TIETZE EQUIVALENCES AS WEAK EQUIVALENCES

Samuel Mimram

École Polytechnique

Foreword

I'll try to present very recent work.

Foreword

I'll try to present very recent work.

Some discussions with Simon Henry, but all errors are mine.

Foreword

I'll try to present very recent work.

Some discussions with Simon Henry, but all errors are mine.

Basic idea:

- algebraic geometry studies spaces up to deformation,
- we should study data structures up to implementation.

Presentations for monoids

A presentation $\langle G \mid R \rangle$ consists of

- a set G of generators
- ► a (multi)set *R* of *relations* of the form

U = V

with $u, v \in G^*$.

Example

$$\langle a, b \mid ba = ab, bb = 1 \rangle$$

The presented monoid

Given a presentation $\langle G | R \rangle$, the **congruence** \approx on G^* is the smallest relation such that

- 1. $u \approx v$ for $u = v \in R$
- 2. $u \approx u$
- 3. $u \approx v$ and $v \approx w$ implies $u \approx w$
- 4. $u \approx v$ implies $v \approx u$
- 5. $v \approx v'$ implies $uvw \approx uv'w$

The presented monoid

Given a presentation $\langle G | R \rangle$, the **congruence** \approx on G^* is the smallest relation such that

- 1. $u \approx v$ for $u = v \in R$
- 2. $u \approx u$
- 3. $u \approx v$ and $v \approx w$ implies $u \approx w$
- 4. $u \approx v$ implies $v \approx u$
- 5. $v \approx v'$ implies $uvw \approx uv'w$

The **monoid presented** by $\langle G | R \rangle$ is the quotient monoid

$$M = G^*/\approx = G^*/R$$
.

 $\blacktriangleright \ (\mathbb{N},+,0)$ is presented by

 $\langle a \mid \rangle$

• $(\mathbb{N}, +, 0)$ is presented by

 $\langle a \mid \rangle$

• $\mathbb{N}/2\mathbb{N}$ is presented by

 $\langle a \mid aa = 1 \rangle$

• $(\mathbb{N}, +, 0)$ is presented by

 $\langle a \mid \rangle$

• $\mathbb{N}/2\mathbb{N}$ is presented by

$$\langle a \mid aa = 1 \rangle$$

• $\mathbb{N} \times \mathbb{N}$ is presented by

$$\langle a,b \mid ba = ab \rangle$$

• $(\mathbb{N}, +, 0)$ is presented by

 $\langle a \mid \rangle$

• $\mathbb{N}/2\mathbb{N}$ is presented by

$$\langle a \mid aa = 1 \rangle$$

• $\mathbb{N} \times \mathbb{N}$ is presented by

$$\langle a,b \mid ba = ab \rangle$$

S₃ is presented by

$$\langle a, b \mid aa = 1, bb = 1, bab = aba \rangle$$

Equivalence between presentations

Two presentations

$$\langle G \mid R \rangle$$
 and $\langle G' \mid R' \rangle$

are **equivalent** when they present the same monoid (up to isomorphism):

$$G^*/R = G'^*/R'.$$

Equivalence between presentations

Two presentations

$$\langle G \mid R \rangle$$
 and $\langle G' \mid R' \rangle$

are **equivalent** when they present the same monoid (up to isomorphism):

$$G^*/R = G'^*/R'.$$

Question When are two presentations equivalent?

Equivalent presentations

Example

The monoid $\ensuremath{\mathbb{N}}$ is presented by

Equivalent presentations

Example

The monoid $\ensuremath{\mathbb{N}}$ is presented by

Equivalent presentations

Example

The monoid $\ensuremath{\mathbb{N}}$ is presented by

- ► ⟨a | ⟩
- $\langle a, b \mid aa = b \rangle$

•
$$\langle a, b \mid aa = b, aaaa = bb \rangle$$

Tietze transformations

We have the following Tietze transformations on a presentation

 $\langle G \mid R \rangle$

Tietze transformations We have the following **Tietze transformations** on a presentation

 $\langle G \mid R \rangle$

1. add a definable generator:

$$\langle G \mid R \rangle \quad \rightsquigarrow \quad \langle G, a \mid R, a = u \rangle$$

with $u \in G^*$,

Tietze transformations We have the following **Tietze transformations** on a presentation

 $\langle G \mid R \rangle$

1. add a definable generator:

 $\langle G \mid R \rangle \quad \rightsquigarrow \quad \langle G, a \mid R, a = u \rangle$

with $u \in G^*$,

2. add a derivable relation:

 $\langle G \mid R \rangle \qquad \rightsquigarrow \qquad \langle G \mid R, u = v \rangle$

with $u, v \in G^*$ such that $u \approx^R v$.

Tietze transformations We have the following **Tietze transformations** on a presentation

 $\langle G \mid R \rangle$

1. add a definable generator:

 $\langle G \mid R \rangle \qquad \rightsquigarrow \qquad \langle G, a \mid R, a = u \rangle$

with $u \in G^*$,

2. add a derivable relation:

 $\langle G \mid R \rangle \quad \rightsquigarrow \quad \langle G \mid R, u = v \rangle$

with $u, v \in G^*$ such that $u \approx^R v$.

Lemma

Tietze transformations preserve the presented monoid.

Two presentations are **Tietze equivalent** when they are related by a finite zig-zag of Tietze transformations

 $\langle G_1 \, | \, R_1 \rangle \quad \rightsquigarrow \quad \langle G_2 \, | \, R_2 \rangle \quad \nleftrightarrow \quad \langle G_3 \, | \, R_3 \rangle \quad \twoheadleftarrow \quad \ldots \quad \rightsquigarrow \quad \langle G_k \, | \, R_k \rangle$

Two presentations are **Tietze equivalent** when they are related by a finite zig-zag of Tietze transformations

 $\langle G_1 \, | \, R_1 \rangle \quad \rightsquigarrow \quad \langle G_2 \, | \, R_2 \rangle \quad \nleftrightarrow \quad \langle G_3 \, | \, R_3 \rangle \quad \twoheadleftarrow \quad \ldots \quad \rightsquigarrow \quad \langle G_k \, | \, R_k \rangle$

Theorem

Two presentations are equivalent if and only if they are Tietze equivalent.

Theorem

Two presentations are equivalent if and only if they are Tietze equivalent.

Proof.

Theorem

Two presentations are equivalent if and only if they are Tietze equivalent.

Proof.

Suppose $\langle a_i | u_i = v_i \rangle$ and $\langle a'_i | u'_i = v'_i \rangle$ present the same monoid.

• The generators a_i can be expressed in terms of a'_i as w'_i .

Theorem

Two presentations are equivalent if and only if they are Tietze equivalent.

Proof.

- The generators a_i can be expressed in terms of a'_i as w'_i .
- The generators a'_i can be expressed in terms of a_i as w_i .

Theorem

Two presentations are equivalent if and only if they are Tietze equivalent.

Proof.

Suppose $\langle a_i | u_i = v_i \rangle$ and $\langle a'_i | u'_i = v'_i \rangle$ present the same monoid.

- The generators a_i can be expressed in terms of a'_i as w'_i .
- ► The generators a'_i can be expressed in terms of a_i as w_i . We have the Tietze transformations

 $\langle a_i \mid u_i = v_i \rangle$

Theorem

Two presentations are equivalent if and only if they are Tietze equivalent.

Proof.

Suppose $\langle a_i | u_i = v_i \rangle$ and $\langle a'_i | u'_i = v'_i \rangle$ present the same monoid.

• The generators a_i can be expressed in terms of a'_i as w'_i .

► The generators a'_i can be expressed in terms of a_i as w_i.
We have the Tietze transformations

$$\langle a_i \mid u_i = v_i \rangle \quad \rightsquigarrow \quad \langle a_i, a'_i \mid u_i = v_i, a'_i = w_i \rangle$$

Theorem

Two presentations are equivalent if and only if they are Tietze equivalent.

Proof.

- The generators a_i can be expressed in terms of a'_i as w'_i .
- ► The generators a'_i can be expressed in terms of a_i as w_i.
 We have the Tietze transformations

$$\begin{array}{lll} \langle a_i \mid u_i = v_i \rangle & \rightsquigarrow & \langle a_i, a'_i \mid u_i = v_i, a'_i = w_i \rangle \\ & \rightsquigarrow & \langle a_i, a'_i \mid u_i = v_i, a'_i = w_i, a_i = w'_i \rangle \end{array}$$

Theorem

Two presentations are equivalent if and only if they are Tietze equivalent.

Proof.

- The generators a_i can be expressed in terms of a'_i as w'_i .
- ► The generators a'_i can be expressed in terms of a_i as w_i.
 We have the Tietze transformations

$$\begin{array}{lll} \langle a_i \mid u_i = v_i \rangle & \rightsquigarrow & \langle a_i, a'_i \mid u_i = v_i, a'_i = w_i \rangle \\ & \rightsquigarrow & \langle a_i, a'_i \mid u_i = v_i, a'_i = w_i, a_i = w'_i \rangle \\ & \nleftrightarrow & \langle a'_i \mid u'_i = v'_i \rangle \end{array}$$

Theorem

Two presentations are equivalent if and only if they are Tietze equivalent.

Proof.

- The generators a_i can be expressed in terms of a'_i as w'_i .
- The generators a'_i can be expressed in terms of a_i as w_i.

$$\begin{array}{c} \langle a_i, a_i' \mid u_i = v_i, a_i' = w_i, a_i = w_i' \rangle \\ & & & & & \\ \langle a_i \mid u_i = v_i \rangle & & & & \\ \langle a_i' \mid u_i' = v_i' \rangle \end{array}$$

Theorem

Two finite presentations are equivalent if and only if they are Tietze equivalent.

The following are presentations of \mathbb{N} :

In order to encompass arbitrary presentations, one could be tempted to consider zig-zags of Tietze transformations of "arbitrary length":

 $\langle G_1 \, | \, R_1 \rangle \quad \rightsquigarrow \quad \langle G_2 \, | \, R_2 \rangle \quad \nleftrightarrow \quad \langle G_3 \, | \, R_3 \rangle \quad \twoheadleftarrow \quad \ldots \quad \rightsquigarrow \quad \langle G_k \, | \, R_k \rangle$

Example

$$\langle a, b_i \mid a = b_i, b_i = b_{i+1} \rangle_{i \in \mathbb{N}}$$

$$\vdots$$

$$b_1$$

$$b_1$$

$$a = b_0$$

In order to encompass arbitrary presentations, one could be tempted to consider zig-zags of Tietze transformations of "arbitrary length":

 $\langle G_1 \, | \, R_1 \rangle \quad \rightsquigarrow \quad \langle G_2 \, | \, R_2 \rangle \quad \nleftrightarrow \quad \langle G_3 \, | \, R_3 \rangle \quad \twoheadleftarrow \quad \ldots \quad \rightsquigarrow \quad \langle G_k \, | \, R_k \rangle$

Example

$$\langle a, b_i \mid a = b_i, b_i = b_{i+1} \rangle_{i \in \mathbb{N}}$$

 \vdots
 b_2
 b_1
 b_1
 b_1
 b_0

In order to encompass arbitrary presentations, one could be tempted to consider zig-zags of Tietze transformations of "arbitrary length":

 $\langle G_1 \, | \, R_1 \rangle \quad \rightsquigarrow \quad \langle G_2 \, | \, R_2 \rangle \quad \nleftrightarrow \quad \langle G_3 \, | \, R_3 \rangle \quad \twoheadleftarrow \quad \ldots \quad \rightsquigarrow \quad \langle G_k \, | \, R_k \rangle$

Example

$$\langle a, b_i \mid a = b_i, b_i = b_{i+1} \rangle_{i \in \mathbb{N}}$$

 \vdots
 b_2
 b_1
 a
 b_0

In order to encompass arbitrary presentations, one could be tempted to consider zig-zags of Tietze transformations of "arbitrary length":

 $\langle G_1 \, | \, R_1 \rangle \quad \rightsquigarrow \quad \langle G_2 \, | \, R_2 \rangle \quad \nleftrightarrow \quad \langle G_3 \, | \, R_3 \rangle \quad \twoheadleftarrow \quad \ldots \quad \rightsquigarrow \quad \langle G_k \, | \, R_k \rangle$

Example

$$\langle a, b_i \mid a = b_i, b_i = b_{i+1} \rangle_{i \in \mathbb{N}}$$

 \vdots
 b_2
 b_1
 b_1
 a
 b_0

In order to encompass arbitrary presentations, one could be tempted to consider zig-zags of Tietze transformations of "arbitrary length":

 $\langle G_1 \, | \, R_1 \rangle \quad \rightsquigarrow \quad \langle G_2 \, | \, R_2 \rangle \quad \nleftrightarrow \quad \langle G_3 \, | \, R_3 \rangle \quad \twoheadleftarrow \quad \ldots \quad \rightsquigarrow \quad \langle G_k \, | \, R_k \rangle$

Example

Consider the following presentation of \mathbb{N} :

а

$$\begin{array}{ll} \langle a,b_i \mid & b_i = b_{i+1} \rangle_{i \in \mathbb{N}} \\ \vdots \\ b_2 \\ 0 \\ b_1 \\ 0 \\ b_0 \end{array} \quad \text{presents } \mathbb{N} * \mathbb{N}!$$

Tietze equivalence

What I propose:

Definition

A **Tietze expansion** is a transfinite sequence of Tietze transformations

$$\langle G_1 \mid R_1 \rangle \quad \rightsquigarrow \quad \langle G_2 \mid R_2 \rangle \quad \rightsquigarrow \quad \dots$$

Tietze equivalence

What I propose:

Definition

A **Tietze expansion** is a transfinite sequence of Tietze transformations

$$\langle G_1 \mid R_1 \rangle \quad \rightsquigarrow \quad \langle G_2 \mid R_2 \rangle \quad \rightsquigarrow \quad \dots$$

and **Tietze equivalence** is the equivalence relation generated by Tietze expansions:

 $\langle G_1 \, | \, R_1 \rangle \quad \stackrel{*}{\leadsto} \quad \langle G_2 \, | \, R_2 \rangle \quad \stackrel{*}{\hookleftarrow} \quad \langle G_3 \, | \, R_3 \rangle \quad \stackrel{*}{\hookleftarrow} \quad \dots \quad \stackrel{*}{\leadsto} \quad \langle G_k \, | \, R_k \rangle$

Tietze as weak equivalences

Can we see equivalence between presentations as some form of "homotopy equivalence"?

Tietze as weak equivalences

Can we see equivalence between presentations as some form of "homotopy equivalence"?

More precisely, is there a model structure on presentations whose weak equivalences are Tietze equivalences?

Tietze as weak equivalences

Can we see equivalence between presentations as some form of "homotopy equivalence"?

More precisely, is there a model structure on presentations whose weak equivalences are Tietze equivalences?

Plus some intuitions:

- Tietze expansions look very much like trivial cofibrations
- the proof of the theorem looks very much like a mapping cylinder construction

The category of presentations

The category Pres has

- objects: the presentations
- morphisms: the "strict morphisms", i.e. we send generators to generators, and relations to relations

The category of presentations

The category Pres has

- objects: the presentations
- morphisms: the "strict morphisms", i.e. we send generators to generators, and relations to relations

This category is complete and cocomplete. For instance,

- the initial object is $\emptyset = \langle | \rangle$
- the terminal object is $1 = \langle a \mid a^m = a^n \rangle_{m,n \in \mathbb{N}}$

The category of presentations

The category Pres has

- objects: the presentations
- morphisms: the "strict morphisms", i.e. we send generators to generators, and relations to relations

This category is complete and cocomplete. For instance,

• the initial object is $\emptyset = \langle | \rangle$

► the terminal object is $1 = \langle a \mid a^m = a^n \rangle_{m,n \in \mathbb{N}}$ It is also locally presentable:

$$: G^m \xleftarrow{s_{m,n}} R_{m,n} \xrightarrow{t_{m,n}} G^n$$

٠

A **model category** is a category *C* equipped with three classes of morphisms

- ► *W*: weak equivalences
- C: cofibrations
- *F*: fibrations

with the following intuitions

A **model category** is a category *C* equipped with three classes of morphisms

- W: weak equivalences
- C: cofibrations
- *F*: fibrations

with the following intuitions

a weak equivalence

$A \xrightarrow{\sim} B$

means that A and B are the same up to deformation,

A **model category** is a category *C* equipped with three classes of morphisms

- W: weak equivalences
- C: cofibrations
- *F*: fibrations

with the following intuitions

a weak equivalence

$$A \xrightarrow{\sim} B$$

means that A and B are the same up to deformation,

a cofibration

$$A \longrightarrow B$$

means that B can be obtained from A by freely adding stuff,

A **model category** is a category *C* equipped with three classes of morphisms

- W: weak equivalences
- C: cofibrations
- F: fibrations

with the following intuitions

a weak equivalence

$$A \xrightarrow{\sim} B$$

means that A and B are the same up to deformation,

a cofibration

$$A \longleftrightarrow B$$

means that B can be obtained from A by freely adding stuff,

a fibration

$$A \longrightarrow B$$

means whenever a composition exists in A it must exist in B.

In particular

▶ an object A is **cofibrant** when

$$\varnothing \longrightarrow A$$

i.e. A is free,

In particular

an object A is cofibrant when

 $\varnothing \longrightarrow A$

i.e. A is free,

▶ an object A is **fibrant** when

 $A \longrightarrow 1$

i.e. A has all the compositions,

In particular

an object A is cofibrant when

 $\varnothing \longrightarrow A$

i.e. A is free,

an object A is fibrant when

 $A \longrightarrow 1$

i.e. A has all the compositions,

a trivial cofibration is

 $A \stackrel{\sim}{\longrightarrow} B$

In particular

an object A is cofibrant when

 $\varnothing \longrightarrow A$

i.e. A is free,

an object A is fibrant when

 $A \longrightarrow 1$

i.e. A has all the compositions,

a trivial cofibration is

$$A \stackrel{\sim}{\longrightarrow} B$$

a trivial fibration is

$$A \xrightarrow{\sim} B$$

A morphism $f: X \to Y$ has the **right lifting property** wrt $i: A \to B$ when

 $\begin{array}{ccc}
A & X \\
\downarrow & \downarrow^{f} \\
B & Y
\end{array}$

A morphism $f: X \to Y$ has the **right lifting property** wrt $i: A \to B$ when

A morphism $f: X \to Y$ has the **right lifting property** wrt $i: A \to B$ when

A morphism $f: X \to Y$ has the **right lifting property** wrt $i: A \to B$ when

and *i* has the left lifting property wrt *f*, what we write

i⊿f.

A morphism $f: X \to Y$ has the **right lifting property** wrt $i: A \to B$ when

and *i* has the left lifting property wrt *f*, what we write

$i \boxtimes f$.

Given a class ${\mathcal I}$ of morphisms, we write

- \mathcal{I}^{\square} for the morphisms with the RLP wrt \mathcal{I} ,
- $\Box \mathcal{I}$ for the morphisms with the LLP wrt \mathcal{I} .

Weak factorization systems

A weak factorization system $(\mathcal{L}, \mathcal{R})$ on a category C is a pair of classes of morphisms such that

1. every morphism f of C factors as

Weak factorization systems

A weak factorization system $(\mathcal{L}, \mathcal{R})$ on a category C is a pair of classes of morphisms such that

1. every morphism f of C factors as

2. $\mathcal{L} = \[mathscale{\mathcal{L}}\] \mathcal{R}$ and $\mathcal{R} = \mathcal{L}\[mathscale{\mathcal{L}}\]$.

Weak factorization systems

A weak factorization system $(\mathcal{L}, \mathcal{R})$ on a category C is a pair of classes of morphisms such that

1. every morphism f of C factors as

2.
$$\mathcal{L} = \ensuremath{\ensuremath{\mathbb{Z}}} \mathcal{R}$$
 and $\mathcal{R} = \mathcal{L}\ensuremath{\mathbb{Z}}$.

Remark Note that \mathcal{L} entirely determines $\mathcal{R} = \mathcal{L}^{\Box}$.

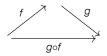
Model category

A **model category** is a category *C* equipped with three classes of morphisms

- ► *W*: weak equivalences
- C: cofibrations
- ► *F*: fibrations

such that

1. \mathcal{W} satisfies the 2-of-3 property:



- 2. $(\mathcal{C},\mathcal{F}\cap\mathcal{W})$ form a weak factorization system,
- 3. $(\mathcal{C}\cap\mathcal{W},\mathcal{F})$ form a weak factorization system.

Let's build a model structure on Pres!

Weak equivalences

We take as weak equivalences $\ensuremath{\mathcal{W}}$ the class of morphisms

 $f:\langle G \mid R \rangle \to \langle G' \mid R' \rangle$

which induce an isomorphism on the presented monoids

$$G^*/R = G'^*/R'.$$

This satisfies 2-of-3.

The **cofibrations** in C should "freely add structure".

The **cofibrations** in C should "freely add structure".

At least, we need the following class ${\mathcal I}$ of morphisms

$$\langle | \rangle \rightarrow \langle a | \rangle$$

 $\langle a_1, \dots, a_m, b_1, \dots, b_n | \rangle \rightarrow \langle a_i, b_i | a_1 \dots a_m = b_1 \dots b_m \rangle$

called generating cofibrations

The cofibrations in $\mathcal C$ should "freely add structure".

At least, we need the following class ${\mathcal I}$ of morphisms

$$\langle | \rangle \rightarrow \langle a | \rangle$$

 $\langle a_1, \dots, a_m, b_1, \dots, b_n | \rangle \rightarrow \langle a_i, b_i | a_1 \dots a_m = b_1 \dots b_m \rangle$

called generating cofibrations and we define

By formal properties of the biorthogonal (small object argument)

 $(^{\boxtimes}(\mathcal{I}^{\boxtimes}),\mathcal{I}^{\boxtimes})$

is a weak factorization system

By formal properties of the biorthogonal (small object argument)

 $(^{\boxtimes}(\mathcal{I}^{\boxtimes}),\mathcal{I}^{\boxtimes})$

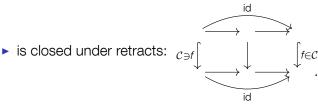
is a weak factorization system and

$$\mathcal{C} \quad = \quad ^{\boxdot}(\mathcal{I}^{\boxdot})$$

is the smallest class of morphisms of $\ensuremath{\text{Pres}}$ which

► contains I,

- ► is closed under pushouts: $C \rightarrow \int_{C \rightarrow C} \int$
- is closed under transfinite compositions,



We deduce that

• every object $P = \langle G | R \rangle$ is cofibrant:

$$\varnothing \longrightarrow P$$

We deduce that

• every object $P = \langle G | R \rangle$ is cofibrant:

$$\varnothing \longrightarrow P$$

▶ the monomorphisms are cofibrations,

We deduce that

• every object $P = \langle G | R \rangle$ is cofibrant:

 $\varnothing \longrightarrow P$

- the monomorphisms are cofibrations,
- cofibrations are retracts of monomorphisms.

Trivial cofibrations

The **trivial cofibrations** in $C \cap W$ should add structure while being weak equivalences.

At least, we need the following class \mathcal{J} of morphisms, corresponding to atomic *Tietze transformations*:

- $\blacktriangleright \langle a_1, \ldots, a_n \mid \rangle \rightarrow \langle a_1, \ldots, a_n, b \mid a_1 \ldots a_n = b \rangle$
- $\blacktriangleright \langle a_1, \ldots, a_n \mid \rangle \rightarrow \langle a_1, \ldots, a_n \mid a_1 \ldots a_n = a_1 \ldots a_n \rangle$
- [transitivity, symmetry, congruence]

The **trivial cofibrations** in $C \cap W$ should add structure while being weak equivalences.

At least, we need the following class \mathcal{J} of morphisms, corresponding to atomic *Tietze transformations*:

$$\bullet \langle a_1, \ldots, a_n \mid \rangle \rightarrow \langle a_1, \ldots, a_n, b \mid a_1 \ldots a_n = b \rangle$$

$$\bullet \langle a_1, \ldots, a_n \mid \rangle \to \langle a_1, \ldots, a_n \mid a_1 \ldots a_n = a_1 \ldots a_n \rangle$$

[transitivity, symmetry, congruence]

and we should have

$$\mathcal{C} \cap \mathcal{W} \stackrel{?}{=} ^{\square} (\mathcal{J}^{\square}).$$

The **trivial cofibrations** in $C \cap W$ should add structure while being weak equivalences.

At least, we need the following class \mathcal{J} of morphisms, corresponding to atomic *Tietze transformations*:

$$\bullet \langle a_1, \ldots, a_n \mid \rangle \to \langle a_1, \ldots, a_n, b \mid a_1 \ldots a_n = b \rangle$$

•
$$\langle a_1, \ldots, a_n \mid \rangle \rightarrow \langle a_1, \ldots, a_n \mid a_1 \ldots a_n = a_1 \ldots a_n \rangle$$

[transitivity, symmetry, congruence]

and we should have

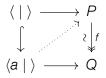
$$\mathcal{C} \cap \mathcal{W} \stackrel{?}{=} ^{\square} (\mathcal{J}^{\square}).$$

Thus trivial cofibrations are retracts of transfinite compositions of Tietze transformations.

Let's look at trivial fibrations $\mathcal{F} \cap \mathcal{W} \stackrel{?}{=} \mathcal{I}^{\boxtimes}$.

Let's look at trivial fibrations $\mathcal{F} \cap \mathcal{W} \stackrel{?}{=} \mathcal{I}^{\boxtimes}$.

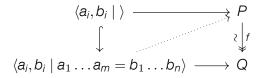
Given $f: P \rightarrow Q$ a trivial fibration we should have



i.e. f is surjective on generators.

Let's look at trivial fibrations $\mathcal{F} \cap \mathcal{W} \stackrel{?}{=} \mathcal{I}^{\boxtimes}$.

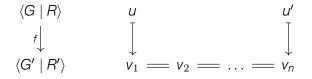
Given $f: P \rightarrow Q$ a trivial fibration we should have



i.e. if f(u) = f(v) then u = v, both in one relation step.

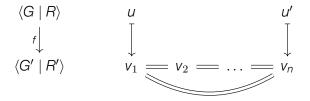
Let's look at trivial fibrations $\mathcal{F} \cap \mathcal{W} \stackrel{?}{=} \mathcal{I}^{\boxtimes}$.

Given $f : \langle G | R \rangle \rightarrow \langle G' | R' \rangle$ a trivial fibration (= surjective + lifting relations), do we have $f \in W$?



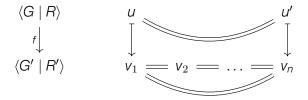
Let's look at trivial fibrations $\mathcal{F} \cap \mathcal{W} \stackrel{?}{=} \mathcal{I}^{\boxtimes}$.

Given $f : \langle G | R \rangle \rightarrow \langle G' | R' \rangle$ a trivial fibration (= surjective + lifting relations), do we have $f \in W$?



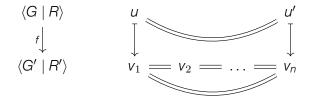
Let's look at trivial fibrations $\mathcal{F} \cap \mathcal{W} \stackrel{?}{=} \mathcal{I}^{\boxtimes}$.

Given $f : \langle G | R \rangle \rightarrow \langle G' | R' \rangle$ a trivial fibration (= surjective + lifting relations), do we have $f \in W$?



Let's look at trivial fibrations $\mathcal{F} \cap \mathcal{W} \stackrel{?}{=} \mathcal{I}^{\boxtimes}$.

Given $f : \langle G | R \rangle \rightarrow \langle G' | R' \rangle$ a trivial fibration (= surjective + lifting relations), do we have $f \in W$?



In general, $\mathcal{F} \cap \mathcal{W} \neq \mathcal{I}^{\boxtimes}$!

Fibrant objects

The fibrant objects are presentations such that

- for every word u, there is a generator a with a relation u = a,
- relations are closed under reflexivity, transitivity, symmetry and congruence.

Fibrant objects

The fibrant objects are presentations such that

- for every word u, there is a generator a with a relation u = a,
- relations are closed under reflexivity, transitivity, symmetry and congruence.

The properties for fibrations only work when we have fibrant objects as target, so the best we can hope for is a *semi-model category*...

Fibrant objects

The fibrant objects are presentations such that

- for every word u, there is a generator a with a relation u = a,
- relations are closed under reflexivity, transitivity, symmetry and congruence.

The properties for fibrations only work when we have fibrant objects as target, so the best we can hope for is a *semi-model category*...

...or we can change the generating cofibrations and say that we can add a chain of relations between two words (instead of only one relation).

We said:

Definition

A Tietze equivalence is a zig-zag of Tietze expansions (i.e. transfinite sequences of Tietze transformations).

We said:

Definition

A Tietze equivalence is a zig-zag of Tietze expansions (i.e. transfinite sequences of Tietze transformations).

This now translates as:

Proposition

A weak equivalence can be expressed as a zig-zag of trivial cofibrations.

We said:

Definition

A Tietze equivalence is a zig-zag of Tietze expansions (i.e. transfinite sequences of Tietze transformations).

This now translates as:

Proposition

A weak equivalence can be expressed as a zig-zag of trivial cofibrations.

▲ trivial cofibrations are retracts of Tietze expansions.

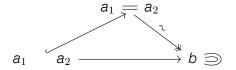
Factorizations

We have two factorizations of morphisms as required:

(when the target is fibrant).

Factorizations

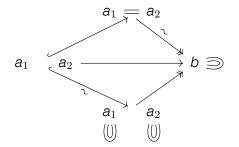
We have two factorizations of morphisms as required:



(when the target is fibrant).

Factorizations

We have two factorizations of morphisms as required:



(when the target is fibrant).

