Quillen Model Categories Model Martin-Löf Type Theory with Identity Types

Samuel Mimram

CEA

Séminaire MeASI au CIRM

Disclaimer

Ideas are not from me (Awodey & Warren, Voevodsky, ...), errors are mine.

λ -calculus

• Introduction rule:

$$\frac{\Gamma, x : A \vdash f : B}{\Gamma \vdash \lambda x.f : A \to B}$$

λ -calculus

• Introduction rule:

$$\frac{\Gamma, x : A \vdash f : B}{\Gamma \vdash \lambda x.f : A \to B}$$

• Elimination rule:

$$\frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash g : A}{\Gamma \vdash fg : B}$$

λ -calculus

• Introduction rule:

$$\frac{\Gamma, x : A \vdash f : B}{\Gamma \vdash \lambda x.f : A \to B}$$

• Elimination rule:

$$\frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash g : A}{\Gamma \vdash fg : B}$$

• Conversion rule:

$$\frac{\Gamma, x : A \vdash f : B \quad \Gamma \vdash g : A}{\Gamma \vdash (\lambda x.f)g = f[g/x] : B}$$

Now with dependent types.

Array.make : int -> array

Array.make : n:int -> n array

Array.make : $\Pi_{n:int}.array(n)$

Array.make : $\Pi_{n:int}.array(n)$

• Type formation rule:

 $\frac{\vdash n: \texttt{int}}{\vdash \texttt{array}(n): \texttt{type}}$

Array.make : $\Pi_{n:int}.array(n)$

• Type formation rule:

 $\frac{\vdash n: \text{int}}{\vdash \operatorname{array}(n): \operatorname{type}}$

• Introduction rules:

 $\frac{\Gamma \vdash k: \texttt{int} \quad \Gamma, n: \texttt{int} \vdash a: \texttt{array}(n)}{\Gamma \vdash []: \texttt{array}(0)} \qquad \frac{\Gamma \vdash k: \texttt{int} \quad \Gamma, n: \texttt{int} \vdash a: \texttt{array}(n)}{\Gamma, n: \texttt{int} \vdash (k:: a): \texttt{array}(n+1)}$

• Type formation rule:

 $\frac{x: A \vdash B(x): \text{type}}{\vdash \Pi_{x:A}.B(x): \text{type}}$

• Type formation rule:

$$\frac{x: A \vdash B(x): \text{type}}{\vdash \Pi_{x:A}.B(x): \text{type}}$$

• Introduction rule:

$$\frac{x:A\vdash f(x):B(x)}{\vdash \lambda_{x:A}.f(x):\Pi_{x:A}.B(x)}$$

• Type formation rule:

$$\frac{x: A \vdash B(x): \text{type}}{\vdash \Pi_{x:A}.B(x): \text{type}}$$

Introduction rule:

$$\frac{x:A\vdash f(x):B(x)}{\vdash \lambda_{x:A}.f(x):\Pi_{x:A}.B(x)}$$

• Elimination rule:

$$\frac{\vdash g: \Pi_{x:A}.B(x) \qquad \vdash x:A}{\vdash ga: B(a)}$$

• Type formation rule:

$$\frac{x: A \vdash B(x): \text{type}}{\vdash \prod_{x:A} B(x): \text{type}}$$

Introduction rule:

$$\frac{x:A\vdash f(x):B(x)}{\vdash \lambda_{x:A}.f(x):\Pi_{x:A}.B(x)}$$

• Elimination rule:

$$\frac{\vdash g: \Pi_{x:A}.B(x) \qquad \vdash x:A}{\vdash ga: B(a)}$$

• Conversion rule:

$$\frac{x: A \vdash f(x): B(x) \qquad \vdash a: A}{\vdash (\lambda_{x:A}.f(x))a = f(a): B(a)}$$

Remark

The usual arrow type $A \rightarrow B$ is recovered as

$\Pi_{x:A}.B$

where x does not occur in B.

• Type formation rule:

 $\frac{\vdash a: A \vdash b: A}{\vdash \mathsf{Id}_A(a, b): \mathsf{type}}$

• Type formation rule:

$$\frac{\vdash a: A \vdash b: A}{\vdash \mathsf{Id}_A(a, b): \mathsf{type}}$$

• Introduction rule:

• Type formation rule:

$$\frac{\vdash a: A \vdash b: A}{\vdash \mathsf{Id}_A(a, b): \mathsf{type}}$$

Introduction rule:

$$\frac{\vdash a:A}{\vdash r_A(a): \mathsf{Id}_A(a,a)}$$

• Elimination rule:

$$\frac{x: A, y: A, z: \mathsf{Id}_A(x, y) \vdash D(x, y, z): \mathsf{type}}{\vdash p: \mathsf{Id}_A(a, b) \qquad x: A \vdash d(x): D(x, x, r_A(x))} \vdash J_{A,D}(d, a, b, p): D(a, b, p)$$

• Type formation rule:

$$\begin{array}{c} \vdash a: A \qquad \vdash b: A \\ \hline \vdash \mathsf{Id}_A(a, b): \mathsf{type} \end{array}$$

Introduction rule:

• Elimination rule:

$$\frac{x: A, y: A, z: \mathsf{ld}_A(x, y) \vdash D(x, y, z): \mathsf{type}}{\vdash p: \mathsf{ld}_A(a, b) \qquad x: A \vdash d(x): D(x, x, r_A(x))} \vdash J_{A,D}(d, a, b, p): D(a, b, p)$$

• Conversion rule:

$$\frac{x:A,y:A,z:\mathsf{Id}_A(x,y)\vdash D(x,y,z):\mathsf{type}}{\vdash a:A \quad x:A\vdash d(x):D(x,x,r_A(x))}$$
$$\frac{\vdash J_{A,D}(d,a,a,r_A(a))=d(a):D(a,a,r_A(a))$$

Categories

- A category $\ensuremath{\mathcal{C}}$ consists of
 - objects: Ob(C)
 - morphisms: $\forall A, B \in Ob(\mathcal{C})$, Hom(A, B)
 - compositions:

$$\frac{f: A \to B \qquad g: B \to C}{g \circ f: A \to C}$$

• identities:

$$\forall A \in \mathsf{Ob}(\mathcal{C}), \quad \mathsf{id}_A : A \to A$$

such that

• composition is associative:

$$h\circ(g\circ f)=(h\circ g)\circ f$$

admits identities as neutral elements

$$\mathsf{id} \circ f = f = f \circ \mathsf{id}$$

The category Set

The category Set has

- objects: sets
- morphisms: functions $f : A \rightarrow B$
- with usual composition and identities

Modeling programming languages

From a programming language, we can build a category Π whose

- objects: types
- morphisms: programs $\pi: A \rightarrow B$ modulo cut-elimination
- composition: usual composition of programs

Modeling programming languages

From a programming language, we can build a category Π whose

- objects: types
- morphisms: programs $\pi: A \rightarrow B$ modulo cut-elimination
- composition: usual composition of programs

Definition

A model of the programming language is a functor

$$F:\Pi\to \mathcal{C}$$

Models of simply typed λ -calculus

Take the category with

• objects: types

$$A \qquad ::= \qquad X \quad | \quad A \Rightarrow B \quad | \quad A \times B$$

• morphisms $A \rightarrow B$: λ -terms $f : A \Rightarrow B$

Models of simply typed λ -calculus

Take the category with

• objects: types

$$A \qquad ::= \qquad X \quad | \quad A \Rightarrow B \quad | \quad A \times B$$

• morphisms
$$A \rightarrow B$$
: λ -terms $f : A \Rightarrow B$

Example:

$$\lambda x.\lambda y.x: A \to (B \Rightarrow A)$$

Models of simply typed $\lambda\text{-calculus}$

Take the category with

• objects: types

$$A \qquad ::= \qquad X \quad | \quad A \Rightarrow B \quad | \quad A \times B$$

• morphisms
$$A \rightarrow B$$
: λ -terms $f : A \Rightarrow B$

Exercise: give a model of this language into Set.

Models of simply typed $\lambda\text{-calculus}$

Take the category with

• objects: types

$$A \qquad ::= \qquad X \quad | \quad A \Rightarrow B \quad | \quad A \times B$$

• morphisms
$$A \rightarrow B$$
: λ -terms $f : A \Rightarrow B$

More generally, it can be modeled in any cartesian closed category.

Cartesian closed categories

Definition

A cartesian closed category is a category which has

• products:

Cartesian closed categories

Definition

A cartesian closed category is a category which has

• products:

• a terminal object 1:

 $\forall A, \quad A \longrightarrow 1$

Cartesian closed categories

Definition

A cartesian closed category is a category which has

• products:

• a terminal object 1:

$$\forall A, A \longrightarrow 1$$

• which is closed:

$$\frac{A \times B \to C}{A \to (B \Rightarrow C)}$$

A model of Martin-Löf type theory

The traditional models of Martin-Löf type theory are given by

Definition

A locally cartesian closed category is a category C in which for every object A the slice category C/A is cartesian closed.

A model of Martin-Löf type theory

The traditional models of Martin-Löf type theory are given by

Definition

A locally cartesian closed category is a category C in which for every object A the slice category C/A is cartesian closed.

Theorem

An LCCC is a category with pullbacks in which for every $f : A \rightarrow B$, the base change functor $f^* : C/B \rightarrow C/A$ has a right adjoint $\Pi_f : C/A \rightarrow C/B$.

A model of Martin-Löf type theory

The traditional models of Martin-Löf type theory are given by

Definition

A locally cartesian closed category is a category C in which for every object A the slice category C/A is cartesian closed.

Theorem

An LCCC is a category with pullbacks in which for every $f : A \rightarrow B$, the base change functor $f^* : C/B \rightarrow C/A$ has a right adjoint $\Pi_f : C/A \rightarrow C/B$.

Example

$$\frac{\Gamma, x : A \vdash B(x) : \mathsf{type}}{\Gamma \vdash \Pi_{x:A}.B(x) : \mathsf{type}}$$

Problem

Every LCCC is also a model of MLTT with the rule of *extensionality*:

 $\frac{\vdash p: \mathsf{Id}_A(a, b)}{\vdash a = b: A}$

...and type checking is indecidable in extensional MLTT!

Half of the title

We explain here that Quillen model categories model identity types in Martin-Löf type theory:

$F:\mathcal{M}\to\mathcal{Q}$

Which provides non-extensional models.

Half of the title

We explain here that Quillen model categories model identity types in Martin-Löf type theory:

$F:\mathcal{M}\to\mathcal{Q}$

Which provides non-extensional models.

The idea here is that identity types behave like homotopies between topological spaces.

Homotopy

A homotopy between two continuous functions $f, g : A \rightarrow B$ between topological spaces A and B is a continuous function

 $h: I \times A \rightarrow B$

where I = [0, 1] such that h(0, x) = f(x) and h(1, x) = g(x).

Homotopy

A homotopy between two continuous functions $f, g : A \rightarrow B$ between topological spaces A and B is a continuous function

 $h: I \times A \rightarrow B$

where I = [0, 1] such that h(0, x) = f(x) and h(1, x) = g(x).

Two spaces A and B are homotopy equivalent when there exists maps $f : A \rightarrow B$ and $g : B \rightarrow A$ such that

$$g \circ f \sim \operatorname{id}_A \qquad f \circ g \sim \operatorname{id}_B$$

Ex: square \approx circle, coffee mug \approx donut, etc.

Suppose given a topological space T.

 A path in T is a continuous function π : I → T, where I = [0, 1].

Suppose given a topological space T.

- A path in T is a continuous function π : I → T, where I = [0, 1].
- An **homotopy** between two paths π and ρ is a continuous function

$$h: I
ightarrow (I \Rightarrow T)$$
 such that $h(0) = \pi$ and $h(1) =
ho$

Suppose given a topological space T.

- A path in T is a continuous function π : I → T, where I = [0, 1].
- An **homotopy** between two paths π and ρ is a continuous function

$$h: I
ightarrow (I \Rightarrow T)$$
 such that $h(0) = \pi$ and $h(1) =
ho$

• An **homotopy between homotopies** *h* and *k* is a continuous function

$$h: I
ightarrow (I \Rightarrow (I \Rightarrow T))$$
 such that $h(0) = h$ and $h(1) = k$

Suppose given a topological space T.

- A path in T is a continuous function π : I → T, where I = [0, 1].
- An **homotopy** between two paths π and ρ is a continuous function

$$h: I
ightarrow (I \Rightarrow T)$$
 such that $h(0) = \pi$ and $h(1) =
ho$

• An **homotopy between homotopies** *h* and *k* is a continuous function

$$h: I \to (I \Rightarrow (I \Rightarrow T))$$
 such that $h(0) = h$ and $h(1) = k$

etc.

Modeling MLTT

We interpret

- a type $\vdash A$: type as a topological space
- a term $\vdash x : A$ as a point in A
- a term p: $Id_A(a, b)$ as a path $a \rightarrow b$
- a term $s : Id_{Id(a,b)}(p,q)$ as an homotopy $a \underbrace{s \Downarrow}_{p} b$

etc.

As in the case of LCCC we interpret a dependent type

 $x : A \vdash B(x) : \mathsf{type}$

В

∤ A

as a continuous map

As in the case of LCCC we interpret a dependent type

 $x : A \vdash B(x) :$ type

as a continuous map

and a term $x : A \vdash f : B(x)$ as a section of this map.

Dependent types and equality

The maps interpreting types should have the *homotopy lifting property*:

Dependent types and equality

The maps interpreting types should have the *homotopy lifting property*:

Maps like this are often called *fibrations*.

Dependent types and equality

The maps interpreting types should have the *homotopy lifting property*:

Maps like this are often called *fibrations*.

Ex: the interpretation of $x, y : A \vdash Id_A(x, y)$ is a map

$$A' \\ \downarrow \\ A \times A$$

Homotopy is more generally carried on in Quillen model categories.

Homotopy is more generally carried on in Quillen model categories.

Definition

Given maps $f : A \rightarrow B$ and $g : C \rightarrow D$, f has the *left lifting* property wrt g when every commutative square

Homotopy is more generally carried on in Quillen model categories.

Definition

Given maps $f : A \rightarrow B$ and $g : C \rightarrow D$, f has the *left lifting* property wrt g when every commutative square

admits a lifting.

Homotopy is more generally carried on in Quillen model categories.

Definition

Given maps $f : A \rightarrow B$ and $g : C \rightarrow D$, f has the *left lifting* property wrt g when every commutative square

admits a lifting.

Given a class \mathfrak{L} of maps, we write $^{\perp}\mathfrak{L}$ for the class of maps which have LLP wrt every map in \mathfrak{L} (and similarly \mathfrak{L}^{\perp} for RLP).

Weak factorization systems

Definition

A weak factorization system $(\mathfrak{L},\mathfrak{R})$ consists of two classes of maps such that

1 every map $f : A \rightarrow B$ factors as

with
$$i \in \mathfrak{L}$$
 and $p \in \mathfrak{R}$
2 $\mathfrak{L}^{\perp} = \mathfrak{R}$ and $\mathfrak{L} = {}^{\perp}\mathfrak{R}$

Model categories

Definition

A model category consists of $\mathcal C$ together with subcategories

- \mathfrak{F} : fibrations
- C: cofibrations
- \mathfrak{W} : weak equivalences

such that

- 1 three for two
- 2 both $(\mathfrak{C},\mathfrak{W}\cap\mathfrak{F})$ and $(\mathfrak{C}\cap\mathfrak{W},\mathfrak{F})$ are weak factorization systems.

Model categories

Definition

A model category consists of $\mathcal C$ together with subcategories

- \mathfrak{F} : fibrations
- C: cofibrations
- \mathfrak{W} : weak equivalences

such that

- 1 three for two
- 2 both $(\mathfrak{C},\mathfrak{W}\cap\mathfrak{F})$ and $(\mathfrak{C}\cap\mathfrak{W},\mathfrak{F})$ are weak factorization systems.

Example

On Top:

- generating cofibrations are inclusions $i: \Delta^n \to \Delta^n \times I$,
- fibrations are RLP of generating cofibrations (Serre fibrations),
- weak equivalences are weak homotopy equivalences.

Path objects

Definition

A (very good) path object A^{I} for an object A consists of a factorization

with r acyclic cofibration and p fibration.

• Type formation rule:

$$\frac{\vdash a: A \qquad \vdash b: A}{\vdash \mathsf{Id}_A(a, b): \mathsf{type}}$$

 Id_A is interpreted as p

- Type formation rule:
- Introduction rule:

$$\frac{\vdash a:A}{\vdash r_A(a): \mathsf{Id}_A(a,a)}$$

F

 r_A is interpreted as r

- Type formation rule:
- Introduction rule:
- Elimination rule:

$$\frac{x: A, y: A, z: \mathsf{ld}_A(x, y) \vdash D(x, y, z): \mathsf{type}}{x: A \vdash d(x): D(x, x, r_A(x))}$$
$$\frac{x: A, y: A, z: \mathsf{ld}_A(x, y) \vdash J_{A,D}(d, x, y, z): D(x, y, z)}{x: A, y: A, z: \mathsf{ld}_A(x, y) \vdash J_{A,D}(d, x, y, z): D(x, y, z)}$$

- Type formation rule:
- Introduction rule:
- Elimination rule:

$$\frac{x: A, y: A, z: \mathsf{Id}_A(x, y) \vdash D(x, y, z): \mathsf{type}}{x: A \vdash d(x): D(x, x, r_A(x))}$$
$$\frac{x: A, y: A, z: \mathsf{Id}_A(x, y) \vdash J_{A,D}(d, x, y, z): D(x, y, z)}{x: A, y: A, z: \mathsf{Id}_A(x, y) \vdash J_{A,D}(d, x, y, z): D(x, y, z)}$$

• Conversion rule:

$$\frac{x: A, y: A, z: \mathsf{Id}_A(x, y) \vdash D(x, y, z): \mathsf{type}}{x: A \vdash d(x): D(x, x, r_A(x))}$$
$$\frac{x: A \vdash J_{A,D}(d, x, x, r_A(x)) = d(x): D(x, x, r_A(x))}{x: A \vdash J_{A,D}(d, x, x, r_A(x)) = d(x): D(x, x, r_A(x))}$$

The current state of things

Theorem (Awodey & Warren) *MLTT can be interpreted in any model category.*

Theorem (Gambino & Garner) The interpretation is complete.

The Homotopy Hypothesis

Towards directed algebraic topology?

We could think of a directed variant:

• replace equality by a reduction relation:

 $f \rightsquigarrow g \qquad \Rightarrow \qquad$ there is a directed path from f to g

Towards directed algebraic topology?

We could think of a directed variant:

• replace equality by a reduction relation:

 $f \rightsquigarrow g \qquad \Rightarrow \qquad$ there is a directed path from f to g

• the reduction should be compatible with identity:

$$r: \mathsf{Id}(f, f') \implies \exists g', \exists s: \mathsf{Id}(g, g') \text{ and } g \rightsquigarrow g'$$

$$f = f'$$

$$\begin{cases} & \downarrow \\ & \downarrow \\ & \downarrow \\ & g = = = g' \end{cases}$$

We can "translate continuously" the directed path $f \rightsquigarrow g$ into the directed path $f' \rightsquigarrow g$