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Foreword

I’ll try to present very recent work.

Some discussions with Simon Henry, but all errors are mine.

Basic idea:
▶ algebraic geometry studies spaces up to deformation,
▶ we should study data structures up to implementation.
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Presentations for monoids

A presentation ⟨G | R⟩ consists of
▶ a set G of generators
▶ a (multi)set R of relations of the form

u = v

with u, v ∈ G∗.

Example

⟨a,b | ba = ab,bb = 1⟩
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The presented monoid

Given a presentation ⟨G | R⟩, the congruence ≈ on G∗ is the
smallest relation such that

1. u ≈ v for u = v ∈ R

2. u ≈ u

3. u ≈ v and v ≈ w implies u ≈ w

4. u ≈ v implies v ≈ u

5. v ≈ v′ implies uvw ≈ uv′w

The monoid presented by ⟨G | R⟩ is the quotient monoid

M = G∗/≈ = G∗/R .
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Some presentations

▶ (N,+, 0) is presented by

⟨a | ⟩

▶ N/2N is presented by

⟨a | aa = 1⟩

▶ N× N is presented by

⟨a,b | ba = ab⟩

▶ S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩
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Equivalence between presentations

Two presentations

⟨G | R⟩ and ⟨G′ | R′⟩

are equivalent when they present the same monoid (up to
isomorphism):

G∗/R = G′∗/R′ .

Question
When are two presentations equivalent?
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Equivalent presentations

Example
The monoid N is presented by
▶ ⟨a | ⟩

▶ ⟨a,b | aa = b⟩
▶ ⟨a,b | aa = b, aaaa = bb⟩
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Tietze transformations
We have the following Tietze transformations on a presentation

⟨G | R⟩

1. add a definable generator:

⟨G | R⟩ ⇝ ⟨G, a | R, a = u⟩

with u ∈ G∗,

2. add a derivable relation:

⟨G | R⟩ ⇝ ⟨G | R, u = v⟩

with u, v ∈ G∗ such that u ≈R v.

Lemma
Tietze transformations preserve the presented monoid.
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Tietze equivalence
Two presentations are Tietze equivalent when they are related
by a finite zig-zag of Tietze transformations

⟨G1 |R1⟩ ⇝ ⟨G2 |R2⟩ ⇝⟨G3 |R3⟩ ⇝ . . . ⇝ ⟨Gk |Rk⟩

Theorem
Two presentations are equivalent if and only if they are Tietze
equivalent.

Proof.
Suppose ⟨ai | ui = vi⟩ and ⟨a′i | u′i = v′i ⟩ present the same monoid.

▶ The generators ai can be expressed in terms of a′i as w
′
i .

▶ The generators a′i can be expressed in terms of ai as wi.
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Tietze equivalence

Theorem
Two finite presentations are equivalent if and only if they are Tietze
equivalent.

The following are presentations of N:
▶ ⟨a | ⟩
▶ ⟨ax | ax = a0⟩x∈R
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Tietze equivalence
In order to encompass arbitrary presentations, one could be
tempted to consider zig-zags of Tietze transformations of
“arbitrary length”:

⟨G1 |R1⟩ ⇝ ⟨G2 |R2⟩ ⇝⟨G3 |R3⟩ ⇝ . . . ⇝ ⟨Gk |Rk⟩

Example
Consider the following presentation of N:

⟨a,bi | a = bi,bi = bi+1⟩i∈N
...

b2

b1

a b0

presents N ∗ N!
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Tietze equivalence

What I propose:

Definition
A Tietze expansion is a transfinite sequence of Tietze
transformations

⟨G1 | R1⟩ ⇝ ⟨G2 | R2⟩ ⇝ . . .

and Tietze equivalence is the equivalence relation generated by
Tietze expansions:

⟨G1 |R1⟩
∗⇝ ⟨G2 |R2⟩

∗ ⇝⟨G3 |R3⟩
∗ ⇝ . . .

∗⇝ ⟨Gk |Rk⟩
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Tietze as weak equivalences

Can we see equivalence between presentations as some form of
“homotopy equivalence”?

More precisely, is there a model structure on presentations whose
weak equivalences are Tietze equivalences?

Plus some intuitions:
▶ Tietze expansions look very much like trivial cofibrations
▶ the proof of the theorem looks very much like a mapping
cylinder construction
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The category of presentations
The category Pres has
▶ objects: the presentations
▶ morphisms: the “strict morphisms”, i.e. we send generators
to generators, and relations to relations

This category is complete and cocomplete. For instance,
▶ the initial object is ∅ = ⟨ | ⟩
▶ the terminal object is 1 = ⟨a | am = an⟩m,n∈N

It is also locally presentable:

...

Gm Rm,n Gn

...

sm,n tm,n
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Model categories
A model category is a category C equipped with three classes
of morphisms
▶ W: weak equivalences
▶ C: cofibrations
▶ F : fibrations

with the following intuitions

▶ a weak equivalence

A B∼

means that A and B are the same up to deformation,
▶ a cofibration

A B

means that B can be obtained from A by freely adding stuff,
▶ a fibration

A B

means whenever a composition exists in A it must exist in B.
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Model categories
In particular
▶ an object A is cofibrant when

∅ A

i.e. A is free,

▶ an object A is fibrant when

A 1

i.e. A has all the compositions,
▶ a trivial cofibration is

A B∼

▶ a trivial fibration is

A B∼

16 / 30



Model categories
In particular
▶ an object A is cofibrant when

∅ A

i.e. A is free,
▶ an object A is fibrant when

A 1

i.e. A has all the compositions,

▶ a trivial cofibration is

A B∼

▶ a trivial fibration is

A B∼

16 / 30



Model categories
In particular
▶ an object A is cofibrant when

∅ A

i.e. A is free,
▶ an object A is fibrant when

A 1

i.e. A has all the compositions,
▶ a trivial cofibration is

A B∼

▶ a trivial fibration is

A B∼

16 / 30



Model categories
In particular
▶ an object A is cofibrant when

∅ A

i.e. A is free,
▶ an object A is fibrant when

A 1

i.e. A has all the compositions,
▶ a trivial cofibration is

A B∼

▶ a trivial fibration is

A B∼

16 / 30



Lifting properties

A morphism f : X→ Y has the right lifting property wrt i : A→ B
when

A X

B Y

i

∀

f

∀

∃

and i has the left lifting property wrt f, what we write

i� f .

Given a class I of morphisms, we write
▶ I� for the morphisms with the rlp wrt I,
▶ �I for the morphisms with the llp wrt I.
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Weak factorization systems

A weak factorization system (L,R) on a category C is a pair of
classes of morphisms such that

1. every morphism f of C factors as

f

L∋ ∈R

2. L = �R and R = L�.

Remark
Note that L entirely determines R = L�.
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Model category

A model category is a category C equipped with three classes
of morphisms
▶ W: weak equivalences
▶ C: cofibrations
▶ F : fibrations

such that

1. W satisfies the 2-of-3 property:

gf

g◦f

2. (C,F ∩W) form a weak factorization system,

3. (C ∩W,F) form a weak factorization system.
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Let’s build a model structure on Pres!
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Weak equivalences

We take as weak equivalences W the class of morphisms

f : ⟨G | R⟩ → ⟨G′ | R′⟩

which induce an isomorphism on the presented monoids

G∗/R = G′∗/R′ .

This satisfies 2-of-3.
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Cofibrations

The cofibrations in C should “freely add structure”.

At least, we need the following class I of morphisms

⟨ | ⟩ → ⟨a | ⟩
⟨a1, . . . , am,b1, . . . ,bn | ⟩ → ⟨ai,bi | a1 . . . am = b1 . . .bm⟩

called generating cofibrations

and we define

C = �(I�) .

22 / 30



Cofibrations

The cofibrations in C should “freely add structure”.

At least, we need the following class I of morphisms

⟨ | ⟩ → ⟨a | ⟩
⟨a1, . . . , am,b1, . . . ,bn | ⟩ → ⟨ai,bi | a1 . . . am = b1 . . .bm⟩

called generating cofibrations

and we define

C = �(I�) .

22 / 30



Cofibrations

The cofibrations in C should “freely add structure”.

At least, we need the following class I of morphisms

⟨ | ⟩ → ⟨a | ⟩
⟨a1, . . . , am,b1, . . . ,bn | ⟩ → ⟨ai,bi | a1 . . . am = b1 . . .bm⟩

called generating cofibrations and we define

C = �(I�) .

22 / 30



Cofibrations
By formal properties of the biorthogonal (small object argument)

(�(I�), I�)
is a weak factorization system

and

C = �(I�)
is the smallest class of morphisms of Pres which
▶ contains I,

▶ is closed under pushouts:
,

C∋ ⌜
∈C

▶ is closed under transfinite compositions,

▶ is closed under retracts:
.

C∋f

id

f∈C

id
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Cofibrations

We deduce that
▶ every object P = ⟨G | R⟩ is cofibrant:

∅ P

▶ the monomorphisms are cofibrations,
▶ cofibrations are retracts of monomorphisms.
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Trivial cofibrations

The trivial cofibrations in C ∩W should add structure while
being weak equivalences.

At least, we need the following class J of morphisms,
corresponding to atomic Tietze transformations:
▶ ⟨a1, . . . , an | ⟩ → ⟨a1, . . . , an,b | a1 . . . an = b⟩
▶ ⟨a1, . . . , an | ⟩ → ⟨a1, . . . , an | a1 . . . an = a1 . . . an⟩
▶ [transitivity, symmetry, congruence]

and we should have

C ∩W ?
= �(J �) .

Thus trivial cofibrations are retracts of transfinite compositions of
Tietze transformations.
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Trivial fibrations

Let’s look at trivial fibrations F ∩W ?
= I�.
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Trivial fibrations

Let’s look at trivial fibrations F ∩W ?
= I�.

Given f : P→ Q a trivial fibration we should have

⟨ | ⟩ P

⟨a | ⟩ Q

∼ f

i.e. f is surjective on generators.
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Trivial fibrations

Let’s look at trivial fibrations F ∩W ?
= I�.

Given f : P→ Q a trivial fibration we should have

⟨ai,bi | ⟩ P

⟨ai,bi | a1 . . . am = b1 . . .bn⟩ Q

∼ f

i.e. if f(u) = f(v) then u = v, both in one relation step.
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Trivial fibrations

Let’s look at trivial fibrations F ∩W ?
= I�.

Given f : ⟨G | R⟩ → ⟨G′ | R′⟩ a trivial fibration (= surjective + lifting
relations), do we have f ∈ W?

⟨G | R⟩ u u′

⟨G′ | R′⟩ v1 v2 . . . vn

f

In general, F ∩W ̸= I�!
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Fibrant objects

The fibrant objects are presentations such that
▶ for every word u, there is a generator a with a relation u = a,
▶ relations are closed under reflexivity, transitivity, symmetry
and congruence.

The properties for fibrations only work when we have fibrant
objects as target, so the best we can hope for is a semi-model
category...

...or we can change the generating cofibrations and say that we
can add a chain of relations between two words (instead of only
one relation).
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Weak equivalences

We said:

Definition
A Tietze equivalence is a zig-zag of Tietze expansions (i.e.
transfinite sequences of Tietze transformations).

This now translates as:

Proposition
A weak equivalence can be expressed as a zig-zag of trivial
cofibrations.

B trivial cofibrations are retracts of Tietze expansions.
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Factorizations

We have two factorizations of morphisms as required:

a1 a2

a1 a2 b

a1 a2

∼

∼

(when the target is fibrant).
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Weak equivalences

Suppose given a weak equivalence:

C

A

B′ 1

B
∼

∼
∼

∼

∅ C

B′ B′

∼

id
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