
GEOMETRIC
INVARIANTS
OF
ALGEBRAIC
STRUCTURES

Samuel Mimram
École Polytechnique

Sémin’ouvert

April 20th, 2017

Geometric invariants of concurrent
computations

▶ We consider a very simple “concurrent programming
language”: string rewriting systems

abc

x� zz
zz
zz
zz

zz
zz
zz
zz

�&
DD

DD
DD

DD

DD
DD

DD
DD

a′c ac′

▶ We are interested in the geometry of the space of possible
computations (and not in computing geometric invariants)

▶ We will explain Squier’s theorem:
an impossibility result based on geometric invariants

▶ This generalizes to term rewriting systems

2 / 58

Geometric invariants of concurrent
computations

▶ We consider a very simple “concurrent programming
language”: string rewriting systems

abc

x� zz
zz
zz
zz

zz
zz
zz
zz

�&
DD

DD
DD

DD

DD
DD

DD
DD

a′c ac′

▶ We are interested in the geometry of the space of possible
computations (and not in computing geometric invariants)

▶ We will explain Squier’s theorem:
an impossibility result based on geometric invariants

▶ This generalizes to term rewriting systems

2 / 58

Geometric invariants of concurrent
computations

▶ We consider a very simple “concurrent programming
language”: string rewriting systems

abc

x� zz
zz
zz
zz

zz
zz
zz
zz

�&
DD

DD
DD

DD

DD
DD

DD
DD

a′c ac′

▶ We are interested in the geometry of the space of possible
computations (and not in computing geometric invariants)

▶ We will explain Squier’s theorem:
an impossibility result based on geometric invariants

▶ This generalizes to term rewriting systems

2 / 58

Geometric invariants of concurrent
computations

▶ We consider a very simple “concurrent programming
language”: string rewriting systems

abc

x� zz
zz
zz
zz

zz
zz
zz
zz

�&
DD

DD
DD

DD

DD
DD

DD
DD

a′c ac′

▶ We are interested in the geometry of the space of possible
computations (and not in computing geometric invariants)

▶ We will explain Squier’s theorem:
an impossibility result based on geometric invariants

▶ This generalizes to term rewriting systems
2 / 58

Squier’s result in a nutshell
When a rewriting system satisfies good properties (confluence)
the computation will always give rise to the same result in the end.

Can we always transform a finite rewriting system into an
“equivalent” one which is confluent?

Squier: NO

3 / 58

Squier’s result in a nutshell
When a rewriting system satisfies good properties (confluence)
the computation will always give rise to the same result in the end.

Can we always transform a finite rewriting system into an
“equivalent” one which is confluent?

Squier: NO

3 / 58

Squier’s result in a nutshell
When a rewriting system satisfies good properties (confluence)
the computation will always give rise to the same result in the end.

Can we always transform a finite rewriting system into an
“equivalent” one which is confluent?

Squier: NO
3 / 58

Let's go.

4 / 58

Monoids

A monoid (M, ·, 1) consists of
▶ a set M
▶ a multiplication · : M×M→ M
▶ a unit 1 ∈ M

such that
▶ multiplication is associative

(a · b) · c = a · (b · c)

▶ unit is a neutral element

1 · a = a = a · 1

5 / 58

Monoids

Example

▶ (N,+, 0)

▶ (N,×, 1)

▶ given a set G, we have a free monoid (G∗, ·, 1) of words
(· is concatenation and 1 the empty word)

▶ every group is a monoid:

▶ Z, Z/nZ
▶ Sn: group of permutations of n elements
▶ Bn: group of braids with n strands

▶ etc.

6 / 58

Monoids

Example

▶ (N,+, 0)

▶ (N,×, 1)

▶ given a set G, we have a free monoid (G∗, ·, 1) of words
(· is concatenation and 1 the empty word)

▶ every group is a monoid:

▶ Z, Z/nZ
▶ Sn: group of permutations of n elements
▶ Bn: group of braids with n strands

▶ etc.

6 / 58

Monoids

Example

▶ (N,+, 0)

▶ (N,×, 1)

▶ given a set G, we have a free monoid (G∗, ·, 1) of words
(· is concatenation and 1 the empty word)

▶ every group is a monoid:

▶ Z, Z/nZ
▶ Sn: group of permutations of n elements
▶ Bn: group of braids with n strands

▶ etc.

6 / 58

Monoids

Example

▶ (N,+, 0)

▶ (N,×, 1)

▶ given a set G, we have a free monoid (G∗, ·, 1) of words
(· is concatenation and 1 the empty word)

▶ every group is a monoid:

▶ Z, Z/nZ
▶ Sn: group of permutations of n elements
▶ Bn: group of braids with n strands

▶ etc.

6 / 58

Monoids

Example

▶ (N,+, 0)

▶ (N,×, 1)

▶ given a set G, we have a free monoid (G∗, ·, 1) of words
(· is concatenation and 1 the empty word)

▶ every group is a monoid:
▶ Z, Z/nZ

▶ Sn: group of permutations of n elements
▶ Bn: group of braids with n strands

▶ etc.

6 / 58

Monoids

Example

▶ (N,+, 0)

▶ (N,×, 1)

▶ given a set G, we have a free monoid (G∗, ·, 1) of words
(· is concatenation and 1 the empty word)

▶ every group is a monoid:
▶ Z, Z/nZ
▶ Sn: group of permutations of n elements

▶ Bn: group of braids with n strands

▶ etc.

6 / 58

Monoids

Example

▶ (N,+, 0)

▶ (N,×, 1)

▶ given a set G, we have a free monoid (G∗, ·, 1) of words
(· is concatenation and 1 the empty word)

▶ every group is a monoid:
▶ Z, Z/nZ
▶ Sn: group of permutations of n elements
▶ Bn: group of braids with n strands

▶ etc.

6 / 58

Monoids

Example

▶ (N,+, 0)

▶ (N,×, 1)

▶ given a set G, we have a free monoid (G∗, ·, 1) of words
(· is concatenation and 1 the empty word)

▶ every group is a monoid:
▶ Z, Z/nZ
▶ Sn: group of permutations of n elements
▶ Bn: group of braids with n strands

▶ etc.

6 / 58

Congruence on a monoid

A congruence ≈ on a monoid (M, ·, 1) is an equivalence relation
on M such that

b ≈ b′ implies a · b · c ≈ a · b′ · c

In this case, one can define a quotient monoid

M/≈

as expected.

7 / 58

Congruence on a monoid

A congruence ≈ on a monoid (M, ·, 1) is an equivalence relation
on M such that

b ≈ b′ implies a · b · c ≈ a · b′ · c

In this case, one can define a quotient monoid

M/≈

as expected.

7 / 58

We can come up
with small descriptions

of monoids.

8 / 58

Presentations of monoids
In order to manipulate a monoid one would like to come up with a
small description of it.

A presentation of a monoid M is a pair

⟨G | R⟩

where
▶ G is a set of generators
▶ R ⊆ G∗ ×G∗ is a set of relations

such that
M ∼= G∗/≈R

where ≈R is the smallest congruence such that

(u, v) ∈ R implies u ≈R v

9 / 58

Presentations of monoids
In order to manipulate a monoid one would like to come up with a
small description of it.

A presentation of a monoid M is a pair

⟨G | R⟩

where
▶ G is a set of generators
▶ R ⊆ G∗ ×G∗ is a set of relations

such that
M ∼= G∗/≈R

where ≈R is the smallest congruence such that

(u, v) ∈ R implies u ≈R v

9 / 58

Presentations of monoids
Example

▶ N (additive) is presented by

⟨a | ⟩

▶ N/3N (additive) is presented by

⟨a | aaa = 1⟩

▶ N× N (additive) is presented by

⟨a,b | ba = ab⟩

▶ S3 is presented by

⟨a,b | bab = aba, aa = 1,bb = 1⟩

10 / 58

Presentations of monoids
Example

▶ N (additive) is presented by

⟨a | ⟩

▶ N/3N (additive) is presented by

⟨a | aaa = 1⟩

▶ N× N (additive) is presented by

⟨a,b | ba = ab⟩

▶ S3 is presented by

⟨a,b | bab = aba, aa = 1,bb = 1⟩

10 / 58

Presentations of monoids
Example

▶ N (additive) is presented by

⟨a | ⟩

▶ N/3N (additive) is presented by

⟨a | aaa = 1⟩

▶ N× N (additive) is presented by

⟨a,b | ba = ab⟩

▶ S3 is presented by

⟨a,b | bab = aba, aa = 1,bb = 1⟩

10 / 58

Presentations of monoids
Example

▶ N (additive) is presented by

⟨a | ⟩

▶ N/3N (additive) is presented by

⟨a | aaa = 1⟩

▶ N× N (additive) is presented by

⟨a,b | ba = ab⟩

▶ S3 is presented by

⟨a,b | bab = aba, aa = 1,bb = 1⟩

10 / 58

Presentations of monoids
A monoid M admits a presentation ⟨G | R⟩ means that
▶ the elements of G generate the monoid:
any element of M can be obtained as a product of those

▶ R generate equality: given u, v ∈ G∗ whose evaluation in M is
the same, we have u ≈ v

For N× N presented by ⟨a,b | ba = ab⟩, we have

▶ any element can be obtained as a sum of

a = (1, 0) and b = (0, 1)

▶ equality is generated by ab:

baa = (0, 1)+(1, 0)+(1, 0) = (2, 1) = (1, 0)+(1, 0)+(0, 1) = aab

and
baa ≈ aba ≈ aab

11 / 58

Presentations of monoids
A monoid M admits a presentation ⟨G | R⟩ means that
▶ the elements of G generate the monoid:
any element of M can be obtained as a product of those

▶ R generate equality: given u, v ∈ G∗ whose evaluation in M is
the same, we have u ≈ v

For N× N presented by ⟨a,b | ba = ab⟩, we have

▶ any element can be obtained as a sum of

a = (1, 0) and b = (0, 1)

▶ equality is generated by ab:

baa = (0, 1)+(1, 0)+(1, 0) = (2, 1) = (1, 0)+(1, 0)+(0, 1) = aab

and
baa ≈ aba ≈ aab

11 / 58

Presentations of monoids
A monoid M admits a presentation ⟨G | R⟩ means that
▶ the elements of G generate the monoid:
any element of M can be obtained as a product of those

▶ R generate equality: given u, v ∈ G∗ whose evaluation in M is
the same, we have u ≈ v

For N× N presented by ⟨a,b | ba = ab⟩, we have

▶ any element can be obtained as a sum of

a = (1, 0) and b = (0, 1)

▶ equality is generated by ab:

baa = (0, 1)+(1, 0)+(1, 0) = (2, 1) = (1, 0)+(1, 0)+(0, 1) = aab

and
baa ≈ aba ≈ aab

11 / 58

Presentations of monoids
A monoid M admits a presentation ⟨G | R⟩ means that
▶ the elements of G generate the monoid:
any element of M can be obtained as a product of those

▶ R generate equality: given u, v ∈ G∗ whose evaluation in M is
the same, we have u ≈ v

For N× N presented by ⟨a,b | ba = ab⟩, we have
▶ any element can be obtained as a sum of

a = (1, 0) and b = (0, 1)

▶ equality is generated by ab:

baa = (0, 1)+(1, 0)+(1, 0) = (2, 1) = (1, 0)+(1, 0)+(0, 1) = aab

and
baa ≈ aba ≈ aab

11 / 58

Presentations of monoids
A monoid M admits a presentation ⟨G | R⟩ means that
▶ the elements of G generate the monoid:
any element of M can be obtained as a product of those

▶ R generate equality: given u, v ∈ G∗ whose evaluation in M is
the same, we have u ≈ v

For N× N presented by ⟨a,b | ba = ab⟩, we have
▶ any element can be obtained as a sum of

a = (1, 0) and b = (0, 1)

▶ equality is generated by ab:

baa = (0, 1)+(1, 0)+(1, 0) = (2, 1) = (1, 0)+(1, 0)+(0, 1) = aab

and
baa ≈ aba ≈ aab

11 / 58

Presentations of monoids

Note that every monoid M admits a presentation:
▶ generators: take G = M
▶ relations: all pairs (u, v) ∈ G∗ ×G∗ such that u = v in M, i.e.

u1 × . . .× um = v1 × . . .× vn

We are mostly interested in small (at least finite) ones.

12 / 58

How do we show
that we actually have

a presentation?

13 / 58

Constructing presentations of monoids

For instance,
N× N ∼= {a,b}∗ /≈

where ≈ is the congruence generated by ba ≈ ab.

In each equivalence class (w.r.t. ≈) there is a unique word of the
form

ambn

with (m, n) ∈ N× N, called a canonical form, thus the bijection!

For instance,

abaa ≈ aaba ≈ aaab

14 / 58

Constructing presentations of monoids

For instance,
N× N ∼= {a,b}∗ /≈

where ≈ is the congruence generated by ba ≈ ab.

In each equivalence class (w.r.t. ≈) there is a unique word of the
form

ambn

with (m, n) ∈ N× N, called a canonical form, thus the bijection!

For instance,

abaa ≈ aaba ≈ aaab

14 / 58

Inventing canonical forms
can be difficult

let's see a generic method.

15 / 58

String rewriting systems
A string rewriting systems ⟨G | R⟩ consists of
▶ an alphabet G
▶ a set of rules R ⊆ G∗ ×G∗

A rule (v, v′) is interpreted as v′ being “more canonical” than v.

A rewriting step is a pair of the form

uvw ⇒ uv′w

from some rule (v, v′) ∈ R and words u,w ∈ G∗.

A rewriting path u ∗⇒ v is a sequence of rewriting steps,
and we say that u rewrites to v.

Lemma
u ∗⇒ v implies u ≈ v.
≈R is the symmetric and transitive closure of

∗⇒.

16 / 58

String rewriting systems
A string rewriting systems ⟨G | R⟩ consists of
▶ an alphabet G
▶ a set of rules R ⊆ G∗ ×G∗

A rule (v, v′) is interpreted as v′ being “more canonical” than v.

A rewriting step is a pair of the form

uvw ⇒ uv′w

from some rule (v, v′) ∈ R and words u,w ∈ G∗.

A rewriting path u ∗⇒ v is a sequence of rewriting steps,
and we say that u rewrites to v.

Lemma
u ∗⇒ v implies u ≈ v.
≈R is the symmetric and transitive closure of

∗⇒.

16 / 58

String rewriting systems
A string rewriting systems ⟨G | R⟩ consists of
▶ an alphabet G
▶ a set of rules R ⊆ G∗ ×G∗

A rule (v, v′) is interpreted as v′ being “more canonical” than v.

A rewriting step is a pair of the form

uvw ⇒ uv′w

from some rule (v, v′) ∈ R and words u,w ∈ G∗.

A rewriting path u ∗⇒ v is a sequence of rewriting steps,
and we say that u rewrites to v.

Lemma
u ∗⇒ v implies u ≈ v.
≈R is the symmetric and transitive closure of

∗⇒.

16 / 58

String rewriting systems
A string rewriting systems ⟨G | R⟩ consists of
▶ an alphabet G
▶ a set of rules R ⊆ G∗ ×G∗

A rule (v, v′) is interpreted as v′ being “more canonical” than v.

A rewriting step is a pair of the form

uvw ⇒ uv′w

from some rule (v, v′) ∈ R and words u,w ∈ G∗.

A rewriting path u ∗⇒ v is a sequence of rewriting steps,
and we say that u rewrites to v.

Lemma
u ∗⇒ v implies u ≈ v.
≈R is the symmetric and transitive closure of

∗⇒.

16 / 58

String rewriting systems
A string rewriting systems ⟨G | R⟩ consists of
▶ an alphabet G
▶ a set of rules R ⊆ G∗ ×G∗

A rule (v, v′) is interpreted as v′ being “more canonical” than v.

A rewriting step is a pair of the form

uvw ⇒ uv′w

from some rule (v, v′) ∈ R and words u,w ∈ G∗.

A rewriting path u ∗⇒ v is a sequence of rewriting steps,
and we say that u rewrites to v.

Lemma
u ∗⇒ v implies u ≈ v.
≈R is the symmetric and transitive closure of

∗⇒.
16 / 58

String rewriting systems

Example
In the rewriting system

⟨a,b | ba⇒ ab⟩

we have the rewriting path

abaa ⇒ aaba ⇒ aaab

17 / 58

Normal forms

A normal form u is a word which rewrites only to itself:
there is no v such that

u ⇒ v

These are “maximally canonical” words.

Can we ensure that every equivalence class contains exactly one
normal form?

18 / 58

Normal forms

A normal form u is a word which rewrites only to itself:
there is no v such that

u ⇒ v

These are “maximally canonical” words.

Can we ensure that every equivalence class contains exactly one
normal form?

18 / 58

Termination

A rewriting system is terminating if there is no infinite sequence

u ⇒ u1 ⇒ u2 ⇒ . . .

of rewriting steps.

Lemma
In this case, every equivalence class contains at least one normal
form.

Proof.
Given an element u of an equivalence class, rewrite it as much as
possible.

19 / 58

Termination

A rewriting system is terminating if there is no infinite sequence

u ⇒ u1 ⇒ u2 ⇒ . . .

of rewriting steps.

Lemma
In this case, every equivalence class contains at least one normal
form.

Proof.
Given an element u of an equivalence class, rewrite it as much as
possible.

19 / 58

Termination

Example
The rewriting system

⟨a,b | ba⇒ ab⟩

is terminating (because rules put bs on the right).

A normal form for abaa is aaab:

abaa ⇒ aaba ⇒ aaab

20 / 58

Termination

Example
The rewriting system

⟨a,b | ba⇒ ab⟩

is terminating (because rules put bs on the right).

A normal form for abaa is aaab:

abaa ⇒ aaba ⇒ aaab

20 / 58

Confluence

A rewriting system is confluent if

u
∗

z� }}
}}
}}
}

}}
}}
}}
}

∗

�$
AA

AA
AA

A

AA
AA

AA
A

v1

∗
�$

v2

∗
z�

w

Lemma (Church-Rosser’36)
In a confluent rewriting system any equivalence class contains at
most one normal form.

21 / 58

Confluence

A rewriting system is confluent if

u
∗

z� }}
}}
}}
}

}}
}}
}}
}

∗

�$
AA

AA
AA

A

AA
AA

AA
A

v1

∗
�$

v2

∗
z�

w

Lemma (Church-Rosser’36)
In a confluent rewriting system any equivalence class contains at
most one normal form.

21 / 58

Convergent rewriting systems

A rewriting system is convergent when it is
▶ terminating
▶ confluent

Lemma
In such a system, every equivalence class of a word u admits
exactly one representative in normal form û.

22 / 58

The word problem

In a convergent rewriting system is easy to decide
the word problem for a presentation:
▶ input: u, v ∈ G∗,
▶ output: do we have u ≈ v?

Namely:

1. rewrite u to its normal form û

2. rewrite v to its normal form v̂

3. return û = v̂

23 / 58

How do we show
confluence

in practice?

24 / 58

Local confluence

A rewriting system is

locally

confluent if

u
∗

z� }}
}}
}}
}

}}
}}
}}
}

∗

�$
AA

AA
AA

A

AA
AA

AA
A

v1

∗
�$

v2

∗
z�

w

Lemma (Newman’42)
For terminating rewriting systems, confluence is equivalent to
local confluence.

25 / 58

Local confluence

A rewriting system is locally confluent if

u

z� }}
}}
}}
}

}}
}}
}}
}

�$
AA

AA
AA

A

AA
AA

AA
A

v1

∗
�$

v2

∗
z�

w

Lemma (Newman’42)
For terminating rewriting systems, confluence is equivalent to
local confluence.

25 / 58

Local confluence

A rewriting system is locally confluent if

u

z� }}
}}
}}
}

}}
}}
}}
}

�$
AA

AA
AA

A

AA
AA

AA
A

v1

∗
�$

v2

∗
z�

w

Lemma (Newman’42)
For terminating rewriting systems, confluence is equivalent to
local confluence.

25 / 58

Critical branchings

We can further reduce the number of local branchings to check.

26 / 58

Critical branchings

We can further reduce the number of local branchings to check.

Independent branchings.
Consider the rule ba⇒ ab, then we have

ubavbaw

s{ ppp
ppp

ppp
p

ppp
ppp

ppp
p

#+N
NNN

NNN
NNN

NNN
NNN

NNN
N

ubavabw

#+

ubavabw

s{
uabvabw

26 / 58

Critical branchings

We can further reduce the number of local branchings to check.

Non-minimal branchings.

v

z� }}
}}
}}
}

}}
}}
}}
}

�$
AA

AA
AA

A

AA
AA

AA
A

v1

∗
�#
@@

@@
@@

@

@@
@@

@@
@

v2

∗
{� ~~
~~
~~
~

~~
~~
~~
~

v′

implies

uvw

v~ uu
uuu

uuu
u

uuu
uuu

uuu

 (I
III

III
II

III
III

III

uv1w

∗ (H
HHH

HHH
H

HHH
HHH

HH
uv2w

∗v~ vv
vvv

vvv

vvv
vvv

vv

uv′w

26 / 58

Critical branchings

For this reason, we can restrict to critical branchings,
which are those being
▶ overlapping (= not independent)
▶ minimal (wrt to context)

Lemma
A terminating rewriting system with confluent critical branchings
is convergent.

27 / 58

Critical branchings

For this reason, we can restrict to critical branchings,
which are those being
▶ overlapping (= not independent)
▶ minimal (wrt to context)

Lemma
A terminating rewriting system with confluent critical branchings
is convergent.

27 / 58

Critical branchings
Example
In the rewriting system

⟨a,b | ba⇒ ab⟩

all branchings are of the form

ubavbaw

s{ ppp
ppp

ppp
p

ppp
ppp

ppp
p

#+N
NNN

NNN
NNN

NNN
NNN

NNN
N

ubavabw

#+

ubavabw

s{
uabvabw

i.e. there is no critical branching.

It is thus convergent and normal forms are words ambn.
28 / 58

Critical branchings
Example
Consider the rewriting system

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩

29 / 58

Critical branchings
Example
Consider the rewriting system

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩

The critical pairs are

aaa

y� {{
{{
{{
{{

{{
{{
{{
{{

�%
CC

CC
CC

CC

CC
CC

CC
CC

a a

a

bbb

y� ||
||
||
||

||
||
||
||

�%
BB

BB
BB

BB

BB
BB

BB
BB

b b

b

29 / 58

Critical branchings
Example
Consider the rewriting system

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩

The critical pairs are

aaa

y� {{
{{
{{
{{

{{
{{
{{
{{

�%
CC

CC
CC

CC

CC
CC

CC
CC

a a

a

bbb

y� ||
||
||
||

||
||
||
||

�%
BB

BB
BB

BB

BB
BB

BB
BB

b b

b

29 / 58

Critical branchings
Example
Consider the rewriting system

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩

The critical pairs are

bbab

x� xx
xx
xx
xx

xx
xx
xx
xx

 (I
II

II
II

I

II
II

II
II

ab baba

abaa

ab

babb

v~ uu
uu
uu
uu

uu
uu
uu
uu

�&F
FF

FF
FF

F

FF
FF

FF
FF

abab ba

aaba

ba

29 / 58

Critical branchings
Example
Consider the rewriting system

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩

The critical pairs are

bbab

x� xx
xx
xx
xx

xx
xx
xx
xx

 (I
II

II
II

I

II
II

II
II

ab baba

��
abaa

v~
ab

babb

v~ uu
uu
uu
uu

uu
uu
uu
uu

�&F
FF

FF
FF

F

FF
FF

FF
FF

abab

��

ba

aaba

 (
ba

29 / 58

Critical branchings
Example
Consider the rewriting system

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩

The rewriting system is terminating and thus convergent.

Normal forms are

1 a ab aba b ba

from which we can deduce that this is a presentation of S3

(you can already check that there are 6 = 3! elements).

29 / 58

Critical branchings
Example
Consider the rewriting system

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩

The generators a and b respectively correspond to

a =

·
==

==
= ·

��
��
�

·

· · ·
b =

· ·
==

==
= ·

��
��
�

· · ·

29 / 58

Critical branchings
Example
Consider the rewriting system

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩

The generators a and b respectively correspond to

a =

·
==

==
= ·

��
��
�

·

· · ·
b =

· ·
==

==
= ·

��
��
�

· · ·

The relation aa = 1 is

·
==

==
= ·

��
��
�

·

·
==

==
= ·

��
��
�

·

· · ·

=

· · ·

· · ·
29 / 58

Critical branchings
Example
Consider the rewriting system

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩

The generators a and b respectively correspond to

a =

·
==

==
= ·

��
��
�

·

· · ·
b =

· ·
==

==
= ·

��
��
�

· · ·

The relation bab = aba is
· ·

==
==

= ·

��
��
�

·
==

==
= ·

��
��
�

·

· ·
==

==
= ·

��
��
�

· · ·

=

·
==

==
= ·

��
��
�

·

· ·
==

==
= ·

��
��
�

·
==

==
= ·

��
��
�

·

· · ·
29 / 58

Critical branchings

Lemma
Given a finite rewriting system ⟨G | R⟩ (both G and R finite), there
is a finite number of critical branchings.

Proof.
We have an algorithm for computing critical pairs:
▶ for every pair of rules u1 ⇒ v1 and u2 ⇒ v2
▶ compute all the ways u1 and u2 can overlap

30 / 58

Does this solve
all the problems

in the world?

31 / 58

Universality of convergent rewriting

The word problem: do we have u ≈ v?

For convergent presentations, this is easy: û = v̂?

Universality of convergent rewriting: does every finitely
presented monoid with decidable word problem admit a finite
convergent presentation?

32 / 58

Universality of convergent rewriting

The word problem: do we have u ≈ v?

For convergent presentations, this is easy: û = v̂?

Universality of convergent rewriting: does every finitely
presented monoid with decidable word problem admit a finite
convergent presentation?

32 / 58

Universality of convergent rewriting

The word problem: do we have u ≈ v?

For convergent presentations, this is easy: û = v̂?

Universality of convergent rewriting: does every finitely
presented monoid with decidable word problem admit a finite
convergent presentation?

32 / 58

When do two presentations
present the same monoid?

33 / 58

Tietze transformations
The Tietze transformations preserve the presented monoid:
1. add a definable generator:

⟨G | R⟩ ⇝ ⟨G, a | R, u = a⟩

with u ∈ G∗,

2. remove a definable generator:

⟨G, a | R, u = a⟩ ⇝ ⟨G | R⟩

where a does not occur in R,
3. add a derivable relation:

⟨G | R⟩ ⇝ ⟨G | R, u = v⟩

when u ≈R v,
4. remove a derivable relation:

⟨G | R, u = v⟩ ⇝ ⟨G | R⟩

when u ≈R v.

34 / 58

Tietze transformations
The Tietze transformations preserve the presented monoid:
1. add a definable generator:

⟨G | R⟩ ⇝ ⟨G, a | R, u = a⟩

with u ∈ G∗,
2. remove a definable generator:

⟨G, a | R, u = a⟩ ⇝ ⟨G | R⟩

where a does not occur in R,

3. add a derivable relation:

⟨G | R⟩ ⇝ ⟨G | R, u = v⟩

when u ≈R v,
4. remove a derivable relation:

⟨G | R, u = v⟩ ⇝ ⟨G | R⟩

when u ≈R v.

34 / 58

Tietze transformations
The Tietze transformations preserve the presented monoid:
1. add a definable generator:

⟨G | R⟩ ⇝ ⟨G, a | R, u = a⟩

with u ∈ G∗,
2. remove a definable generator:

⟨G, a | R, u = a⟩ ⇝ ⟨G | R⟩

where a does not occur in R,
3. add a derivable relation:

⟨G | R⟩ ⇝ ⟨G | R, u = v⟩

when u ≈R v,

4. remove a derivable relation:

⟨G | R, u = v⟩ ⇝ ⟨G | R⟩

when u ≈R v.

34 / 58

Tietze transformations
The Tietze transformations preserve the presented monoid:
1. add a definable generator:

⟨G | R⟩ ⇝ ⟨G, a | R, u = a⟩

with u ∈ G∗,
2. remove a definable generator:

⟨G, a | R, u = a⟩ ⇝ ⟨G | R⟩

where a does not occur in R,
3. add a derivable relation:

⟨G | R⟩ ⇝ ⟨G | R, u = v⟩

when u ≈R v,
4. remove a derivable relation:

⟨G | R, u = v⟩ ⇝ ⟨G | R⟩

when u ≈R v.
34 / 58

Tietze transformations

Theorem
Two presentations present the same monoid if and only if they
are related by a series of Tietze transformations.

35 / 58

Braids

For instance, consider the presentation

⟨a,b | bab = aba⟩

we can apply the following series of transformations:
▶ ⟨a,b | bab = aba⟩

▶ ⟨a,b, c | bab = aba,ba = c⟩
▶ ⟨a,b, c | bab = aba, ab = c, cb = ac⟩
▶ ⟨a,b, c | ab = c, cb = ac⟩

And we obtain a convergent rewriting system:

⟨a,b, c | ab⇒ c, cb⇒ ac⟩

36 / 58

Braids

For instance, consider the presentation

⟨a,b | bab = aba⟩

we can apply the following series of transformations:
▶ ⟨a,b | bab = aba⟩
▶ ⟨a,b, c | bab = aba,ba = c⟩

▶ ⟨a,b, c | bab = aba, ab = c, cb = ac⟩
▶ ⟨a,b, c | ab = c, cb = ac⟩

And we obtain a convergent rewriting system:

⟨a,b, c | ab⇒ c, cb⇒ ac⟩

36 / 58

Braids

For instance, consider the presentation

⟨a,b | bab = aba⟩

we can apply the following series of transformations:
▶ ⟨a,b | bab = aba⟩
▶ ⟨a,b, c | bab = aba,ba = c⟩
▶ ⟨a,b, c | bab = aba, ab = c, cb = ac⟩

▶ ⟨a,b, c | ab = c, cb = ac⟩

And we obtain a convergent rewriting system:

⟨a,b, c | ab⇒ c, cb⇒ ac⟩

36 / 58

Braids

For instance, consider the presentation

⟨a,b | bab = aba⟩

we can apply the following series of transformations:
▶ ⟨a,b | bab = aba⟩
▶ ⟨a,b, c | bab = aba,ba = c⟩
▶ ⟨a,b, c | bab = aba, ab = c, cb = ac⟩
▶ ⟨a,b, c | ab = c, cb = ac⟩

And we obtain a convergent rewriting system:

⟨a,b, c | ab⇒ c, cb⇒ ac⟩

36 / 58

Braids

For instance, consider the presentation

⟨a,b | bab = aba⟩

we can apply the following series of transformations:
▶ ⟨a,b | bab = aba⟩
▶ ⟨a,b, c | bab = aba,ba = c⟩
▶ ⟨a,b, c | bab = aba, ab = c, cb = ac⟩
▶ ⟨a,b, c | ab = c, cb = ac⟩

And we obtain a convergent rewriting system:

⟨a,b, c | ab⇒ c, cb⇒ ac⟩

36 / 58

Braids
We can deduce that the presentation

⟨a,b | bab = aba⟩
corresponds to B3, the monoid of braids on 3 strands:

a = b =

37 / 58

Braids
We can deduce that the presentation

⟨a,b | bab = aba⟩
corresponds to B3, the monoid of braids on 3 strands:

a = b =

We have the relation bab = aba:

=

37 / 58

Braids
We can deduce that the presentation

⟨a,b | bab = aba⟩
corresponds to B3, the monoid of braids on 3 strands:

a = b =

But not the relation aa = 1:

̸=

37 / 58

Studying all the presentations
of a given monoid

to determine whether there is
a convergent one

is difficult!

38 / 58

Let's switch to something else...

39 / 58

Suppose that you have a space (e.g. a simplicial complex) and
you want to compute the number of “holes” in it. There is a very
efficient way of doing this:

homology

ab

c

−a

40 / 58

Homology
Suppose that our space looks like this:

y
g

��<
<<

<<
<<

<

⇑α

x

f
@@��������

h
// z i // z′

▶ we allow taking linear combinations of “building blocks”
▶ we define the boundary of a block as target - source:

∂(f) = y− x ∂(α) = f+ g− h

▶ “potential holes” can be detected as those with empty
boundary:

∂(f+ g− h) = ∂(f) + ∂(g)− ∂(h)

= (y− x) + (z− y)− (z− x) = 0

▶ we have to remove those that are boundaries

∂(α) = f+ g− h

41 / 58

Homology
Suppose that our space looks like this:

y
g

��<
<<

<<
<<

<

⇑α

x

f
@@��������

h
// z i // z′

▶ we allow taking linear combinations of “building blocks”

▶ we define the boundary of a block as target - source:

∂(f) = y− x ∂(α) = f+ g− h

▶ “potential holes” can be detected as those with empty
boundary:

∂(f+ g− h) = ∂(f) + ∂(g)− ∂(h)

= (y− x) + (z− y)− (z− x) = 0

▶ we have to remove those that are boundaries

∂(α) = f+ g− h

41 / 58

Homology
Suppose that our space looks like this:

y
g

��<
<<

<<
<<

<

⇑α

x

f
@@��������

h
// z i // z′

▶ we allow taking linear combinations of “building blocks”
▶ we define the boundary of a block as target - source:

∂(f) = y− x ∂(α) = f+ g− h

▶ “potential holes” can be detected as those with empty
boundary:

∂(f+ g− h) = ∂(f) + ∂(g)− ∂(h)

= (y− x) + (z− y)− (z− x) = 0

▶ we have to remove those that are boundaries

∂(α) = f+ g− h

41 / 58

Homology
Suppose that our space looks like this:

y
g

��<
<<

<<
<<

<

⇑α

x

f
@@��������

h
// z i // z′

▶ we allow taking linear combinations of “building blocks”
▶ we define the boundary of a block as target - source:

∂(f) = y− x ∂(α) = f+ g− h

▶ “potential holes” can be detected as those with empty
boundary:

∂(f+ g− h) = ∂(f) + ∂(g)− ∂(h)

= (y− x) + (z− y)− (z− x) = 0

▶ we have to remove those that are boundaries

∂(α) = f+ g− h

41 / 58

Homology
Suppose that our space looks like this:

y
g

��<
<<

<<
<<

<

⇑α

x

f
@@��������

h
// z i // z′

▶ we allow taking linear combinations of “building blocks”
▶ we define the boundary of a block as target - source:

∂(f) = y− x ∂(α) = f+ g− h

▶ “potential holes” can be detected as those with empty
boundary:

∂(f+ g− h) = ∂(f) + ∂(g)− ∂(h)

= (y− x) + (z− y)− (z− x) = 0

▶ we have to remove those that are boundaries

∂(α) = f+ g− h
41 / 58

Homology
Suppose that our space looks like this:

y
g

��<
<<

<<
<<

<

⇑α

x

f
@@��������

h
// z i // z′

▶ we allow taking linear combinations of “building blocks”
▶ we define the boundary of a block as target - source:

∂(f) = y− x ∂(α) = f+ g− h

▶ “potential holes” can be detected as those with empty
boundary:

∂(f+ g− h) = ∂(f) + ∂(g)− ∂(h)

= (y− x) + (z− y)− (z− x) = 0

▶ we have to remove those that are boundaries

∂(α) = f+ g− h

41 / 58

Homology
Formally, given our space X:

y
g

��<
<<

<<
<<

<

⇑α

x

f
@@��������

h
// z i // z′

we consider the chain complex

. . .
∂2 // k {α} ∂1 // k {f,g, h, i} ∂0 // k {x, y, z, z′}

C2

=

C1

=
C0

=

42 / 58

Homology
Formally, given our space X:

y
g

��<
<<

<<
<<

<

⇑α

x

f
@@��������

h
// z i // z′

we consider the chain complex

. . .
∂2 // k {α} ∂1 // k {f,g, h, i} ∂0 // k {x, y, z, z′}

C2

=

C1

=
C0

=

which means that
▶ the Ci are k-vector spaces,
▶ the ∂i : Ci+1 → Ci are linear maps,
▶ we have ∂i−1 ◦ ∂i = 0 and thus im ∂i ⊆ ker ∂i−1.

42 / 58

Homology
Formally, given our space X:

y
g

��<
<<

<<
<<

<

⇑α

x

f
@@��������

h
// z i // z′

we consider the chain complex

. . .
∂2 // k {α} ∂1 // k {f,g, h, i} ∂0 // k {x, y, z, z′}

C2

=

C1

=
C0

=

and we can compute i-th homology groups:

Hi(X) = ker ∂i−1/ im ∂i

The intuition is that the rank of Hi(X) counts the number of holes
in dimension i.

42 / 58

Homology

Theorem
Homology is invariant under homotopy equivalences
(= continuous deformations of the space).

43 / 58

The classifying space
Given a convergent presentation

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩
we can build a space with
0. one point •

1. one segment • a • for each generator a
2. one surface for each relation, e.g.

•
b

~~
~~
~ a

@@
@@

@

•
a =

•
b

•

b @@
@@

@ •
a~~
~~
~

•
3. one volume for each critical pair
4. one 4-volume for each critical triple
5. etc.

44 / 58

The classifying space
Given a convergent presentation

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩
we can build a space with
0. one point •
1. one segment • a • for each generator a

2. one surface for each relation, e.g.
•

b

~~
~~
~ a

@@
@@

@

•
a =

•
b

•

b @@
@@

@ •
a~~
~~
~

•
3. one volume for each critical pair
4. one 4-volume for each critical triple
5. etc.

44 / 58

The classifying space
Given a convergent presentation

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩
we can build a space with
0. one point •
1. one segment • a • for each generator a
2. one surface for each relation, e.g.

•
b

~~
~~
~ a

@@
@@

@

•
a =

•
b

•

b @@
@@

@ •
a~~
~~
~

•

3. one volume for each critical pair
4. one 4-volume for each critical triple
5. etc.

44 / 58

The classifying space
Given a convergent presentation

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩
we can build a space with
0. one point •
1. one segment • a • for each generator a
2. one surface for each relation, e.g.

•
b

~~
~~
~ a

@@
@@

@

•
a =

•
b

•

b @@
@@

@ •
a~~
~~
~

•
3. one volume for each critical pair

4. one 4-volume for each critical triple
5. etc.

44 / 58

The classifying space
Given a convergent presentation

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩
we can build a space with
0. one point •
1. one segment • a • for each generator a
2. one surface for each relation, e.g.

•
b

~~
~~
~ a

@@
@@

@

•
a =

•
b

•

b @@
@@

@ •
a~~
~~
~

•
3. one volume for each critical pair
4. one 4-volume for each critical triple

5. etc.

44 / 58

The classifying space
Given a convergent presentation

⟨a,b | aa⇒ 1,bb⇒ 1,bab⇒ aba⟩
we can build a space with
0. one point •
1. one segment • a • for each generator a
2. one surface for each relation, e.g.

•
b

~~
~~
~ a

@@
@@

@

•
a =

•
b

•

b @@
@@

@ •
a~~
~~
~

•
3. one volume for each critical pair
4. one 4-volume for each critical triple
5. etc. 44 / 58

The classifying space

Theorem (Squier’87)
The homology of this space only depends on the presented
monoid (not on the actual convergent presentation!).

Invariance under homotopy equivalence translates into this
setting into invariance under (convergent) presentation!

Remark
Actually, all these computations can be performed purely
algebraically, without ever using topological spaces...

45 / 58

The classifying space

Theorem (Squier’87)
The homology of this space only depends on the presented
monoid (not on the actual convergent presentation!).

Invariance under homotopy equivalence translates into this
setting into invariance under (convergent) presentation!

Remark
Actually, all these computations can be performed purely
algebraically, without ever using topological spaces...

45 / 58

The counter-example

Example (Squier’87-Lafont-Prouté’91)
Consider the monoid M presented by⟨

a,b, c,d,d′
∣∣ ab = a,da = ac,d′a = ac

⟩
1. has decidable word problem

2. admits an infinite convergent presentation

3. from which we can compute that H3(M) is infinite

4. H3(M) is a subquotient of kP where P are the critical pairs
5. if there was a finite convergent presentation,

it would have a finite number of critical pairs

6. there is no finite convergent presentation of the monoid!

46 / 58

The counter-example

Example (Squier’87-Lafont-Prouté’91)
Consider the monoid M presented by⟨

a,b, c,d,d′
∣∣ ab = a,da = ac,d′a = ac

⟩
1. has decidable word problem

2. admits an infinite convergent presentation

3. from which we can compute that H3(M) is infinite

4. H3(M) is a subquotient of kP where P are the critical pairs
5. if there was a finite convergent presentation,

it would have a finite number of critical pairs

6. there is no finite convergent presentation of the monoid!

46 / 58

The counter-example

Example (Squier’87-Lafont-Prouté’91)
Consider the monoid M presented by⟨

a,b, c,d,d′
∣∣ ab = a,da = ac,d′a = ac

⟩
1. has decidable word problem

2. admits an infinite convergent presentation

3. from which we can compute that H3(M) is infinite

4. H3(M) is a subquotient of kP where P are the critical pairs
5. if there was a finite convergent presentation,

it would have a finite number of critical pairs

6. there is no finite convergent presentation of the monoid!

46 / 58

The counter-example

Example (Squier’87-Lafont-Prouté’91)
Consider the monoid M presented by⟨

a,b, c,d,d′
∣∣ ab = a,da = ac,d′a = ac

⟩
1. has decidable word problem

2. admits an infinite convergent presentation

3. from which we can compute that H3(M) is infinite

4. H3(M) is a subquotient of kP where P are the critical pairs

5. if there was a finite convergent presentation,
it would have a finite number of critical pairs

6. there is no finite convergent presentation of the monoid!

46 / 58

The counter-example

Example (Squier’87-Lafont-Prouté’91)
Consider the monoid M presented by⟨

a,b, c,d,d′
∣∣ ab = a,da = ac,d′a = ac

⟩
1. has decidable word problem

2. admits an infinite convergent presentation

3. from which we can compute that H3(M) is infinite

4. H3(M) is a subquotient of kP where P are the critical pairs
5. if there was a finite convergent presentation,

it would have a finite number of critical pairs

6. there is no finite convergent presentation of the monoid!

46 / 58

The counter-example

Example (Squier’87-Lafont-Prouté’91)
Consider the monoid M presented by⟨

a,b, c,d,d′
∣∣ ab = a,da = ac,d′a = ac

⟩
1. has decidable word problem

2. admits an infinite convergent presentation

3. from which we can compute that H3(M) is infinite

4. H3(M) is a subquotient of kP where P are the critical pairs
5. if there was a finite convergent presentation,

it would have a finite number of critical pairs

6. there is no finite convergent presentation of the monoid!

46 / 58

Now, something new:
this can be extended to
term rewriting systems!

47 / 58

Algebraic theories
An algebraic theory

⟨G | R⟩
consists of
1. G: operations with given arities
2. R: equations between terms generated by operations

Example

▶ the theory of groups is given by m : 2, e : 0, i : 1 and

m(m(x1, x2), x3) = m(x1,m(x2, x3))
m(e, x1) = x1 m(x1, e) = x1

m(i(x1), x1) = e m(x1, i(x1)) = e

▶ rings, fields, etc.
▶ (semi)lattices, booleans algebras, etc.

48 / 58

Models

A model of an algebraic theory consists of
▶ a set X,
▶ an interpretation JfK : Xn → X
for each operation f of arity n,

▶ such that the axioms are satisfied.

Example
Models of the theory of groups are groups.

49 / 58

Equivalence between theories
Two theories are equivalent when they have the same models.

Example
Consider the theory of groups, given by m : 2, e : 0, i : 1 and

m(m(x1, x2), x3) = m(x1,m(x2, x3))
m(e, x1) = x1 m(x1, e) = x1

m(i(x1), x1) = e m(x1, i(x1)) = e

The equations in red are derivable from the other.

xe = (ex)e = ((x−−x−)x)e = (x−−(x−x))e = (x−−e)e

= x−−(ee) = x−−e = x−−(x−x) = (x−−x−)x = ex = x

50 / 58

Equivalence between theories
Two theories are equivalent when they have the same models.

Example
Consider the theory of groups, given by m : 2, e : 0, i : 1 and

m(m(x1, x2), x3) = m(x1,m(x2, x3))
m(e, x1) = x1 m(x1, e) = x1

m(i(x1), x1) = e m(x1, i(x1)) = e

The equations in red are derivable from the other.

xe = (ex)e = ((x−−x−)x)e = (x−−(x−x))e = (x−−e)e

= x−−(ee) = x−−e = x−−(x−x) = (x−−x−)x = ex = x

50 / 58

Equivalence between theories
Two theories are equivalent when they have the same models.

Example
Consider the theory of groups, given by m : 2, e : 0, i : 1 and

m(m(x1, x2), x3) = m(x1,m(x2, x3))
m(e, x1) = x1

m(x1, e) = x1

m(i(x1), x1) = e

m(x1, i(x1)) = e

The equations in red are derivable from the other.

xe = (ex)e = ((x−−x−)x)e = (x−−(x−x))e = (x−−e)e

= x−−(ee) = x−−e = x−−(x−x) = (x−−x−)x = ex = x

50 / 58

Can we find minimal (or small)
axiomatizations for theories?

51 / 58

One relation for (abelian) groups

In 1938, Tarski observed that the theory of abelian groups can be
axiomatized with two operations d : 2, a : 0 and one relation

d(x1,d(x2,d(x3,d(x1, x2)))) = x3

where a ensure that the model is not empty.

A one-based theory is a theory which can be axiomatized with
only one axiom.

52 / 58

The quest for one-based theories

There is an interesting line of efforts to find one-based theories:
▶ 1938: abelian groups is one-based
▶ 1952: groups is one-based
▶ 1965: semi-lattices is not one-based
▶ 1970: distributive lattices is not one-based

lattices is one-based (300 000 sym. / 34 var.)
▶ 1973: boolean algebras is one-based (≥ 40 000 000 symb.)
▶ 2002: boolean algebras is one-based (12 symb.)
▶ 2003: lattices is one-based (29 symb. / 8 var.)
▶ …

53 / 58

AXIOMS FOR SEMI-JLATTICES

D. H. Potts

-A semi- la t t ice (Birkhoff, JLattice Theory, p. 18, Ex. 1)
is an algebra <A, .> with a single binary operation satisfying:
(1) x = xx , (2) x y = y x , and (3) (xy)z = x(yz). In this note
we show that the three identities may be reduced to two but
cannot be reduced to one.

It is easy to see that (2), (3) imply (4) (uv)((wx)(yz))
= ((vu)(xw))(zy). Setting w = y = u and x = z = v in (4) and
using (1) we get uv = vu. Setting v = u, x = w, and z =y in
(4) and using (1) we get u(wy) = (uw)y. And so (1) and (4) imply
(2) and (3).

If a single identity is sufficient to define the notion of
semi- la t t ice it must be of form x = Any identity not of
that form, is satisfied by, e. g. the algebra <{ 0, 1} , .> where
00 = 01 =10 = 1 1 = 0 , which is not a semi- la t t ice .

Now suppose we have a semi- la t t ice with two distinct
elements a , b . Let c = ab. Either c # a or c ^ b. We
suppose the la t te r . Then bb = b and be = cb = cc = c . Thus
any identity holding in a semi- la t t ice with at leas t two elements
must have the same var iables occurr ing on each side of the
equality sign. For suppose Ifxff occurs on the left but not on
the right. Setting x = c and al l other var iables equal to b
yields the contradiction c = b.

Thus a single sufficing identity would have to be of form
x = f(x). Clearly such an identity will not imply (2), for the
algebra < { 0 , l } , . > where 0 0 = 0 1 = 0 and 1 0 = 1 1 = 1 satisfies
x = f(x> for any f but is not commutative.

University of California, Berkeley

519

54 / 58

Axioms for semi-lattices
A semi-lattice is a set equipped with a multiplication such that

(xy)z = x(yz) xy = yx xx = x

1. any axiom should be of the form x = t otherwise the
non-semi-lattice

· 0 1

0 0 0
1 0 0

would be a model

2. any axiom t = u should have FV(t) = FV(u)

3. the axiom cannot be of the form x = t(x)

4. we can also show that any other choice of generators suffers
from the same problem!

55 / 58

Axioms for semi-lattices
A semi-lattice is a set equipped with a multiplication such that

(xy)z = x(yz) xy = yx xx = x

1. any axiom should be of the form x = t

2. any axiom t = u should have FV(t) = FV(u) otherwise the
semi-lattice

· 0 1

0 0 1
1 1 1

would not be a model

3. the axiom cannot be of the form x = t(x)

4. we can also show that any other choice of generators suffers
from the same problem!

55 / 58

Axioms for semi-lattices
A semi-lattice is a set equipped with a multiplication such that

(xy)z = x(yz) xy = yx xx = x

1. any axiom should be of the form x = t

2. any axiom t = u should have FV(t) = FV(u)

3. the axiom cannot be of the form x = t(x) otherwise the
non-semi-lattice

· 0 1

0 0 0
1 1 1

would be a model

4. we can also show that any other choice of generators suffers
from the same problem!

55 / 58

Axioms for semi-lattices

A semi-lattice is a set equipped with a multiplication such that

(xy)z = x(yz) xy = yx xx = x

1. any axiom should be of the form x = t

2. any axiom t = u should have FV(t) = FV(u)

3. the axiom cannot be of the form x = t(x)

4. we can also show that any other choice of generators suffers
from the same problem!

55 / 58

Not one-based theories

We are interested in showing that theories are not one-based:
▶ existing proofs are tricky and specific to particular theories
▶ they rely on finding counter-examples using some models

Here, instead
▶ we provide a method which is entirely automatic
▶ but it does not provide an answer in every case

56 / 58

The general method
Algorithm (Malbos-Mimram’16)

1. start from a theory T ,

2. orient it so that you get a terminating and confluent term
rewriting system,

3. feed it to the computer and compute

H2(T) ∈ N

4. we know that we need at least H2(T) relations.

Note that:
▶ the theory might not be orientable as a convergent rs,
▶ we might compute H2(T) = 0,
▶ we have examples where it works though :)

57 / 58

The general method
Algorithm (Malbos-Mimram’16)

1. start from a theory T ,
2. orient it so that you get a terminating and confluent term

rewriting system,

3. feed it to the computer and compute

H2(T) ∈ N

4. we know that we need at least H2(T) relations.

Note that:
▶ the theory might not be orientable as a convergent rs,
▶ we might compute H2(T) = 0,
▶ we have examples where it works though :)

57 / 58

The general method
Algorithm (Malbos-Mimram’16)

1. start from a theory T ,
2. orient it so that you get a terminating and confluent term

rewriting system,

3. feed it to the computer and compute

H2(T) ∈ N

4. we know that we need at least H2(T) relations.

Note that:
▶ the theory might not be orientable as a convergent rs,
▶ we might compute H2(T) = 0,
▶ we have examples where it works though :)

57 / 58

The general method
Algorithm (Malbos-Mimram’16)

1. start from a theory T ,
2. orient it so that you get a terminating and confluent term

rewriting system,

3. feed it to the computer and compute

H2(T) ∈ N

4. we know that we need at least H2(T) relations.

Note that:
▶ the theory might not be orientable as a convergent rs,
▶ we might compute H2(T) = 0,
▶ we have examples where it works though :)

57 / 58

The general method
Algorithm (Malbos-Mimram’16)

1. start from a theory T ,
2. orient it so that you get a terminating and confluent term

rewriting system,

3. feed it to the computer and compute

H2(T) ∈ N

4. we know that we need at least H2(T) relations.

Note that:
▶ the theory might not be orientable as a convergent rs,
▶ we might compute H2(T) = 0,
▶ we have examples where it works though :)

57 / 58

Thanks!

58 / 58

