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Abstract

A given monoid usually admits many presentations by generators and relations and the
notion of Tietze equivalence characterizes when two presentations describe the same monoid:
it is the case when one can transform one presentation into the other using the two families
of so-called Tietze transformations. The goal of this article is to provide an abstract and
geometrical understanding of this well-known fact, by constructing a model structure on
the category of presentations, in which two presentations are weakly equivalent when they
present the same monoid. We show that Tietze transformations form a pseudo-generating
family of trivial cofibrations and give a proof of the completeness of these transformations
by an abstract argument in this setting.

In order to navigate between the various presentations of a monoid, a very convenient tool
is provided by Tietze transformations, originally investigated for groups [12] (see also [9, chap-
ter I1]): these are two families of elementary transformations one can perform on a monoid while
preserving the presented monoid. Typically, the Knuth-Bendix completion procedure for string
rewriting systems uses such transformations in order to turn a presentation of a monoid into
another presentation of the same monoid which has the property of being convergent [8, 6], and
thus for which the word problem is easily decidable. The Tietze transformations moreover en-
joy a completeness property: given any two presentations of a given monoid, there is a way of
transforming the first into the second by performing a series of such transformations.

In this article, we provide a conceptual and geometrical point of view on Tietze transfor-
mations, by showing that they can be abstractly thought of as “continuously deforming” the
presentations. In order to make this formal, we consider the category of presentations of monoids
with suitably chosen morphisms (it turns out that we need to allow some sort of degeneracies)
and construct a model structure on it, where weakly equivalent presentations are presentations
of a same monoid. We then show that the Tietze transformations can then be interpreted in this
setting as a pseudo-generating family of trivial cofibrations: they generate trivial cofibrations
with fibrant codomain. Finally, the classical proof of completeness for Tietze transformations
proceeds by constructing some kind of cospan of Tietze transformations between two presen-
tations of the same monoid: we explain here how to reconstruct this proof by purely abstract
arguments based on our model structure.

The main goal of this article is thus to shed new light on theses well-known concepts and
proofs, and advocate the relevance of homotopical methods to people working with presentations
of monoids, which is why we have done our best to have a self-contained exposition. We see
this work as a first step in order to tackle generalizations of Tietze transformations to higher
dimension (e.g. coherent presentations of categories [5, Section 2.1]) or more involved structures
(Lawvere theories, operads, etc.).

We recall the notion of Tietze transformation between presentations of monoids in section 1,
and of model category in section 2. We construct our model structure on the category of presen-



tations in section 3, show that Tietze transformations form a pseudo-generating family of trivial
cofibrations in section 4 and use this to abstractly study Tietze equivalences in section 5.

1 Tietze equivalences of presentations of monoids

1.1 Monoid. A monoid (M,-,1) consists of a set M equipped with a binary multiplication
operation - and a unit element 1 such that multiplication is associative and the unit acts as a
neutral element. A morphism f : M — N between two monoids is a function which preserves
multiplication and unit. We write Mon for the resulting category.

1.2 Free and quotient monoids. Given a set X, we write X™* for the free monoid generated
by X: its elements are words over X, multiplication uv of two words is their concatenation, and
the unit is the empty word, noted 1.

Given a binary relation ~ on a monoid M, we write M/~ for the quotient monoid whose
elements and equivalence classes of elements of M by the congruence generated by ~, and
multiplication and unit are induced by those of M.

1.3 Presentation. A presentation P = (Py |Ps) consists of
— a set Py of generators,
— a set Po C P} x P} of relations.

Such a presentation is finite when both the sets P; and Py are. A relation (u,v) € P} is generally

denoted by “u = v” and we write ® for the smallest congruence generated by Ps. A morphism
f : P — Q between presentations is a function f : P; — Qi such that, for every u = v € Py,
we have f*(u) = f*(v) € Qa. A subpresentation P’ of P is a presentation equipped with a
morphism P’ — P whose underlying function is an inclusion. We write Pres for the category
of presentations and their morphisms. Note that, by definition, there is a forgetful functor
Pres — Set sending a presentation P to its set P; of generators.

1.4 Presented monoid. The monoid P presented by a presentation P is the quotient monoid

P = P%/P; i.e., the quotient of the free monoid P} by the congruence = generated by Ps. We
often write ¢” : P} — P for the quotient morphism and, given u € P}, we write @ for its
equivalence class ¢" (u). More generally, we say that a monoid M is presented by P when M is
isomorphic to P, what we sometimes write M =~ (P; | Py). This construction extends as a functor
Pres — Mon.

Example 1. We have the following presentations:

N~ (a|) N x N~ (a,b|ab = ba)
N/2N ~ (a|aa = 1) Z ~{a,blab= 1,ba = 1).

1.5 Standard presentation. To any monoid M, one can associate a presentation (M), called
the standard presentation of M, defined by

Plz{Q|GEM}
Po={a;...a,=0b...0,]a1...anp =b1...0n},



i.e., it contains the elements of the monoids as generators and there is a relation between two
words of generators when the product of their elements are equal. This construction extends as a
functor Mon — Pres. It can be used to show that any monoid admits at least one presentation:

Lemma 2. Given a monoid M, its standard presentation is a presentation of M: (M) ~ M.

Lemma 3. The presentation functor is left adjoint to the standard presentation functor

!

Pres | Mon
r\<_>/

the counit of the adjunction being an isomorphism.

1.6 Reflexive presentations. A presentation P is reflexive when for every word w € P}
there is a relation u = u € Py. We write rPres for the full subcategory of Pres on reflexive
presentations.

Lemma 4. The expected forgetful functor admits a left adjoint

FR
Pres | rPres
~_

sending a presentation P to the presentation Q with
Q=P Qe =PsU{u=u|uePi}

and rPres is equivalent to the Kleisli category of the monad on Pres induced by the adjunction.

Lemma 5. The category rPres is equivalent to the category whose objects are presentations (not
necessarily reflexive) and a morphism f : P — Q is a function f : Py — Q such that for every
relation u = v € Py we have either f(u) = f(v) € Qg or f(u) = f(v).

In the following, when describing concrete examples of reflexive presentations, we generally omit
mentioning reflexivity relations (or, alternatively, the description of morphisms given by previous
lemma could be considered).

Remark 6. The standard presentation is clearly reflexive and thus the adjunction of lemma 3
restricts to an adjunction between reflexive presentations and monoids.

1.7 Equivalence between presentations. There is a very natural notion of equivalence of
presentations: two presentations can be considered as equivalent when they present isomorphic
monoids. In order to provide a concrete and amenable description of this relation, Tietze has in-
troduced a family of transformations on presentations which characterize the equivalence. Those
were originally formulated in the context of presentations of groups [12].

We begin with a simpler but useful characterization of the equivalence:

Lemma 7. Two presentations P and Q are such that P ~ Q if and only if there is a cospan of
presentations

P R Q
such that the induced monoid morphisms f : P —+ R and §: Q — R are isomorphisms.

Proof. If there is a cospan as above then we have P ~ R ~ Q and P and Q are thus equivalent.
Conversely, suppose that P presents the monoid M, i.e., there is an isomorphism P — M. Under

the adjunction of lemma 3, this induces a map f : P — (M) such that f : P - (M) = M.
Similarly, we can construct a map g : P — (M). O



1.8 Tietze transformation. The elementary Tietze transformations are the following trans-
formations producing a new presentation Q from a presentation P:

(T1) adding a derivable generator: given a new generator a ¢ P; and word u € Pj, we define
the presentation Q by

Q1:P1|_|{CL} Qg:PgU{u:,Sa},

(T2) adding a derivable relation: given two words u,v € P} such that u 2 v, we define the
presentation @) by

Q=P Q2 =Py U{u=v}.

It is easy to see that those transformations preserve the presented monoids:

Lemma 8. Given an elementary Tietze transformation from P to Q, we have an isomorphism

P~Q.

A Tietze transformation from P to Q consists in a finite sequence of presentations
P=P’P,P?...,P"=Q

such that for every ¢ with 0 < i < n there is an elementary Tietze transformation from P? to Pi+!.
In this situation, we sometimes write

P~ Q

Note that contrarily to the usual convention, we do not allow here removing generators or
relations.
The transformation (T2) can be replaced by the following four transformations:

(T2r) reflexivity: given u € P}, we define Q by

Q=P Q2 =PyU{u= u},
(T2s) symmetry: given u,v € P} such that u = v € P2, we define Q by

Q=P Qe =PyU{v=u},
(T2t) transitivity: given u,v,w € Pf such that u = v,v = w € Py, we define Q by

Q=P Q2 =P U {u = w}.
(T2¢) context: given u,v,v’,w € P} such that v = v’ € Py, we define Q by

Q=P Q2 = Py U {uvw = w'w},

The resulting systems are the same in the following sense:

Lemma 9. The following assertions are equivalent: there is a Tietze transformation from P to Q
(i) using (T1) and (T2),
(ii) using (T1), (T2r), (T2s), (T2t) and (T2c).

In the following, unless otherwise mentioned, we use the second set of Tietze transformations
which are easier to work with because they are more “atomic”.



1.9 Tietze equivalence. A Tietze equivalence from P to Q is a finite sequence of presen-
tations P = PY,P1 P2,...,P® = Q such that for every i with 0 < i < n there is a Tietze
transformation from P? to P! or from P! to P!. Two presentations are Tietze equivalent
when there is a Tietze equivalence between them. Otherwise said, the Tietze equivalence is
the smallest equivalence relation relating any two presentations between which there is an (ele-
mentary) Tietze transformation. By lemma 8 above, Tietze equivalences preserve the presented
monoids. It well known that, for finite presentations, the converse holds [9, chapter II]:

Theorem 10. Given two finite presentations P and Q, we have P ~ Q if and only if P and Q are
Tietze equivalent.

Proof. The right-to-left implication follows from lemma 8. For the left-to-right implication,
suppose given an isomorphism P ~ Q. For the sake of simplicity we suppose that we actually
have P = Q and more generally that Tietze equivalent presentation give rise to identical presented
monoids (the proof without this assumption can be constructed from the one below by inserting
isomorphisms at required places). Given a generator a € Pp, there exists an element u € Qf
such that ¢F(a) = ¢R(u). We write a® for a choice of such an element. Dually, given b € Q,
we write b7 € P* for a word such that ¢°(b”) = ¢R(b). We generalize this notation to words
w=ay...a, € P, by setting uQ = a¥...bQ (and we define vQ for v € Q% similarly). Note that,
for u € P}, we have

()P = u (1)
(and dually). We construct a presentation R by
Ri =P, LQ Ry = Po LU Qy URY LIRS
where
RE={a%=a|aeP} RS = {" = b|beQ}

We now construct a Tietze transformation from P to R. Dually, we will be able to construct a
Transformation from Q to R and we will be able to conclude that P and Q are Tietze equivalent:

P~ R« Q.

By using Tietze transformations (T1), starting from P, we can add each generator b € Q; along
with the relation b” = b, thus obtaining a transformation

P=(P1|P2) ~ P = (P1,Qi|P2,R]).

Note that, given a word u € QF, we have u Eu Therefore, given a € Py, we have a® - (a®)P Ea
by (1). By using Tietze transformations (T2) we can add each derivable relation a® = a to P’

thus reaching the presentation R:

P

P~ P~ R. ]

Remark 11. The proof above uses Tietze transformations (T1) and (T2). The proof can be
performed by using the other set of transformations given by lemma 9, at the cost of having to
take a slightly bigger R.

The proof of theorem 10 constructs a “cospan” of Tietze transformations. We will see that it
can be constructed by using tools coming from model categories.



1.10 An example. Consider the presentations
(al) and (a,b|b= bb,1 = bb).
Both present the additive monoid N, and indeed there is a Tietze equivalence between them:

{al) =

(a,b]1 = b) (

— (a,b|1=b,b=10b) (T2c)
— (a,b|1=b,b=0b,1 = bb) (T2t)
— (a,b|1 = b,b=bb,1 = bb,bb = b) (T2s)
<+ (a,b|b=-bb,1 = bb,bb = b) (T2t)
<« (a,b|b=bb,1 = bb) (T2s)

Also note that both presentations are “minimal”: there is no way to remove a derivable generator
or a relation without changing the presented monoid. In particular, starting from the second
presentation, we have to add relations first in order to be able remove the generator b and all
the relations.

1.11 Generalization to infinite presentations. The above theorem 10 holds only for finite
presentations, which is the way it is usually stated. It can easily be generalized to presentations
of arbitrary cardinality by allowing the Tietze transformations to add sets of derivable gen-
erators and sets of derivable relations (instead of only one), what we call generalized Tietze
transformations. The right way to think of those is as being obtained as cellular extensions of
elementary Tietze transformations and we will prove in theorem 58 the following generalization
of theorem 10, which was already known, see for instance [10, section 1.5]:

Theorem 12. Given two presentation P and Q, we have P ~ Q if and only if they are related by a
zig-zag of generalized Tietze transformations, i.e., there exists a finite sequence of presentations

P=P’ P, ...,P"=Q

such that for every index i, there is a generalized Tietze transformation from P2 to P?i*+! and
from P2%12 to P2+l

Remark 13. The naive generalization of theorem 10, which states that two presentations have
the same presented monoid if and only if they are related by a “possibly infinite zig-zag” of
elementary Tietze transformations, is plain wrong (and this is not what the above theorem
states). For instance, consider the following presentation of the monoid N:

P =(a,bi|a = bi,b; = bit1)ien

and write P? for P with the relations a = b; removed for i < k. We have P? = P and the relation
a = by, is derivable in P, so that there is an elementary Tietze transformation from P*+! to P¥.
However, writing

P> = (a,b;i|b; = bit1)ien

we have that PY does not present the same monoid as P> even though there is an “infinite
sequence of elementary Tietze transformations” between them. Namely, P presents N whereas
P presents N x N, the free product of two copies of N, and two are not isomorphic (the former
is commutative whereas the later is not).



2 Model categories

In this section, we recall elementary definitions and facts about model categories which we will
use in the following and refer the reader to classical textbooks for details [7].

2.1 Lifting properties. Suppose fixed a category. A morphism p : X — Y has the right
lifting property, or rlp, with respect to a morphism i : A — B when for every morphisms
f:A— X and g : B — Y such that po f = g oi there exists a morphism h : B — X making
the following diagram commute:

In this situation, we also say that ¢ has the left lifting property, or llp, with respect to f, and
write i A p. Given two classes £ and R, we write LIBR whenever i Ap for every i € L and p € R.
We also write L? (resp. PR) for the class of morphism with the rlp (resp. llp) with respect to £
(resp. R).

Lemma 14. Given classes £, £, R and R’ of morphisms,
L CB(L9) (B(LP)e =° L C L' implies LZ D L'?,
R C (BR)? 2((PR)E) =B8R R C R’ implies PR D PR.

Lemma 15. We suppose the ambient category cocomplete. A class of the form £ = YR contains
isomorphisms and is closed under

— coproducts: for any family (i : Ay — Bk)kex of morphisms in £, the morphism

I i IT 4% — ] B«

keEK keEK kEK
is also in the class,

— pushouts: for any morphism ¢ : A — B in £ and morphism f : A — A’, for any pushout
diagram

the morphism j also belongs to L,
— countable compositions: for any diagram
A Loy 4y Sy (2)
consisting of morphisms fi : Ay — Agy1 in £ for k € N, the canonical morphism
Ag — colimy, Ay,

also belongs to L,



— retracts: given a morphism 7 : A — B and two retracts r o s = id4 and 7’ o s’ = idp/, any
morphism j : A’ — B’ for which there is a commutative diagram

id 4/

Al —— A —— A

Jl i lj (3)
’ \P ’
B ‘s B> B
idB/
also belongs to L.
Dually, any class for the form £? contains isomorphisms and is closed under products, pullbacks,

countable compositions and retracts.

Given a class Z of morphisms, the class Z-cell of Z-cellular extensions is defined as the smallest
class of morphisms closed under sums, pushouts and countable compositions (note that we do
not require closure under retracts).

Lemma 16. A morphism is an Z-cellular extension if and only if it is a composite of pushouts of
sums of elements of Z.

Lemma 17. Given a class Z of morphisms, the class of Z-cellular extensions is included in ¥ (Z9).

Proof. By lemma 14, we have Z included in ¥(Z%) and, by lemma 15, this class is closed under
sums, pushouts and countable compositions. O

Lemma 18 (Retract lemma). Given a factorization f = p o such that f M p, f is a retract of i.
Dually, given a factorization f = p o such that i @ f, f is a retract of p.

Proof. Since f [ p, we have a map h such that

X 5y
| 7]
f h P
e
7 ——7
and the map f is thus a retract of ¢:
X=—X =X
|
il 4 s
Z —0 Y — A
as claimed. O

2.2 Weak factorization system. A weak factorization system on a category is a pair (£, R)
of classes of morphisms such that

— every morphism f factors as f =poi withi € L and p € R,
- L=PR and R = LY.

Remark 19. From lemma 15 and lemma 18, the second condition can be equivalently be replaced
by the two following conditions



- LBR,
— the classes £ and R are closed under retracts.

One of the main technique in order to construct weak factorization systems is due to the following
proposition [7, Section 2.1.2]. The notion of locally finitely presentable category is recalled in
section 3.5.

Proposition 20 (Small object argument). Suppose that the category is cocomplete and locally
finitely presentable. For any class Z of morphisms, (¥(Z?),Z9) is a weak factorization system.
Moreover, every morphism f factors as f = poi where ¢ € ¥(Z?) is an Z-cellular extension and
p € I9. Moreover, every element of Y (Z9) is a retract of an Z-cellular extension.

2.3 Model category. A model category is a category equipped with three classes of mor-
phisms

— C: cofibrations,
— W: weak equivalences,
— F: fibrations

such that

the category is complete and cocomplete,

— weak equivalences satisfy the 2-out-of-3 property: given a diagram

N
gof
if two morphisms belong to W then so does the third,
- (C,WnNF) forms a weak factorization system,

- (CNW,F) forms a weak factorization system.

An object X is cofibrant when the initial morphism @ — X is a cofibration, and fibrant when
the terminal morphism X — 1 is a fibration.

From previous section, we can expect that the weak factorization system can be generated
as lifting completions of some classes. Indeed, many model categories are cofibrantly generated
(also sometimes called combinatorial since we work here with locally presentable categories) [7,
Theorem 2.1.19]:

Proposition 21. In a locally presentable complete and cocomplete category, suppose given a
class W of morphisms satisfying the 2-out-of-3 property and two sets Z and J of morphisms
such that the inclusions

IZQJZQW IZ](jIZ])gZ(IZ)mW

hold, one of them being an equality. Then we have a model category with WV as weak equivalences,
Y(Z9) as cofibrations and J%? as fibrations. In this case, the elements of Z as J are respectively
called generating cofibrations and generating trivial cofibrations.



3 A model structure on reflexive presentations

Our aim is to construct a model structure on the category of reflexive presentations where weak
equivalences correspond to presenting isomorphic categories and trivial cofibrations are Tietze
transformations. The general strategy here is to use proposition 21 and thus to satisfy all the
required hypothesis: in particular, we want to show the equality Z® = 7Y NW. Unless otherwise
mentioned, all the presentations considered in this section are supposed to be reflexive; the reason
for this shall be discussed in section 6.1. We first study some of the properties of the category
of reflexive presentations.

3.1 Colimits. The category rPres has coproducts. Namely, given two presentations P and Q,
their coproduct P LI Q is given by

PUQ):=PUQ (PUQ)2 =P2UQq

and the argument generalizes to show that the category has small coproducts. In particular,
the initial object @ is the empty presentation, with @; = () and @3 = (). Suppose given two
morphisms of presentations

f
P

Their coequalizer is the presentation R whose set of generators is the coequalizer

f
P1 ?; Q1 h > R1
i.e., the quotient set Ry = Q1 /~ under the smallest equivalence relation such that f(a) ~ f(b)
for a € Py, the function h being the quotient map, and the set of relations is
Ry = {h"(u) = h"(v) |[u=v € Q:1}.
The category is thus cocomplete. In particular, the pushout of a diagram

1, 12 2
Q' +—P ——Q

is the presentation R whose set Ry of generators is the pushout of the underlying sets of generators,
with cocoone maps k' : Q' — R and h? : Q2 = R, and relations

Ry = {h'(u) = h'(v) ’u = v € Qy} U{h*(u) = h*(v) ‘u =veQ3}.

Note that the forgetful functor rPres — Set, sending a presentation to its underlying set of
generators, preserves colimits.

3.2 Limits. The product PxQ of two reflexive presentations P and Q has generators (PxQ); = P1xQ1
and the set (P x Q)2 of relations is

{(al,a’l)...(am,ain)ﬁ(bl,b’l)...(bn,b;) @1 = b1 bn € P }

. al, = b b€ Qy

This generalizes to small products. In particular, the terminal presentation 1 has one generator a
and all relations of the form a”™ = a™ for m,n € N. Given two morphisms of polygraphs

p—2q

g

10



their equalizer R is given by
Ri={a ePi[f(a) =g(a)}

i.e., this is the equalizer of the underlying sets, and relations are
Ry ={u=vePy[f(u) =g"(u) and f*(v) = g"(u)}.

The category is thus complete and the forgetful functor rPres — Set preserves limits.

3.3 Monomorphisms. A monomorphism f : P — Q is a morphism whose underlying func-
tion f : Py — Qq is injective, i.e., the forgetful functor rPres — Set reflects monomorphisms. In
this sense, the monomorphisms of presentations inherit the properties of those of the categories
of sets. For instance,

Lemma 22. In rPres, monomorphisms are stable under coproducts, pushouts and countable
compositions.

Proof. The forgetful functor to sets preserves coproducts, pushouts and countable compositions,
and reflects monomorphisms. O

Remark 23. These stability conditions are not generally true in a category. As a counter-example,
in the category of commutative rings, the inclusion ¢ : Z — Q is a mono, but the sum (which is
here the tensor product, and corresponds to the usual tensor product of Z-modules)

is not a mono. It is however the case that monomorphisms are stable under pushout in a topos
(and, more generally, an adhesive category).

3.4 Epimorphisms. Similarly, an epimorphism f : P — Q is a morphism whose underlying
function P; — Qq is a surjection.

3.5 Local presentability. We refer to [1] for a detailed presentations of the notions intro-
duced here. An object X of a category C is finitely presentable when the representable functor

Hom(X,—) : C — Set

preserves filtered limits: this means that for a diagram (Y;);c; indexed by a filtered category I,
the canonical morphism

colim; Hom(X,Y;) — Hom(X, colim; Y;)

is an isomorphism. In particular, finitely presentable presentations objects are precisely the finite
presentations.

A locally small category C is locally finitely presentable when it is cocomplete and there is a
set of finitely presentable objects such that every object of C is a filtered colimit of objects in
this set. In the case of the category of presentations, every presentation is the filtered colimit of
its finite subpresentations, and the category rPres is thus locally finitely presentable (and Mon
as well).

11



3.6 Weak equivalences. We write WV for the class of morphisms f : P — Q such that the
induced morphism f : P — Q between presented monoids is an isomorphism. Many of the
properties of isomorphisms are thus reflected on weak equivalences:

Lemma 24. The class W satisfies the 2-out-of-3 property and is closed under coproducts, push-
outs, countable compositions and retracts.

Proof. The class of isomorphisms in any category satisfies the 2-out-of-3 property. Isormorphisms
are closed under sums

ida
A"/BXA
~ N AR
A+ A " BB T AL A
A’/ B’/ A'/
\M—B/

(this shows that the sum of two isomorphisms i and ¢’ is still an isomorphism since the diagram
also commutes if we replace (i~ +4'71) o (i +14') by ida,a/) and pushouts

(this shows that the pushout j of an isomorphism 4 along an arbitrary morphism f is an iso-
morphism since the diagram also commutes if we replace j o 5~ by idp/). Consider a countable
composition of isomorphisms f; : A; — A; 41 as in (2). There is a cocone on Aj consisting of the
morphisms

fotofito o filh i Ai— Ag

which is easily seen to be universal and the composite is thus (isomorphic to) id4,. Consider

a retract j of an isomorphism i as in (3). We claim that the morphism j’ = soi~! o7’ is the
inverse of j. Namely, one has
j’oj:soiflor/oj joj’:josoiilor/
=soitojor =g oioitor
=sor =sor
= idy =idp O

3.7 Generating cofibrations. Consider the presentation with one generator and no relation:

G=(al).

12



Given m,n € N, we introduce notations for the following presentations, respectively with n gen-
erators and no relation, and with one relation between words of respective lengths m and n:

G" ={ay,...,an]) R™™ =(a1,...,Gmin Q1. Qm = Gmt1 - Cmgn)-

We write Z for the class of morphisms, called generating cofibrations, consisting of the obvious
inclusions of presentations

g:2G P Gy RN

for some m,n € N.

3.8 Cofibrations. We write C = Y(Z9) for the class of morphisms whose elements are called
cofibrations. Note that, given a presentation P, the pushouts

oG Gt 5, Rrn
| - A
P > Q P > Q

are respectively the polygraph obtained from P by adding a generator and the polygraph obtained
from P by adding a relation (between the two words of P} specified by f).

Lemma 25. Every presentation P is cofibrant, in the sense that the initial morphism @& < P is
a cofibration.

Proof. By proposition 20, it is enough to show that the initial morphism @ < P can be obtained
as a composite of pushouts of generating cofibrations, which amounts to show that every pre-
sentation can be obtained from the empty one by adding generators and relations, which we will
do in this order (generators first, and then relations). Given a relation u = v € Py, we have a

canonical inclusion

w|4|v
Glul+ol TR Bl o]

and a canonical inclusion
Glul+lvl 11 G

acP;

By summing those morphisms over relations (u, v) € Py, and post-composing with the codiagonal

H(U,U)GPQ HaEP1 G Ha€P1 G’

we obtain a diagram

H(u,v)ePz Glul+ll H(W})Ep2 Rlullvl

|

Ha€P1 G

whose pushout is precisely P. Finally, we consider the composite of morphism

g —— 11 G—— P

a€Py

where the second morphism is constructed in the cocone of the pushout. Again, this composite
expresses the fact that any presentation can be constructed from the empty one by first adding
all the generators, and then adding all the relations. O

13



The construction given in the above proof easily generalizes to show:

Lemma 26. Any monomorphism f : P — Q is a cofibration (and, in fact, an Z-cellular extension).
Conversely, one has:

Lemma 27. Cofibrations are monomorphisms.

Proof. The generating cofibrations are monomorphisms. Moreover, monomorphisms are closed
under coproducts, under pushouts and countable compositions by lemma 22. By proposition 20,
cofibrations are thus retracts of monomorphisms. We conclude using the fact that monomor-

phisms are closed under retracts. Namely, suppose given a retract j of a monomorphism i, as
in (3), and two morphisms hj, he such that jo h; = j o hy, we have

johi=johy
s'ojohy =35 0johy
iosohy =io0s0hy

soh; =sohy

rosohy =rosohsy
hy = ho

and we conclude. O
Corollary 28. The class C of cofibrations is the class of monomorphisms in rPres.

3.9 Trivial fibrations. The morphisms in the class Z9 are called trivial fibrations. From the
lifting property with respect to the generators we immediately deduce,

Lemma 29. The morphisms f : P — Q in Z9 are those
— whose underlying function f : P; — Q; is surjective, and
— such that for every u,v € Pf, f*(u) = f*(v) € Qq implies u = v € Pa.
Lemma 30. Trivial fibrations are weak equivalences: Z9 C W.
Proof. Since f : Py — Qq is surjective, we have that f : P — Q is also surjective. We have to show
that it is also injective in order to conclude. Suppose given u,v € P} such that f*(u) Q f*(v):

we have a sequence
fflu)=wy e w & ... e w, = f*(v)

where the arrows “<” mean that, for 0 < i < n, there is a decomposition of w; and w;41 as
w; = tiu;v;  and  wipq = tubv) with u; = u; € Qy or w; < u;e Qo

Moreover, since Q is reflexive, we can always suppose that this sequence is non-empty, i.e., n > 0:
we can replace the empty sequence by the reflexivity relation f*(u) = f*(u). By surjectivity,
for 0 < i < n, there are words ¢, uf, 7, #F, w/P, v/P in P¥ whose image under f is respectively
ti, g, vi, th, ul, vl, and we may moreover assume tiubvf = u and #/7 ;w07 | = v. Finally,

. . o . P
since f is a trivial fibration, we have u; = uj or u; <= u, and we conclude that u = v. O

From the results of section 3.4, one has:

Lemma 31. Every trivial fibration is an epimorphism.

14



3.10 'Trivial cofibrations. The class of trivial cofibrations is CNWV and consists of monomor-
phisms f : P — Q such that the induced morphism of monoids f : P — Q is an isomorphism.

Lemma 32. A morphism f: P — Q is a trivial cofibration when
— f is a monomorphism,
— for every a € Qq, there exists u € P} such that f(u) Q a,

— for u,v € P} such that f(u) Q f(v), we have u Lo

Proof. Suppose that f is a trivial cofibration. Since f is a cofibration, it is a monomorphism by
lemma 27. Given a € Qq, since f is surjective there is u € P} such that f(u) = @, and we have
f(u) 2 a. Given u,v € Pt such that f(u) 2 f(v), we have f(@) = f(7), thus @ = 7 in P since f
injective, and finally u Lo

Conversely, suppose given a monomorphism f : P — Q. Given a € Qi, by hypothesis, there
exists u, € P} such that f(@,) = @. Therefore, given 7 € Q, for some v = ay...a, € Qj, we
have

f@ay . Ta,) = f(Uay) .- f(Ua,)=01...0p =7

and f is thus surjective. Suppose given u,v € P} such that f(u) = f(v): we have f(u) Q f(v),
P _
thus v = v and finally @ = . O

Lemma 33. The class of trivial cofibrations satisfies ?((CNW)¥) =CNW.

Proof. By lemma 15 and lemma 24, the class C N W is closed under sums, pushouts, countable
compositions and retracts. We conclude by proposition 20. O

3.11 Fibrations. The class F of fibrations is determined by the two other classes: should
there be a model structure, it is necessarily F = (C N W)®. An explicit description of fibrant
objects is given by lemma 51 and lemma 44.

3.12 A model structure. Finally, we have all the ingredients required to construct a model
structure.

Theorem 34. There is a model structure on the category rPres of reflexive presentations with
W as weak equivalences, C = ¥(Z9) as cofibrations and F = (C N W)? as fibrations.

Proof. We apply proposition 21, with 7 = C N W. The 2-out-of-3 property for WW was shown in
section 3.6. We first show 79 C J9 NW. We have J = CNW C C thus C2 C J9. Moreover,
by lemma 14 and lemma 30, we have C2® C W. Thus C2 C J N W. Finally, by lemma 33, we
have

AT =T =Cnw=2IT%)nw
which concludes the proof. O

In fact, the situation considered here can be axiomatized as in the following theorem, due to
Smith, see [3, Theorem 1.7]:

Theorem 35. In a locally presentable category, suppose given a subcategory W and a set Z of
morphisms such that

— W is closed under retracts and has the 2-out-of-3 property,

15
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— B(ZP)NW is closed under pushouts and transfinite compositions,
— W satisfies the solution set condition at Z.

Then there is a cofibrantly generated model structure with ?(Z%) as cofibrations, W as weak
equivalences and (?(Z%) N W)¥ as fibrations.

We do not detail the solution set condition and simply note here that it is always satisfied for
categories which are small, which is the case for the categories considered here.

3.13 A Quillen functor. The category Mon can canonically be equipped with the trivial
model structure where weak equivalences are isomorphisms and every morphism is both fibrant
and cofibrant. The presentation functor rPres — Mon described in section 1.4 is a left adjoint
(lemma 3 and remark 6) which trivially preserves cofibrations and trivial cofibrations, and is
thus a Quillen functor. Moreover, this functor reflects weak equivalences and, given a presenta-
tion P, the counit P — (P) of the adjunction is a weak equivalence: by [7, Corollary 1.3.16], the
presentation functor is thus a Quillen equivalence. By [7, Proposition 1.3.13], this means that
the derived functor induces, as expected, an equivalence of categories between the localization
of rPres under weak equivalences and the one of Mon (which is Mon itself):

Ho(rPres) = Ho(Mon) ~ Mon.

4 Tietze transformations as trivial cofibrations

In section 4.1 below, we introduce a class J of morphisms of reflexive presentations such that
pushouts of morphisms in this class correspond to elementary Tietze transformations. Contrarily
to what one could expect, this family does not generate all trivial cofibrations: we have a strict
inclusion ?(J%) C C N W. However, we show that the two classes coincide for morphisms with
fibrant codomain: we thus say that the class J is pseudo-generating, following the terminology
of Simpson [11, Section 8.7].

4.1 Pseudo-generating trivial cofibrations. We write J for the class of morphisms of
rPres, called pseudo-generating trivial cofibrations

(a1, yam|) = (a1, oy Qmy Qg1 |8 = Gmg1)
(a1, .. yam|) = (a1,...,am | u=u)
(a1, Qg | U = V) = {(a1,...,antm |0 = v, 0 =)
(@1, Gmgntp | U= 0,0 = W) = (a1, ., Angmtp | U = 0,0 = W, u = W)
(a1, .., Gmgntpiq | U= V) = (a1, .., Gmintptrq | Wuw' = wow')
for some m,n,p € N with
U=ay...an W = Am4n4+1 -+ - Am4ntp
UV=0an+1---Qm+n w’ = Qm4n+p+1 - - - Am4ntp+q
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Lemma 36. Given a pseudo-generating cofibrations j : P — Q and a morphism of presentations
f: P — P/, consider the pushout j’ : P’ — Q' of j along f:

p—L,p
Jl i’
Q » Q'

then there is an elementary Tietze transformation from P’ to Q’, and conversely every elementary
Tietze transformation arises in this way.

Proof. Pushout of the five kinds of morphisms in 7 precisely give rise to the five kinds of Tietze
transformations (T1), (T2r), (T2s), (T2t) and (T2c). O

We are thus tempted to call generalized Tietze transformation a morphism in [J-cell. In partic-
ular, every element of J is itself a Tietze transformation and thus, by theorem 10,

Lemma 37. Generating trivial cofibrations are weak equivalences: J C W.

Moreover, those morphisms are monomorphisms and thus, by lemma 26,

Lemma 38. The pseudo-generating trivial cofibrations are cofibrations: J C P(Z9).

Remark 39. By general properties [7, Proposition 2.1.18], we have that morphisms in ?(J?)
are retracts of Tietze transformations. We do not know whether the morphisms in ?(J?) are
precisely Tietze transformations or not.

4.2 Morphisms in ?(J%). The following lemmas show that the morphisms in the class
B (J9) are trivial cofibrations. We will however see in section 4.4 that not every trivial cofibration
is in this class, i.e., the inclusion is strict.

Lemma 40. We have P(J9) C ¥(Z9).
Proof. By lemma 38, we have that J C Y(Z%). Thus, by lemma 14, we have

2(T7) CP((P(IP)P) = P(Z7). O
Lemma 41. We have 2(J9) C W.

Proof. By lemma 36, a pushout of an element in 7 is an elementary Tietze transformation and
thus a weak equivalence by lemma 8. By proposition 20, any element of ?(J%) is a countable
composition of elementary Tietze transformations, and thus a weak equivalence by lemma 24. [

Lemma 42. We have 2(J9) CCNW.
Proof. By Lemmas 40 and 41. O

4.3 Pseudo-fibrations. The morphisms in J2 are called pseudo-fibrations. A pseudo-fibrant
object P is one such that the terminal morphism P — 1 is a pseudo-fibration.

Lemma 43. A presentation P is pseudo-fibrant when
— for every word u € P7, there is a generator a € Py such that u = a € Pg,

— the relation Py on P7 is a congruence.

In particular, we have u £ vifand only if u = v € Pa.
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More generally, pseudo-fibrations can be described as follows:

Lemma 44. A morphism f : P — Q is a pseudo-fibration when

— for every u € P§ and b € Q; such that f(u) = b € Qq, there exists a € Py with f*(a) =b
and u = a € P,

— for every u € P},

ffw) = f*(u) € Q implies u=u € Po,
— for every u,v € P} with u = v € Py,

ffv) = f (u) € Q implies v=u € Py,
— for every u,v,w € P} with u = v € Py and v = w € Py,

ffluw) = fr(w) € Qa implies  u= w € Py,
— for every w, v, w,w’ € P} with u = v € Py,

Hwuw') = f*(wow') € Qo implies  wuw’ = wow' € Py.

Lemma 45. Any fibration is a pseudo-fibration: F = (CNW)? C J9.
Proof. By lemma 42, we have ?(J%) C C N W. Therefore, by lemma 14,
F=(CnwW)? c(PI))?=7". O

Lemma 46. For any object P, there exists a pseudo-fibrant object P, called a pseudo-fibrant
replacement of P, together with a map P — P in ¥(J9).

Proof. Use the small object argument (proposition 20) to factor the terminal morphism P — 1
as a morphism in ¥ (J%) followed by a morphism in J2. O

4.4 J is not generating. Contrarily to what one might expect, the class J is not generating
trivial cofibrations. This can be seen by observing that the following inclusion does not hold:

J4nwc1?
For instance, consider the inclusion
(a]) = {a,b|b = bb,1 = bb)

which corresponds to the example developed section 1.10. This morphism is both a pseudo-
fibration since the only relations to lift are the reflexivity relations (which are not noted here,
see section 1.6) and a weak equivalence since both presented monoids are N. However, it is not a
trivial fibration since it is not surjective on generators. The same example can be used to show
that the inclusion
2IP)nw CB(T7)

does not hold either: the map above is a trivial cofibration since it is both a monomorphism and
a weak equivalence, but it cannot be obtained as a retract of a composite of pushouts of sums
of elements of 7. Namely, the generator b has to be added using a Tietze transformation (T1),
but the relations are not of the right form. Intuitively, the relation 1 = b has to be added first,
see section 1.10.
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Remark 47. As a simpler (but less illuminating) example, consider the inclusion
(a]) — (a,b]b = aa)

which is not an elementary Tietze transformation, because of the chosen orientation for the
relation (T1). Similarly, the inclusion

(a,b,c,d|aa = bb,bb = cc,cc = dd) — {(a,b,c,d|aa = bb,bb = cc, cc = dd, aa = dd)

is a pseudo-fibration and a weak equivalence, but not a trivial fibration one since the relation
aa = dd cannot be lifted.

4.5 J is pseudo-generating. It is interesting to note that the inclusions of previous section
are satisfied if we restrict to fibrations whose codomain is fibrant. We begin by a reciprocal to
lemma 42:

Lemma 48. Any trivial cofibration f : P — Q with pseudo-fibrant codomain Q belongs to J-cell,
and thus to B(79).

Proof. Since i is a trivial cofibration, it is an injection and we have P = Q. For simplicity, we
suppose that i is an inclusion. For every generator in a € Qq \ Py, there is a word u, € P} such

that u, 2 , and therefore Uug = a € Qg since Q is pseudo-fibrant (Qq is a congruence). Writing
PO for P with the generator a and a relation u, = a added, for every a € Q; \ Py, we have a
morphism P — PY in J-cell factoring f (the inclusion P — P° can be expressed as a pushout
of a coproduct of pseudo-generating trivial cofibrations of the first form). We write P**! for the
presentation obtained from P? by adding

— a relation u = u for every word u over P},
— a relation v = u for every relation u = v € P4,

— a relation u = w for every relations u = v,v = w € P},

a relation wuw’ = wvw’ for every relation u = v € P and words w,w’ over PY.

There is a morphism P? — Pi*! in J-cell. Every generator of Q gets added at the first step
and every relation of Q gets added at some step. Therefore Q = colim; P? and f belongs to
J-cell. O

Remark 49. The above proof essentially consists in using the small object argument to construct
a factorization f = ho g with g € J-cell and h € J9, and observing that h can be chosen to be
an identity when Q is pseudo-fibrant.

Lemma 50. Any pseudo-fibration p : P — Q € J% with pseudo-fibrant target Q is a fibration,
ie, pe (CNW).

Proof. Suppose given a trivial cofibration i : P — Q" € CNW and two morphisms f : P’ — P and
g:Q — Q' such that po f = goi. By lemma 46, we can consider a pseudo-fibrant replacement
Q" of Q' together with the associated morphism j : Q" — Q' in B(J9), and thus in C N W by
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lemma 42. By orthogonality, there is a map k : Q — Q such that koj = g. Finally, by lemma 48
(joi)@p, from which we deduce the existence of h : Q" — P such that hojoi= f and poh = k.
P’ *>f P

CﬂWS'L pejz

cnwD¥(g8) 3;J{ / EJZ

Q’*>1

Therefore the morphism ho j: Q" — P is a filler and thus i & p. O
Lemma 51. Pseudo-fibrant and fibrant objects coincide.

Proof. By lemma 45, any fibrant object is pseudo-fibrant. Conversely, by lemma 50, it suffices
to check that the terminal object is pseudo-fibrant, which can be verified directly. O

Lemma 52. Given a monoid M, its standard presentation (M) is fibrant.

Proof. The presentation (M) satisfies the conditions of lemma 43 and is thus pseudo-fibrant and
thus fibrant by lemma 51. O

5 Tietze equivalences as cospans

In this section we reconstruct the proof of the Tietze theorem by showing that any two presen-
tations of the same monoid can be related by a cospan of generalized Tietze transformations.

5.1 Coproduct. We often write tg,¢1 : X LU X — X for the canonical injections into a
coproduct.

Lemma 53. In a model category, when X is cofibrant, the canonical injections ¢o : Y — Y U X
and ¢1 : Y — X UY are cofibrations.

Proof. We have a pushout diagram

g ——Y

-

X —(— XuY
When X is cofibrant, the initial map into X is a cofibration, and the map ¢; is thus also a
cofibration, as a pushout of a cofibration. The other case is similar. O

5.2 Weak equivalences as cospans. We now recall the contents of the proof of the cele-
brated Ken Brown lemma, which shows that every weak equivalence between cofibrant objects
factors as a cospan of trivial cofibrations.



Lemma 54 (Ken Brown’s lemma). In a model category, every weak equivalence w : X — Y
between cofibrant objects X and Y factors as w = p o i where i is a trivial cofibration and p a
trivial fibration which admits a section by a trivial cofibration j:

Proof. We can factor the map (w,idy) : X UY — Y as a cofibration k : X UY — Z followed
by a trivial fibration p: Z — Y. Since X and Y are cofibrant, by lemma 53, the injections into
X LY are cofibrations. We define it = ko and j =k og:

w

X%x
Xuy <*5, 72 2y y

v .

<

idy

The maps ¢ and j are cofibrations as composites of cofibrations and are weak equivalences by
the 2-out-of-3 property. O

Remark 55. In the previous lemma, the cospan (i, ) can be considered as a factorization of w,
in the sense that we have jow =jopoi =1i.

Remark 56. In a model category where monomorphisms are cofibrations (such as the case of
interest here, see lemma 27), a simpler argument can be given: since Y is cofibrant and p is a
trivial fibration, the diagram

—

Y —Y
ldy

admits a filler j : Y — Z, which is a section of p; moreover, since j is a monomorphism, it is a
cofibration, and it is a weak equivalence by the 2-out-of-3 property.

Theorem 57. In a model category M in which every object is cofibrant, every isomorphism
in Ho(M) is the localization of a cospan of trivial cofibrations.

Proof. Consider an isomorphism f : X — Y in Ho(M). We write M’ for the full subcategory
of M whose objects are fibrant. The fibrant replacement functor F' : M — M’ induces an
equivalence between the homotopy categories [7, Proposition 1.2.3]. Moreover, Ho(M') is a
quotient of M’ by homotopy equivalences [7, Theorem 1.2.10], the map F'f is thus a homotopy
equivalence and thus a weak equivalence [7, Proposition 1.2.8]. The map f is thus the localization
of a span of weak equivalences

X Y
b
FX Tf> FY

21



where ix : X — FX is the trivial cofibration associated to the fibrant replacement. By lemma 54,
we thus have two cospans of trivial cofibrations

X’ Y’
N N
X FY Y

and we conclude to the existence of one cospan of trivial cofibrations using the fact that trivial
cofibrations are closed under pushouts. O

5.3 Tietze equivalences. We can now conclude with the abstract proof of the Tietze theo-
rem.

Theorem 58. In the category rPres, two presentations P and Q are such that P ~ Q if and only
if there is a cospan of generalized Tietze transformations (of morphisms in J-cell) from P to Q.

Proof. Suppose given two presentations P, Q € rPres such that P ~ Q. With the model structure
introduced in section 3, this can be rewritten ans Ho(P) ~ Ho(Q), and therefore we deduce that
there is a cospan of trivial cofibrations

R

SN
P Q.

Up to taking a fibrant replacement of R and suppose that R is fibrant and thus pseudo-fibrant
by lemma 51. We deduce that this is a span of Tietze transformations by lemma 48. Conversely,
Tietze transformations are weak equivalences by lemma 41 and thus P and Q become isomorphic
after localizing under weak equivalences. O

6 Variants and extensions

Many variants of the situation considered here could be thought of and are left for future work.

6.1 Non-reflexive presentations. If we consider the category Pres of (non-necessarily re-
flexive) presentations, many of the constructions performed in previous section can still be carried
over. However, lemma 30 does not hold anymore, preventing the construction of a model cate-
gory: the elements of Z9 are not necessarily weak equivalences. As a counter-example consider
the morphism

{a,b]) = (e]).

It belongs to Z since it satisfies the conditions of lemma 29 (which still holds): it is surjective
on generators and lifts every required relations since there are none. It is however not a weak
equivalence since the monoids presented by the source and the target are respectively N x N and
N which are not isomorphic (the first one is not commutative for instance). We expect that there
is however a right semi-model structure in the sense of [2], whose cofibrations are generated by Z.

6.2 Multisets of relations. The notion of presentation can be modified in order to allow
multiple relations with the same source and the same target: such a presentation P consists of
a set Py of generators together with a set Py of relations equipped with source and target maps
s,t: Po — Py. Here, an element o € Py with s(a) = u and t(a) = v encodes a relation v = v.
We expect that this modification does not significantly changes the situation studied here.
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6.3 Presentations of categories. As a further generalization, one can consider presentations
of categories. Such a presentation P of a category consists of a set Py of objects, a set Py of
generators for morphisms equipped with source and target maps sg,tg : P1 — Pg, and a set Ps
of relations equipped with source and target maps sq,t; : Po — P} such that sjos; =s§ot; and
tg osy = t§ ot;. Here, P} denotes the morphisms of the free category over the graph (Po,P1)
and the category presented by P is obtained by quotienting the morphisms of this free category
under the congruence generated by Ps. The notion of presentation of monoid of section 6.2, is
the particular case where Py = {x} is reduced to one element. We expect the proof of this paper
to generalize to this setting.

6.4 Presentations of n-categories. This notion of presentation sketched in previous section,
is a particular case of the notion of polygraph, see [4], which generalizes to present n-categories.
It would be interesting to see whether the model structure extends to this case.

6.5 Presentations of groupoids. The notion of Tietze transformation was originally devel-
oped for presentations of groups. It would be interesting to generalize the model structure to
this case, as well as generalizations of presentations of groupoids.

6.6 Coherent presentations. A notion of Tietze transformation for coherent presentations
of categories is introduced in [5]. We would like to investigate this case, as well as, more generally,
develop a notion of Tietze transformation for resolutions of categories by (0o, 1)-polygraphs.
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