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Let’s start with some polls

• English or French?

• Who has followed INF412?

• Who has already used OCaml?

• Who has already heard of a proof assistant?
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What is this course about?

PROGRAM
=

PROOF
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What is this course about?

A rough history of the subject.

• 1900: formalization of the notion of proof
Hilbert, Frege, Russell, Brouwer, Gentzen, ...

• 1930: functional programming (λ-calculus)
Church, ...

• 1960: typing rules for functional programming = rules for logic
Curry, Howard, ...

• 1970: programs to verify proofs
de Bruijn, Coquand, ...

• 1970: dependent types
Martin-Löf, Coquand, ...
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What is this course about?

Γ ⊢ f : A → A
(ax)

Γ ⊢ f : A → A
(ax)

Γ ⊢ x : A → A
(ax)

Γ ⊢ fx : A
(→E)

f : A → A, x : A ⊢ f (fx) : A
(→E)

f : A → A ⊢ λxA.f (fx) : A → A
(→I)

⊢ λf A→A.λxA.f (fx) : (A → A) → A → A
(→I)
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What is this course about?

This correspondence between proofs and programs implies that

• we can automatically check whether a proof is valid or not,

• we can prove properties about programs,

• we can use programs to generate proofs.
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Plan of the course

Programming proofs (labs in OCaml)

1. Typed functional programming

2. Intuitionistic propositional logic

3. λ-calculus

4. The proof-as-program correspondence

Proving programs (labs in Agda)

5. Introduction to Agda

6. First order logic

7. Dependent types I

8. Dependent types II

9. Homotopy type theory
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Resources

All resources can be found on the webpage of the course:

http://inf551.mimram.fr/ https://moodle.polytechnique.fr/
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Course notes

Samuel MIMRAM
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Communicating

You can reach me by mail:

samuel.mimram@polytechnique.edu
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Evaluation

You will be evaluated on

1. the labs (1/3)

2. the 4th lab/project (1/3)

3. an exam (1/3)

It is important that you submit your lab solutions on moodle, you have 1 week to do so.

(if you don’t have access to it, use mail)
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Evaluation

Some general remarks:

• the goal is that you understand, please ask questions, including for the project,

• you are strongly advised to complete (at least) the mandatory parts of labs,

• do not forget to submit the lab on the moodle,

• you have one week to submit or update the lab,

• copying code is considered as cheating,

• using generative AI (such as ChatGPT) to generate code is considered as cheating,

• the course focuses on theory and the lab focus on practice,

• it will be difficult for you to catch up, please attend the courses.
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Part I

PROGRAM = PROOF
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Testing vs proving

Programming
Most programmers use tests in order to
validate their developments.

This is based on the belief that if the
program

• uses “regular enough” functions, and

• “small” constants,

then enough tests should cover all possible
behaviors.

Mathematics
No mathematician, in order to prove

∀n ∈ N.P(n)

will start checking P(0), then P(1), then
P(2), . . .

He will make a proof, which ensures that
P(n) holds whichever n ∈ N is.

Can we prove programs?
13



Testing vs proving

How much is
∫ ∞

0

sin(t)
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Testing vs proving

In fact, the equality ∫ ∞
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starts breaking at

n =

15 341 178 777 673 149 429 167 740 440 969 249 338 310 889
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Testing vs proving

Already in the 70s Dijkstra was claiming:

Program testing can be used to show the presence of bugs, but never to
show their absence!

Morale: testing rarely covers all cases, see previous example or real life.

See the usual list of software bugs:

Therac-25 Ariane 5 · · ·

18
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The Therac-25

The Therac-25 was

• a radiation therapy machine with two modes:
low energy electrons (e.g. skin) and high energy X-rays (e.g. lungs),

• one day the operator pressed “x” instead of “e”, and quickly corrected to “e”
• the patient received 100 times the expected dose and eventually died
• there was a concurrency error: if an edit was performed during the magnet setting

phase (8 seconds) it was not taken into account because of the value of the shared
completion variable, although the screen made you think it did

• the bug was present in the Therac-20 but hardware prevented this
• there was an overflow in a 1 byte long variable which did also caused overdose

under bad cirumstances every 256 attempts
• first software bug to actually kill people

19



Ariane 5

Ariane 5

• reused the Ariane 5 reused the inertial reference platform
(SRI) from Ariane 4 (uses sensors to compute the position)

• the acceleration was 5 times bigger and converted from 64 bits to 16 bits, which
resulted in an overflow

• this caused a hardware exception, which caused sending test data on the data bus

• at t0+37, the autopilot is then launched, uses the test data as actual data, and
thus abruptly changes the trajectory of the rocket

• the SRI were useful only before launching and kept active during the 40 first
seconds because this was required by Ariane 4.

20



Proof assistants

Starting from the 70s, people started to develop proof assistants which are programs
which can check proofs (Agda, Coq, Isabelle, Lean, ...).

In such a proof assistant, you can

1. express logical formulas

2. gradually prove those formulas

3. extract a program from those proofs

Typical example:
∀l ∈ (List N).∃l ′ ∈ (List N).(Sorted l ′)
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Proof assistants
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Proof assistants

Those proof assistants guarantee that the program will always act according to the
specification...

...provided that you believe that those assistants do not have bugs:

• there is a deep well-established theory,

• most proof assistants have a small core,

• part of the proof assistants have been formalized using proof assistants.

PS: you also have to trust to compiler

• CompCert: a fully certified compiler

and the OS, and the hardware...
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Formal methods

Proof assistants are part of formal methods, which guarantee behavior of programs.
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Formal methods

Proof assistants are part of formal methods, which guarantee behavior of programs.

There are various level of automation:

• fully automatic (abstract interpretation, etc.),

• partially automated (Hoare logic, etc.)

• manual (proof assistants, etc.)

In general, more automated means faster but more specific.
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Formal methods

Proof assistants are part of formal methods, which guarantee behavior of programs.

They have been successfully used in industry:

• line 14 and Roissy Val (B-method)

• Airbus

• ...

It takes lots of time (money), but achieves high level of guarantee.

RATP / CML / Agence Cartographique / PLM 9.2012 - B BO

Cour Saint-Émilio
n

Bercy
Gare de Lyon

Châtelet

Pyramides

Madeleine

Saint-Lazare

Bibliothèque

François M
itte

rra
nd

Olympiades

Gare de Paris–Bercy
Orly
CDG
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Checking vs proving

proof
checking

proving

25
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In this course

The most complicated algorithm that you will prove here is a sorting algorithm.

I can hear you think: “come on, in 2025, we know how to implement sorting”, but

• proving more complex programs is “only” a matter of time,

• in 2015, a bug was found in the default implementation of sorting in Java.
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Proof checking

Mathematicians are humans and they happen to make mistakes.

For instance,

• 1991: the Fields medalist Voevodsky solves a conjecture of Grothendieck,

“spaces = strict ∞-categories with weakly invertible morphisms”

• 1998: Simpson finds a counter-example

• 2005: Voevodsky gets interested in proof assistants

• 2010: Voevodsky develop new foundations for mathematics

homotopy type theory

• 2013: Voevodsky finally accepts that there is a flaw in his proof
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Proof checking

Quoting Voevodsky:

In the Spring of 2010 I suggested to the School of Mathematics that I will 
organize a special program on new foundations of mathematics in 2012/13, 
despite the fact that at this time it was not clear that the field would be 
ready for such a program by then. 	


I now do my mathematics with a proof assistant and do not have to worry 
all the time about mistakes in my arguments or about how to convince 
others that my arguments are correct. 	


But I think that the sense of urgency that pushed me to hurry with the 
program remains.  Sooner or later computer proof assistants will become 
the norm, but the longer this process takes the more misery associated 
with mistakes and with unnecessary self-verification the practitioners of the 
field will have to endure.

�28
28



Proof checking

Nowadays, in addition to applied mathematics, important mathematical theorems have
been formalized:

• the four color theorema (graph theory)

• the Feit-Thompson theoremb (group theory)

• the Kepler conjecturec (dense sphere packing)

• the liquid tensor experimentd (liquid vector spaces)

• the 5th busy beaver numbere (computability)
ahttps://github.com/coq-community/fourcolor
bhttps://github.com/math-comp/odd-order
chttps://arxiv.org/abs/1501.02155
dhttps://github.com/leanprover-community/lean-liquid/
ehttps://github.com/ccz181078/Coq-BB5
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Proof checking

Nowadays, in addition to applied mathematics, important mathematical theorems have
been formalized:

• the independence of the continuum hypothesis a

• the existence of sphere eversionsb

• π4(S3) = Z2
c

ahttps://flypitch.github.io/
bhttps://github.com/leanprover-community/sphere-eversion
chttps://github.com/agda/cubical/tree/master/Cubical/Homotopy/Group/Pi4S3
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Types as foundations

What is mathematics talking about?

• 1901: Russell’s paradox in naive set theory
• 1908: Zermelo-Fraenkel set theory
• 1912: Russell’s theory of types
• 2013: Voevodsky’s homotopy type theory: type = space

30



Proof searching

Understanding proof theory allows to

• formulate problems in a logical fashion,

• design new proof search procedures.

In fact, McCarthy, one of the founder of Artificial Intelligence, was an advocate of using
computational logic in order to represent knowledge and manipulate data.

[Admittedly this is less popular than neural networks today, but one never knows]

We don’t insist on this here, because these procedures give you little control about the
proofs they produce.
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Philosophy

This also provides answer to philosophical / epistemological questions:

• what are the foundations of mathematics?

• what is reasoning?

• what is a proof?

• what does it mean that something exists?

• what does it mean for two things to be equal?

• . . .

32



Religion

Some people base their faith on the computational trinitarism:

CategoriesProgramming

Logic

33



Part II

Typed functional programming

34



OCaml in three slides

let x = 5

let f x = 2 * x

let () =
print_string "The result is ";
print_int (f 5)

let rec fact n =
if n = 0 then 1 else n * (fact (n-1))
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OCaml in three slides

let rec map f l =
match l with
| [] -> []
| x::l -> (f x)::(map f l)

let () =
let l1 = [1;2;3] in
let l2 = map (fun x -> 2*x) l1 in
assert (l1 = l2)
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OCaml in three slides

• comparison: = and <> (never == nor !=)

• boolean operations: &&, ||, not
• string concatenation: s ˆ t
• patterns always bind:

• beware of imbricated patterns
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Types in OCaml

Every program has a type:
expression type

3

int
3.0 float

true bool
() unit

fun x -> 2 * x int -> int
fun x -> (2 * x, "x") int -> int * string

fun x -> (x, "x") ’a -> ’a * string
[3; 4; 1] int list

[] ’a list
List.map ’a list -> (’a -> ’b) -> ’b list

print_string string -> unit
fun x -> x x Error: This expression has type ’a -> ’b but an expression was expected of type ’a The type variable ’a occurs inside ’a -> ’b
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Types in OCaml

Typing guarantees that functions will always get arguments as expected.

The following will be rejected:

3 * "x"
a.(2.1)

...

but also

"abc" ˆ 3
4 + 2.1

...

More on this later.
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Types in OCaml

Types in OCaml are

• static: checked at compilation time,

• inferred: no type annotation is required, the compiler “guesses” the type,

• polymorphic: a type such as

’a -> ’a

is implicitly universally quantified on ’a,

• principal: the most general type is always inferred

fun x -> x : 'a -> 'a

but we can specify types if we want

fun (x : int) -> x : int -> int
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Recursive types

Values of recursive types can be observed by pattern matching.

For instance, on lists:

let rec length l =
match l with
| [] -> 0
| x::l -> 1 + length l

41



Recursive types

We can also define custom recursive types:

type ilist =
| Nil
| Cons of int * ilist

A typical value is

Nil
Cons (3 , Nil)

Cons (5 , Cons (3 , Nil))
...
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Recursive types

We can also define custom parametrized recursive types:

type 'a list =
| []
| 'a :: 'a list

A typical value is

Nil
Cons (3 , Nil)

Cons (5 , Cons (3 , Nil))
...
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Recursive types

Functions on recursive types are typically defined by recurrence:

let rec length l =
match l with
| Nil -> 0
| Cons (x , l') -> 1 + length l'
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Recursive types

Functions on recursive types are typically defined by recurrence:

let rec concat l m =
match l with
| Nil -> m
| Cons (x , l') -> Cons (x , concat l' m)

43



Recursive types

Many usual types can be defined as recursive types.

Booleans:

type bool =
| True
| False

Conditional if b then e1 else e2 can be written as
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Recursive types

Many usual types can be defined as recursive types.

Natural numbers (in unary notation):

type nat =
| Z
| S of nat

Addition can be computed as

let rec add x y =
match x with
| Z -> y
| S x' -> S (add x' y)
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A function let f () = e can be written as
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type unit =
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A function let f () = e can be written as
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Other types

There are other ways of building types:

• products:

(3 , "x") is of type int * string

• records, objects, etc.
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OCaml in practice

In practice, you should use Emacs to edit ml files.

The only shortcut you need to know is

C-c C-e

which evaluates the current function
(the first time you also need to press enter to launch ocaml)
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OCaml in practice

In case you want to use VS Code, you need to select the code and type

shift-enter
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Part III

The proof-as-program correspondence

48



Types as formulas

There is a wonderful thing, called the proof-as-program correspondence, due to

and

Curry Howard

which states that

a type is the same as a formula
and

a program is the same as a proof.
49



Arrow as implication

Given types T and U, the type

T -> U

• the type of functions from T to U,

• the type of programs which transform a T into a U,

• the type of programs thanks to which having a T implies having a U,

• the formula T ⇒ U,

• the type of proofs of T ⇒ U.

Think of string_of_int of type int -> string.
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Arrow as implication

We can thus think of a program of type

’a -> ’a

as a proof of
A ⇒ A

It can be proved by

let id = fun x -> x
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Arrow as implication

The formula
A ⇒ B ⇒ A

i.e. the type

’a -> ’b -> ’a

can be proved by

let k = fun x y -> x

52



Arrow as implication

The formula
A ⇒ B ⇒ A

i.e. the type

’a -> ’b -> ’a

can be proved by

let k = fun x y -> x

52



Arrow as implication

The formula
A ⇒ B ⇒ A

i.e. the type

’a -> ’b -> ’a

can be proved by

let k = fun x y -> x

52



Arrow as implication

The formula
A ⇒ B ⇒ A

i.e. the type

’a -> ’b -> ’a

can be proved by

let k = fun x y -> x

52



Arrow as implication

The formula
(A ⇒ B) ⇒ (B ⇒ C ) ⇒ (A ⇒ C )

i.e. the type

(’a -> ’b) -> (’b -> ’c) -> ’a -> ’c

can be proved by

let comp f g x = g (f x)
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The proof-as-program correspondence

We will make the following precise:

Theorem
A formula can be proved (for a suitable notion of provability) if and only there is a
program of the corresponding type (for a suitable subset of OCaml).

In other words,

PROGRAM = PROOF

(at least for existence)
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Conjunction

The correspondence would be boring if it was limited to implication.

The formula
A ∧ B

can be interpreted as the type

’a * ’b
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Conjunction

The formula
(A ∧ B) ⇒ A

corresponding to the type

(’a * ’b) -> ’a

can be proved by

let proj1 = fun (x , y) -> x
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Truth

The truth formula
⊤

can be interpreted as the type

unit

whose only value is
()
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Truth

The formula
A ⇒ ⊤

corresponding to the type

’a -> unit

can be proved by

fun x -> ()
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Falsity

The falsity formula
⊥

can be interpreted as the type

type empty = |

which is a recursive type with no constructor.
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The falsity formula
⊥

can be interpreted as the type
type empty = |

which is a recursive type with no constructor.
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Falsity

The formula
⊥ ⇒ A

corresponding to the type

empty -> ’a

can be proved by

let absurd = fun x -> match x with _ -> .
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Negation

As usual, negation can be defined as

¬A =

A ⇒ ⊥

which corresponds to the type
’a -> empty
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Negation

The contraposition formula

(A ⇒ B) ⇒ (¬B ⇒ ¬A)

corresponding to the type

(’a -> ’b) -> (’b -> empty) -> ’a -> empty

can be proved by

let contr = fun f k a -> k (f a)
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Negation

The contraposition formula

(A ⇒ B) ⇒ (¬B ⇒ ¬A)

corresponding to the type
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Disjunction

The disjunction
A ∨ B

can be interpreted as the recursive type

type ('a , 'b) coprod =
| Left of 'a
| Right of 'b

(this is (’a , ’b) Either.t in the standard library)
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Disjunction

The distributivity formula

A ∧ (B ∨ C ) ⇒ (A ∧ B) ∨ (A ∧ C )

corresponding to the type

(’a * (’b , ’c) coprod) -> (’a * ’b , ’a * ’c) coprod

can be proved by

let dist = fun (a , x) ->
match x with
| Left b -> Left (a , b)
| Right c -> Right (a , c)
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Corner cases

The correspondence between

• a formula is provable,

• there exists a program of the corresponding type

is not perfect because

• OCaml is not intended for that, and

• we need to do more theory.

For languages such as Agda, the match is perfect.
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Corner cases: too many provable formulas

We can prove absurd formulas such as

A ⇒ B

by

• using side effects:

let absurd : 'a -> 'b = fun x -> raise Not_found

• using non-termination:

let rec absurd : 'a -> 'b = fun x -> absurd x

From which we can “prove” pretty much everything:

let fake : empty = absurd ()
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From which we can “prove” pretty much everything:

let fake : empty = absurd ()

67



Corner cases: too few provable formulas

The formula
A ∨ ¬A

corresponding to the type

(’a , ’a -> empty) coprod

has no simple proof.
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Corner cases: too few provable formulas

The formula
A ∨ ¬A

corresponding to the type

(’a , ’a -> empty) coprod

has no simple proof.
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Part IV

Typed programs are safe
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The usefulness of typing

As Milner put it:

Well-typed programs cannot go wrong.

We will see that typed programs are safe:

• subject reduction: typing is preserved along reduction,

• progress: a program which is not a value always reduces,
i.e. execution is never stuck

In order to formalize this, we need to define the reduction and typing of our language.
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A simple programming language

A program is a term generated by

p, q ::= b a boolean b ∈ {true, false}
| n an integer n ∈ Z
| p + q an addition
| p < q a comparison
| if p then q else r a branching

Note that we can have programs of the form 3 + true!

A value is a program which is either a boolean b or an integer n.
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Typing

A type is either bool or int.

The fact that p has type A is written

⊢ p : A

The typing rules are

⊢ n : int ⊢ b : bool

⊢ p1 : int ⊢ p2 : int

⊢ p1 + p2 : int

⊢ p1 : int ⊢ p2 : int

⊢ p1 < p2 : bool

⊢ p : bool ⊢ p1 : A ⊢ p2 : A

⊢ if p then p1 else p2 : A
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Typing

A program p has type A when ⊢ p : A can be derived.

For instance:

⊢ 3 : int ⊢ 2 : int

⊢ 3 < 2 : bool ⊢ 5 : int ⊢ 1 : int

⊢ if 3 < 2 then 5 else 1 : int

This is called a derivation tree and we can reason on it.
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Type uniquenes

Theorem (Uniqueness of typing)
If ⊢ p : A and ⊢ p : B are derivable then A = B .
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Type uniquenes

Theorem (Uniqueness of typing)
If ⊢ p : A and ⊢ p : B are derivable then A = B .

Proof.
By induction on p (note that there is at most one rule for each form of program):

• if p is of the form p1 + p2 then necessarily the last typing rule is

⊢ p1 : int ⊢ p2 : int

⊢ p1 + p2 : int

• . . .
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Type uniquenes

Theorem (Uniqueness of typing)
If ⊢ p : A and ⊢ p : B are derivable then A = B .

Note: this does not hold in OCaml since

fun x -> x

has types

’a -> ’a int -> int string -> string

but there is a most general one (’a -> ’a), which is the inferred type.
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Reduction

The reduction relation p −→ q describes when a program p evaluates to q in one step.

It is the smallest relation such that
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Reduction

The reduction relation p −→ q describes when a program p evaluates to q in one step.

It is the smallest relation such that

n1 + n2 −→ n1 + n2

p1 −→ p′1

p1 + p2 −→ p′1 + p2

p2 −→ p′2

p1 + p2 −→ p1 + p′2

For instance:

• 3 + 2 −→ 5

• (6 + 3) + (1 + 1) −→ 9 + (1 + 1)

• (6 + 3) + (1 + 1) −→ (6 + 3) + 2
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Reduction

The reduction relation p −→ q describes when a program p evaluates to q in one step.

It is the smallest relation such that

n1 < n2

n1 < n2 −→ true

n1 ⩾ n2

n1 < n2 −→ false

p1 −→ p′1

p1 < p2 −→ p′1 < p2

p2 −→ p′2

p1 < p2 −→ p1 < p′2

For instance:
(2 + 2) < 3 −→ 4 < 3 −→ false
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Reduction

The reduction relation p −→ q describes when a program p evaluates to q in one step.

It is the smallest relation such that

if true then p1 else p2 −→ p1 if false then p1 else p2 −→ p2

p −→ p′

if p then p1 else p2 −→ if p′ then p1 else p2

For instance:

if 2 < 3 then 5 + 1 else 9 −→ if true then 5 + 1 else 9

−→ 5 + 1

−→ 6

if 2 < 3 then 5 + 1 else 9 −→ if true then 5 + 1 else 9 −→ 5 + 1 −→ 6
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Irreducible programs

We have to closely related notions:

• values are either booleans or integers,
• irreducible programs are programs that cannot reduce.

Note that values are irreducible:

3 ̸−→ . . . true ̸−→ . . .

but there are irreducible programs which are not values:

• 3 + true
• if 5 then p else q

• . . .

Those correspond to erroneous programs.

We will prove that for typable programs, the two notions coincide!
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Safety: subject reduction

Theorem (Subject reduction)
If p −→ p′ and p has type A then p′ also has type A.

Proof.
By induction on the derivation of p −→ p′.
If the last rule is

p1 −→ p′1

p1 + p2 −→ p′1 + p2

then the derivation of ⊢ p : A

necessarily ends with

⊢ p1 : int ⊢ p2 : int

⊢ p1 + p2 : int

thus ⊢ p1 : int is derivable,
thus ⊢ p′1 : int is derivable by induction
hypothesis,
thus ⊢ p′1 + p2 : int is derivable:

⊢ p′1 : int ⊢ p2 : int

⊢ p′1 + p2 : int

Other cases are similar.
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Other cases are similar.
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Safety: progress

Theorem (Progress)
If p is a program of type A which is not value then p reduces (to some p′).

Proof.
By induction on the derivation of ⊢ p : A.
Suppose that the last rule is

⊢ p1 : int ⊢ p2 : int

⊢ p1 + p2 : int

If p1 is not a value then, by induction
hypothesis, p1 −→ p′1 and thus
p1 + p2 −→ p′1 + p2.

If p2 is not a value then, by induction
hypothesis, p2 −→ p′2 and thus
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Safety

Theorem (Safety)
Given a program p of type A, either

• there is an infinite sequence of reductions: p −→ p1 −→ p2 −→ . . .,

• or the reduction ends on a value: p −→ p1 −→ p2 −→ . . . −→ pn = v .

Proof.
Suppose given a finite sequence of reductions from p,

p −→ p1 −→ . . . −→ pn

such that all the pi are of type A. Then, by progress, either

• pn is a value, or

• pn −→ pn+1 and pn+1 is of type A by subject reduction.
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Safety

The typing system thus ensures that we will never get stuck because we have the
wrong data:

true + 3

We are on the safe side, but we reject legit programs:

if true then 3 else false

We only prevent data errors, but not all errors: the program

let f x = 1 / (x - 2)

should be given the type
{n : int | n ̸= 2} -> int
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Part V

Abstract definition of recursive types
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Recursive definitions

We write U for a set, which we think of as all possible OCaml values.

We write P(U) for the set of subsets of U .

Given F : P(U) → P(U) we say that X ∈ P(U) is a

• prefixpoint when F (X ) ⊆ X ,

• fixpoint when F (X ) = X .
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Recursive definitions

Consider the following type for binary trees labeled by integers:

type tree =
| Leaf of int
| Node of int * tree * tree
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type tree =
| Leaf of int
| Node of int * tree * tree

For instance, we have the tree

3

1

4 3

2

Node (3, Node (1, Leaf 4, Leaf 3), Leaf 2) 83



Recursive definitions

Consider the following type for binary trees labeled by integers:

type tree =
| Leaf of int
| Node of int * tree * tree

This type induces a function F : P(U) → P(U) defined by

F (X ) = {Node(n,t1,t2) | n ∈ N and t1, t2 ∈ X} ∪ {Leaf(n) | n ∈ N}

and the set T of trees is the smallest subset of U such that

F (T ) ⊆ T

It turns out that we actually have F (T ) = T and it is the smallest such.
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Recursive definitions

First note that the function

F (X ) = {Node(n,t1,t2) | n ∈ N and t1, t2 ∈ X} ∪ {Leaf(n) | n ∈ N}

is increasing:
X ⊆ Y implies F (X ) ⊆ F (Y )

We will see that for such a function

• the smallest prefixpoint exists, and

• it coincides with the smallest fixpoint.
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The Knaster-Tarski theorem

Theorem
Given an increasing F : P(U) → P(U), the set

fix(F ) =
⋂

{X ∈ P(U) | F (X ) ⊆ X}

is the least fixpoint of F :

• we have F (fix(F )) = fix(F )

• and fix(F ) ⊆ X for every fixpoint X of F .

85



The Knaster-Tarski theorem: proof

Proof.
We write C = {X ∈ P(U) | F (X ) ⊆ X}.

Given X ∈ C, we have fix(F ) =
⋂
C ⊆ X (*)

and therefore, since F is increasing, F (fix(F )) ⊆ F (X ) ⊆ X (**)
from which we deduce F (fix(F )) ⊆

⋂
C = fix(F ).

Moreover, by monotonicity again, we have F (F (fix(F ))) ⊆ F (fix(F ))

therefore, F (fix(F )) ∈ C,
and thus, by (*), fix(F ) ⊆ F (fix(F ))

We have shown that fix(F ) is a fixpoint of F .

Given a fixpoint X of F , we have X ∈ C
thus, by (**), fix(F ) = F (fix(F )) ⊆ X

i.e. fix(F ) is the smallest fixpoint.
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Recursive definitions

Given a recursive type inducing a function F , we can think of fix(F ) as its set of
elements.
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The Knaster-Tarski theorem

Note that the Knaster-Tarski theorem generalizes to any complete semilattice.
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The Kleene fixpoint theorem

Under the more subtle hypothesis of the Kleene fixpoint theorem (P(U) is a directed
complete partial order and F is Scott-continuous), one can even show that

fix(F ) =
⋃
n∈N

F n(∅)

i.e. the fixpoint can be obtained by iterating F from the empty set. In the case of trees,

F 0(∅) = ∅
F 1(∅) = {Leaf(n) | n ∈ N}
F 2(∅) = {Leaf(n) | n ∈ N} ∪ {Nodes(n,t1,t2) | n ∈ N and t1, t2 ∈ F 1(∅)}

and more generally, F n(∅) is the set of trees of height strictly below n. The theorem
states that any tree is a tree of some (finite) height.
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Induction on recursive types

As a direct corollary,

Theorem (Induction principle)
Given a set X such that F (X ) ⊆ X , we have fix(F ) ⊆ X .

This is abstractly an induction principle on types.
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Induction on recursive types

Consider the type of natural numbers

type nat = Zero | Suc of nat

Its associated function is

F (X ) = {Zero} ∪ {Suc(n) | n ∈ X}

and its smallest fixpoint is

fix(F ) = {Sucn(Zero) | n ∈ N} = {Zero, Suc(Zero), Suc(Suc(Zero)), . . .}

Given a property P(n), consider the set X = {n ∈ N | P(n)}.
We have F (X ) ⊆ X if and only if P(0), and P(n) implies P(S n).
The induction principle, is thus the usual recurrence principle:

P(0) ⇒ (∀n ∈ N.P(n) ⇒ P(S n)) ⇒ (∀n ∈ N.P(n))
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Induction on recursive types

Consider the type empty. We have F (X ) = ∅ and thus fix(F ) = ∅. The induction
principle states

∀x ∈ ∅.P(x)
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An example of a non-smallest fixpoint

Note that the function

F (X ) = {Zero} ∪ {Suc(n) | n ∈ X}

admits a non-smallest fixpoint:
N ⊔ {∞}
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