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Plan

1 Efficient implementation of the computation of the trace space
2 Extension to programs containing loops
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Goal
When verifying a concurrent program,

there is a priori a large number of possible interleavings to check
(exponential in the number of processes)

Many executions are equivalent:
we want here to provide a minimal number of execution traces

which describe all the possible cases

Homotopy classes of execution traces!

Joint work with, L. Fajstrup, É. Goubault, E. Haucourt and
M. Raussen
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Programs generate trace spaces
Consider the program

x:=1;y:=2 | y:=3

It can be scheduled in three different ways:
y:=3;x:=1;y:=2 x:=1;y:=3;y:=2 x:=1;y:=2;y:=3

(x , y) = (1, 2) (x , y) = (1, 2) (x , y) = (1, 3)

Giving rise to the following graph of traces:
x:=1 // y:=2 //

y:=3

OO

x:=1
//

y:=3

OO

y:=2
//

y:=3

OO

homotopy: commutation / filled square
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Geometric semantics

We thus consider programs p of the form

p ::= 1 | Pa | Va | p.p | p|p

| p∗

To every program with n threads

p = p1|p2| . . . |pn

we associate a directed space, its geometric semantics:
• an n-dimensional directed cube
• minus l forbidden rectangular cubes (holes)
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Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pb.Vb.Pa.Pa.Va.Va Forbidden region
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Schedulings
We want to compute one path in every homotopy class:

Pb Vb Pa Va

Pa

Va

We do this by testing possible ways to go around forbidden regions:

Pb Vb Pa Va

Pa

Va

Pb Vb Pa Va

Pa

Va

(these are called schedulings)
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Idea of the algorithm

The main idea of the algorithm is to consider schedulings and look
whether there is a path from b to e in the resulting space.

t0

t1

t0

t1

t0

t1

By combining those information, we will be able to compute traces
modulo homotopy.

The directions in which to extend the holes will be coded by
boolean matrices M.
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The index poset
Ml ,n: boolean matrices with l rows and n columns.

XM : space obtained by extending
for every (i , j) such that M(i , j) = 1
the forbidden cube i downwards
in every direction other than j

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

(
1 0
1 0

) (
0 1
1 0

) (
1 0
0 1

)
• M is alive if there is a path b → e
• M is dead if there is no path b → e
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The index poset

Pa.Va.Pb.Vb | Pa.Va.Pb.Vb | Pa.Va.Pb.Vb

t0

t1

t2 0

1

t0

t1

t2

t0

t1

t2

t0

t1

t2

(
0 0 0
0 0 0

) (
1 0 0
0 0 1

) (
0 0 1
1 0 0

) (
0 0 0
1 1 1

)

alive alive alive dead
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The algorithm

The algorithm proceeds as follows:
1 Compute the minimal dead matrices.

2 Deduce the maximal alive matrices.
3 The set of maximal alive matrices

quotiented by the connexity equivalence relation
is in bijection with homotopy classes of paths!

Definition
Two matrices M and N are connected when their intersection
M ∧ N does not contain any row filled with zeros.
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Dining philosophers
n processes pk in parallel:

pk = Pak .Pak+1 .Vak .Vak+1
t0

t1

t2

n sched. alcool (s) alcool (MB) spin (s) spin (MB)
8 254 0.1 0.8 0.3 12
9 510 0.8 1.4 1.5 41

10 1022 5 4 8 179
11 2046 32 9 42 816
12 4094 227 26 313 3508
13 8190 1681 58 ∞ ∞
14 16382 13105 143 ∞ ∞
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How do we extend this methodology
to program with loops?

13 / 28



Loops
Given a thread p, we write p∗ for its looping: while(...){p}.

Given a program p with n threads:

p = p1|p2| . . . |pn

we write p∗ for
p∗ = p∗1 |p∗2 | . . . |p∗n

Notice that the geometric semantics Xp∗ can be deduced from the
semantics of p by glueing copies of Xp in every direction:

p∗i = pi .pi .pi . . .
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Deloopings
Notice that the geometric semantics Xp∗ can be deduced from the
semantics of p by glueing copies of Xp in every direction.

Example
Consider the program p = q|q|q with q = Pa.Va (and a of arity 3):

t0

t1

t2

t0

t1

t2

Xp Xp∗

Finite deloopings:
Xp(3,2,2) = (Y⊕1Y )⊕2(Y⊕1Y ) with Y = Xp⊕0Xp⊕0Xp
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Schedulings
Similarly, given schedulings

M = (1 0 0) and N = (0 0 1)
of the previous program p

t0

t1

t2

t0

t1

t2

we write
M ⊕0 N =

(
1 0 0
0 0 1

)
for the following scheduling of X (2,1,1)

p = Xp ⊕0 Xp

XM⊕0N = t0

t1

t2

6= t0

t1

t2

= XM⊕0XN

16 / 28



Schedulings
Similarly, given schedulings

M = (1 0 0) and N = (0 0 1)
of the previous program p

t0

t1

t2

t0

t1

t2

we write
M ⊕0 N =

(
1 0 0
0 0 1

)
for the following scheduling of X (2,1,1)

p = Xp ⊕0 Xp

XM⊕0N = t0

t1

t2

6= t0

t1

t2

= XM⊕0XN

16 / 28



Schedulings
Similarly, given schedulings

M = (1 0 0) and N = (0 0 1)
of the previous program p

t0

t1

t2

t0

t1

t2

we write
M ⊕0 N =

(
1 0 0
0 0 1

)
for the following scheduling of X (2,1,1)

p = Xp ⊕0 Xp

XM⊕0N = t0

t1

t2

6= t0

t1

t2

= XM⊕0XN
16 / 28



Shadows
In fact, scheduling drop “shadows” on previous schedulings

XM⊕0N = t0

t1

t2

6= t0

t1

t2

= XM⊕0XN

Write XM|j for the shadow projected by scheduling M in direction j :

XN|0 = t0

t1

t2

so that
XM⊕j N = (XM ∩ XN|j )⊗j XN
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Alive matrices for programs with loops

Every scheduling M of a delooping of Xp is composed by glueing
submatrices (Mi1,...,in).

If XM contains a deadlock then some subspace X(Mi1,...,in )
contains

a deadlock:

Lemma
If a matrix M is alive then all its submatrices are alive.

The converse is not true!
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Shadows can create deadlocks

The following matrices P and Q coding the schedulings

t0

t1

t2

t0

t1

t2

XP XQ

of p are alive, however the matrix P ⊕0 Q is dead:

XP⊕0Q = t0

t1

t2
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The shadow automaton

We construct an automaton which describes all the schedulings
possible in the future (which won’t create deadlocks by their
shadow): given a scheduling M and a direction j , it describes all
the matrices N such that M ⊕j N is alive.

20 / 28



The shadow automaton

Definition
The shadow automaton of a program p is a non-deterministic
automaton whose

• states are shadows
• transitions N

j,M // N ′ are labeled by a direction j (with
0 6 j < n) and a scheduling M

defined as the smallest automaton
• containing the empty scheduling ∅
• and such that for every state N ′, for every direction j and for
every scheduling M such that the scheduling M ∪ N ′ is alive,
and M is maximal with this property, there is a transition

N
j,M // N ′ with N = (M ∪ N ′)|j .

All the states of the automaton are both initial and final.

21 / 28



The shadow automaton
For instance consider the program p = Pa.Va|Pa.Va

Xp = t0

t1

There are two maximal schedulings

t0

t1

t0

t1

which can drop three possible shadows

t0

t1

t0

t1

t0

t1
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The shadow automaton
The shadow automaton of p is

1, 11

1,
,,

0,





1,

QQ

1,
,,

0,

ll

0,

ll 0,mm

For instance, the transition 0, // is computed as follows:

• consider the shadow M = ∪ =

• compute its shadow in direction 0:

23 / 28



The shadow automaton
The shadow automaton of p is

1, 11

1,
,,

0,





1,

QQ

1,
,,

0,

ll

0,

ll 0,mm

For instance, the transition 0, // is computed as follows:

• consider the shadow M = ∪ =

• compute its shadow in direction 0:
23 / 28



The shadow automaton
Theorem
Given a program p to any total path in a delooping of p is
represented by a path in the shadow automaton of p such that

• every path in the automaton comes from a total path in Xp?

• if two total paths in Xp? correspond to the same path in the
automaton then they are homotopic

Paths in the shadow automaton describe homotopy classes in
deloopings of p.

t0

t1

is represented by 0, // 0, // 1, //
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Reducing the size of the automaton

The shadow automaton is too big:
• we can determinize it:

I
_,

��

_,

��
0_, 99

1,
** 1

0,

jj _,ee

• two distinct paths in the automaton can represent the same
homotopy class of paths: we can quotient paths under
connexity.
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An application to static analysis
The program

p∗ =
(
Pa.a := a − 1.Va

)∗∣∣∣(Pa.
(
a :=

a
2
)
.Va
)∗

induces the automaton

0

[a:=a−1]

�� [a:= a
2 ] ** 1

[a:=a−1]
jj

[a:= a
2 ]

��

and thus the set of equations{
A0 = I ∪ (A0 − 1) ∪ (A1 − 1)
A1 = I ∪ A1

2 ∪
A0
2

which admits a least fixed point

A∞0 = A∞1 = ]−∞, 1]
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An example: the two-phase protocol
We consider n programs locking l resources:

pn,l = q|q| . . . |q with q = Pa1 . . . . Pal .Va1 . . . . Val

For instance, p2,2 = q|q is

t0

t1

We get the following results compared to spin:
n l s t s ′ t ′ s ′′ t ′′ sSPIN tSPIN
2 1 3 8 3 10 1 1 58 65
2 2 3 8 3 10 1 1 112 129
2 3 3 8 3 10 1 1 180 209
3 1 19 90 4 24 1 1 171 218
3 2 19 90 4 24 1 1 441 602
3 3 19 90 4 24 1 1 817 1128
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Conclusion

• Geometric methods can help to devise efficient algorithms to
study concurrent programs

• Lots of works remain to be done. . .
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