FV(t) \ {x}

16

Bound and free variables

We write FV(t) for the set of free variables of t, i.e. those which are not bound by a λ.

For instance,

FV(λx .x y z) = {y , z} FV((λx .x)x) = {x} FV((λx .x)(λy .y)) = ∅

Formally,

FV(x) =

{x}

FV(t u) =

FV(t) ∪ FV(u)

FV(λx .t) =

FV(t) \ {x}

16

Bound and free variables

We write FV(t) for the set of free variables of t, i.e. those which are not bound by a λ.

For instance,

FV(λx .x y z) = {y , z} FV((λx .x)x) = {x} FV((λx .x)(λy .y)) = ∅

Formally,

FV(x) = {x}
FV(t u) =

FV(t) ∪ FV(u)

FV(λx .t) =

FV(t) \ {x}

16

Bound and free variables

We write FV(t) for the set of free variables of t, i.e. those which are not bound by a λ.

For instance,

FV(λx .x y z) = {y , z} FV((λx .x)x) = {x} FV((λx .x)(λy .y)) = ∅

Formally,

FV(x) = {x}
FV(t u) = FV(t) ∪ FV(u)

FV(λx .t) =

FV(t) \ {x}

16

Bound and free variables

We write FV(t) for the set of free variables of t, i.e. those which are not bound by a λ.

For instance,

FV(λx .x y z) = {y , z} FV((λx .x)x) = {x} FV((λx .x)(λy .y)) = ∅

Formally,

FV(x) = {x}
FV(t u) = FV(t) ∪ FV(u)

FV(λx .t) = FV(t) \ {x}

16

α-equivalence

Two terms are α-equivalent when they only differ by renaming of bound variables.

In a subterm, of the form λx .t, we can rename x to y only if y ̸∈ FV(t).

For instance,
(λx .xxy)t ===α (λz .zzy)t ̸===α (λy .yyy)t

In the following terms are always considered up to α-equivalence.

17

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x])

if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λx .xyy)[λz .z/y] =

λx .x(λz .z)(λz .z)

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x])

if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λx .xyy)[λz .z/y] = λx .x(λz .z)(λz .z)

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x])

if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λy .yx)[y/x] =

λy .yy

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x])

if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λy .yx)[y/x] = λy .yy

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x])

if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λy .yx)[y/x] = ���XXXλy .yy

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λy .yx)[y/x]

α
= (λz .zx)[y/x] = λz .zy

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λy .yx)[y/x]

α
= (λz .zx)[y/x] =

λz .zy

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λy .yx)[y/x]

α
= (λz .zx)[y/x] = λz .zy

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λx .x)[y/x] =

���HHHλx .y

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if

y ̸= x and

y ̸∈ FV(u)

For instance,
(λx .x)[y/x] = ���HHHλx .y

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if y ̸= x and y ̸∈ FV(u)

For instance,

(λx .x)[y/x]

α
= (λz .z)[y/x] = λz .z

α
= λx .x

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if y ̸= x and y ̸∈ FV(u)

For instance,

(λx .x)[y/x]
α
= (λz .z)[y/x] =

λz .z
α
= λx .x

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if y ̸= x and y ̸∈ FV(u)

For instance,

(λx .x)[y/x]
α
= (λz .z)[y/x] = λz .z

α
= λx .x

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if y ̸= x and y ̸∈ FV(u)

For instance,

(λx .x)[y/x]
α
= (λz .z)[y/x] = λz .z

α
= λx .x

18

Substitution

Substitution
We write t[u/x] for the term t where all free occurrences of x have been replaced by u.

x [u/x] = u

y [u/x] = y if y ̸= x

(t1 t2)[u/x] = (t1[u/x]) (t2[u/x])

(λx .t)[u/x] = λx .t (simple but useful optimization)

(λy .t)[u/x] = λy .(t[u/x]) if y ̸= x and y ̸∈ FV(u)

For instance,

(λx .x)[y/x]
α
= (λz .z)[y/x] = λz .z

α
= λx .x

18

β-reduction

The notion of “execution” for λ-terms is given by β-reduction.

A β-reduction step consists in replacing a subterm

(λx .t) u −→β t[u/x]

Such a subterm is called a β-redex.

For instance,

(λx .y)((λz .zz)(λt.t)) −→β

(λx .y)((λt.t)(λt.t))

−→β (λx .y)(λt.t)

−→β y

19

β-reduction

The notion of “execution” for λ-terms is given by β-reduction.

A β-reduction step consists in replacing a subterm

(λx .t) u −→β t[u/x]

Such a subterm is called a β-redex.

For instance,

(λx .y)((λz .zz)(λt.t)) −→β

(λx .y)((λt.t)(λt.t))

−→β (λx .y)(λt.t)

−→β y

19

β-reduction

The notion of “execution” for λ-terms is given by β-reduction.

A β-reduction step consists in replacing a subterm

(λx .t) u −→β t[u/x]

Such a subterm is called a β-redex.

For instance,

(λx .y)((λz .zz)(λt.t)) −→β (λx .y)((λt.t)(λt.t))

−→β

(λx .y)(λt.t)

−→β y

19

β-reduction

The notion of “execution” for λ-terms is given by β-reduction.

A β-reduction step consists in replacing a subterm

(λx .t) u −→β t[u/x]

Such a subterm is called a β-redex.

For instance,

(λx .y)((λz .zz)(λt.t)) −→β (λx .y)((λt.t)(λt.t))

−→β (λx .y)(λt.t)

−→β

y

19

β-reduction

The notion of “execution” for λ-terms is given by β-reduction.

A β-reduction step consists in replacing a subterm

(λx .t) u −→β t[u/x]

Such a subterm is called a β-redex.

For instance,

(λx .y)((λz .zz)(λt.t)) −→β (λx .y)((λt.t)(λt.t))

−→β (λx .y)(λt.t)

−→β y

19

β-reduction

• Reduction can create β-redexes:

(λx .xx)(λy .y) −→β

(λy .y)(λy .y)

• Reduction can duplicate β-redexes:

(λx .xx)((λy .y)(λz .z)) −→β

((λy .y)(λz .z))((λy .y)(λz .z))

• Reduction can erase β-redexes:

(λx .y)((λy .y)(λz .z)) −→β

y

20

β-reduction

• Reduction can create β-redexes:

(λx .xx)(λy .y) −→β (λy .y)(λy .y)

• Reduction can duplicate β-redexes:

(λx .xx)((λy .y)(λz .z)) −→β

((λy .y)(λz .z))((λy .y)(λz .z))

• Reduction can erase β-redexes:

(λx .y)((λy .y)(λz .z)) −→β

y

20

β-reduction

• Reduction can create β-redexes:

(λx .xx)(λy .y) −→β (λy .y)(λy .y)

• Reduction can duplicate β-redexes:

(λx .xx)((λy .y)(λz .z)) −→β

((λy .y)(λz .z))((λy .y)(λz .z))

• Reduction can erase β-redexes:

(λx .y)((λy .y)(λz .z)) −→β

y

20

β-reduction

• Reduction can create β-redexes:

(λx .xx)(λy .y) −→β (λy .y)(λy .y)

• Reduction can duplicate β-redexes:

(λx .xx)((λy .y)(λz .z)) −→β ((λy .y)(λz .z))((λy .y)(λz .z))

• Reduction can erase β-redexes:

(λx .y)((λy .y)(λz .z)) −→β

y

20

β-reduction

• Reduction can create β-redexes:

(λx .xx)(λy .y) −→β (λy .y)(λy .y)

• Reduction can duplicate β-redexes:

(λx .xx)((λy .y)(λz .z)) −→β ((λy .y)(λz .z))((λy .y)(λz .z))

• Reduction can erase β-redexes:

(λx .y)((λy .y)(λz .z)) −→β

y

20

β-reduction

• Reduction can create β-redexes:

(λx .xx)(λy .y) −→β (λy .y)(λy .y)

• Reduction can duplicate β-redexes:

(λx .xx)((λy .y)(λz .z)) −→β ((λy .y)(λz .z))((λy .y)(λz .z))

• Reduction can erase β-redexes:

(λx .y)((λy .y)(λz .z)) −→β y

20

β-reduction

• Some terms cannot reduce, normal forms:

x x(λy .λz .y) . . .

• Some terms reduce infinitely:

(λx .xx)(λx .xx) −→β

(λx .xx)(λx .xx) −→β . . .

• Some terms reduce in multiple ways:

λy .y

β←− (λxy .y)((λx .x)(λx .x)) −→β

(λxy .y)(λx .x)

21

β-reduction

• Some terms cannot reduce, normal forms:

x x(λy .λz .y) . . .

• Some terms reduce infinitely:

(λx .xx)(λx .xx) −→β

(λx .xx)(λx .xx) −→β . . .

• Some terms reduce in multiple ways:

λy .y

β←− (λxy .y)((λx .x)(λx .x)) −→β

(λxy .y)(λx .x)

21

β-reduction

• Some terms cannot reduce, normal forms:

x x(λy .λz .y) . . .

• Some terms reduce infinitely:

(λx .xx)(λx .xx) −→β

(λx .xx)(λx .xx) −→β . . .

• Some terms reduce in multiple ways:

λy .y

β←− (λxy .y)((λx .x)(λx .x)) −→β

(λxy .y)(λx .x)

21

β-reduction

• Some terms cannot reduce, normal forms:

x x(λy .λz .y) . . .

• Some terms reduce infinitely:

(λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

• Some terms reduce in multiple ways:

λy .y

β←− (λxy .y)((λx .x)(λx .x)) −→β

(λxy .y)(λx .x)

21

β-reduction

• Some terms cannot reduce, normal forms:

x x(λy .λz .y) . . .

• Some terms reduce infinitely:

(λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

• Some terms reduce in multiple ways:

λy .y

β←− (λxy .y)((λx .x)(λx .x)) −→β

(λxy .y)(λx .x)

21

β-reduction

• Some terms cannot reduce, normal forms:

x x(λy .λz .y) . . .

• Some terms reduce infinitely:

(λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

• Some terms reduce in multiple ways:

λy .yβ←− (λxy .y)((λx .x)(λx .x)) −→β

(λxy .y)(λx .x)

21

β-reduction

• Some terms cannot reduce, normal forms:

x x(λy .λz .y) . . .

• Some terms reduce infinitely:

(λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

• Some terms reduce in multiple ways:

λy .yβ←− (λxy .y)((λx .x)(λx .x)) −→β (λxy .y)(λx .x)

21

β-reduction

A β-reduction path is a sequence of β-reduction steps:

t
∗−→β u = t −→β t1 −→β t2 −→β . . . −→β u

(by which we mean that there exists terms ti with the above reductions)

The number of β-reduction steps is called the length of the path.

22

β-reduction

A β-reduction path is a sequence of β-reduction steps:

t
∗−→β u = t −→β t1 −→β t2 −→β . . . −→β u

(by which we mean that there exists terms ti with the above reductions)

The number of β-reduction steps is called the length of the path.

22

A reasonable programming language should be “deterministic”
or at least “reasonably predictable”.

How can we formalize this property?

23

Confluence

A fundamental property of β-reduction is that we can always make two reductions from
the same term converge.

Theorem (Confluence)
Given a term t such that t ∗−→β u and t

∗−→β v

there exists a term w such that u ∗−→β w and v
∗−→β w :

t

u v

w

∗ ∗

∗ ∗

24

Confluence

A fundamental property of β-reduction is that we can always make two reductions from
the same term converge.

Theorem (Confluence)
Given a term t such that t ∗−→β u and t

∗−→β v

there exists a term w such that u ∗−→β w and v
∗−→β w :

t

u v

w

∗ ∗

∗ ∗

24

Confluence

For instance,

(λxy .y)((λx .x)(λx .x))

λy .y (λxy .y)(λx .x)

λy .y

25

Confluence

For instance,

(λxy .y)((λx .x)(λx .x))

λy .y (λxy .y)(λx .x)

λy .y

25

β-equivalence

The β-equivalence ===β is the smallest equivalence relation containing −→β .

Two terms t and u are β-equivalent if there exists a sequence of reductions

t ===β u = t
∗←− t1

∗−→ t2
∗←− t3

∗−→ t4
∗←− . . .

∗−→ u

From confluence,

Theorem (Church-Rosser)
Two terms t and u are β-equivalent iff there exists v such that t ∗−→β v and u

∗−→β v :

t u

v
∗ ∗

26

β-equivalence

The β-equivalence ===β is the smallest equivalence relation containing −→β .

Two terms t and u are β-equivalent if there exists a sequence of reductions

t ===β u = t
∗←− t1

∗−→ t2
∗←− t3

∗−→ t4
∗←− . . .

∗−→ u

From confluence,

Theorem (Church-Rosser)
Two terms t and u are β-equivalent iff

there exists v such that t ∗−→β v and u
∗−→β v :

t u

v
∗ ∗

26

β-equivalence

The β-equivalence ===β is the smallest equivalence relation containing −→β .

Two terms t and u are β-equivalent if there exists a sequence of reductions

t ===β u = t
∗←− t1

∗−→ t2
∗←− t3

∗−→ t4
∗←− . . .

∗−→ u

From confluence,

Theorem (Church-Rosser)
Two terms t and u are β-equivalent iff there exists v such that t ∗−→β v and u

∗−→β v :

t u

v
∗ ∗

26

Another equivalence

This is not the only interesting notion of equivalence.

The η-equivalence ===η is the smallest congruence such that, for every term t,

t ===η λx .t x

when x ̸∈ FV(t).

For instance, in OCaml

sin ===η fun x -> sin x

We will not insist much on it in the following, but we will see that two such functions
can behave differently in languages such as OCaml (but not in λ-calculus).

27

Poll

How difficult is it do decide whether two terms are β-equivalent?

28

Part III

Expressive power

29

Let’s see what we can compute
within

the pure λ-calculus.

30

Identity

We define the identity by
I =

λx .x

It satisfies
I t −→β

t

31

Identity

We define the identity by
I = λx .x

It satisfies
I t −→β

t

31

Identity

We define the identity by
I = λx .x

It satisfies
I t −→β

t

31

Identity

We define the identity by
I = λx .x

It satisfies
I t −→β t

31

Booleans

The booleans can be encoded as the two projections

T = λxy .x F = λxy .y

Conditional branching can be encoded as

if =

λbxy .b x y

Namely,

if T t u
∗−→β

t

if F t u
∗−→β

u

For instance, the first reduction is

if T t u = (λbxy .bxy)(λxy .x)tu −→β

(λxy .(λxy .x)xy)tu

−→β (λy .(λxy .x)ty)u

−→β (λxy .x)tu

−→β (λy .t)u −→β t

32

Booleans

The booleans can be encoded as the two projections

T = λxy .x F = λxy .y

Conditional branching can be encoded as

if = λbxy .b x y

Namely,

if T t u
∗−→β

t

if F t u
∗−→β

u

For instance, the first reduction is

if T t u = (λbxy .bxy)(λxy .x)tu −→β

(λxy .(λxy .x)xy)tu

−→β (λy .(λxy .x)ty)u

−→β (λxy .x)tu

−→β (λy .t)u −→β t

32

Booleans

The booleans can be encoded as the two projections

T = λxy .x F = λxy .y

Conditional branching can be encoded as

if = λbxy .b x y

Namely,

if T t u
∗−→β t if F t u

∗−→β u

For instance, the first reduction is

if T t u = (λbxy .bxy)(λxy .x)tu −→β

(λxy .(λxy .x)xy)tu

−→β (λy .(λxy .x)ty)u

−→β (λxy .x)tu

−→β (λy .t)u −→β t

32

Booleans

The booleans can be encoded as the two projections

T = λxy .x F = λxy .y

Conditional branching can be encoded as

if = λbxy .b x y

Namely,

if T t u
∗−→β t if F t u

∗−→β u

For instance, the first reduction is

if T t u = (λbxy .bxy)(λxy .x)tu −→β

(λxy .(λxy .x)xy)tu

−→β (λy .(λxy .x)ty)u

−→β (λxy .x)tu

−→β (λy .t)u −→β t

32

Booleans

The booleans can be encoded as the two projections

T = λxy .x F = λxy .y

Conditional branching can be encoded as

if = λbxy .b x y

Namely,

if T t u
∗−→β t if F t u

∗−→β u

For instance, the first reduction is

if T t u = (λbxy .bxy)(λxy .x)tu −→β (λxy .(λxy .x)xy)tu

−→β

(λy .(λxy .x)ty)u

−→β (λxy .x)tu

−→β (λy .t)u −→β t

32

Booleans

The booleans can be encoded as the two projections

T = λxy .x F = λxy .y

Conditional branching can be encoded as

if = λbxy .b x y

Namely,

if T t u
∗−→β t if F t u

∗−→β u

For instance, the first reduction is

if T t u = (λbxy .bxy)(λxy .x)tu −→β (λxy .(λxy .x)xy)tu

−→β (λy .(λxy .x)ty)u

−→β

(λxy .x)tu

−→β (λy .t)u −→β t

32

Booleans

The booleans can be encoded as the two projections

T = λxy .x F = λxy .y

Conditional branching can be encoded as

if = λbxy .b x y

Namely,

if T t u
∗−→β t if F t u

∗−→β u

For instance, the first reduction is

if T t u = (λbxy .bxy)(λxy .x)tu −→β (λxy .(λxy .x)xy)tu

−→β (λy .(λxy .x)ty)u

−→β (λxy .x)tu

−→β

(λy .t)u −→β t

32

Booleans

The booleans can be encoded as the two projections

T = λxy .x F = λxy .y

Conditional branching can be encoded as

if = λbxy .b x y

Namely,

if T t u
∗−→β t if F t u

∗−→β u

For instance, the first reduction is

if T t u = (λbxy .bxy)(λxy .x)tu −→β (λxy .(λxy .x)xy)tu

−→β (λy .(λxy .x)ty)u

−→β (λxy .x)tu

−→β (λy .t)u −→β

t

32

Booleans

The booleans can be encoded as the two projections

T = λxy .x F = λxy .y

Conditional branching can be encoded as

if = λbxy .b x y

Namely,

if T t u
∗−→β t if F t u

∗−→β u

For instance, the first reduction is

if T t u = (λbxy .bxy)(λxy .x)tu −→β (λxy .(λxy .x)xy)tu

−→β (λy .(λxy .x)ty)u

−→β (λxy .x)tu

−→β (λy .t)u −→β t 32

Booleans

We can the implement usual boolean operations:

and =

λxy .if x y F

or =

λxy .if x T y

not =

λx .if xF T

= λxy .x y F = λxy .x T y = λxy .x F T

There are other possible implementations, e.g.

and = λxy .x y x

(not β-equivalent, note that behavior is only specified on booleans)

33

Booleans

We can the implement usual boolean operations:

and = λxy .if x y F or = λxy .if x T y not = λx .if xF T

= λxy .x y F = λxy .x T y = λxy .x F T

There are other possible implementations, e.g.

and = λxy .x y x

(not β-equivalent, note that behavior is only specified on booleans)

33

Booleans

We can the implement usual boolean operations:

and = λxy .if x y F or = λxy .if x T y not = λx .if xF T

= λxy .x y F = λxy .x T y = λxy .x F T

There are other possible implementations, e.g.

and = λxy .x y x

(not β-equivalent, note that behavior is only specified on booleans)

33

Pairs

We can encode pairs from booleans:

pair =

λxyb.if b x y

Namely,
pair t u ∗−→β λb.if b t u

and we have

(pair t u)T ∗−→β

t

(pair t u)F ∗−→β

u

We can thus define

fst =

λp.p T

snd =

λp.p F

which behaves as expected

fst (pair t u) ∗−→β

t

snd (pair t u) ∗−→β

u

It is not much more difficult to encode tuples.

34

Pairs

We can encode pairs from booleans:

pair = λxyb.if b x y

Namely,
pair t u ∗−→β λb.if b t u

and we have

(pair t u)T ∗−→β

t

(pair t u)F ∗−→β

u

We can thus define

fst =

λp.p T

snd =

λp.p F

which behaves as expected

fst (pair t u) ∗−→β

t

snd (pair t u) ∗−→β

u

It is not much more difficult to encode tuples.

34

Pairs

We can encode pairs from booleans:

pair = λxyb.if b x y

Namely,
pair t u ∗−→β λb.if b t u

and we have

(pair t u)T ∗−→β

t

(pair t u)F ∗−→β

u

We can thus define

fst =

λp.p T

snd =

λp.p F

which behaves as expected

fst (pair t u) ∗−→β

t

snd (pair t u) ∗−→β

u

It is not much more difficult to encode tuples.

34

Pairs

We can encode pairs from booleans:

pair = λxyb.if b x y

Namely,
pair t u ∗−→β λb.if b t u

and we have

(pair t u)T ∗−→β t (pair t u)F ∗−→β u

We can thus define

fst =

λp.p T

snd =

λp.p F

which behaves as expected

fst (pair t u) ∗−→β

t

snd (pair t u) ∗−→β

u

It is not much more difficult to encode tuples.

34

Pairs

We can encode pairs from booleans:

pair = λxyb.if b x y

Namely,
pair t u ∗−→β λb.if b t u

and we have

(pair t u)T ∗−→β t (pair t u)F ∗−→β u

We can thus define

fst =

λp.p T

snd =

λp.p F

which behaves as expected

fst (pair t u) ∗−→β

t

snd (pair t u) ∗−→β

u

It is not much more difficult to encode tuples.

34

Pairs

We can encode pairs from booleans:

pair = λxyb.if b x y

Namely,
pair t u ∗−→β λb.if b t u

and we have

(pair t u)T ∗−→β t (pair t u)F ∗−→β u

We can thus define

fst = λp.p T snd = λp.p F

which behaves as expected

fst (pair t u) ∗−→β

t

snd (pair t u) ∗−→β

u

It is not much more difficult to encode tuples.

34

Pairs

We can encode pairs from booleans:

pair = λxyb.if b x y

Namely,
pair t u ∗−→β λb.if b t u

and we have

(pair t u)T ∗−→β t (pair t u)F ∗−→β u

We can thus define

fst = λp.p T snd = λp.p F

which behaves as expected

fst (pair t u) ∗−→β

t

snd (pair t u) ∗−→β

u

It is not much more difficult to encode tuples.

34

Pairs

We can encode pairs from booleans:

pair = λxyb.if b x y

Namely,
pair t u ∗−→β λb.if b t u

and we have

(pair t u)T ∗−→β t (pair t u)F ∗−→β u

We can thus define

fst = λp.p T snd = λp.p F

which behaves as expected

fst (pair t u) ∗−→β t snd (pair t u) ∗−→β u

It is not much more difficult to encode tuples.

34

Pairs

We can encode pairs from booleans:

pair = λxyb.if b x y

Namely,
pair t u ∗−→β λb.if b t u

and we have

(pair t u)T ∗−→β t (pair t u)F ∗−→β u

We can thus define

fst = λp.p T snd = λp.p F

which behaves as expected

fst (pair t u) ∗−→β t snd (pair t u) ∗−→β u

It is not much more difficult to encode tuples. 34

Natural numbers

The n-th Church numeral is the λ-term

n = λfx .f nx = λfx .f (f (. . . (fx)))

so that

0 = λfx .x 1 = λfx .fx 2 = λfx .f (fx) 3 = λfx .f (f (fx)) . . .

We can program successor as
succ =

λnfx .f (nfx)

and other arithmetical operations:

add =

λmnfx .mf (nfx)

mul =

λmnfx .m(nf)x

exp =

λmn.nm

and the test at zero:
iszero =

λn.n(λz .F)T

35

Natural numbers

The n-th Church numeral is the λ-term

n = λfx .f nx = λfx .f (f (. . . (fx)))

so that

0 = λfx .x 1 = λfx .fx 2 = λfx .f (fx) 3 = λfx .f (f (fx)) . . .

We can program successor as
succ =

λnfx .f (nfx)

and other arithmetical operations:

add =

λmnfx .mf (nfx)

mul =

λmnfx .m(nf)x

exp =

λmn.nm

and the test at zero:
iszero =

λn.n(λz .F)T

35

Natural numbers

The n-th Church numeral is the λ-term

n = λfx .f nx = λfx .f (f (. . . (fx)))

so that

0 = λfx .x 1 = λfx .fx 2 = λfx .f (fx) 3 = λfx .f (f (fx)) . . .

We can program successor as
succ = λnfx .f (nfx)

and other arithmetical operations:

add =

λmnfx .mf (nfx)

mul =

λmnfx .m(nf)x

exp =

λmn.nm

and the test at zero:
iszero =

λn.n(λz .F)T

35

Natural numbers

The n-th Church numeral is the λ-term

n = λfx .f nx = λfx .f (f (. . . (fx)))

so that

0 = λfx .x 1 = λfx .fx 2 = λfx .f (fx) 3 = λfx .f (f (fx)) . . .

We can program successor as
succ = λnfx .f (nfx)

and other arithmetical operations:

add =

λmnfx .mf (nfx)

mul =

λmnfx .m(nf)x

exp =

λmn.nm

and the test at zero:
iszero =

λn.n(λz .F)T

35

Natural numbers

The n-th Church numeral is the λ-term

n = λfx .f nx = λfx .f (f (. . . (fx)))

so that

0 = λfx .x 1 = λfx .fx 2 = λfx .f (fx) 3 = λfx .f (f (fx)) . . .

We can program successor as
succ = λnfx .f (nfx)

and other arithmetical operations:

add = λmnfx .mf (nfx) mul =

λmnfx .m(nf)x

exp =

λmn.nm

and the test at zero:
iszero =

λn.n(λz .F)T

35

Natural numbers

The n-th Church numeral is the λ-term

n = λfx .f nx = λfx .f (f (. . . (fx)))

so that

0 = λfx .x 1 = λfx .fx 2 = λfx .f (fx) 3 = λfx .f (f (fx)) . . .

We can program successor as
succ = λnfx .f (nfx)

and other arithmetical operations:

add = λmnfx .mf (nfx) mul = λmnfx .m(nf)x exp =

λmn.nm

and the test at zero:
iszero =

λn.n(λz .F)T

35

Natural numbers

The n-th Church numeral is the λ-term

n = λfx .f nx = λfx .f (f (. . . (fx)))

so that

0 = λfx .x 1 = λfx .fx 2 = λfx .f (fx) 3 = λfx .f (f (fx)) . . .

We can program successor as
succ = λnfx .f (nfx)

and other arithmetical operations:

add = λmnfx .mf (nfx) mul = λmnfx .m(nf)x exp = λmn.nm

and the test at zero:
iszero =

λn.n(λz .F)T

35

Natural numbers

The n-th Church numeral is the λ-term

n = λfx .f nx = λfx .f (f (. . . (fx)))

so that

0 = λfx .x 1 = λfx .fx 2 = λfx .f (fx) 3 = λfx .f (f (fx)) . . .

We can program successor as
succ = λnfx .f (nfx)

and other arithmetical operations:

add = λmnfx .mf (nfx) mul = λmnfx .m(nf)x exp = λmn.nm

and the test at zero:
iszero =

λn.n(λz .F)T

35

Natural numbers

The n-th Church numeral is the λ-term

n = λfx .f nx = λfx .f (f (. . . (fx)))

so that

0 = λfx .x 1 = λfx .fx 2 = λfx .f (fx) 3 = λfx .f (f (fx)) . . .

We can program successor as
succ = λnfx .f (nfx)

and other arithmetical operations:

add = λmnfx .mf (nfx) mul = λmnfx .m(nf)x exp = λmn.nm

and the test at zero:
iszero = λn.n(λz .F)T

35

Natural numbers

We can also program the predecessor

pred =

λnfx .n(λgh.h(gf))(λy .x)(λy .y)

(see in TD) and thus subtraction by

sub =

λmn.n predm

36

Natural numbers

We can also program the predecessor

pred = λnfx .n(λgh.h(gf))(λy .x)(λy .y)

(see in TD) and thus subtraction by

sub =

λmn.n predm

36

Natural numbers

We can also program the predecessor

pred = λnfx .n(λgh.h(gf))(λy .x)(λy .y)

(see in TD) and thus subtraction by

sub = λmn.n predm

36

Fixpoints

In order to be able to program more full-fledged programs, we need to be able to define
recursive functions.

For instance,

let rec fact n =
if n = 0 then 1 else n * fact (n-1)

37

Fixpoints

In mathematics, a fixpoint of a function f : A→ A is an element a ∈ A such that

f (a) = a

A distinguishing feature of λ-calculus is that

• every program admits a fixpoint,
• this fixpoint can be computed within λ-calculus.

This means that there is a term Y such that

t (Y t) ===β Y t

This can be used to program recursive functions!

38

Fixpoints

In mathematics, a fixpoint of a function f : A→ A is an element a ∈ A such that

f (a) = a

A distinguishing feature of λ-calculus is that

• every program admits a fixpoint,
• this fixpoint can be computed within λ-calculus.

This means that there is a term Y such that

t (Y t) ===β Y t

This can be used to program recursive functions!

38

How do we program a fixpoint operator in OCaml?

t (Y t) ===β Y t

39

How do we program a fixpoint operator in OCaml?

Y t −→β t (Y t)

39

How do we program a fixpoint operator in OCaml?

fix t = t (fix t)

39

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

and then

let fact = fix fact_fun

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let rec fact n =
if n = 0 then 1 else n * fact (n - 1)

and then

let fact = fix fact_fun

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

For instance fact 0 is

fix fact_fun 0

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

For instance fact 0 is

fact_fun (fix fact_fun) 0

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

For instance fact 0 is

1

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

For instance fact 1 is

fix fact_fun 1

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

For instance fact 1 is

fact_fun (fix fact_fun) 1

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

For instance fact 1 is

1 * fix fact_fun 0

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

For instance fact 1 is

1 * 1

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

For instance fact 1 is

1

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

If we actually try to define fact, we get:

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f = f (fix f)

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

If we actually try to define fact, we get:

Stack overflow during evaluation (looping recursion?).

40

Fixpoints

In OCaml, we can program a fixpoint operator with (by definition)

let rec fix f x = f (fix f) x

The factorial can then be programmed with

let fact_fun f n =
if n = 0 then 1 else n * f (n - 1)

and then

let fact = fix fact_fun

Problem solved:

fact 5;;
- : int = 120

(by an η-expansion!...)
40

Fixpoints

This translates directly as

fact = Y(λfn.if (iszero n) 1 (mul n (f (pred n))))

The factorial of 2 computes as

fact 2 = (YF) 2
∗−→β F (YF) 2
∗−→β if (iszero 2) 1 (mul 2 ((YF) (pred 2)))
∗−→β if false 1 (mul 2 ((YF) (pred 2)))
∗−→β mul 2 ((YF) (pred 2))
∗−→β mul 2 ((YF) 1)

...
∗−→β mul 2 (mul 1 1) ∗−→β 2 41

Fixpoints

(((λf.((λx.(f (x x))) (λx.(f (x x))))) (λf.(λn.((((λb.(λx.(λy.((b x) y)))) ((λn.(λx.(λy.((n (λz.y)) x)))) n))
(λf.(λx.(f x)))) (((λm.(λn.(λf.(λx.((m (n f)) x))))) n) (f ((λn.((λp.(p (λx.(λy.x)))) ((n
(λp.(((λx.(λy.(λb.((((λb.(λx.(λy.((b x) y)))) b) x) y)))) ((λp.(p (λx.(λy.y)))) p)) ((λn.(λf.(λx.((n f) (f x)))))
((λp.(p (λx.(λy.y)))) p))))) (((λx.(λy.(λb.((((λb.(λx.(λy.((b x) y)))) b) x) y)))) (λf.(λx.x))) (λf.(λx.x))))))
n))))))) (λf.(λx.(f (f x)))))

↪→
↪→
↪→
↪→
-> (((λx.((λf.(λn.((((λb.(λx.(λy.((b x) y)))) ((λn.(λx.(λy.((n (λz.y)) x)))) n)) (λf.(λx.(f x))))

(((λm.(λn.(λf.(λx.((m (n f)) x))))) n) (f ((λn.((λp.(p (λx.(λy.x)))) ((n (λp.(((λx.(λy.(λb.((((λb.(λx.(λy.((b x)
y)))) b) x) y)))) ((λp.(p (λx.(λy.y)))) p)) ((λn.(λf.(λx.((n f) (f x))))) ((λp.(p (λx.(λy.y)))) p)))))
(((λx.(λy.(λb.((((λb.(λx.(λy.((b x) y)))) b) x) y)))) (λf.(λx.x))) (λf.(λx.x)))))) n)))))) (x x)))
(λx.((λf.(λn.((((λb.(λx.(λy.((b x) y)))) ((λn.(λx.(λy.((n (λz.y)) x)))) n)) (λf.(λx.(f x)))) (((λm.(λn.(λf.(λx.((m
(n f)) x))))) n) (f ((λn.((λp.(p (λx.(λy.x)))) ((n (λp.(((λx.(λy.(λb.((((λb.(λx.(λy.((b x) y)))) b) x) y)))) ((λp.(p
(λx.(λy.y)))) p)) ((λn.(λf.(λx.((n f) (f x))))) ((λp.(p (λx.(λy.y)))) p))))) (((λx.(λy.(λb.((((λb.(λx.(λy.((b x)
y)))) b) x) y)))) (λf.(λx.x))) (λf.(λx.x)))))) n)))))) (x x)))) (λf.(λx.(f (f x)))))

↪→
↪→
↪→
↪→
↪→
↪→
↪→
.
.
.
-> (λf.(λx.(f ((((λx.x) (λf.(λx.(f x)))) f) x))))
-> (λf.(λx.(f (((λf.(λx.(f x))) f) x))))
-> (λf.(λx.(f ((λx.(f x)) x))))
-> (λf.(λx.(f (f x))))
333 steps

42

Fixpoints

We can also write unbounded loops:

let rec min_from p n =
if p n then n else min_from p (n+1)

let min p = min_from p 0

let x = min (fun n -> n - 10 = 0)

43

Fixpoints

We can also write unbounded loops:

let min_from_fun f p n =
if p n then n else f p (n+1)

let min_from = fix min_from_fun

let min p = min_from p 0

let x = min (fun n -> n - 10 = 0)

43

Fixpoints

We thus have

• natural numbers,

• the successor function,

• tuples and projections,

• composition,

• conditional branching with test to zero,

• recursion.

We thus have recursive functions!

44

Fixpoints

We thus have

• natural numbers,

• the successor function,

• tuples and projections,

• composition,

• conditional branching with test to zero,

• recursion.

We thus have recursive functions!

44

Turing completeness

This should convince you that the λ-calculus is Turing complete.

Theorem
The following decision problems are undecidable:

• whether two λ-terms are β-equivalent,

• whether a λ-term can reduce to a normal form.

45

Turing completeness

This should convince you that the λ-calculus is Turing complete.

Theorem
The following decision problems are undecidable:

• whether two λ-terms are β-equivalent,

• whether a λ-term can reduce to a normal form.

45

Fixpoints

. . . excepting

that we have not explained how to define a fixpoint combinator Y yet.

The OCaml implementation

let rec fix f x = f (fix f) x

does not translate to λ-calculus because it is not an anonymous function:

let fix = fun f -> ???

Any guess?

46

Fixpoints

. . . excepting that we have not explained how to define a fixpoint combinator Y yet.

The OCaml implementation

let rec fix f x = f (fix f) x

does not translate to λ-calculus because it is not an anonymous function:

let fix = fun f -> ???

Any guess?

46

Fixpoints

. . . excepting that we have not explained how to define a fixpoint combinator Y yet.

The OCaml implementation

let rec fix f x = f (fix f) x

does not translate to λ-calculus because it is not an anonymous function:

let fix = fun f -> ???

Any guess?

46

Fixpoints

We can start by recalling that we had a non-terminating term:

Ω = (λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

We can obtain the fixpoint combinator by a slight modification:

Y =

λf .(λx .f (xx))(λx .f (xx))

Namely,

Y f

(λx .f (xx))(λx .f (xx)) f ((λx .f (xx))(λx .f (xx))) . . .

f (Y f)

i.e.
Y f ===β f (Y f)

47

Fixpoints

We can start by recalling that we had a non-terminating term:

Ω = (λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

We can obtain the fixpoint combinator by a slight modification:

Y =

λf .(λx .f (xx))(λx .f (xx))

Namely,

Y f

(λx .f (xx))(λx .f (xx)) f ((λx .f (xx))(λx .f (xx))) . . .

f (Y f)

i.e.
Y f ===β f (Y f)

47

Fixpoints

We can start by recalling that we had a non-terminating term:

Ω = (λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

We can obtain the fixpoint combinator by a slight modification:

Y = λf .(λx .f (xx))(λx .f (xx))

Namely,

Y f

(λx .f (xx))(λx .f (xx)) f ((λx .f (xx))(λx .f (xx))) . . .

f (Y f)

i.e.
Y f ===β f (Y f)

47

Fixpoints

We can start by recalling that we had a non-terminating term:

Ω = (λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

We can obtain the fixpoint combinator by a slight modification:

Y = λf .(λx .f (xx))(λx .f (xx))

Namely,

Y f

(λx .f (xx))(λx .f (xx)) f ((λx .f (xx))(λx .f (xx))) . . .

f (Y f)

i.e.
Y f ===β f (Y f)

47

Fixpoints

We can start by recalling that we had a non-terminating term:

Ω = (λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

We can obtain the fixpoint combinator by a slight modification:

Y = λf .(λx .f (xx))(λx .f (xx))

Namely,

Y f (λx .f (xx))(λx .f (xx))

f ((λx .f (xx))(λx .f (xx))) . . .

f (Y f)

i.e.
Y f ===β f (Y f)

47

Fixpoints

We can start by recalling that we had a non-terminating term:

Ω = (λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

We can obtain the fixpoint combinator by a slight modification:

Y = λf .(λx .f (xx))(λx .f (xx))

Namely,

Y f (λx .f (xx))(λx .f (xx)) f ((λx .f (xx))(λx .f (xx)))

. . .

f (Y f)

i.e.
Y f ===β f (Y f)

47

Fixpoints

We can start by recalling that we had a non-terminating term:

Ω = (λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

We can obtain the fixpoint combinator by a slight modification:

Y = λf .(λx .f (xx))(λx .f (xx))

Namely,

Y f (λx .f (xx))(λx .f (xx)) f ((λx .f (xx))(λx .f (xx))) . . .

f (Y f)

i.e.
Y f ===β f (Y f)

47

Fixpoints

We can start by recalling that we had a non-terminating term:

Ω = (λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

We can obtain the fixpoint combinator by a slight modification:

Y = λf .(λx .f (xx))(λx .f (xx))

Namely,

Y f (λx .f (xx))(λx .f (xx)) f ((λx .f (xx))(λx .f (xx))) . . .

f (Y f)

i.e.
Y f ===β f (Y f)

47

Fixpoints

We can start by recalling that we had a non-terminating term:

Ω = (λx .xx)(λx .xx) −→β (λx .xx)(λx .xx) −→β . . .

We can obtain the fixpoint combinator by a slight modification:

Y = λf .(λx .f (xx))(λx .f (xx))

Namely,

Y f (λx .f (xx))(λx .f (xx)) f ((λx .f (xx))(λx .f (xx))) . . .

f (Y f)

i.e.
Y f ===β f (Y f)

47

Fixpoints

Note that computing fixpoints can loop:

Y f
∗−→β f (Y f)

∗−→β f (f (Y f))
∗−→β . . .

So that our implementation of factorial can loop
(this is what was happening in OCaml).

However, programming languages implement a reduction strategy, i.e. a particular
way of β-reducing programs.

If we choose a decent one, the factorial will compute the factorial.

48

Fixpoints

Does this work in practice (= OCaml)?

let fix = fun f -> (fun x -> f (x x)) (fun x -> f (x x))
^

Error: This expression has type 'a -> 'b
but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

Namely, x x means that

• x is a function: of type ’a -> ’b,
• that ’a = ’a -> ’b

i.e. the type of x should be

... -> ’b -> ’b -> ’b -> ’b

49

Fixpoints

Does this work in practice (= OCaml)?

let fix = fun f -> (fun x -> f (x x)) (fun x -> f (x x))

^
Error: This expression has type 'a -> 'b

but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

Namely, x x means that

• x is a function: of type ’a -> ’b,
• that ’a = ’a -> ’b

i.e. the type of x should be

... -> ’b -> ’b -> ’b -> ’b

49

Fixpoints

Does this work in practice (= OCaml)?

let fix = fun f -> (fun x -> f (x x)) (fun x -> f (x x))
^

Error: This expression has type 'a -> 'b
but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

Namely, x x means that

• x is a function: of type ’a -> ’b,
• that ’a = ’a -> ’b

i.e. the type of x should be

... -> ’b -> ’b -> ’b -> ’b

49

Fixpoints

Does this work in practice (= OCaml)?

let fix = fun f -> (fun x -> f (x x)) (fun x -> f (x x))
^

Error: This expression has type 'a -> 'b
but an expression was expected of type 'a
The type variable 'a occurs inside 'a -> 'b

Namely, x x means that

• x is a function: of type ’a -> ’b,
• that ’a = ’a -> ’b

i.e. the type of x should be

... -> ’b -> ’b -> ’b -> ’b
49

Fixpoints

There are ways to get around this, one being to use the option -rectypes of OCaml
(which allows types such as (’a -> ’b) as ’a):

let fix = fun f -> (fun x -> f (x x)) (fun x -> f (x x))

has type

('a -> 'a) -> 'a

and we define

let fact_fun f n = if n = 0 then 1 else n * f (n - 1)
let fact = fix fact_fun

50

Fixpoints

There are ways to get around this, one being to use the option -rectypes of OCaml
(which allows types such as (’a -> ’b) as ’a):

let fix = fun f -> (fun x -> f (x x)) (fun x -> f (x x))

has type

('a -> 'a) -> 'a
and we define

let fact_fun f n = if n = 0 then 1 else n * f (n - 1)
let fact = fix fact_fun

50

Fixpoints

There are ways to get around this, one being to use the option -rectypes of OCaml
(which allows types such as (’a -> ’b) as ’a):

let fix = fun f -> (fun x -> f (x x)) (fun x -> f (x x))

has type

('a -> 'a) -> 'a
and we define

let fact_fun f n = if n = 0 then 1 else n * f (n - 1)
let fact = fix fact_fun

Problem:

Stack overflow during evaluation (looping recursion?).

We can use the same trick as before.
50

Fixpoints

There are ways to get around this, one being to use the option -rectypes of OCaml
(which allows types such as (’a -> ’b) as ’a):

let fix = fun f -> (fun x y -> f (x x) y) (fun x y -> f (x x) y)

has type

(('a -> 'b) -> 'a -> 'b) -> 'a -> 'b
and we define

let fact_fun f n = if n = 0 then 1 else n * f (n - 1)
let fact = fix fact_fun

Problem solved:

fact 5;;
- : int = 120

50

Fixpoints

If you (understandably) don’t feel comfortable with -rectypes:

type 'a t = Arr of ('a t -> 'a)

let arr (Arr f) = f

let fix = fun f -> (fun x y -> f (arr x x) y)
(Arr (fun x y -> f (arr x x) y))

let fact_fun f n = if n = 0 then 1 else n * f (n - 1)

let fact = fix fact_fun

let n = fact 5 51

More primitives: products

In practice (= OCaml), one does not encode everything in pure λ-calculus, but rather
adds more primitives. For instance, products can be added with

t, u ::= x | t u | λx .t | ⟨t, u⟩ | πl | πr

with additional reduction rules

πl ⟨t, u⟩ −→β t πr ⟨t, u⟩ −→β u

and similarly for other constructions.

52

Reduction strategies

We have seen that the way reduction is implemented has an influence.

The main choice roughly is, for
(λx .t)u

to either

• reduce u to û and then reduce t[û/x] (call-by-value):

more efficient since we compute arguments once,

• reduce t[u/x] (call-by-name):

not sensitive to divergence of arguments, e.g. (λxy .y)ΩI.

53

Reduction strategies

We have seen that the way reduction is implemented has an influence.

The main choice roughly is, for
(λx .t)u

to either

• reduce u to û and then reduce t[û/x] (call-by-value):
more efficient since we compute arguments once,

• reduce t[u/x] (call-by-name):

not sensitive to divergence of arguments, e.g. (λxy .y)ΩI.

53

Reduction strategies

We have seen that the way reduction is implemented has an influence.

The main choice roughly is, for
(λx .t)u

to either

• reduce u to û and then reduce t[û/x] (call-by-value):
more efficient since we compute arguments once,

• reduce t[u/x] (call-by-name):
not sensitive to divergence of arguments, e.g. (λxy .y)ΩI.

53

Part IV

Confluence

54

Confluence

We have announced the confluence theorem:

Theorem (Confluence)
Given a term t such that t ∗−→β u and t

∗−→β v

there exists a term w such that u ∗−→β w and v
∗−→β w :

t

u v

w

∗ ∗

∗ ∗

55

What could be a proof strategy to show confluence?

(clearly, we cannot consider all coinitial pairs of reduction paths)

56

Showing confluence: the diamond property

Maybe we can show that has the diamond property:

t

u v

w

For instance,
(II)(II)

I(II) (II)I

II

57

Showing confluence: the diamond property

Maybe we can show that has the diamond property:

t

u v

w

For instance,
(II)(II)

I(II) (II)I

II

57

Showing confluence: the diamond property

Maybe we can show that has the diamond property:

t

u v

w

For instance,
(II)(II)

I(II) (II)I

II
57

Showing confluence: the diamond property

We can then easily conclude to confluence:

Note that this is done by using two recurrences.

58

Showing confluence: the diamond property

We can then easily conclude to confluence:

Note that this is done by using two recurrences.

58

Showing confluence: the diamond property

We can then easily conclude to confluence:

Note that this is done by using two recurrences.

58

Showing confluence: the diamond property

We can then easily conclude to confluence:

Note that this is done by using two recurrences.

58

Showing confluence: the diamond property

We can then easily conclude to confluence:

Note that this is done by using two recurrences.

58

Showing confluence: the diamond property

Excepting that λ-calculus does not satisfy the diamond property:

(λx .xx)(II)

(II)(II) (λx .xx)I

I(II)

II

59

Showing confluence: the diamond property

Excepting that λ-calculus does not satisfy the diamond property:

(λx .xx)(II)

(II)(II) (λx .xx)I

I(II)

II

59

Showing confluence: the diamond property

Excepting that λ-calculus does not satisfy the diamond property:

(λx .xx)(II)

(II)(II) (λx .xx)I

I(II)

II

59

Showing confluence: local confluence

By case analysis, we can show local confluence:

t

u v

w
∗ ∗

60

Showing confluence: local confluence

By case analysis, we can show local confluence:

t

u v

w
∗ ∗

from which we should be able to deduce confluence:

60

Showing confluence: local confluence

By case analysis, we can show local confluence:

t

u v

w
∗ ∗

from which we should be able to deduce confluence:

∗ ∗

60

Showing confluence: local confluence

By case analysis, we can show local confluence:

t

u v

w
∗ ∗

from which we should be able to deduce confluence:

∗ ∗

∗ ∗

60

Showing confluence: local confluence

By case analysis, we can show local confluence:

t

u v

w
∗ ∗

from which we should be able to deduce confluence:

∗ ∗

∗ ∗

∗ ∗
60

Showing confluence: local confluence

By case analysis, we can show local confluence:

t

u v

w
∗ ∗

from which we should be able to deduce confluence:

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

60

Showing confluence: local confluence

By case analysis, we can show local confluence:

t

u v

w
∗ ∗

from which we cannot deduce confluence. Why?

60

Showing confluence: local confluence

By case analysis, we can show local confluence:

t

u v

w
∗ ∗

but this does not imply confluence.

Namely, the following situation

t u v w

is locally confluent but not confluent.

61

Showing confluence: local confluence

With
t u v w

we have
u v w

u v w

u v w

t

t t
. . .

62

Showing confluence: local confluence

With
t u v w

we have
u v w

u

v w

u v w

t t

t
. . .

62

Showing confluence: local confluence

With
t u v w

we have
u v w

u v w

u v w

t t

t
. . .

62

Showing confluence: local confluence

With
t u v w

we have
u v w

u v w

u

v w

t t t

. . .

62

Showing confluence: local confluence

With
t u v w

we have
u v w

u v w

u v w

t t t

. . .

62

Showing confluence: local confluence

With
t u v w

we have
u v w

u v w

u v w

t t t
. . .

62

The idea is to use an auxiliary reduction, which does have the diamond property
and whose confluence implies the one of β-reduction.

(λx .xx)(II)

(II)(II) (λx .xx)I

I(II)

II

63

The β-reduction

The β-reduction consists in replacing a subterm

(λx .t) u −→β t[u/x]

This thus is the smallest relation such that

(λx .t)u −→β t[u/x]

t −→β t ′

λx .t −→β λx .t ′

t −→β t ′

tu −→β t ′u

u −→β u′

tu −→β tu′

64

The β-reduction

The β-reduction consists in replacing a subterm

(λx .t) u −→β t[u/x]

This thus is the smallest relation such that

(λx .t)u −→β t[u/x]

t −→β t ′

λx .t −→β λx .t ′

t −→β t ′

tu −→β t ′u

u −→β u′

tu −→β tu′

64

The parallel β-reduction

We would like to allow multiple reductions in parallel, e.g.

(II)(II)

I(II) (II)I

II

(λx .xx)t

tt (λx .xx)t ′

t ′t

t ′t ′

We define the parallel β-reduction as

x −↠ x

t −↠ t ′ u −↠ u′

(λx .t)u −↠ t ′[u′/x]

t −↠ t ′ u −↠ u′

t u −↠ t ′u′

t −↠ t ′

λx .t −↠ λx .t ′

65

The parallel β-reduction

We would like to allow multiple reductions in parallel, e.g.

(II)(II)

I(II) (II)I

II

(λx .xx)t

tt (λx .xx)t ′

t ′t

t ′t ′

We define the parallel β-reduction as

x −↠ x

t −↠ t ′ u −↠ u′

(λx .t)u −↠ t ′[u′/x]

t −↠ t ′ u −↠ u′

t u −↠ t ′u′

t −↠ t ′

λx .t −↠ λx .t ′

65

The parallel β-reduction

We would like to allow multiple reductions in parallel, e.g.

(II)(II)

I(II) (II)I

II

(λx .xx)t

tt (λx .xx)t ′

t ′t

t ′t ′

We define the parallel β-reduction as

x −↠ x

t −↠ t ′ u −↠ u′

(λx .t)u −↠ t ′[u′/x]

t −↠ t ′ u −↠ u′

t u −↠ t ′u′

t −↠ t ′

λx .t −↠ λx .t ′

65

The parallel β-reduction

The parallel β-reduction thus allows to perform multiple reductions in parallel:

Lemma
If t −↠ u then t

∗−→β u.

66

The parallel β-reduction

The parallel β-reduction thus allows to perform multiple reductions in parallel:

Lemma
If t −↠ u then t

∗−→β u.

Note that this does not mean that we can always go to a normal form in one step,
because some reductions are created by other:

(λx .xx)(λy .y) −↠ (λy .y)(λy .y)

66

The parallel β-reduction

The parallel β-reduction thus allows to perform multiple reductions in parallel:

Lemma
If t −↠ u then t

∗−→β u.

Conversely, any β-reduction step is in particular, one β-reduction step in “parallel”:

Lemma
If t −→β u then t −↠ u.

Therefore,

Lemma
We have t

∗−→β u iff t
∗
−↠ u.

66

The parallel β-reduction

The parallel β-reduction thus allows to perform multiple reductions in parallel:

Lemma
If t −↠ u then t

∗−→β u.

Conversely, any β-reduction step is in particular, one β-reduction step in “parallel”:

Lemma
If t −→β u then t −↠ u.

Therefore,

Lemma
We have t

∗−→β u iff t
∗
−↠ u.

66

The parallel β-reduction

The parallel β-reduction thus allows to perform multiple reductions in parallel:

Lemma
If t −↠ u then t

∗−→β u.

Conversely, any β-reduction step is in particular, one β-reduction step in “parallel”:

Lemma
If t −→β u then t −↠ u.

Therefore,

Lemma
We have t

∗−→β u iff t
∗
−↠ u.

Proof.
t

∗−→β u = t −→β t1 −→β t2 −→β . . . −→β u

= t −↠ t1 −↠ t2 −↠ . . . −↠ u 66

The parallel β-reduction

The parallel β-reduction thus allows to perform multiple reductions in parallel:

Lemma
If t −↠ u then t

∗−→β u.

Conversely, any β-reduction step is in particular, one β-reduction step in “parallel”:

Lemma
If t −→β u then t −↠ u.

Therefore,

Lemma
We have t

∗−→β u iff t
∗
−↠ u.

Proof.
t

∗
−↠ u = t −↠ t1 −↠ t2 −↠ . . . −↠ u

= t
∗−→β t1

∗−→β t2
∗−→β . . .

∗−→β u 66

Parallel β-reduction: confluence

Our goal is to show:

Theorem
The parallel β-reduction is confluent: if t

∗
−↠ u and t

∗
−↠ v then there exists w such

that u
∗
−↠ w and u

∗
−↠ w .

t

u v

w

∗ ∗

∗ ∗

Corollary
The β-reduction is confluent.

We first need some lemmas.

67

Parallel β-reduction: confluence

Our goal is to show:

Theorem
The parallel β-reduction is confluent: if t

∗
−↠ u and t

∗
−↠ v then there exists w such

that u
∗
−↠ w and u

∗
−↠ w .

t

u v

w

∗ ∗

∗ ∗

Corollary
The β-reduction is confluent.

We first need some lemmas.

67

Parallel β-reduction: confluence

Our goal is to show:

Theorem
The parallel β-reduction is confluent: if t

∗
−↠ u and t

∗
−↠ v then there exists w such

that u
∗
−↠ w and u

∗
−↠ w .

t

u v

w

∗ ∗

∗ ∗

Corollary
The β-reduction is confluent.

We first need some lemmas.
67

Parallel β-reduction: reflexivity

Lemma
For every term t, we have t −↠ t.

Proof.
By induction on the term t:

x −↠ x

t −↠ t ′ u −↠ u′

(λx .t)u −↠ t ′[u′/x]

t −↠ t ′ u −↠ u′

t u −↠ t ′u′

t −↠ t ′

λx .t −↠ λx .t ′

68

Parallel β-reduction and substitution

Lemma
If t −↠ t ′ and u −↠ u′ then t[u/x] −↠ t ′[u′/x].

Proof.
By induction on the derivation of t −↠ t ′.
We recall that the rules defining parallel β-reduction are

x −↠ x

t1 −↠ t ′1 t2 −↠ t ′2

(λx .t1)t2 −↠ t ′1[t
′
2/x]

t1 −↠ t ′1 t2 −↠ t ′2

t1 t2 −↠ t ′1 t
′
2

t1 −↠ t ′1

λx .t1 −↠ λx .t ′1

69

Parallel β-reduction and substitution

Lemma
If t −↠ t ′ and u −↠ u′ then t[u/x] −↠ t ′[u′/x].

Proof.
By induction on the derivation of t −↠ t ′.
If t = x and we used

x −↠ x

we have
t[u/x] = u −↠ u′ = t ′[u′/x]

69

Parallel β-reduction and substitution

Lemma
If t −↠ t ′ and u −↠ u′ then t[u/x] −↠ t ′[u′/x].

Proof.
By induction on the derivation of t −↠ t ′.
If t = y ̸= x and we used

y −↠ y

we have
t[u/x] = y −↠ y = t ′[u′/x]

69

Parallel β-reduction and substitution

Lemma
If t −↠ t ′ and u −↠ u′ then t[u/x] −↠ t ′[u′/x].

Proof.
By induction on the derivation of t −↠ t ′.
If t = (λy .t1)t2 with y ̸= x and we used

t1 −↠ t ′1 t2 −↠ t ′2

(λy .t1)t2 −↠ t ′1[t
′
2/y]

we have t[u/x] = (λy .t1[u/x])t2[u/x] −↠ t ′1[u
′/x][t ′2[u

′/x]/y] = t ′[u′/x]

since, using induction hypothesis,

t1[u/x] −↠ t ′1[u
′/x] t2[u/x] −↠ t ′2[u

′/x]

(λy .t1[u/x])t2[u/x] −↠ t ′1[u
′/x][t ′2[u

′/x]/y]
69

Parallel β-reduction and substitution

Lemma
If t −↠ t ′ and u −↠ u′ then t[u/x] −↠ t ′[u′/x].

Proof.
By induction on the derivation of t −↠ t ′.
If t = t1 t2 and we used

t1 −↠ t ′1 t2 −↠ t ′2

t1 t2 −↠ t ′1 t
′
2

we have t[u/x] = (t1[u/x])(t2[u/x]) −↠ (t ′1[u
′/x])(t ′2[u

′/x]) = t ′[u′/x]

since, using the induction hypothesis,

t1[u/x] −↠ t ′1[u
′/x] t2[u/x] −↠ t ′2[u

′/x]

(t1[u/x])(t2[u/x]) −↠ (t ′1[u
′/x])(t ′2[u

′/x])

69

Parallel β-reduction and substitution

Lemma
If t −↠ t ′ and u −↠ u′ then t[u/x] −↠ t ′[u′/x].

Proof.
By induction on the derivation of t −↠ t ′.
If t = λy .t1 with y ̸= x and we used

t1 −↠ t ′1

λy .t1 −↠ λy .t ′1

we have t[u/x] = λy .t1[u/x] −↠ λy .t ′1[u
′/x] = t ′[u′/x]

since, using the induction hypothesis,

t1[u/x] −↠ t ′1[u
′/x]

λy .t1[u/x] −↠ λy .t ′1[u
′/x]

69

Parallel β-reduction: diamond property

Theorem
The parallel β-reduction has the diamond property: if t −↠ u and t −↠ v then there
exists w such that u −↠ w and v −↠ w .

t

u v

w
Proof.
By induction on the derivation of t −↠ u.
We recall that the rules defining parallel β-reduction are

x −↠ x

t1 −↠ t ′1 t2 −↠ t ′2

(λx .t1)t2 −↠ t ′1[t
′
2/x]

t1 −↠ t ′1 t2 −↠ t ′2

t1 t2 −↠ t ′1 t
′
2

t1 −↠ t ′1

λx .t1 −↠ λx .t ′1

70

Parallel β-reduction: diamond property

Theorem
The parallel β-reduction has the diamond property: if t −↠ u and t −↠ v then there
exists w such that u −↠ w and v −↠ w .

t

u v

w
Proof.
By induction on the derivation of t −↠ u.
If the reduction is t = x −↠ x = u then we conclude immediately with

t

t v

v

70

Parallel β-reduction: diamond property

Theorem
The parallel β-reduction has the diamond property: if t −↠ u and t −↠ v then there
exists w such that u −↠ w and v −↠ w .

t

u v

w
Proof.
By induction on the derivation of t −↠ u.

If the reduction is
t1 −↠ u1

λx .t1 −↠ λx .u1
then the other one is

t1 −↠ v1

λx .t1 −↠ λx .v1
and we have

t1

u1 v1

w1

thus

λx .t1

λx .u1 λx .v1

λx .w1

.

70

Parallel β-reduction: diamond property

Theorem
The parallel β-reduction has the diamond property: if t −↠ u and t −↠ v then there
exists w such that u −↠ w and v −↠ w .

t

u v

w
Proof.
By induction on the derivation of t −↠ u.

If the reduction is
t1 −↠ u1 t2 −↠ u2

(λx .t1)t2 −↠ u1[u2/x]
and the other is

t1 −↠ v1 t2 −↠ v2

(λx .t1)t2 −↠ v1[v2/x]
then

t1

u1 v1

w1

and

t2

u2 v2

w2

thus

(λx .t1)t2

u1[u2/x] v1[v2/x]

w1[w2/x]

.

70

Parallel β-reduction: diamond property

Theorem
The parallel β-reduction has the diamond property: if t −↠ u and t −↠ v then there
exists w such that u −↠ w and v −↠ w .

t

u v

w
Proof.
By induction on the derivation of t −↠ u.

If
t1 −↠ u1 t2 −↠ u2

(λx .t1)t2 −↠ u1[u2/x]
and

λx .t1 −↠ λx .v1 t2 −↠ v2

(λx .t1) t2 −↠ (λx .v1) v2
then

t1

u1 v1

w1

and

t2

u2 v2

w2

thus

(λx .t1)t2

u1[u2/x] (λx .v1)v2

w1[w2/x]

.

70

Parallel β-reduction: confluence

Theorem
The parallel β-reduction is confluent: if t

∗
−↠ u and t

∗
−↠ v then there exists w such

that u
∗
−↠ w and u

∗
−↠ w .

t

u v

w

∗ ∗

∗ ∗

Proof.
By induction on the length of the reduction t

∗
−↠ u.

71

Parallel β-reduction: confluence

Theorem
The parallel β-reduction is confluent: if t

∗
−↠ u and t

∗
−↠ v then there exists w such

that u
∗
−↠ w and u

∗
−↠ w .

t

u v

w

∗ ∗

∗ ∗

Proof.
By induction on the length of the reduction t

∗
−↠ u.

• If the length is zero then this is immediate:
t

u = t v

v

∗

∗

71

Parallel β-reduction: confluence

Theorem
The parallel β-reduction is confluent: if t

∗
−↠ u and t

∗
−↠ v then there exists w such

that u
∗
−↠ w and u

∗
−↠ w .

t

u v

w

∗ ∗

∗ ∗

Proof.
By induction on the length of the reduction t

∗
−↠ u.

• Otherwise,

t

t ′

u v

v ′

w

∗

∗

71

Parallel β-reduction: confluence

Theorem
The parallel β-reduction is confluent: if t

∗
−↠ u and t

∗
−↠ v then there exists w such

that u
∗
−↠ w and u

∗
−↠ w .

t

u v

w

∗ ∗

∗ ∗

Proof.
By induction on the length of the reduction t

∗
−↠ u.

• Otherwise,

t

t ′

u v

v ′

w

∗

∗
∗

71

Parallel β-reduction: confluence

Theorem
The parallel β-reduction is confluent: if t

∗
−↠ u and t

∗
−↠ v then there exists w such

that u
∗
−↠ w and u

∗
−↠ w .

t

u v

w

∗ ∗

∗ ∗

Proof.
By induction on the length of the reduction t

∗
−↠ u.

• Otherwise,

t

t ′

u v

v ′

w

∗

∗
∗

∗
∗

71

Part V

De Bruijn indices

72

α-conversion, again

Again, α-conversion (renaming of bound variables) is one of the greatest source of bugs
and problems.

An idea to eliminate the need for renaming is consists in having a convention for
naming variables.

73

De Bruijn indices

In a closed term, such as
λx .x(λy .yx)

every variable is bound by some λ-abstract above:

λx

@

x λy

@

y x

The de Bruijn convention: replace every variable by the number of λs to jump over

λ.0(λ.01)

74

De Bruijn indices

In a closed term, such as
λx .x(λy .yx)

every variable is bound by some λ-abstract above:

λx

@

x λy

@

y x

The de Bruijn convention: replace every variable by the number of λs to jump over

λ.0(λ.01) 74

De Bruijn indices

We now consider λ-terms generated by the grammar

t, u ::= i | t u | λ.t

where i ∈ N is a de Bruijn index.

Again, an index i means the variable declared by the i-th λ above.

If there are not enough λs, then it is a free variable:

λx .xx0x2 becomes λ.013

(we can assume that the free variables are {x0, . . . , xk−1})

75

De Bruijn indices

We now consider λ-terms generated by the grammar

t, u ::= i | t u | λ.t

where i ∈ N is a de Bruijn index.

Again, an index i means the variable declared by the i-th λ above.

If there are not enough λs, then it is a free variable:

λx .xx0x2 becomes λ.013

(we can assume that the free variables are {x0, . . . , xk−1})

75

Reduction

The rule for β-reduction is the usual one:

(λ.t)u −→β t[u/0]

excepting that the substitution now has to take care of properly handling indices.

76

Reduction

The reduction

λx .(λy .λz .y) (λt.t) −→β λx .(λz .y)[λt.t/y] = λx .λz .y [λt.t/y] = λx .λz .λt.t

corresponds to

λ.(λ.λ.1)λ.0 −→β λ.(λ.1)[λ.0/0] = λ.λ.1[λ.0/1] = λ.λ.λ.0

and we are tempted to define substitution by

i [u/i] = u

j [u/i] = j for j ̸= i

(t t ′)[u/i] = (t[u/i]) (t ′[u/i])

(λ.t)[u/i] = λ.t[u/i+1]

Incorrect: in the last case, t might contain free variables.

77

Reduction

The reduction

λx .(λy .λz .y) (λt.t) −→β λx .(λz .y)[λt.t/y] = λx .λz .y [λt.t/y] = λx .λz .λt.t

corresponds to

λ.(λ.λ.1)λ.0 −→β λ.(λ.1)[λ.0/0] = λ.λ.1[λ.0/1] = λ.λ.λ.0

and we are tempted to define substitution by

i [u/i] = u

j [u/i] = j for j ̸= i

(t t ′)[u/i] = (t[u/i]) (t ′[u/i])

(λ.t)[u/i] = λ.t[u/i+1]

Incorrect: in the last case, t might contain free variables.
77

Reduction

The reduction

λx .(λy .λz .y) x −→β λx .(λz .y)[x/y] = λx .λz .y [x/y] = λx .λz .x

corresponds to

λ.(λ.λ.1) 0 −→β λ.(λ.1)[0/0] = λ.λ.1[1/1] = λ.λ.1

and the last case of substitution should actually be

(λ.t)[u/i] = λ.t[↑0 u/i+1]

where ↑0 u is u with all free variables increased by 1 (and other unchanged).

Still incorrect: β-reduction removes abstractions!

78

Reduction

The reduction

λx .(λy .λz .y) x −→β λx .(λz .y)[x/y] = λx .λz .y [x/y] = λx .λz .x

corresponds to

λ.(λ.λ.1) 0 −→β λ.(λ.1)[0/0] = λ.λ.1[1/1] = λ.λ.1

and the last case of substitution should actually be

(λ.t)[u/i] = λ.t[↑0 u/i+1]

where ↑0 u is u with all free variables increased by 1 (and other unchanged).

Still incorrect: β-reduction removes abstractions!

78

Reduction

The reduction
λx .(λy .x) (λt.t) −→β λx .x [λt.t/y] = λx .x

corresponds to
λ.(λ.1) (λ.0) −→β λ.1[λ.0/0] = 0

and the first case of substitution should actually be, for j ̸= i ,

j [u/i] = ↓i j

with

↓l i =

i − 1 if i > l

i if i < l

79

Reduction

The reduction
λx .(λy .x) (λt.t) −→β λx .x [λt.t/y] = λx .x

corresponds to
λ.(λ.1) (λ.0) −→β λ.1[λ.0/0] = 0

and the first case of substitution should actually be, for j ̸= i ,

j [u/i] = ↓i j

with

↓l i =

i − 1 if i > l

i if i < l

79

Reduction

In summary, the β-reduction can be defined as

(λ.t)u −→β t[u/0]

with

i [u/i] = u

j [u/i] = ↓i j for j ̸= i

(t t ′)[u/i] = (t[u/i]) (t ′[u/i])

(λ.t)[u/i] = λ.t[↑0 u/i+1]

80

Lifting

We are only left to define ↑0 u which is u with all free variables increased by 1.

For instance,
↑0(0(λ.01)) =

1(λ.02)

Note that, under the λ, we should only increase free variables of index ⩾ 1.

81

Lifting

We are only left to define ↑0 u which is u with all free variables increased by 1.

For instance,
↑0(0(λ.01)) = 1(λ.02)

Note that, under the λ, we should only increase free variables of index ⩾ 1.

81

Lifting

Given a “cutoff level” l , we define
↑l u

which is u with all free variables of index ⩾ l increased by 1:

↑l i =

i if i < l

i + 1 if i ⩾ l

↑l(t u) = (↑l t) (↑l u)
↑l(λ.t) = λ.(↑l+1 t)

82

Reduction

We can define a translation from λ-terms to de Bruijn and back.

Theorem
The β-reduction is compatible with translations.

83

Part VI

Combinatory logic

84

Combinatory logic

Combinatory logic was introduced by Schönfinkel and Curry, in order to provide a
syntax which does not need to use variable binding or α-conversion.

It begins with the observation that all the λ-terms can be generated by composing a
finite number of those:

S = λxyz .(xz)(yz) K = λxy .x

85

Combinatory logic

Combinatory logic was introduced by Schönfinkel and Curry, in order to provide a
syntax which does not need to use variable binding or α-conversion.

It begins with the observation that all the λ-terms can be generated by composing a
finite number of those:

S = λxyz .(xz)(yz) K = λxy .x

For instance, I = λx .x can be implemented as

S K K = (λxyz .(xz)(yz))(λxy .x)(λxy .x) −→β λz .((λxy .x)z)((λxy .x)z)

−→β λz .(λy .z)(λy .z)

−→β λz .z

85

Combinatory logic

Combinatory logic was introduced by Schönfinkel and Curry, in order to provide a
syntax which does not need to use variable binding or α-conversion.

It begins with the observation that all the λ-terms can be generated by composing a
finite number of those:

S = λxyz .(xz)(yz) K = λxy .x

Note that

• S allows the duplication of a variable which is given to two terms in an application,

• K allows the erasure of a variable given as argument.

85

Combinatory logic

Combinatory logic was introduced by Schönfinkel and Curry, in order to provide a
syntax which does not need to use variable binding or α-conversion.

It begins with the observation that all the λ-terms can be generated by composing a
finite number of those:

S = λxyz .(xz)(yz) K = λxy .x

Note that these terms satisfy:

S t u v −→β (t v) (u v) K t u −→β t

85

Combinatory logic

The terms are defined as
T ,U ::= x | T U | S | K

where x is a variable.

The reduction rules are

ST U V −→ (T V) (U V) KT U −→ T

T −→ T ′

T U −→ T ′ U

U −→ U ′

T U −→ T U ′

For instance,
S K KT −→ (KT) (KT) −→ T

86

Combinatory logic

The terms are defined as
T ,U ::= x | T U | S | K

where x is a variable.

The reduction rules are

ST U V −→ (T V) (U V) KT U −→ T

T −→ T ′

T U −→ T ′ U

U −→ U ′

T U −→ T U ′

For instance,
S K KT −→ (KT) (KT) −→ T

86

Combinatory logic

The terms are defined as
T ,U ::= x | T U | S | K

where x is a variable.

The reduction rules are

ST U V −→ (T V) (U V) KT U −→ T

T −→ T ′

T U −→ T ′ U

U −→ U ′

T U −→ T U ′

For instance,
S K KT −→ (KT) (KT) −→ T 86

Translation to λ-calculus

We define a translation from combinatory terms to λ-terms by

JxKλ = x JT UKλ = JT KλJUKλ JKKλ = λxy .x JSKλ = λxyz .(xz)(yz)

Proposition
Given combinatory terms T and T ′, we have

T −→ T ′ implies JT Kλ
∗−→β JT ′Kλ

87

Translation to λ-calculus

We define a translation from combinatory terms to λ-terms by

JxKλ = x JT UKλ = JT KλJUKλ JKKλ = λxy .x JSKλ = λxyz .(xz)(yz)

Proposition
Given combinatory terms T and T ′, we have

T −→ T ′ implies JT Kλ
∗−→β JT ′Kλ

87

Translation from λ-calculus

Given a combinatory term T and a variable x , we define the term Λx .T by

Λx .x = I = S K K

Λx .T = KT if x ̸∈ FV(T),

Λx .(T U) = S (Λx .T) (Λx .U) otherwise.

88

Translation from λ-calculus

Given a combinatory term T and a variable x , we define the term Λx .T by

Λx .x = I = S K K

Λx .T = KT if x ̸∈ FV(T),

Λx .(T U) = S (Λx .T) (Λx .U) otherwise.

We can finally translate a λ-term t by

JxKcl = x

Jt uKcl = JtKcl JuKcl
Jλx .tKcl = Λx .JtKcl

88

Translation from λ-calculus

Given a combinatory term T and a variable x , we define the term Λx .T by

Λx .x = I = S K K

Λx .T = KT if x ̸∈ FV(T),

Λx .(T U) = S (Λx .T) (Λx .U) otherwise.

For instance,

Jλx .λy .xKcl

= Λx .Jλy .xKcl
= Λx .Λy .JxKcl
= Λx .Λy .x

= Λx .K x

= S (Λx .K) (Λx .x)

= S (K K) I

88

Translation from λ-calculus

Given a combinatory term T and a variable x , we define the term Λx .T by

Λx .x = I = S K K

Λx .T = KT if x ̸∈ FV(T),

Λx .(T U) = S (Λx .T) (Λx .U) otherwise.

For instance,

Jλx .λy .xKcl = Λx .Jλy .xKcl

= Λx .Λy .JxKcl
= Λx .Λy .x

= Λx .K x

= S (Λx .K) (Λx .x)

= S (K K) I

88

Translation from λ-calculus

Given a combinatory term T and a variable x , we define the term Λx .T by

Λx .x = I = S K K

Λx .T = KT if x ̸∈ FV(T),

Λx .(T U) = S (Λx .T) (Λx .U) otherwise.

For instance,

Jλx .λy .xKcl = Λx .Jλy .xKcl
= Λx .Λy .JxKcl

= Λx .Λy .x

= Λx .K x

= S (Λx .K) (Λx .x)

= S (K K) I

88

Translation from λ-calculus

Given a combinatory term T and a variable x , we define the term Λx .T by

Λx .x = I = S K K

Λx .T = KT if x ̸∈ FV(T),

Λx .(T U) = S (Λx .T) (Λx .U) otherwise.

For instance,

Jλx .λy .xKcl = Λx .Jλy .xKcl
= Λx .Λy .JxKcl
= Λx .Λy .x

= Λx .K x

= S (Λx .K) (Λx .x)

= S (K K) I

88

Translation from λ-calculus

Given a combinatory term T and a variable x , we define the term Λx .T by

Λx .x = I = S K K

Λx .T = KT if x ̸∈ FV(T),

Λx .(T U) = S (Λx .T) (Λx .U) otherwise.

For instance,

Jλx .λy .xKcl = Λx .Jλy .xKcl
= Λx .Λy .JxKcl
= Λx .Λy .x

= Λx .K x

= S (Λx .K) (Λx .x)

= S (K K) I

88

Translation from λ-calculus

Given a combinatory term T and a variable x , we define the term Λx .T by

Λx .x = I = S K K

Λx .T = KT if x ̸∈ FV(T),

Λx .(T U) = S (Λx .T) (Λx .U) otherwise.

For instance,

Jλx .λy .xKcl = Λx .Jλy .xKcl
= Λx .Λy .JxKcl
= Λx .Λy .x

= Λx .K x

= S (Λx .K) (Λx .x)

= S (K K) I

88

Translation from λ-calculus

Given a combinatory term T and a variable x , we define the term Λx .T by

Λx .x = I = S K K

Λx .T = KT if x ̸∈ FV(T),

Λx .(T U) = S (Λx .T) (Λx .U) otherwise.

For instance,

Jλx .λy .xKcl = Λx .Jλy .xKcl
= Λx .Λy .JxKcl
= Λx .Λy .x

= Λx .K x

= S (Λx .K) (Λx .x)

= S (K K) I 88

Properties of the embedding

Lemma
For any λ-term t, JJtKclKλ

∗−→β t.

For instance,

JJλx .xKclKλ = JS K KKλ = (λxyz .(xz)(yz))(λxy .x)(λxy .x)
∗−→β λx .x

Corollary
Every closed λ-term can be obtained by composing the λ-terms S and K.

89

Properties of the embedding

Lemma
For any λ-term t, JJtKclKλ

∗−→β t.

For instance,

JJλx .xKclKλ = JS K KKλ = (λxyz .(xz)(yz))(λxy .x)(λxy .x)
∗−→β λx .x

Corollary
Every closed λ-term can be obtained by composing the λ-terms S and K.

89

Limitations of the translations

It is not true that t ∗−→β u implies JtKcl
∗−→ JuKcl.

For instance,

Jλx .(λy .y) xKcl = S (K I) I Jλx .xKcl = I

(both are normal forms!)

However, it gets true if we apply them to enough arguments:

S (K I) IT −→ K IT (IT) −→ I (IT) −→ IT −→ T and IT −→ T

90

Limitations of the translations

It is not true that t ∗−→β u implies JtKcl
∗−→ JuKcl.

For instance,

Jλx .(λy .y) xKcl = S (K I) I Jλx .xKcl = I

(both are normal forms!)

However, it gets true if we apply them to enough arguments:

S (K I) IT −→ K IT (IT) −→ I (IT) −→ IT −→ T and IT −→ T

90

Limitations of the translations

It is not true that t ∗−→β u implies JtKcl
∗−→ JuKcl.

For instance,

Jλx .(λy .y) xKcl = S (K I) I Jλx .xKcl = I

(both are normal forms!)

However, it gets true if we apply them to enough arguments:

S (K I) IT −→ K IT (IT) −→ I (IT) −→ IT −→ T and IT −→ T

90

Limitations of the translation

The translation of a combinatory term in normal form is not necessarily a normal form:

JK xKcl = (λxy .x) x −→β λy . x

91

Limitations of the translation

A combinatory term T is not convertible with JJT KλKcl in general

JJKKλKcl = Jλxy .xKcl = S (K K) I ̸= K

(they are both normal forms and combinatory logic can be shown to be confluent)

92

Limitations of the translation

All those defects are due to the fact that combinatory terms might be stuck (compared
to λ-terms) if they don’t have enough arguments.

The translation is still quite useful.

93

Undecidability

The system
T ,U ::= x | T U | S | K

with rules

ST U V −→ (T V) (U V) KT U −→ T

T −→ T ′

T U −→ T ′ U

U −→ U ′

T U −→ T U ′

simulates λ-calculus and is thus undecidable!

94

Iota

We have reduced λ-calculus to 2 combinators, can we do 1?

Yes,
ι = λx .x S K

Namely,

I = ι ι K = ι (ι (ι ι)) S = ι (ι (ι (ι ι)))

The reduction is
ιT −→ T (ι (ι (ι (ι ι)))) (ι (ι (ι ι)))

95

Iota

We have reduced λ-calculus to 2 combinators, can we do 1?

Yes,
ι = λx .x S K

Namely,

I = ι ι K = ι (ι (ι ι)) S = ι (ι (ι (ι ι)))

The reduction is
ιT −→ T (ι (ι (ι (ι ι)))) (ι (ι (ι ι)))

95

Iota

The terms are generated by the grammar

t, u ::= ι | t u

A term t can be encoded as a binary word [t] defined by

[ι] = 1 [t u] = 0[t][u]

so that ι (ι (ι ι)) is encoded as 0101011.

We thus get an interesting binary encoding of λ-terms.

96

	Introduction
	λ-calculus
	Expressive power
	Confluence
	De Bruijn indices
	Combinatory logic

