Asynchronous Games Innocence without Alternation

Samuel Mimram (joint work with Paul-André Melliès)

Équipe PPS, CNRS – Université Paris 7

Groupe de travail concurrence June 20, 2007

Part I

Game semantics

- An interactive and trace semantics for proofs and programs
- A successful series of models:
 - PCF
 - PCF + control
 - references (Idealized Algol)
 - linear logic
 - ...

Can we reflect the concurrency of proofs in games?

Mixing different points of view

Mixing ideas from

- game semantics
- concurrency theory
- linear logic

Mixing different points of view

Mixing ideas from

- game semantics
- concurrency theory
- linear logic

We relate here

- 1 sequential games (traces)
- 2 event structures
- 3 relational model
- 4 concurrent games (closure operators)

Mixing points of view

sequential games	traces
causal games	event structures
relational games	relations
concurrent games	closure operators

• Formulas are interpreted as games

- *M* is a set of **moves**
- causal dependencies (\leq) and incompatibilities (#) between these moves
- a **polarization** of moves $\lambda : M \rightarrow \{O, P\}$

• Formulas are interpreted as games

- *M* is a set of **moves**
- causal dependencies (\leq) and incompatibilities (#) between these moves
- a **polarization** of moves $\lambda : M \rightarrow \{O, P\}$
- plays are paths between configurations game

• Formulas are interpreted as games

- *M* is a set of **moves**
- causal dependencies (\leq) and incompatibilities (#) between these moves
- a **polarization** of moves $\lambda : M \rightarrow \{O, P\}$
- plays are paths between configurations game

• Formulas are interpreted as games

- *M* is a set of **moves**
- causal dependencies (\leq) and incompatibilities (#) between these moves
- a **polarization** of moves $\lambda : M \rightarrow \{O, P\}$
- plays are paths between configurations game

• Proofs are interpreted as strategies

$$\llbracket \texttt{true} \rrbracket = \{ \varepsilon, q, q \cdot V \}$$

Here,

• we only consider formulas of MALL:

$$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \stackrel{\wedge}{\Re} B}(\mathfrak{P}) \qquad \frac{\vdash \Gamma_1, A \vdash \Gamma_2, B}{\vdash \Gamma_1, \Gamma_2, A \otimes B}(\otimes)$$
$$\frac{\vdash \Gamma, A \stackrel{\wedge}{\otimes} B}{\vdash \Gamma, A \stackrel{\wedge}{\&} B}(\&) \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B}(\oplus)$$

Here,

• we only consider formulas of MALL:

$$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \ \mathfrak{P} B}(\mathfrak{P}) \qquad \frac{\vdash \Gamma_1, A \vdash \Gamma_2, B}{\vdash \Gamma_1, \Gamma_2, A \otimes B}(\otimes)$$
$$\frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B}(\&) \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B}(\oplus)$$

• with explicit moves:

$$\frac{\vdash \Gamma, A}{\vdash \Gamma, \uparrow A}(\uparrow) \qquad \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, \downarrow A}(\downarrow$$

Game semantics are usually:

- alternating
- sequential

Game semantics are usually:

- alternating
 - does not reflect the derivations!
- sequential

Game semantics are usually:

- alternating
 - does not reflect the derivations!
- sequential
 - conceals the concurrency of proofs!

Innocence

Can we characterize the *definable* strategies?

Innocence

Can we characterize the *definable* strategies?

We have to restrict the space of strategies.

Innocence

Can we characterize the *definable* strategies?

We have to restrict the space of strategies.

innocent strategy = strategy behaving like a proof

Reformulating innocence

An **innocent** strategy is a strategy with partial memory which plays according to its *view*.

The original definition by Hyland and Ong

- is technical (pointers)
- relies on the fact that plays are alternating

In linear logic, the formula corresponding to booleans is

$$\mathbb{B} = \uparrow (\downarrow 1 \oplus \downarrow 1)$$

which is like of $1\oplus 1$ with explicit changes of polarities.

In linear logic, the formula corresponding to booleans is

 $\mathbb{B} = \uparrow (\downarrow 1 \oplus \downarrow 1)$

In linear logic, the formula corresponding to booleans is

 $\mathbb{B} = \uparrow (\downarrow 1 \oplus \downarrow 1)$

In linear logic, the formula corresponding to booleans is

 $\mathbb{B} = \uparrow (\downarrow 1 \oplus \downarrow 1)$

In linear logic, the formula corresponding to booleans is

 $\mathbb{B} = \uparrow (\downarrow 1 \oplus \downarrow 1)$

So, the game \mathbb{B} is

So, the game $\mathbb{B} \otimes \mathbb{B}$ is

So, the game $\mathbb{B} \otimes \mathbb{B}$ is

Let's consider strategies associated to the state true \otimes false.

The strategy $\mathtt{true}\otimes\mathtt{false}$

The strategy true \otimes false.

The strategy true \otimes false

The strategy true \otimes false.

The strategy true \otimes false

A biased variant.

The strategy true \otimes false

Another biased variant.

Games

A game is an asynchronous graph \mathcal{G} :

- vertices are **positions** (+ initial position *),
- edges are moves,

Games

A game is an asynchronous graph \mathcal{G} :

- vertices are **positions** (+ initial position *),
- edges are moves,
- 2-dimensional tiles generate homotopy between paths.

An approach to interferences

The Mazurkiewicz approach to true concurrency.

An approach to interferences

The Mazurkiewicz approach to true concurrency.

An approach to interferences

The Mazurkiewicz approach to true concurrency.

The game associated to $\uparrow A$

 $\uparrow \\ | \\ A$

The game associated to $\uparrow A \otimes \uparrow B = \uparrow A \ \Re \uparrow B$ is of the form

The game associated to $\uparrow A \otimes \uparrow B = \uparrow A \ \Im \uparrow B$ is of the form

The corresponding asynchronous graph contains

1

The game associated to $\uparrow A \otimes \uparrow B = \uparrow A \ \Im \uparrow B$ is of the form

The corresponding asynchronous graph contains

Three proofs of $\uparrow A \Im \uparrow B$:

 ,

 $\vdash \uparrow A, \uparrow B$

Three proofs of $\uparrow A \approx \uparrow B$:

Three proofs of $\uparrow A ?? \uparrow B$:

Three proofs of $\uparrow A ?? \uparrow B$:

Three proofs of $\uparrow A \approx \uparrow B$:

,

 $\vdash \uparrow A, \uparrow B$

Three proofs of $\uparrow A \approx \uparrow B$:

$$\frac{\vdash \uparrow A, B}{\vdash \uparrow A, \uparrow B}(\uparrow)$$

Three proofs of $\uparrow A \approx \uparrow B$:

$$\frac{\vdash A, B}{\vdash \uparrow A, B}(\uparrow) \\ \frac{\vdash \uparrow A, A}{\vdash \uparrow A, \uparrow B}(\uparrow)$$

Three proofs of $\uparrow A ?? \uparrow B$:

Three proofs of $\uparrow A \approx \uparrow B$:

Three proofs of $\uparrow A \approx \uparrow B$:

play = exploration of the formula proof = strategy of exploration

play	=	exploration of the formula
proof	=	strategy of exploration

play	=	exploration of the formula
proof	=	strategy of exploration

play	=	exploration of the formula
proof	=	strategy of exploration

$$\frac{\vdots}{\vdash A, B}_{\vdash \uparrow A, \uparrow B}(\uparrow, \uparrow) \qquad \begin{array}{c}\uparrow & \uparrow\\ & & \\ A & \cdots & B\end{array}$$

Part II

Traces vs. partial orders

Traces vs. partial orders

formula = partial order on the moves

proof = refinement of the partial order of the formula

How do we relate *sequential* and *causal* strategies?

Mixing points of view

sequential games	traces
causal games	event structures
relational games	relations
concurrent games	closure operators

From causality to sequentiality

Every partial order defines an asynchronous graph.

Extracting causality from sequentiality

Conversely, one needs the 2-dimensional structure.

The Cube Property

Theorem

Paths modulo homotopy are characterized by partial order on their moves.

Games

Definition

A game is an asynchronous graph satisfying the Cube Property.

Definition

A **play** is a path in *A* starting from the root.

Strategies

Definition

A strategy $\sigma : A$ is a set of plays A.

Definition

A strategy σ : A is **positional** when its paths form a subgraph of the game A.

Strategies

We consider positional strategies which satisfy

(this implies the Cube Property)

Unfortunately, the Cube Property is not compositional.
Closure

$A \multimap B = A^* \mathfrak{N} B = A^* \otimes B$

The strategy **not**:

Closure

$A \multimap B = A^* \mathfrak{N} B = A^* \otimes B$

The strategy **not**:

Traces compose by parallel composition

Traces compose by parallel composition

Traces compose by parallel composition

Composition

Traces compose by *parallel composition* + *hiding*.

Determinism

 V_2

Definition A strategy σ : *A* is **deterministic** when

where m is a Proponent move.

Deterministic strategies do compose!

Deterministic strategies do compose!

Part III

Partial orders vs. concurrent games

Mixing points of view

sequential games	traces
causal games	event structures
relational games	relations
concurrent games	closure operators

Concurrent strategies

Abramsky and Melliès introduced the notion of concurrent games.

Definition

A closure operator σ on a complete lattice A is a function $\sigma:A\to A$ such that

(1) σ is increasing: $\forall x \in D, \quad x \leq \sigma(x),$ (2) σ is idempotent: $\forall x \in D, \quad \sigma(x) = \sigma(\sigma(x)),$ (3) σ is monotone: $\forall x, y \in D, \quad x \leq y \Rightarrow \sigma(x) \leq \sigma(y).$

A closure operator is continuous when

$$\sigma(\overrightarrow{\bigvee}_i x_i) = \overrightarrow{\bigvee}_i \sigma(x_i)$$

 ${\rm closure \ operator} \quad \Longleftrightarrow \quad {\rm set \ of \ positions \ closed \ under \ meets}$

 ${\small closure \ operator} \quad \Longleftrightarrow \quad {\small set \ of \ positions \ closed \ under \ meets} \\$

$$\sigma \Rightarrow \operatorname{fix}(\sigma) = \{x \mid \sigma(x) = x\}$$

 ${\it closure \ operator} \quad \Longleftrightarrow \quad {\it set \ of \ positions \ closed \ under \ meets}$

$$\sigma \quad \Rightarrow \quad \operatorname{fix}(\sigma) = \{x \mid \sigma(x) = x\}$$

 $x \mapsto \bigwedge \{ y \in X \mid x \le y \} \quad \Leftarrow \quad X$

 ${\it closure \ operator} \quad \Longleftrightarrow \quad {\it set \ of \ positions \ closed \ under \ meets}$

$$\sigma \quad \Rightarrow \quad \operatorname{fix}(\sigma) = \{x \mid \sigma(x) = x\}$$

$$x \mapsto \bigwedge \{ y \in X \mid x \le y \} \quad \Leftarrow \quad X$$

Extends to continuous closure operators.

 ${\it closure \ operator} \quad \Longleftrightarrow \quad {\it set \ of \ positions \ closed \ under \ meets}$

$$\sigma \quad \Rightarrow \quad \operatorname{fix}(\sigma) = \{x \mid \sigma(x) = x\}$$

$$x \mapsto \bigwedge \{y \in X \mid x \leq y\} \quad \Leftarrow \quad X$$

A strategy $\sigma : A \rightarrow B$ can be seen as a relation on $A \times B$.

Definition

A position of a strategy $\sigma : A$ is **halting** when there is no Proponent move $m : x \longrightarrow y$ in σ .

The game $\mathbb{B} \otimes \mathbb{B}$.

The *parallel* implementation of true and false.

The *left* implementation of true and false.

The *right* implementation of true and false.

Ingenuous strategies

We would like strategies to be characterized by their *halting positions*.

Ingenuous strategies

Definition

A strategy $\sigma : A$ is **ingenuous** when it is

- positional,
- deterministic,
- **3** courteous:

where m is a Proponent move.

Ingenuous strategies as closure operators

Theorem Under suitable conditions, we have:

$$\sigma \iff \sigma^{\circ} \iff \operatorname{Cl}(\sigma^{\circ})$$

ingenuous strategies \iff ingenuous concurrent strategies

Part IV

Innocence

There is a mismatch between sequential and concurrent games: we don't have

$$(\sigma; \tau)^{\circ} = \sigma^{\circ}; \tau^{\circ}$$

The livelock:

$$(\sigma; \tau)^{\circ} \subseteq \sigma^{\circ}; \tau^{\circ}$$

$$A \xrightarrow{\sigma} B \xrightarrow{\tau} C$$

The livelock:

Solution: handle infinite positions

The *deadlock*:

$$(\sigma; \tau)^{\circ} \supseteq \sigma^{\circ}; \tau^{\circ}$$

$$A \xrightarrow{\sigma} B \xrightarrow{\tau} C$$

Functoriality

The *deadlock*:

$$(\sigma; \tau)^{\circ} \supseteq \sigma^{\circ}; \tau^{\circ}$$

Solution: add a scheduling criterion

the left conjunction:

The right boolean composed with the left conjunction:

Two kinds of tensors: \otimes and \mathfrak{N} .

$$\mathbb{B} \otimes \mathbb{B} \multimap \mathbb{B} = \mathbb{B}^* \, \mathfrak{P} \, \mathbb{B}^* \, \mathfrak{P} \, \mathbb{B}$$

Two kinds of tensors: \otimes and \Im .

Two kinds of tensors: \otimes and \Im .

Two kinds of tensors: \otimes and \Im .

Functoriality

Definition

A strategy $\sigma : A$ is **receptive** when for every path $s : * \longrightarrow x$ in σ and for every Opponent move $m : x \longrightarrow y$ the path $s \cdot m : * \longrightarrow y$ is also in σ .

Functoriality

Definition

A strategy $\sigma : A$ is **receptive** when for every path $s : * \longrightarrow x$ in σ and for every Opponent move $m : x \longrightarrow y$ the path $s \cdot m : * \longrightarrow y$ is also in σ .

Theorem

Ingenuous strategies which satisfy the scheduling criterion and are receptive compose and satisfy

$$(\sigma; \tau)^{\circ} = \sigma^{\circ}; \tau^{\circ}$$

Towards innocence

The scheduling criterion detects directed cycles.

Towards innocence

The scheduling criterion does not detect non-directed cycles.

Towards innocence

The scheduling criterion does not detect non-directed cycles.

We need a more elaborate scheduling criterion.

Thanks for your attention

Any question?