
Quillen Model Categories
Model

Martin-Löf Type Theory with Identity Types

Samuel Mimram

CEA

Séminaire MeASI au CIRM

1 / 29

Disclaimer

Ideas are not from me (Awodey & Warren, Voevodsky, . . .),
errors are mine.

2 / 29

λ-calculus

• Introduction rule:

Γ, x : A ` f : B

Γ ` λx .f : A→ B

• Elimination rule:

Γ ` f : A→ B Γ ` g : A

Γ ` fg : B

• Conversion rule:

Γ, x : A ` f : B Γ ` g : A

Γ ` (λx .f)g = f [g/x] : B

3 / 29

λ-calculus

• Introduction rule:

Γ, x : A ` f : B

Γ ` λx .f : A→ B

• Elimination rule:

Γ ` f : A→ B Γ ` g : A

Γ ` fg : B

• Conversion rule:

Γ, x : A ` f : B Γ ` g : A

Γ ` (λx .f)g = f [g/x] : B

3 / 29

λ-calculus

• Introduction rule:

Γ, x : A ` f : B

Γ ` λx .f : A→ B

• Elimination rule:

Γ ` f : A→ B Γ ` g : A

Γ ` fg : B

• Conversion rule:

Γ, x : A ` f : B Γ ` g : A

Γ ` (λx .f)g = f [g/x] : B

3 / 29

Now with dependent types.

4 / 29

Dependent types

Array.make : int -> array

• Type formation rule:

` n : int

` array(n) : type

• Introduction rules:

Γ ` [] : array(0)

Γ ` k : int Γ, n : int ` a : array(n)

Γ, n : int ` (k :: a) : array(n + 1)

5 / 29

Dependent types

Array.make : n:int -> n array

• Type formation rule:

` n : int

` array(n) : type

• Introduction rules:

Γ ` [] : array(0)

Γ ` k : int Γ, n : int ` a : array(n)

Γ, n : int ` (k :: a) : array(n + 1)

5 / 29

Dependent types

Array.make : Πn:int.array(n)

• Type formation rule:

` n : int

` array(n) : type

• Introduction rules:

Γ ` [] : array(0)

Γ ` k : int Γ, n : int ` a : array(n)

Γ, n : int ` (k :: a) : array(n + 1)

5 / 29

Dependent types

Array.make : Πn:int.array(n)

• Type formation rule:

` n : int

` array(n) : type

• Introduction rules:

Γ ` [] : array(0)

Γ ` k : int Γ, n : int ` a : array(n)

Γ, n : int ` (k :: a) : array(n + 1)

5 / 29

Dependent types

Array.make : Πn:int.array(n)

• Type formation rule:

` n : int

` array(n) : type

• Introduction rules:

Γ ` [] : array(0)

Γ ` k : int Γ, n : int ` a : array(n)

Γ, n : int ` (k :: a) : array(n + 1)

5 / 29

Products (and sums)

• Type formation rule:

x : A ` B(x) : type

` Πx :A.B(x) : type

• Introduction rule:

x : A ` f (x) : B(x)

` λx :A.f (x) : Πx :A.B(x)

• Elimination rule:

` g : Πx :A.B(x) ` x : A

` ga : B(a)

• Conversion rule:

x : A ` f (x) : B(x) ` a : A

` (λx :A.f (x))a = f (a) : B(a)

6 / 29

Products (and sums)

• Type formation rule:

x : A ` B(x) : type

` Πx :A.B(x) : type

• Introduction rule:

x : A ` f (x) : B(x)

` λx :A.f (x) : Πx :A.B(x)

• Elimination rule:

` g : Πx :A.B(x) ` x : A

` ga : B(a)

• Conversion rule:

x : A ` f (x) : B(x) ` a : A

` (λx :A.f (x))a = f (a) : B(a)

6 / 29

Products (and sums)

• Type formation rule:

x : A ` B(x) : type

` Πx :A.B(x) : type

• Introduction rule:

x : A ` f (x) : B(x)

` λx :A.f (x) : Πx :A.B(x)

• Elimination rule:

` g : Πx :A.B(x) ` x : A

` ga : B(a)

• Conversion rule:

x : A ` f (x) : B(x) ` a : A

` (λx :A.f (x))a = f (a) : B(a)

6 / 29

Products (and sums)

• Type formation rule:

x : A ` B(x) : type

` Πx :A.B(x) : type

• Introduction rule:

x : A ` f (x) : B(x)

` λx :A.f (x) : Πx :A.B(x)

• Elimination rule:

` g : Πx :A.B(x) ` x : A

` ga : B(a)

• Conversion rule:

x : A ` f (x) : B(x) ` a : A

` (λx :A.f (x))a = f (a) : B(a)

6 / 29

Remark

The usual arrow type A→ B is recovered as

Πx :A.B

where x does not occur in B.

7 / 29

Identity types
• Type formation rule:

` a : A ` b : A

` IdA(a, b) : type

• Introduction rule:

` a : A

` rA(a) : IdA(a, a)

• Elimination rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
` p : IdA(a, b) x : A ` d(x) : D(x , x , rA(x))

` JA,D(d , a, b, p) : D(a, b, p)

• Conversion rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
` a : A x : A ` d(x) : D(x , x , rA(x))

` JA,D(d , a, a, rA(a)) = d(a) : D(a, a, rA(a))

8 / 29

Identity types
• Type formation rule:

` a : A ` b : A

` IdA(a, b) : type

• Introduction rule:

` a : A

` rA(a) : IdA(a, a)

• Elimination rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
` p : IdA(a, b) x : A ` d(x) : D(x , x , rA(x))

` JA,D(d , a, b, p) : D(a, b, p)

• Conversion rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
` a : A x : A ` d(x) : D(x , x , rA(x))

` JA,D(d , a, a, rA(a)) = d(a) : D(a, a, rA(a))

8 / 29

Identity types
• Type formation rule:

` a : A ` b : A

` IdA(a, b) : type

• Introduction rule:

` a : A

` rA(a) : IdA(a, a)

• Elimination rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
` p : IdA(a, b) x : A ` d(x) : D(x , x , rA(x))

` JA,D(d , a, b, p) : D(a, b, p)

• Conversion rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
` a : A x : A ` d(x) : D(x , x , rA(x))

` JA,D(d , a, a, rA(a)) = d(a) : D(a, a, rA(a))

8 / 29

Identity types
• Type formation rule:

` a : A ` b : A

` IdA(a, b) : type

• Introduction rule:

` a : A

` rA(a) : IdA(a, a)

• Elimination rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
` p : IdA(a, b) x : A ` d(x) : D(x , x , rA(x))

` JA,D(d , a, b, p) : D(a, b, p)

• Conversion rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
` a : A x : A ` d(x) : D(x , x , rA(x))

` JA,D(d , a, a, rA(a)) = d(a) : D(a, a, rA(a))
8 / 29

Categories
A category C consists of

• objects: Ob(C)

• morphisms: ∀A,B ∈ Ob(C), Hom(A,B)

• compositions:

f : A→ B g : B → C

g ◦ f : A→ C

• identities:
∀A ∈ Ob(C), idA : A→ A

such that

• composition is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

• admits identities as neutral elements

id ◦ f = f = f ◦ id

9 / 29

The category Set

The category Set has

• objects: sets

• morphisms: functions f : A→ B

• with usual composition and identities

10 / 29

Modeling programming languages

From a programming language, we can build a category Π whose

• objects: types

• morphisms: programs π : A→ B modulo cut-elimination

• composition: usual composition of programs

Definition
A model of the programming language is a functor

F : Π→ C

11 / 29

Modeling programming languages

From a programming language, we can build a category Π whose

• objects: types

• morphisms: programs π : A→ B modulo cut-elimination

• composition: usual composition of programs

Definition
A model of the programming language is a functor

F : Π→ C

11 / 29

Models of simply typed λ-calculus

Take the category with

• objects: types

A ::= X | A⇒ B | A× B

• morphisms A→ B: λ-terms f : A⇒ B

12 / 29

Models of simply typed λ-calculus

Take the category with

• objects: types

A ::= X | A⇒ B | A× B

• morphisms A→ B: λ-terms f : A⇒ B

Example:
λx .λy .x : A→ (B ⇒ A)

12 / 29

Models of simply typed λ-calculus

Take the category with

• objects: types

A ::= X | A⇒ B | A× B

• morphisms A→ B: λ-terms f : A⇒ B

Exercise: give a model of this language into Set.

12 / 29

Models of simply typed λ-calculus

Take the category with

• objects: types

A ::= X | A⇒ B | A× B

• morphisms A→ B: λ-terms f : A⇒ B

More generally, it can be modeled in any cartesian closed category.

12 / 29

Cartesian closed categories

Definition
A cartesian closed category is a category which has

• products:

∀f : A→ B, g : A→ C ,

A

f

��

g

��

��
B × C

πB{{ πC ##
B C

• a terminal object 1:

∀A, A // 1

• which is closed:
A× B → C

A→ (B ⇒ C)

13 / 29

Cartesian closed categories

Definition
A cartesian closed category is a category which has

• products:

∀f : A→ B, g : A→ C ,

A

f

��

g

��

��
B × C

πB{{ πC ##
B C

• a terminal object 1:

∀A, A // 1

• which is closed:
A× B → C

A→ (B ⇒ C)

13 / 29

Cartesian closed categories

Definition
A cartesian closed category is a category which has

• products:

∀f : A→ B, g : A→ C ,

A

f

��

g

��

��
B × C

πB{{ πC ##
B C

• a terminal object 1:

∀A, A // 1

• which is closed:
A× B → C

A→ (B ⇒ C)
13 / 29

A model of Martin-Löf type theory
The traditional models of Martin-Löf type theory are given by

Definition
A locally cartesian closed category is a category C in which for
every object A the slice category C/A is cartesian closed.

Theorem
An LCCC is a category with pullbacks in which for
every f : A→ B, the base change functor f ∗ : C/B → C/A
has a right adjoint Πf : C/A→ C/B.

Example
Γ, x : A ` B(x) : type

Γ ` Πx :A.B(x) : type

14 / 29

A model of Martin-Löf type theory
The traditional models of Martin-Löf type theory are given by

Definition
A locally cartesian closed category is a category C in which for
every object A the slice category C/A is cartesian closed.

Theorem
An LCCC is a category with pullbacks in which for
every f : A→ B, the base change functor f ∗ : C/B → C/A
has a right adjoint Πf : C/A→ C/B.

Example
Γ, x : A ` B(x) : type

Γ ` Πx :A.B(x) : type

14 / 29

A model of Martin-Löf type theory
The traditional models of Martin-Löf type theory are given by

Definition
A locally cartesian closed category is a category C in which for
every object A the slice category C/A is cartesian closed.

Theorem
An LCCC is a category with pullbacks in which for
every f : A→ B, the base change functor f ∗ : C/B → C/A
has a right adjoint Πf : C/A→ C/B.

Example
Γ, x : A ` B(x) : type

Γ ` Πx :A.B(x) : type

14 / 29

Problem

Every LCCC is also a model of MLTT with the rule of
extensionality:

` p : IdA(a, b)

` a = b : A

...and type checking is indecidable in extensional MLTT!

15 / 29

Half of the title

We explain here that Quillen model categories model identity types
in Martin-Löf type theory:

F :M→Q

Which provides non-extensional models.

The idea here is that identity types behave like homotopies
between topological spaces.

16 / 29

Half of the title

We explain here that Quillen model categories model identity types
in Martin-Löf type theory:

F :M→Q

Which provides non-extensional models.

The idea here is that identity types behave like homotopies
between topological spaces.

16 / 29

Homotopy

A homotopy between two continuous functions f , g : A→ B
between topological spaces A and B is a continuous function

h : I × A→ B

where I = [0, 1] such that h(0, x) = f (x) and h(1, x) = g(x).

Two spaces A and B are homotopy equivalent when there exists
maps f : A→ B and g : B → A such that

g ◦ f ∼ idA f ◦ g ∼ idB

Ex: square ≈ circle, coffee mug ≈ donut, etc.

17 / 29

Homotopy

A homotopy between two continuous functions f , g : A→ B
between topological spaces A and B is a continuous function

h : I × A→ B

where I = [0, 1] such that h(0, x) = f (x) and h(1, x) = g(x).

Two spaces A and B are homotopy equivalent when there exists
maps f : A→ B and g : B → A such that

g ◦ f ∼ idA f ◦ g ∼ idB

Ex: square ≈ circle, coffee mug ≈ donut, etc.

17 / 29

Homotopies

Suppose given a topological space T .

• A path in T is a continuous function π : I → T ,
where I = [0, 1].

• An homotopy between two paths π and ρ is a continuous
function

h : I → (I ⇒ T) such that h(0) = π and h(1) = ρ

• An homotopy between homotopies h and k is a continuous
function

h : I → (I ⇒ (I ⇒ T)) such that h(0) = h and h(1) = k

• etc.

18 / 29

Homotopies

Suppose given a topological space T .

• A path in T is a continuous function π : I → T ,
where I = [0, 1].

• An homotopy between two paths π and ρ is a continuous
function

h : I → (I ⇒ T) such that h(0) = π and h(1) = ρ

• An homotopy between homotopies h and k is a continuous
function

h : I → (I ⇒ (I ⇒ T)) such that h(0) = h and h(1) = k

• etc.

18 / 29

Homotopies

Suppose given a topological space T .

• A path in T is a continuous function π : I → T ,
where I = [0, 1].

• An homotopy between two paths π and ρ is a continuous
function

h : I → (I ⇒ T) such that h(0) = π and h(1) = ρ

• An homotopy between homotopies h and k is a continuous
function

h : I → (I ⇒ (I ⇒ T)) such that h(0) = h and h(1) = k

• etc.

18 / 29

Homotopies

Suppose given a topological space T .

• A path in T is a continuous function π : I → T ,
where I = [0, 1].

• An homotopy between two paths π and ρ is a continuous
function

h : I → (I ⇒ T) such that h(0) = π and h(1) = ρ

• An homotopy between homotopies h and k is a continuous
function

h : I → (I ⇒ (I ⇒ T)) such that h(0) = h and h(1) = k

• etc.

18 / 29

Modeling MLTT

We interpret

• a type ` A : type as a topological space

• a term ` x : A as a point in A

• a term p : IdA(a, b) as a path a→ b

• a term s : IdId(a,b)(p, q) as an homotopy a
p
((

q
66s⇓ b

• etc.

19 / 29

Dependent types

As in the case of LCCC we interpret a dependent type

x : A ` B(x) : type

as a continuous map
B

��
A

and a term x : A ` f : B(x) as a section of this map.

20 / 29

Dependent types

As in the case of LCCC we interpret a dependent type

x : A ` B(x) : type

as a continuous map
B

��
A

HH

and a term x : A ` f : B(x) as a section of this map.

20 / 29

Dependent types and equality
The maps interpreting types should have the homotopy lifting
property:

{0}

��

β // B

��
[0, 1] p

//

p∗
>>

A

Maps like this are often called fibrations.

Ex: the interpretation of x , y : A ` IdA(x , y) is a map

AI

��
A× A

21 / 29

Dependent types and equality
The maps interpreting types should have the homotopy lifting
property:

X × {0}

��

β // B

��
X × [0, 1] p

//

p∗
;;

A

Maps like this are often called fibrations.

Ex: the interpretation of x , y : A ` IdA(x , y) is a map

AI

��
A× A

21 / 29

Dependent types and equality
The maps interpreting types should have the homotopy lifting
property:

X × {0}

��

β // B

��
X × [0, 1] p

//

p∗
;;

A

Maps like this are often called fibrations.

Ex: the interpretation of x , y : A ` IdA(x , y) is a map

AI

��
A× A

21 / 29

Lifting properties
Homotopy is more generally carried on in Quillen model categories.

Given a class L of maps, we write ⊥L for the class of maps which
have LLP wrt every map in L (and similarly L⊥ for RLP).

22 / 29

Lifting properties
Homotopy is more generally carried on in Quillen model categories.

Definition
Given maps f : A→ B and g : C → D, f has the left lifting
property wrt g when every commutative square

A
h //

f
��

C

g
��

B
k
// D

admits a lifting.

Given a class L of maps, we write ⊥L for the class of maps which
have LLP wrt every map in L (and similarly L⊥ for RLP).

22 / 29

Lifting properties
Homotopy is more generally carried on in Quillen model categories.

Definition
Given maps f : A→ B and g : C → D, f has the left lifting
property wrt g when every commutative square

A
h //

f
��

C

g
��

B
k
//

l

??

D

admits a lifting.

Given a class L of maps, we write ⊥L for the class of maps which
have LLP wrt every map in L (and similarly L⊥ for RLP).

22 / 29

Lifting properties
Homotopy is more generally carried on in Quillen model categories.

Definition
Given maps f : A→ B and g : C → D, f has the left lifting
property wrt g when every commutative square

A
h //

f
��

C

g
��

B
k
//

l

??

D

admits a lifting.

Given a class L of maps, we write ⊥L for the class of maps which
have LLP wrt every map in L (and similarly L⊥ for RLP).

22 / 29

Weak factorization systems

Definition
A weak factorization system (L,R) consists of two classes of maps
such that

1 every map f : A→ B factors as

A
i //

f ��

C

p��
B

with i ∈ L and p ∈ R

2 L⊥ = R and L = ⊥R

23 / 29

Model categories

Definition
A model category consists of C together with subcategories

• F: fibrations

• C: cofibrations

• W: weak equivalences

such that

1 three for two

2 both (C,W ∩ F) and (C ∩W,F) are weak factorization
systems.

Example

On Top:

• generating cofibrations are inclusions i : ∆n → ∆n × I ,

• fibrations are RLP of generating cofibrations (Serre fibrations),

• weak equivalences are weak homotopy equivalences.

24 / 29

Model categories

Definition
A model category consists of C together with subcategories

• F: fibrations

• C: cofibrations

• W: weak equivalences

such that

1 three for two

2 both (C,W ∩ F) and (C ∩W,F) are weak factorization
systems.

Example

On Top:

• generating cofibrations are inclusions i : ∆n → ∆n × I ,

• fibrations are RLP of generating cofibrations (Serre fibrations),

• weak equivalences are weak homotopy equivalences. 24 / 29

Path objects

Definition
A (very good) path object AI for an object A consists of a
factorization

A
r //

∆ ""

AI

p||
A× A

with r acyclic cofibration and p fibration.

25 / 29

Interpretation of MLTT

A
r //

∆ ""

AI

p||
A× A

• Type formation rule:
• Introduction rule:
• Elimination rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A, y : A, z : IdA(x , y) ` JA,D(d , x , y , z) : D(x , y , z)

• Conversion rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A ` JA,D(d , x , x , rA(x)) = d(x) : D(x , x , rA(x))

26 / 29

Interpretation of MLTT

A
r //

∆ ""

AI

p||
A× A

• Type formation rule:

` a : A ` b : A

` IdA(a, b) : type

IdA is interpreted as p

• Introduction rule:
• Elimination rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A, y : A, z : IdA(x , y) ` JA,D(d , x , y , z) : D(x , y , z)

• Conversion rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A ` JA,D(d , x , x , rA(x)) = d(x) : D(x , x , rA(x))

26 / 29

Interpretation of MLTT

A
r //

∆ ""

AI

p||
A× A

• Type formation rule:
• Introduction rule:

` a : A

` rA(a) : IdA(a, a)

rA is interpreted as r

• Elimination rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A, y : A, z : IdA(x , y) ` JA,D(d , x , y , z) : D(x , y , z)

• Conversion rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A ` JA,D(d , x , x , rA(x)) = d(x) : D(x , x , rA(x))

26 / 29

Interpretation of MLTT

• Type formation rule:

• Introduction rule:

• Elimination rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A, y : A, z : IdA(x , y) ` JA,D(d , x , y , z) : D(x , y , z)

• Conversion rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A ` JA,D(d , x , x , rA(x)) = d(x) : D(x , x , rA(x))

26 / 29

Interpretation of MLTT

• Type formation rule:

• Introduction rule:

• Elimination rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A, y : A, z : IdA(x , y) ` JA,D(d , x , y , z) : D(x , y , z)

• Conversion rule:

x : A, y : A, z : IdA(x , y) ` D(x , y , z) : type
x : A ` d(x) : D(x , x , rA(x))

x : A ` JA,D(d , x , x , rA(x)) = d(x) : D(x , x , rA(x))

26 / 29

The current state of things

Theorem (Awodey & Warren)

MLTT can be interpreted in any model category.

Theorem (Gambino & Garner)

The interpretation is complete.

27 / 29

The Homotopy Hypothesis

Homotopy Types

???

Weak ω-groupoids

MLTT

28 / 29

Towards directed algebraic topology?

We could think of a directed variant:

• replace equality by a reduction relation:

f g ⇒ there is a directed path from f to g

• the reduction should be compatible with identity:

r : Id(f , f ′) ⇒ ∃g ′, ∃s : Id(g , g ′) and g g ′

f

��

f ′

��

�O
�O

g g ′

We can “translate continuously” the directed path f g into
the directed path f ′ g

29 / 29

Towards directed algebraic topology?

We could think of a directed variant:

• replace equality by a reduction relation:

f g ⇒ there is a directed path from f to g

• the reduction should be compatible with identity:

r : Id(f , f ′) ⇒ ∃g ′, ∃s : Id(g , g ′) and g g ′

f

��

f ′

��

�O
�O

g g ′

We can “translate continuously” the directed path f g into
the directed path f ′ g

29 / 29

