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Part I

Game semantics
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Game semantics

• An interactive and trace semantics for proofs and programs

• A successful series of models:
• PCF
• PCF + control
• references (Idealized Algol)
• linear logic
• . . .

Can we reflect the
concurrency of proofs in games?
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Mixing different points of view

Mixing ideas from

• game semantics

• concurrency theory

• linear logic

We relate here

1 sequential games (traces)

2 event structures

3 relational model

4 concurrent games (closure operators)
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Mixing points of view

sequential games traces

causal games event structures

relational games relations

concurrent games closure operators
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Game semantics

• Formulas are interpreted as games

JBK =

q

~~~~~~~~

????????

V # F

consisting of and event structure (M,≤,#) where
• M is a set of moves
• causal dependencies (≤) and incompatibilities (#) between

these moves
• a polarization of moves λ : M → {O,P}

• plays are paths between configurations game

6 / 48



Game semantics

• Formulas are interpreted as games

JBK =

q

~~~~~~~~

????????

V # F

consisting of and event structure (M,≤,#) where
• M is a set of moves
• causal dependencies (≤) and incompatibilities (#) between

these moves
• a polarization of moves λ : M → {O,P}

• plays are paths between configurations game

6 / 48



Game semantics

• Formulas are interpreted as games

JBK =

q

~~~~~~~~

????????

V # F

consisting of and event structure (M,≤,#) where
• M is a set of moves
• causal dependencies (≤) and incompatibilities (#) between

these moves
• a polarization of moves λ : M → {O,P}

• plays are paths between configurations game

6 / 48



Game semantics

• Formulas are interpreted as games

JBK =

∗
q

��

V

~~||||||||
F

  BBBBBBBB

consisting of and event structure (M,≤,#) where
• M is a set of moves
• causal dependencies (≤) and incompatibilities (#) between

these moves
• a polarization of moves λ : M → {O,P}

• plays are paths between configurations game

6 / 48



Game semantics

• Proofs are interpreted as strategies

JtrueK = {ε, q, q · V }
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The strategy not

B not−−→ B
q

q
V

F

8 / 48



The strategy not

B not−−→ B
q

q
F

V
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Game semantics

Here,

• we only consider formulas of MALL:

` Γ,A,B

` Γ,A` B
(`)

` Γ1,A ` Γ2,B

` Γ1, Γ2,A⊗ B
(⊗)

` Γ,A ` Γ,B

` Γ,A & B
(&)

` Γ,A

` Γ,A⊕ B
(⊕)

• with explicit moves:

` Γ,A

` Γ, ˆA(ˆ) ` Γ,A

` Γ, ´A(´)
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Game semantics

Game semantics are usually:

• alternating

• does not reflect the derivations!

• sequential

• conceals the concurrency of proofs!
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Alternating game semantics

Left and

B ⇒ B ⇒ B

q

vv

��



q

��
V

q

��
V

V
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Innocence

Can we characterize the definable strategies?

We have to restrict the space of strategies.

innocent strategy = strategy behaving like a proof
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Reformulating innocence

An innocent strategy is a strategy with partial memory which
plays according to its view.

The original definition by Hyland and Ong

• is technical (pointers)

• relies on the fact that plays are alternating
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From formulas to games

In linear logic, the formula corresponding to booleans is

B = ˆ(´1⊕ ´1)

which is like of 1⊕ 1 with explicit changes of polarities.
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From formulas to games

So, the game B

⊗ B

is

q



1111111111111

q

V # F

V # F

15 / 48



From formulas to games

So, the game B⊗ B is

q



1111111111111 q



1111111111111

V # F V # F

15 / 48



From formulas to games

So, the game B⊗ B is

q


q

1111111111111

V

# F V #

F

Let’s consider strategies associated to the state true⊗ false.
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The strategy true⊗ false

The strategy true⊗ false.

B ⊗ B

q q

V F

∗ ⊗ ∗
qL

xxqqqqqq qR

&&MMMMMM

q ⊗ ∗
VL

xxrrrrrr
qR

MM

&&MM

∼ ∗ ⊗ q
qL

rr
xxrr

FR

%%LLLLLL

V ⊗ ∗
qR %%LLLLLL

∼ q ⊗ q
VL

rr
xxrr FR

LL

&&LL

∼ ∗ ⊗ F

qLyyssssss

V ⊗ q

FR
&&LLLLLL
∼ q ⊗ F

VL
xxrrrrrr

V ⊗ F
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The strategy true⊗ false

A biased variant.

B ⊗ B

q

��

q

V F
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rr
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Games
A game is an asynchronous graph G:

• vertices are positions (+ initial position ∗),

• edges are moves,

• 2-dimensional tiles generate homotopy between paths.

Jˆ(´1⊗ ´1)K =

∗

ˆ
��ˆ∗

´
yyssssssssss ´

%%KKKKKKKKKK

ˆ(´ ∗ ⊗∗)
´ $$JJJJJJJJJ

∼

ˆ(∗ ⊗ ´∗)
´zzttttttttt

ˆ(´ ∗ ⊗´∗)
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An approach to interferences

The Mazurkiewicz approach to true concurrency.

a‖b vs. a · b + b · a

a

~~}}}}}}}}
b

  AAAAAAAA

b   AAAAAAAA ∼

a
~~}}}}}}}}

a

~~}}}}}}}}
b

  AAAAAAAA

b   AAAAAAAA ∼

a
~~}}}}}}}}

x := 4‖y := 5 x := 4‖x := 5

multiplicatives additives
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The game associated to ˆA

⊗ ˆB = ˆA` ˆB

is of the form

ˆ

ˆ

A

B

The corresponding asynchronous graph contains

∗, ∗
ˆA
zzvvvvvvvvv ˆB

$$HHHHHHHHH

ˆ∗, ∗
ˆB ##GGGGGGGGG ∗, ˆ∗

ˆA{{wwwwwwwww

ˆ∗, ˆ∗
...
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Non-alternation and asynchrony

Three proofs of ˆA` ˆB:

...

` A,B

` A, ˆB

(ˆ)

` ˆA, ˆB

(ˆ)

∗, ∗

ˆ∗, ∗

ˆ∗, ˆ ∗
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Non-alternation and asynchrony

play = exploration of the formula
proof = strategy of exploration

Proofs correspond to refinements of the partial order of the game.
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Part II

Traces vs. partial orders
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Traces vs. partial orders

formula = partial order on the moves

proof = refinement of the partial order of the formula

How do we relate sequential and causal strategies?
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Mixing points of view

sequential games traces

causal games event structures

relational games relations

concurrent games closure operators
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From causality to sequentiality
Every partial order defines an asynchronous graph.

a

*********** b

�����������

***********

c d

=⇒

∅
a

xxppppppppppppp
b

%%KKKKKKKKKKK

{a}

b &&MMMMMMMMMMM ∼ {b}

a
yytttttttttt

d
��

{a, b}
c

xxqqqqqqqqqq
d
��

∼ {b, d}

a
yyttttttttt

{a, b, c}

d
��

∼ {a, b, d}
c

xxqqqqqqqqqq

{a, b, c, d}
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Extracting causality from sequentiality

Conversely, one needs the 2-dimensional structure.
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The Cube Property

x
m

~~||||||||

��

o //

∼

x2

n

��

x1

n

��

∼

x3

~~}}}}}}}}
//

∼

y1

m
��~~~~~~~~

y2 o
// y

⇐⇒

x
m

��~~~~~~~~
∼

o // x2

~~}}}}}}}}

n

��

x1

n

��

∼

// y3

∼

��

y1

m
~~}}}}}}}}

y2 o
// y

Theorem
Paths modulo homotopy are characterized by partial order on their
moves.
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Games

Definition
A game is an asynchronous graph satisfying the Cube Property.

Definition
A play is a path in A starting from the root.
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Strategies

Definition
A strategy σ : A is a set of plays A.

Definition
A strategy σ : A is positional when its paths form a subgraph of
the game A.

29 / 48



Strategies
We consider positional strategies which satisfy

x
σ3m

~~||||||||
n∈σ

  BBBBBBBB

y1

p
  

∼ y2

q
~~

z

implies

x
σ3m

~~||||||||
n∈σ

  BBBBBBBB

y1

σ3p   BBBBBBBB ∼ y2

q∈σ~~||||||||

z

x
m

~~

n

  
y1

σ3p   BBBBBBBB ∼ y2

q∈σ~~||||||||

z

implies

x
σ3m

~~||||||||
n∈σ

  BBBBBBBB

y1

σ3p   BBBBBBBB ∼ y2

q∈σ~~||||||||

z

(this implies the Cube Property)
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Composition

Unfortunately, the Cube Property is not compositional.

31 / 48



Closure

A ( B = A∗ ` B = A∗ ⊗ B

The strategy not:

B not−−→ B
q

q
V

F
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Composition

Traces compose by parallel composition

+ hiding.

B // B B // B

q

q

q

q

V

F

F

V
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Composition

Traces compose by parallel composition + hiding.

B //

B B

// B

q

q q

q

V

F F

V
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Determinism

Definition
A strategy σ : A is deterministic when

x
σ3m

~~}}}}}}}
n∈σ

  AAAAAAA

y1 y2 implies

x
σ3m

~~||||||||
n∈σ

  BBBBBBBB

y1

σ3p   BBBBBBBB ∼ y2

q∈σ~~||||||||

z

where m is a Proponent move.

34 / 48



Deterministic strategies do compose!

sequential strategies ⇐⇒ causal strategies
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Part III

Partial orders vs. concurrent games
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Mixing points of view

sequential games traces

causal games event structures

relational games relations

concurrent games closure operators
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Concurrent strategies

Abramsky and Melliès introduced the notion of concurrent games.

Definition
A closure operator σ on a complete lattice A is a function
σ : A→ A such that

(1) σ is increasing: ∀x ∈ D, x ≤ σ(x),
(2) σ is idempotent: ∀x ∈ D, σ(x) = σ(σ(x)),
(3) σ is monotone: ∀x , y ∈ D, x ≤ y ⇒ σ(x) ≤ σ(y).

A closure operator is continuous when

σ(
−→∨
i

xi ) =
−→∨
i

σ(xi )

38 / 48



Composing concurrent strategies

Composing σ : A→ B and τ : B → C .

A
σ // B

τ // C

∗ ∗ ∗

∗ y1 z1

x1 y2 z1

...
...

...

x y z
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Closure operators as relations

closure operator ⇐⇒ set of positions closed under meets

σ ⇒ fix(σ) = {x | σ(x) = x}

x 7→
∧
{y ∈ X | x ≤ y} ⇐ X
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Closure operators as relations

closure operator ⇐⇒ set of positions closed under meets

σ ⇒ fix(σ) = {x | σ(x) = x}

x 7→
∧
{y ∈ X | x ≤ y} ⇐ X

Extends to continuous closure operators.
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closure operator ⇐⇒ set of positions closed under meets

σ ⇒ fix(σ) = {x | σ(x) = x}

x 7→
∧
{y ∈ X | x ≤ y} ⇐ X

A strategy σ : A→ B can be seen as a relation on A× B.
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Halting positions

Definition
A position of a strategy σ : A is halting when there is no
Proponent move m : x −→ y in σ.
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Halting positions

The game B⊗ B.
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Halting positions

The parallel implementation of true and false.
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Halting positions

The left implementation of true and false.
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Halting positions

The right implementation of true and false.
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Ingenuous strategies

We would like strategies to be characterized by
their halting positions.
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Ingenuous strategies

Definition
A strategy σ : A is ingenuous when it is

1 positional,

2 deterministic,

3 courteous:

x
σ3m

~~||||||||
n

  
y1

σ3p   BBBBBBBB ∼ y2

q
~~

z

implies

x
σ3m

~~||||||||
n∈σ

  BBBBBBBB

y1

σ3p   BBBBBBBB ∼ y2

q∈σ~~||||||||

z

where m is a Proponent move.
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Ingenuous strategies as closure operators

Theorem
Under suitable conditions, we have:

σ ⇐⇒ σ◦ ⇐⇒ Cl(σ◦)

ingenuous strategies ⇐⇒ ingenuous concurrent strategies
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Part IV

Innocence
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Functoriality

There is a mismatch between sequential and concurrent games:
we don’t have

(σ; τ)◦ = σ◦; τ◦
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Functoriality

The livelock:
(σ; τ)◦ ⊆ σ◦; τ◦

A
σ // B

τ // C

∗

�O
�O
�O

∗

�O
�O
�O
�O
�O
�O
�O
�O
�O

∗

�O
�O
�O

x z

...

Solution: handle infinite positions
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Functoriality

The deadlock:
(σ; τ)◦ ⊇ σ◦; τ◦

A
σ // B
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Solution: add a scheduling criterion
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The scheduling criterion

The right boolean composed with

the left conjunction:

B ⊗ B

q

F

q

V

B ⊗ B // B

q

q

V

q

F

F
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The scheduling criterion

Two kinds of tensors: ⊗ and `.

B⊗ B ( B = B∗ ` B∗ ` B
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The scheduling criterion

Two kinds of tensors: ⊗ and `.

B 4 B

JJJJJJJJJJJJJJJJJJJJJJJJJ

JJJJJJJJJJJJJJJJJJJJJJJJJ q

ttttttttttttttttttttttttt

ttttttttttttttttttttttttt

F

q

V
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Functoriality

Definition
A strategy σ : A is receptive when for every path s : ∗ −→→ x in σ
and for every Opponent move m : x −→ y the path s ·m : ∗ −→→ y
is also in σ.

Theorem
Ingenuous strategies which satisfy the scheduling criterion and are
receptive compose and satisfy

(σ; τ)◦ = σ◦; τ◦
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Towards innocence

The scheduling criterion detects directed cycles.

ˆ �� ´

⊗

>>>>>>>>

��������

We need a more elaborate scheduling criterion.
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Thanks for your attention

Any question?
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