
Coherence in cartesian theories using rewriting

Samuel Mimram
NY cat seminar / 29 May 2024

École polytechnique



Coherence theorems

The goal of this work is

• to better understand coherence theorems
• to provide tools to show such theorem

1



The coherence theorem for monoidal categories

A monoidal category (C,⊗, e, α, λ, ρ) comes equipped with

αx,y,z : (x ⊗ y)⊗ z ∼→ x ⊗ (y ⊗ z) λx : e⊗ x ∼→ x ρx : x ⊗ e ∼→ x

satisfying axioms:

((x ⊗ y)⊗ z)⊗ w (x ⊗ (y ⊗ z))⊗ w x ⊗ ((y ⊗ z)⊗ w)

(x ⊗ y)⊗ (z⊗ w) x ⊗ (y ⊗ (z⊗ w))

(x ⊗ e)⊗ y x ⊗ (e⊗ y)

x ⊗ y
2



The coherence theorem for monoidal categories

A monoidal category (C,⊗, e, α, λ, ρ) comes equipped with

αx,y,z : (x ⊗ y)⊗ z ∼→ x ⊗ (y ⊗ z) λx : e⊗ x ∼→ x ρx : x ⊗ e ∼→ x

satisfying axioms.

The coherence theorem for monoidal categories states that every diagram whose
morphisms are composites of α, λ and ρ commutes:

(e⊗ x)⊗ y e⊗ (x ⊗ y)

e⊗ (x ⊗ (y ⊗ e))

x ⊗ y x ⊗ (y ⊗ e)
2



The coherence theorems for monoidal categories

In fact, there are various ways of formulating the coherence theorem:

1. Coherence:
every diagram in a monoidal category made up of α, λ and ρ commutes.

2. Strictification:
every monoidal category is monoidally equivalent to a strict monoidal
category.

3. Global strictification:
the forgetful 2-functor from strict monoidal categories to monoidal
categories has a left adjoint and the components of the unit are
equivalences.

3



The coherence theorems for symmetric monoidal categories

A monoidal category is symmetric when equipped with

γx,y : x ⊗ y → y ⊗ x

satisfying axioms, which do not imply the commutation of

x ⊗ x x ⊗ x

γx,x

idx⊗x
1. Coherence:

every generic diagram in a monoidal category made up of α, λ, ρ and γ

commutes.
2. Strictification:

every symmetric monoidal category is symmetric monoidally equivalent to a
strict symmetric monoidal category.

3. Global strictification: ... 4



Global strictification

There is a monad T on Cat whose

• strict algebras are strict monoidal categories,
• pseudo algebras are unbiased monoidal categories.

Theorem (Power’89)
The canonical 2-functor

T-StrAlg → T-PsAlg

admits a left 2-adjoint such that the components of the unit of the adjunctions
are equivalences of T-pseudo-algebras.

5



A generic framework for coherence

Here, we investigate general coherence theorems which

• apply to biased notions of categories
• are partial, i.e. coherence holds with respect to part of the structure

(e.g. α, λ and ρ but not γ)
• handle structural morphisms that can erase or duplicate variables:

δx,y,z : x ⊗ (y ⊕ z) → (x ⊗ y)⊕ (x ⊗ z)

• use rewriting theory.

We begin by studying the situation in an abstract setting.

6



A generic framework for coherence

Here, we investigate general coherence theorems which

• apply to biased notions of categories
• are partial, i.e. coherence holds with respect to part of the structure

(e.g. α, λ and ρ but not γ)
• handle structural morphisms that can erase or duplicate variables:

δx,y,z : x ⊗ (y ⊕ z) → (x ⊗ y)⊕ (x ⊗ z)

• use rewriting theory.

We begin by studying the situation in an abstract setting.

6



Part I

Abstract coherence

7



An abstract setting

Fix a category C which we think of as describing an algebraic structure.

For instance, we have a theory of symmetric monoidal categories:
• the objects of C are formal tensor expressions

e⊗ ((x ⊗ e)⊗ y)

• morphisms are composites of α, λ, ρ and γ modulo axioms.

8



An abstract setting

Fix a category C which we think of as describing an algebraic structure.

We suppose fixed a subgroupoid W ⊆ C with the same objects,
which we are interested in strictifying.

(for SMC, W would be the groupoid of composites of α, λ and ρ, but not γ)

CW

8



Quotient of categories

The quotient C/W is the universal way of making the elements of W identities

C D

C/W

F

F̃

Question
When is the quotient functor C → C/W an equivalence of categories?

Intuitively, when W does not contain non-trivial information!

9



Quotient of categories

The quotient C/W is the universal way of making the elements of W identities

C D

C/W

F

F̃

Question
When is the quotient functor C → C/W an equivalence of categories?

Intuitively, when W does not contain non-trivial information!

9



Rigid groupoids

A groupoid W is rigid when either

(i) any two parallel morphisms f ,g : x → y are equal
(ii) any automorphism f : x → x is an identity

(iii) W is equivalent to
⊔
I 1

10



Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects: eq. classes of objects with [x] = [y] when there is w : x → y in W ,

• morphisms: eq. classes of morphisms with [f ] = [g] when there is v and w in
W such that

x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y′ z

f

∈WW∋ ∈W
g

11



Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects: eq. classes of objects with [x] = [y] when there is w : x → y in W ,
• morphisms: eq. classes of morphisms with [f ] = [g] when there is v and w in
W such that

x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y′ z

f

∈WW∋ ∈W
g

11



Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects: eq. classes of objects with [x] = [y] when there is w : x → y in W ,
• morphisms: eq. classes of morphisms with [f ] = [g] when there is v and w in
W such that

x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y′ z

f

∈WW∋ ∈W
g

11



Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects: eq. classes of objects with [x] = [y] when there is w : x → y in W ,
• morphisms: eq. classes of morphisms with [f ] = [g] when there is v and w in
W such that

x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y′ z

f

∈WW∋ ∈W
g

11



Quotienting by rigid groupoids

When W is rigid the quotient C/W has a simple description:

• objects: eq. classes of objects with [x] = [y] when there is w : x → y in W ,
• morphisms: eq. classes of morphisms with [f ] = [g] when there is v and w in
W such that

x y

x′ y′
W∋v

f

w∈W

g

• we compose [f ] : [x] → [y] and [g] : [y] → [z] as

x y

y′ z

f

∈WW∋ ∈W
g

11



Rigidification

The rigidification C//W of W in C is obtained from C by identifying any two
parallel morphisms in W (i.e. we make W rigid in a universal way).

Proposition
The quotient can be obtained is two steps:

C/W = (C//W)/W

In particular, the canonical functor

C C/W

C//W
is surjective on objects and full.

12



Rigidification

The rigidification C//W of W in C is obtained from C by identifying any two
parallel morphisms in W (i.e. we make W rigid in a universal way).

Proposition
The quotient can be obtained is two steps:

C/W = (C//W)/W

In particular, the canonical functor

C C/W

C//W
is surjective on objects and full. 12



Coherence for quotients

Theorem
The quotient functor C → C/W is an equivalence of categories
if and only if W is rigid.

C C/W

x y
f

g
x f

x y
f

g
x

13



Coherence for quotients

Theorem
The quotient functor C → C/W is an equivalence of categories
if and only if W is rigid.

Proof.
We need to show that it is faithful iff W is rigid.
• If the quotient functor is faithful, given w,w′ : x → y,

we have [w] = [w′] = id and thus w = w′.
• If W is rigid, given f ,g : x → y such that [f ] = [g], we have

x y

x y

W∋v
f

w∈W
g

By rigidity, v = idx and w = idy .
13



Coherence for algebras

An algebra for C in D is a functor C → D, we write Alg(C,D) for the category of
algebras.

Theorem
A functor F : C → C′ is an equivalence iff Alg(F,D) : Alg(C,D) → Alg(C′,D) is an
equivalence natural in D.

Proof.
Given a 2-category K, the Yoneda functor

YK : Kop → [K,Cat]
C 7→ K(C,−)

is a local isomorphism. In particular, with K = Cat, we have YCatC = Alg(C,−).

Conjecture (?)
The canonical functor Alg(C/W,Cat) → Alg(C,Cat) is an equivalence iff W is rigid.

14



Coherence for algebras

An algebra for C in D is a functor C → D, we write Alg(C,D) for the category of
algebras.

Theorem
A functor F : C → C′ is an equivalence iff Alg(F,D) : Alg(C,D) → Alg(C′,D) is an
equivalence natural in D.

Proof.
Given a 2-category K, the Yoneda functor

YK : Kop → [K,Cat]
C 7→ K(C,−)

is a local isomorphism. In particular, with K = Cat, we have YCatC = Alg(C,−).

Conjecture (?)
The canonical functor Alg(C/W,Cat) → Alg(C,Cat) is an equivalence iff W is rigid.

14



Coherence for algebras

An algebra for C in D is a functor C → D, we write Alg(C,D) for the category of
algebras.

Theorem
A functor F : C → C′ is an equivalence iff Alg(F,D) : Alg(C,D) → Alg(C′,D) is an
equivalence natural in D.

Proof.
Given a 2-category K, the Yoneda functor

YK : Kop → [K,Cat]
C 7→ K(C,−)

is a local isomorphism. In particular, with K = Cat, we have YCatC = Alg(C,−).

Conjecture (?)
The canonical functor Alg(C/W,Cat) → Alg(C,Cat) is an equivalence iff W is rigid. 14



Question
How do we show rigidity in practice?

In the following, we are interested in the case where C is a groupoid.

15



Abstract rewriting systems

An abstract rewriting system P is a graph

P1

P2

P0

P∼
1

s0

t0

s1

t1
s∼0
t∼0

P = x y z
f

g

h

x y x y z
f g f h−

16



Abstract rewriting systems

An abstract rewriting system P is a graph

P1

P2

P0 P∼
1

s0

t0

s1

t1
s∼0
t∼0

It generates a groupoid with P∼
1 as set of morphisms.

P = x y z
f

g

h

x y x y z
f g f h−

16



Abstract rewriting systems

An extended abstract rewriting system P is a graph

P1 P2

P0 P∼
1

s0

t0

s1

t1
s∼0
t∼0

together with a set of 2-cells
x

y A⇒ y

z

f g

h− h−such that

s∼0 ◦ s1 = s∼0 ◦ t1 t∼0 ◦ s1 = t∼0 ◦ t1
16



The case of monoidal categories

The prototypical situation we have in mind is the ears P with

1. P0: formal tensor expressions, e.g. e⊗ ((x ⊗ e)⊗ y)
2. P1: generated by α, λ, ρ (in context)
3. P2: the coherences

17



Tietze equivalence

An extended abstract rewriting system P = (P0,P1,P2) presents the groupoid

P = P∼/ ∼

Two ears P and Q are Tietze equivalent when P ∼= Q.

18



Tietze equivalence

An extended abstract rewriting system P = (P0,P1,P2) presents the groupoid

P = P∼/ ∼

Two ears P and Q are Tietze equivalent when P ∼= Q.

18



Tietze transformations

Suppose given an ears P = (P0,P1,P2) with a 2-cell

x

y A⇒ y

z

f f ′

g g′

We have the following Tietze transformations:

• if A can be derived from other elements P2, we can remove it,
• we can remove f ∈ P1 and A ∈ P2 replacing all occurrences of f by f ′ · g′ · g−.

Those transformations produce Tietze equivalent ears.

19



Abstract rewriting systems

Suppose given an extended ars P together with W ⊆ P1.

We say that P is W-convergent when it has

• termination: there is no infinite sequence of morphisms in W

x0 x1 x2 · · ·f0 f1 f2

• local confluence:
x

y1 ∈ P∼
2 y2

z

W∋ ∈W

W∋∗ ∗∈W

Note, by termination every element has a normal form: x x̂nx
∗∈W

.

20



Abstract rewriting systems

Suppose given an extended ars P together with W ⊆ P1.

We say that P is W-convergent when it has

• termination: there is no infinite sequence of morphisms in W

x0 x1 x2 · · ·f0 f1 f2

• local confluence:
x

y1 ∈ P∼
2 y2

z

W∋ ∈W

W∋∗ ∗∈W

Note, by termination every element has a normal form: x x̂nx
∗∈W

. 20



Abstract rewriting systems

By adapting standard rewriting techniques,

Lemma (“Newman”)
If P is W-convergent then it is W-confluent:

x

y1 ∈ P∼
2 y2

z

W∋∗ ∗∈W

W∋∗ ∗∈W

Lemma (“Church-Rosser”)
If P is W-convergent then for any two parallel W-morphisms in P are equal.

Proof.

x y1 x2 · · · xn yn y

x̂ x̂ x̂ · · · x̂ x̂ x̂

nx

p−1

ny1

q+1

nx2 nxn

p−n

nyn

q−n

ny

21



Abstract rewriting systems

By adapting standard rewriting techniques,

Lemma (“Newman”)
If P is W-convergent then it is W-confluent:

Lemma (“Church-Rosser”)
If P is W-convergent then for any two parallel W-morphisms in P are equal.

Proof.

x y1 x2 · · · xn yn y

x̂ x̂ x̂ · · · x̂ x̂ x̂

nx

p−1

ny1

q+1

nx2 nxn

p−n

nyn

q−n

ny

21



Abstract rewriting systems

Corollary
If P is W-convergent then the groupoid generated by W in P is rigid.

Writing N(P) for the full subcategory of P whose objects are normal forms
(are not the source of a morphism in W),

Theorem
If (P,W) is W-convergent then P/W ∼= N(P).

In the example of monoids, normal forms are expressions of the form

x1 ⊗ (x2 ⊗ (x3 ⊗ x4))

22



Abstract rewriting systems

Corollary
If P is W-convergent then the groupoid generated by W in P is rigid.

Writing N(P) for the full subcategory of P whose objects are normal forms
(are not the source of a morphism in W),

Theorem
If (P,W) is W-convergent then P/W ∼= N(P).

In the example of monoids, normal forms are expressions of the form

x1 ⊗ (x2 ⊗ (x3 ⊗ x4))

22



Abstract rewriting systems

Corollary
If P is W-convergent then the groupoid generated by W in P is rigid.

Writing N(P) for the full subcategory of P whose objects are normal forms
(are not the source of a morphism in W),

Theorem
If (P,W) is W-convergent then P/W ∼= N(P).

In the example of monoids, normal forms are expressions of the form

x1 ⊗ (x2 ⊗ (x3 ⊗ x4))

22



A concrete description of normal forms

We have the intuition that the groupoid N(P) is presented by the extended ars
P \W obtained by “restricting P to normal forms”:

• (P \W)0: the objects of P \W are the those of P in W-normal form,
• (P \W)1: the rewriting rules of P \W are those of P whose source and target

are both in (P \W)0 (in particular, it does not contain any element of W, thus
the notation),

• (P \W)2: the coherence relations are those of P2 whose source and target
both belong to (P \W)∼1 .

23



A concrete description of normal forms
Theorem
Suppose that

1. P is W-convergent,
2. every rule a : x → y in P1 with x is W-normal also has a W-normal target y,
3. for every coinitial rule a : x → y in P1 and path w : x ∗→ x′ in W∗, there are

paths p : x′ ∗→ y′ in P∗
1 and w′ : y ∗→ y′ ∈ W∗ such that a · w′ ∗⇔ w · p:

x y

x′ y′
w ∗

a

∗ w′

∗
p

∗

4. for every coherence relation ...

Then N(P) is isomorphic to P \W. 24



Summing up

Given (P,W), we have shown that the following definitions of coherence of P
wrt W are equivalent:

(i) Every parallel zig-zags with edges in W are equal
(i.e. the subgroupoid of P generated by W is rigid).

(ii) The quotient map P → P/W is an equivalence of categories.

(iii) The inclusion Alg(P/W,−) → Alg(P,−) is an equivalence of categories.

(iv) The canonical morphism N(P) → P is an equivalence.

25



Part II

Coherence from term rewriting systems

26



From ARS to TRS

In order to obtain result about actual categorical structures,
we need to go from ars to term rewriting systems!

27



Term rewriting systems

A

n extended

term rewriting system P consists of

• P1: operations with arities
• P2: equations between generated terms

• P3: equations between 2-generators

Example
The

2-

trs Mon for monoids is〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) = m(x,m(y, z))
λ : m(e, x) = x
ρ : m(x, e) = x

∣∣∣∣∣∣∣ A C

〉

Remark
Fixing m and n, P induces an abstract rewriting system on terms m→ n.

28



Term rewriting systems

An extended term rewriting system P consists of

• P1: operations with arities
• P2: 2-generators between generated terms
• P3: equations between 2-generators

Example
The 2-trs Mon for monoids is〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A C
〉

Remark
Fixing m and n, P induces an abstract rewriting system on terms m→ n.

28



Term rewriting systems

An extended term rewriting system P consists of

• P1: operations with arities
• P2: 2-generators between generated terms
• P3: equations between 2-generators

Example
The 2-trs Mon for monoids is〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A C
〉

Remark
Fixing m and n, P induces an abstract rewriting system on terms m→ n.

28



Lawvere theories

A

2-

Lawvere theory T is a cartesian

2-

category

with invertible 2-cells

such that
objects are integers with cartesian product given by addition.

Any 2-trs P induces a 2-LT P with

• morphisms ⟨t1, . . . , tn⟩ : m→ n are n-tuples of terms with m variables
• 2-cells are generated by 2-generators, quotiented by equations

An algebra for T is a product-preserving 2-functor T → Cat.

Example
An algebra for Mon is a monoidal category.

29



Lawvere theories

A 2-Lawvere theory T is a cartesian 2-category with invertible 2-cells such that
objects are integers with cartesian product given by addition.

Any 2-trs P induces a 2-LT P with

• morphisms ⟨t1, . . . , tn⟩ : m→ n are n-tuples of terms with m variables
• 2-cells are generated by 2-generators, quotiented by equations

An algebra for T is a product-preserving 2-functor T → Cat.

Example
An algebra for Mon is a monoidal category.

29



Lawvere theories

A 2-Lawvere theory T is a cartesian 2-category with invertible 2-cells such that
objects are integers with cartesian product given by addition.

Any 2-trs P induces a 2-LT P with

• morphisms ⟨t1, . . . , tn⟩ : m→ n are n-tuples of terms with m variables
• 2-cells are generated by 2-generators, quotiented by equations

An algebra for T is a product-preserving 2-functor T → Cat.

Example
An algebra for Mon is a monoidal category.

29



Lawvere theories

A 2-Lawvere theory T is a cartesian 2-category with invertible 2-cells such that
objects are integers with cartesian product given by addition.

Any 2-trs P induces a 2-LT P with

• morphisms ⟨t1, . . . , tn⟩ : m→ n are n-tuples of terms with m variables
• 2-cells are generated by 2-generators, quotiented by equations

An algebra for T is a product-preserving 2-functor T → Cat.

Example
An algebra for Mon is a monoidal category.

29



Algebras for Mon

With Mon being〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) = m(x,m(y, z))
λ : m(e, x) = x
ρ : m(x, e) = x

∣∣∣∣∣∣∣ A U
〉

A functor F : Mon → Cat consists of

• a category C = F1

• thus Fn = Cn
• two functors

⊗ = Fm : C2 → C I = Fe : 1 → C

• satisfying the axioms of monoidal categories

30



Algebras for Mon

With Mon being〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A U
〉

A functor F : Mon → Cat consists of

• a category C = F1
• thus Fn = Cn

• two functors

⊗ = Fm : C2 → C I = Fe : 1 → C

• satisfying the axioms of monoidal categories

30



Algebras for Mon

With Mon being〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A U
〉

A functor F : Mon → Cat consists of

• a category C = F1
• thus Fn = Cn
• two functors

⊗ = Fm : C2 → C I = Fe : 1 → C

• satisfying the axioms of monoidal categories

30



Algebras for Mon

With Mon being〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A U
〉

A functor F : Mon → Cat consists of

• a category C = F1
• thus Fn = Cn
• two functors

⊗ = Fm : C2 → C I = Fe : 1 → C

• satisfying the axioms of monoidal categories

30



Quotienting by rigid subgroupoids

Fix a 2-trs P with a subset W ⊆ P2 of 2-generators generating a (2, 1)-category W .

W is 2-rigid when any parallel 2-cells are equal.

Theorem
The quotient 2-functor P → P/W is a local equivalence iff W is 2-rigid.

Theorem
If P is W-convergent then W is 2-rigid.

A critical branching is a minimal non-trivial overlapping of the left member of
two 2-generators.

Theorem
If P contains a 3-generator corresponding to the confluence of each critical
W-branching then W is 2-rigid.

31



Quotienting by rigid subgroupoids

Fix a 2-trs P with a subset W ⊆ P2 of 2-generators generating a (2, 1)-category W .

W is 2-rigid when any parallel 2-cells are equal.

Theorem
The quotient 2-functor P → P/W is a local equivalence iff W is 2-rigid.

Theorem
If P is W-convergent then W is 2-rigid.

A critical branching is a minimal non-trivial overlapping of the left member of
two 2-generators.

Theorem
If P contains a 3-generator corresponding to the confluence of each critical
W-branching then W is 2-rigid.

31



Quotienting by rigid subgroupoids

Fix a 2-trs P with a subset W ⊆ P2 of 2-generators generating a (2, 1)-category W .

W is 2-rigid when any parallel 2-cells are equal.

Theorem
The quotient 2-functor P → P/W is a local equivalence iff W is 2-rigid.

Theorem
If P is W-convergent then W is 2-rigid.

A critical branching is a minimal non-trivial overlapping of the left member of
two 2-generators.

Theorem
If P contains a 3-generator corresponding to the confluence of each critical
W-branching then W is 2-rigid.

31



Quotienting by rigid subgroupoids

Fix a 2-trs P with a subset W ⊆ P2 of 2-generators generating a (2, 1)-category W .

W is 2-rigid when any parallel 2-cells are equal.

Theorem
The quotient 2-functor P → P/W is a local equivalence iff W is 2-rigid.

Theorem
If P is W-convergent then W is 2-rigid.

A critical branching is a minimal non-trivial overlapping of the left member of
two 2-generators.

Theorem
If P contains a 3-generator corresponding to the confluence of each critical
W-branching then W is 2-rigid.

31



Quotienting by rigid subgroupoids

Fix a 2-trs P with a subset W ⊆ P2 of 2-generators generating a (2, 1)-category W .

W is 2-rigid when any parallel 2-cells are equal.

Theorem
The quotient 2-functor P → P/W is a local equivalence iff W is 2-rigid.

Theorem
If P is W-convergent then W is 2-rigid.

A critical branching is a minimal non-trivial overlapping of the left member of
two 2-generators.

Theorem
If P contains a 3-generator corresponding to the confluence of each critical
W-branching then W is 2-rigid.

31



Coherence for monoids

Consider the trs for monoids with W = all 2-cells.〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A B C C E

〉

32



Coherence for monoids

Consider the trs for monoids with W = all 2-cells.〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A B C C E

〉

It is terminating.

32



Coherence for monoids

Consider the trs for monoids with W = all 2-cells.〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A B C C E

〉

The critical branchings are

m(m(m(x1, x2), x3)) m(m(e, x1), x2) m(m(x1, e), x2) m(m(x1, x2), e) m(e, e)

32



Coherence for monoids

Consider the trs for monoids with W = all 2-cells.〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A B C C E

〉

The critical branchings are confluent:

m(m(m(x1, x2), x3), x4) m(m(x1,m(x2, x3)), x4)

m(x1,m(m(x2, x3), x4))

m(m(x1, x2),m(x3, x4)) m(x1,m(x2,m(x3, x4)))

α

α

A⇒

α

α

α

m(m(e, x1), x2) m(e,m(x1, x2))

m(x1, x2)

λ

α

B⇒ λ

m(m(x1, e), x2) m(x1,m(e, x2))

m(x1, x2)

ρ

α

C⇒ λ

m(m(x1, x2), e) m(x1,m(x2, e))

m(x1, x2)

ρ

α

D⇒ ρ

m(e, e)

te

λ ρE⇒

32



Coherence for monoids

Consider the trs for monoids with W = all 2-cells.〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A B C C E

〉

The critical branchings are confluent:

m(m(m(x1, x2), x3), x4) m(m(x1,m(x2, x3)), x4)

m(x1,m(m(x2, x3), x4))

m(m(x1, x2),m(x3, x4)) m(x1,m(x2,m(x3, x4)))

α

α

A⇒

α

α

α

m(m(e, x1), x2) m(e,m(x1, x2))

m(x1, x2)

λ

α

B⇒ λ

m(m(x1, e), x2) m(x1,m(e, x2))

m(x1, x2)

ρ

α

C⇒ λ

m(m(x1, x2), e) m(x1,m(x2, e))

m(x1, x2)

ρ

α

D⇒ ρ

m(e, e)

te

λ ρE⇒

32



Coherence for monoids

Consider the trs for monoids with W = all 2-cells.〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A B C C E

〉

It is W-convergent and thus 2-rigid.

Corollary (Coherence)
Any two structural morphisms in a monoidal category are equal.

32



Coherence for monoids

Consider the trs for monoids with W = all 2-cells.〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A C
〉

It is W-convergent and thus 2-rigid.

Corollary (Coherence)
Any two structural morphisms in a monoidal category are equal.

32



Coherence for monoids

Consider the trs for monoids with W = all 2-cells.〈
m : 2
e : 0

∣∣∣∣∣∣∣
α : m(m(x, y), z) ⇒ m(x,m(y, z))
λ : m(e, x) ⇒ x
ρ : m(x, e) ⇒ x

∣∣∣∣∣∣∣ A C
〉

It is W-convergent and thus 2-rigid.

Corollary (Coherence)
Any two structural morphisms in a monoidal category are equal.

32



Comparing algebras

A 2-functor
F : C → D

between 2-categories is

• essentially surjective when for every d ∈ D there is c ∈ C such that F(c) ≃ d

• a local equivalence when for every c, c′ ∈ C the 1-functor

Fc,c′ : C(c, c′) → D(Fc, Fc′)

is an equivalence
• a biequivalence when there is an adjoint 2-functor G : D → C such that the

components of unit and the counit are equivalences

c ≃ G(Fc) F(Gd) ≃ d

33



Comparing algebras

A 2-functor
F : C → D

between 2-categories is

• essentially surjective when for every d ∈ D there is c ∈ C such that F(c) ≃ d
• a local equivalence when for every c, c′ ∈ C the 1-functor

Fc,c′ : C(c, c′) → D(Fc, Fc′)

is an equivalence

• a biequivalence when there is an adjoint 2-functor G : D → C such that the
components of unit and the counit are equivalences

c ≃ G(Fc) F(Gd) ≃ d

33



Comparing algebras

A 2-functor
F : C → D

between 2-categories is

• essentially surjective when for every d ∈ D there is c ∈ C such that F(c) ≃ d
• a local equivalence when for every c, c′ ∈ C the 1-functor

Fc,c′ : C(c, c′) → D(Fc, Fc′)

is an equivalence
• a biequivalence when there is an adjoint 2-functor G : D → C such that the

components of unit and the counit are equivalences

c ≃ G(Fc) F(Gd) ≃ d

33



Algebras

Given a 2-LW T , we write Alg(T ) for the 2-category of algebras of T .

Theorem (Yanofsky’00)
A morphism F : T → T ′ of theories is a biequivalence if and only if the functor
Alg(F) : Alg(T ′) → Alg(T ) induced by precomposition is a biequivalence.

Given W 2-rigid if we could show that the functor

T → T /W

is a biequivalence, we would deduce that

Alg(T /W) → Alg(T )

is a biequivalence... but this is not the case!

34



Algebras

Given a 2-LW T , we write Alg(T ) for the 2-category of algebras of T .

Theorem (Yanofsky’00)
A morphism F : T → T ′ of theories is a biequivalence if and only if the functor
Alg(F) : Alg(T ′) → Alg(T ) induced by precomposition is a biequivalence.

Given W 2-rigid if we could show that the functor

T → T /W

is a biequivalence, we would deduce that

Alg(T /W) → Alg(T )

is a biequivalence... but this is not the case!

34



Local equivalences vs biequivalences

With W = all 2-cells, the functor

Mon → Mon/W

is an essentially surjective local equivalence (an equivalence on homs),
there is a natural operation

Mon/W → Mon

but this is only a pseudofunctor:

7→

35



A conjecture

Conjecture
When W is 2-rigid, the canonical 2-functor

Alg(T /W) → Alg(T )

has a left adjoint such that the components of the unit are equivalences.

36



The case of symmetric monoidal categories

The theory of commutative monoids is

〈
m : 2
e : 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))

λ : m(e, x1) ⇒ x
ρ : m(x1, e) ⇒ x
γ : m(x1, x2) ⇒ m(x2, x1)

δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

37



The case of symmetric monoidal categories

The theory of commutative monoids is

〈
m : 2
e : 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))

λ : m(e, x1) ⇒ x
ρ : m(x1, e) ⇒ x
γ : m(x1, x2) ⇒ m(x2, x1)

δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

Its algebras are symmetric monoidal categories.

37



The case of symmetric monoidal categories

The theory of commutative monoids is

〈
m : 2
e : 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))

λ : m(e, x1) ⇒ x
ρ : m(x1, e) ⇒ x
γ : m(x1, x2) ⇒ m(x2, x1)

δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• if we take W generated by α, λ, ρ and add 3-cells as before, we are
W-convergent: every symmetric monoidal category is equivalent to a strict
one

• but we can do more!

37



The case of symmetric monoidal categories

The theory of commutative monoids is

〈
m : 2
e : 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))

λ : m(e, x1) ⇒ x
ρ : m(x1, e) ⇒ x
γ : m(x1, x2) ⇒ m(x2, x1)

δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• it can be completed as a locally confluent presentation
by adding a generator δ and a bunch of coherence relations

37



The case of symmetric monoidal categories

The theory of commutative monoids is

〈
m : 2
e : 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))

λ : m(e, x1) ⇒ x
ρ : m(x1, e) ⇒ x
γ : m(x1, x2) ⇒ m(x2, x1)

δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• it is not terminating otherwise we could show “full coherence” including

x ⊗ x x ⊗ x

γx,x

idx⊗x

37



The case of symmetric monoidal categories

The theory of commutative monoids is

〈
m : 2
e : 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))

λ : m(e, x1) ⇒ x
ρ : m(x1, e) ⇒ x
γ : m(x1, x2) ⇒ m(x2, x1)

δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• restricting to affine terms (without repeated variables is not enough):

m(x1, x2) m(x2, x1) m(x1, x2)
γ(x1,x2) γ(x2,x1)

• but we don’t need both m(x1, x2) ⇒ m(x2, x1) and m(x2, x1) ⇒ m(x1, x2)!
37



The case of symmetric monoidal categories

The theory of commutative monoids is

〈
m : 2
e : 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))

λ : m(e, x1) ⇒ x
ρ : m(x1, e) ⇒ x
γ : m(x1, x2) ⇒ m(x2, x1)

δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

• if we only keep morphisms “sorting variables”, we are almost terminating
excepting for situations such as m(e, e) ⇒ m(e, e) which can be removed:

m(e, e) m(e, e)

e
37



The case of symmetric monoidal categories

The theory of commutative monoids is

〈
m : 2
e : 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α : m(m(x1, x2), x3) ⇒ m(x1,m(x2, x3))

λ : m(e, x1) ⇒ x
ρ : m(x1, e) ⇒ x
γ : m(x1, x2) ⇒ m(x2, x1)

δ : m(x1,m(x2, x3)) ⇒ m(x2,m(x1, x3))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(x2, x1)

m(x1, x2) m(x1, x2)G
⇛

γγ · · ·
〉

Theorem
In a symmetric monoidal category, every diagram whose source is a tensor
product of distinct objects commutes.

37



Part III

Conclusion

38



Rigidity!

A quotient of (2-)category by a subgroupoid W is coherent when W is rigid.

This is the case when W is generated by a convergent rewriting system.

This also explains situations such as coherence for rig categories:

δx,y,z : x ⊗ (y ⊕ z) → (x ⊗ y)⊕ (x ⊗ z)
δ′x,y,z : (x ⊕ y)⊗ z→ (x ⊗ z)⊕ (y ⊗ z)

(a+ b)(c+ d)

a(c+ d) + b(c+ d) (a+ b)c+ (a+ b)d

ac+ ad+ bc+ bd ac+ bc+ ad+ bd∼ 39



Thanks!

Questions?

40


	Abstract coherence
	Coherence from term rewriting systems
	Conclusion

