(P : Param) : Acyclic_t =
struct
let skel = P.skel
let n = Array.length skel
let pos = Array.copy P.pos
let nb_bones =
let n = ref 0 in
Array.iter
(fun line ->
Array.iter (fun e -> if e then incr n) line)
skel ;
assert ((!n/2)*2 = !n) ;
!n/2
let root = ref (-1)
let bones = Array.create nb_bones (0,0,0.)
let angles = Array.create nb_bones { theta=0. ; phi=0. }
let do_theta x y =
let a = atan (y/.x) in
if x > 0. then a else a+.pi
let update_angles () =
let do_angles index bone =
let (i,j,d) = bone in
let (xi,yi,zi) = pos.(i) in
let (xj,yj,zj) = pos.(j) in
let (x,y,z) = (xj-.xi, yj-.yi, zj-.zi) in
let newangles =
{ theta =
if x = 0. then
if y>=0. then halfpi else mhalfpi
else
do_theta x y ;
phi =
acos (z/.d) } in
Printf.printf "Angle %d (%f,%f,%f) : (%f,%f)\n%!"
index x y z
newangles.theta newangles.phi ;
angles.(index) <- newangles
in
Array.iteri do_angles bones
let init r =
let index = ref 0 in
let add_bones i father =
let xi,yi,zi = pos.(i) in
Array.iteri
(fun j connected ->
if connected && j <> father then
let xj,yj,zj = pos.(j) in
let x,y,z = xj-.xi,yj-.yi,zj-.zi in
let d = sqrt (x*.x+.y*.y+.z*.z) in
bones.(!index) <- (i,j,d) ;
incr index ;
Printf.printf "Bone (%d,%d,%f)\n" i j d) skel.(i)
in
let rec round backup =
let new_backup = !index in
for i = backup to !index - 1 do
let (a,b,_) = bones.(i) in
try
add_bones b a
with
| Invalid_argument ("index out of bounds") ->
failwith "Skel is cyclic!"
done ;
if new_backup <> !index then
round new_backup
in
if !root <> r then
begin
root := r ;
add_bones r (-1) ;
round 0 ;
if !index <> nb_bones then
failwith "Skel is not connex!" ;
update_angles () ;
Printf.printf "Root changed to %d.\n" !root
end
let () = init P.root
let equations move =
move.(3* !root+0) <- Some 0. ;
move.(3* !root+1) <- Some 0. ;
move.(3* !root+2) <- Some 0. ;
let m =
let m = ref 0 in
Array.iter (fun a -> if a <> None then incr m) move ;
!m
in
let p = Array.length pos in
let b = nb_bones in
let l = 2*b+3*p in
let eq = Array.make (m+3*b) [||] in
let cst = Array.make (m+3*b) 0. in
let eq_i = ref 0 in
Array.iteri
(fun i -> function
| None -> ()
| Some d ->
let e = Array.make l 0. in
e.(2*b+i) <- 1. ;
eq.(!eq_i) <- e ; cst.(!eq_i) <- d ; incr eq_i )
move ;
for k = 0 to b-1 do
let (i,j,d) = bones.(k) in
let {theta=theta;phi=phi} = angles.(k) in
let ex = Array.make l 0. in
let ey = Array.make l 0. in
let ez = Array.make l 0. in
let o = 2*k in
ex.(o+0) <- -. d *. (sin phi) *. (sin theta) ;
ex.(o+1) <- d *. (cos phi) *. (cos theta) ;
ex.(2*b+3*j+0) <- -1. ;
ex.(2*b+3*i+0) <- 1. ;
eq.(!eq_i) <- ex ; incr eq_i ;
ey.(o+0) <- d *. (sin phi) *. (cos theta) ;
ey.(o+1) <- d *. (cos phi) *. (sin theta) ;
ey.(2*b+3*j+1) <- -1. ;
ey.(2*b+3*i+1) <- 1. ;
eq.(!eq_i) <- ey ; incr eq_i ;
ez.(o+1) <- -. d *. (sin phi) ;
ez.(2*b+3*j+2) <- -1. ;
ez.(2*b+3*i+2) <- 1. ;
eq.(!eq_i) <- ez ; incr eq_i ;
done ;
assert (!eq_i = m+3*b) ;
(eq, cst)
end