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Introduction

I will try to introduce the concepts of semantics and its uses in logic.

The presentation may be more oriented to combinatorists in the audience: I suppose

very little on your background in logic.

You are of course very welcome to ask questions.
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What am I computing?

We should remember that programs are not computing functions.

It is just a bunch of electric currents going through wires.

In order to give a meaning to those we have to interpret them as functions.

Since we have that

PROGRAM = PROOF

(this is the Curry-Howard correspondence) we can play the same game for logics.
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The virtuous circle

This is quite useful and productive:

• semantics helps to understand better the properties of logics

• logics helps to find the common structures behind the models

logics semantics

categories
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Part I

Boolean logic
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The boolean semantics of logic

In fact, for most people, logic reduces to a semantical intuition:

the boolean interpretation.

A formula is either

• X : a variable in a fixed countably infinite set X ,

• A ∧ B: a conjunction,

• A ∨ B: a disjunction,

• >: truth,

• ⊥: falsity,

• A⇒ B: an implication,

• ¬A: a negation (can be coded by A⇒ ⊥).
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The boolean semantics of logic

A valuation is a function ρ : X → {0, 1}.

Given a valuation ρ, we can interpret any formula as a boolean by using the standard

interpretation of connectives:

A ∧ B 0 1

0 0 0

1 0 1

A ∨ B 0 1

0 0 1

1 1 1

A⇒ B 0 1

0 1 1

1 0 1

¬A
0 1

1 0

For instance, consider ρ such that ρ(X ) = 1 and ρ(Y ) = 0.

A formula is valid when its interpretation is true for every value given to the variables.
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Part II

Natural deduction
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Formalizing logic

People started to formalize the rules of logic:

• we can show meta-theoretic properties of logical systems,

• we can reason on proofs,

• we can build bridges to other things.

Some important advances are

• 1880: Frege’s Begriffsschrift

• 1990: Hilbert’s quest for foundations of mathematics

• 1920: Brouwer’s intuitionism

• 1930: Gentzen’s natural deduction
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Let’s shift from provability to proofs.
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Sequents

A context Γ is a list of formulas

A1, . . . ,An

A sequent

Γ ` A

consists of a context Γ together with a formula A.

An inference rule
Γ1 ` A1 . . . Γn ` An

Γ ` A

specifies when I can deduce a sequent from others / what I need to show in order to

prove a sequent.
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Intuitionistic natural deduction (NJ)

Γ,A, Γ′ ` A
(ax)

Γ ` A⇒ B Γ ` A

Γ ` B
(⇒E)

Γ,A ` B

Γ ` A⇒ B
(⇒I)

Γ ` A ∧ B

Γ ` A
(∧l

E)
Γ ` A ∧ B

Γ ` B
(∧r

E)
Γ ` A Γ ` B

Γ ` A ∧ B
(∧I)

Γ ` A ∨ B Γ,A ` C Γ,B ` C

Γ ` C
(∨E)

Γ ` A

Γ ` A ∨ B
(∨l

I)
Γ ` B

Γ ` A ∨ B
(∨r

I)

Γ ` ⊥

Γ ` A
(⊥E)

Γ ` >
(>I)
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Some remarks about the rules

Apart from the axiom, rules are either

• elimination rules: use a connective,

• introduction rules: show a connective.

The leaves are axiom (or > introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of >.

The principal premise is the leftmost premise of an elimination rule.

12



Some remarks about the rules

Apart from the axiom, rules are either

• elimination rules: use a connective,

• introduction rules: show a connective.

The leaves are axiom (or > introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of >.

The principal premise is the leftmost premise of an elimination rule.

12



Some remarks about the rules

Apart from the axiom, rules are either

• elimination rules: use a connective,

• introduction rules: show a connective.

The leaves are axiom (or > introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of >.

The principal premise is the leftmost premise of an elimination rule.

12



Some remarks about the rules

Apart from the axiom, rules are either

• elimination rules: use a connective,

• introduction rules: show a connective.

The leaves are axiom (or > introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of >.

The principal premise is the leftmost premise of an elimination rule.

12



Some remarks about the rules

Apart from the axiom, rules are either

• elimination rules: use a connective,

• introduction rules: show a connective.

The leaves are axiom (or > introduction) rules: all the other rules have premises.

The axiom is the only way to “use” a formula in the context.

There is no introduction of ⊥ and elimination of >.

The principal premise is the leftmost premise of an elimination rule.

12



Proofs

A proof is a tree formed with the derivation rules of NJ.

A sequent Γ ` A is provable when it is the conclusion of some proof.

A formula A is provable when the sequent ` A is.
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A proof of A⇒ A

` A⇒ A
(⇒I)
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Correctness of the boolean interpretation

Proposition (Correctness)
The boolean interpretation is correct with respect to the rules:

if A is provable then A is valid.

Proof.
We say that a sequent Γ ` A is valid if A is true for every valuation ρ which makes the

formulas in Γ true.

Show that for every deduction rule if the premises are valid then the conclusion is

valid.

By contraposition: if A is not valid then it is not provable.

16



Correctness of the boolean interpretation

Proposition (Correctness)
The boolean interpretation is correct with respect to the rules:

if A is provable then A is valid.

Proof.
We say that a sequent Γ ` A is valid if A is true for every valuation ρ which makes the

formulas in Γ true.

Show that for every deduction rule if the premises are valid then the conclusion is

valid.

By contraposition: if A is not valid then it is not provable.

16



Correctness of the boolean interpretation

Proposition (Correctness)
The boolean interpretation is correct with respect to the rules:

if A is provable then A is valid.

Proof.
We say that a sequent Γ ` A is valid if A is true for every valuation ρ which makes the

formulas in Γ true.

Show that for every deduction rule if the premises are valid then the conclusion is

valid.

By contraposition: if A is not valid then it is not provable.

16



Correctness of the boolean interpretation

Proposition (Correctness)
The boolean interpretation is correct with respect to the rules:

if A is provable then A is valid.

Proof.
We say that a sequent Γ ` A is valid if A is true for every valuation ρ which makes the

formulas in Γ true.

Show that for every deduction rule if the premises are valid then the conclusion is

valid.

By contraposition: if A is not valid then it is not provable.

16



Correctness of the boolean interpretation

An major property of a logical system is that it is consistency: there is at least one

formula which is not provable.

Lemma
A logical system is consistent if and only if ⊥ is not provable.

Proof.

Recall that the elimination rule for negation is
Γ ` ⊥

Γ ` A
(⊥E).

Proposition
The system NJ is consistent.

Proof.
If ⊥ was provable then, by correctness, it would be valid wrt the boolean

interpretation, which it is not, by definition.
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Completeness of the boolean interpretation

The completeness of the boolean interpretation would be the converse: every valid

formula is provable.

This is not true: essentially, we miss the fact that ¬¬A⇒ A, more on this later.
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Part III

The Curry-Howard correspondence
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Types in functional programming languages

In modern languages, everything has a type:

expression type

3

int

true bool

fun x -> 2 * x int -> int

fun x -> (2 * x, "A") int -> int * string

fun x -> (x, "A") ’a -> ’a * string

fun x y -> x ’a -> ’b -> ’a

fun x -> x x

20
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Types in functional programming languages

In modern languages, everything has a type:

expression type

3 int
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fun x -> (2 * x, "A") int -> int * string

fun x -> (x, "A") ’a -> ’a * string

fun x y -> x ’a -> ’b -> ’a

fun x -> x x

Namely, the type of x should be of the form ’a -> ’b with ’a = (’a -> ’b), i.e.

((... -> ’b) -> ’b) -> ’b
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Types in functional programming languages

In good languages, typing is

• static: checked at compilation time

• safe: if a program of a given type produces a values then it is of the expected form

e.g. a program of type int will produce an integer, typically

let n : int = 6 + 2

but the following is rejected

let n : int = 3 + "a"

but the following is accepted

let rec loop x = loop x

let n : int = loop "a"
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Simply typed λ-calculus

For simplicity, let us consider a language where types are of the form

• constants (e.g. int, bool, . . . ),

• A→ B: a function taking an A and producing a B,

• A× B: a pair of an A and a B,

• 1: unit.

A terms t (= a program) is of the form

• a constant (natural numbers, booleans, etc.)

• a variable x ,

• λxA.t: the function which to x associates t (in OCaml: fun (x : A) -> t),

• t u: we apply the function t to u,

• 〈t, u〉: a pair,

• πl(t), πr(t): the projections,

• 〈〉: unit.
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Typing rules

A context Γ is a list

x1 : A1, . . . , xn : An

of pairs consisting of a variable xi and a type Ai (all the variables we know of).

A sequent is a triple

Γ ` t : A

consisting of a context Γ a term t and a type A (a typing judgment).

A term t has type A when ` t : A can be derived using the typing rules.
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Typing rules

Γ, x : A, Γ′ ` x : A
(ax)

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B
(→E)

Γ, x : A ` t : B

Γ ` λxA.t : A→ B
(→I)

Γ ` t : A× B

Γ ` πl(t) : A
(×l

E)
Γ ` t : A× B

Γ ` πr (t) : B
(×r

E)
Γ ` t : A Γ ` u : B

Γ ` 〈t, u〉 : A× B
(×I)

Γ ` 〈〉 : 1
(1I)
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A typing example

` λf A→A.λxA.f (f x) : (A→ A)→ A→ A
(→I)
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A typing example

f : A→ A, x : A ` x : A
(ax)

f : A→ A ` λxA.x : A→ A
(→I)

` λf A→A.λxA.x : (A→ A)→ A→ A
(→I)
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Uniqueness of typing

Note that depending on a term at most one rule applies:

Proposition (Uniqueness of typing)
Given a term t such that Γ ` t : A and Γ ` t : A′ are derivable then A = A′

and given two derivations

π

Γ ` t : A

π′

Γ ` t : A

we have π = π′.

Proof.
By induction on the derivations.
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The Curry-Howard correspondence

A very simple observation is that if we “erase” terms in typing rules and slightly

change the notations of connectives

typing logic

→ ⇒
× ∧
1 >

we obtain the rules of logic, for instance:

Γ ` t : A Γ ` u : B

Γ ` 〈t, u〉 : A× B
(×I)  

Γ ` A Γ ` B

Γ ` A ∧ B
(∧I)
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The Curry-Howard correspondence

Γ, x : A, Γ′ ` x : A
(ax)

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B
(→E)

Γ, x : A ` t : B

Γ ` λxA.t : A→ B
(→I)

Γ ` t : A× B

Γ ` πl(t) : A
(×l

E)
Γ ` t : A× B

Γ ` πr (t) : B
(×r

E)
Γ ` t : A Γ ` u : B

Γ ` 〈t, u〉 : A× B
(×I)

Γ ` 〈〉 : 1
(1I)
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The Curry-Howard correspondence

Γ,

x :

A, Γ′ `

x :

A
(ax)

Γ `

t :

A⇒ B Γ `

u :

A

Γ `

t u :

B
(⇒E)

Γ,

x :

A `

t :

B

Γ `

λxA.t :

A⇒ B
(⇒I)

Γ `

t :

A ∧ B

Γ `

πl(t) :

A
(∧l

E)
Γ `

t :

A ∧ B

Γ `

πr (t) :

B
(∧r

E)
Γ `

t :

A Γ `

u :

B

Γ `

〈t, u〉 :

A ∧ B
(∧I)

Γ `

〈〉 :

>
(>I)

29



The Curry-Howard correspondence

Theorem
There is a bijection between given a context Γ and a type A

i. terms t such that Γ ` t : A is derivable,

ii. typing derivations Γ ` t : A for some t,

iii. proofs of Γ ` A.

This extends to richer fragments (disjunctions, quantifications, etc.).
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The Curry-Howard correspondence

`

λf A→A.λxA.f (f x)

: (A→ A)→ A→ A

(→I)
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The Curry-Howard correspondence

Γ ` f : A→ A
(ax)

Γ ` f : A→ A
(ax)

Γ ` x : A
(ax)

Γ ` f x : A
(→E)

f : A→ A, x : A ` f (f x) : A
(→E)

f : A→ A ` λxA.f (f x) : A→ A
(→I)

` λf A→A.λxA.f (f x) : (A→ A)→ A→ A
(→I)
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The Curry-Howard correspondence

Γ `

f :

A⇒ A
(ax)

Γ `

f :

A⇒ A
(ax)

Γ `

x :

A
(ax)

Γ `

f x :

A
(⇒E)

f :

A⇒ A,

x :

A `

f (f x) :

A
(⇒E)

f :

A⇒ A `

λxA.f (f x) :

A⇒ A
(⇒I)

`

λf A⇒A.λxA.f (f x) :

(A⇒ A)⇒ A⇒ A
(⇒I)
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Part IV

Semantics of propositional logic
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The set-theoretic interpretation

This suggests that the interpretation of formulas as booleans is very poor.

We would rather like to interpret formulas as sets, typically

JintK = N

Suppose fixed an interpretation of base types as above, we extend the interpretation as

• JA⇒ BK = JAK→ JBK is the set of functions from JAK to JBK,

• JA ∧ BK = JAK× JBK is the cartesian product of JAK and JBK,

• J>K = {?} is the set with one element.
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The set-theoretic interpretation

We extend the interpretation to contexts

Γ = A1, . . . ,An

by

JΓK = JA1K× . . .× JAnK

Finally, we extend the interpretation to proofs by

JΓ ` t : AK ∈ JΓK→ JAK

by induction on their derivation.
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The set-theoretic interpretation

For instance, suppose that our proof ends with

Γ ` t : A Γ ` u : B

Γ ` 〈t, u〉 : A× B
(×I)

By induction hypothesis we have

JΓ ` t : AK ∈ JΓK→ JAK JΓ ` u : BK ∈ JΓK→ JBK

and we define

JΓ ` 〈t, u〉 : A× BK : JΓK→ JAK× JBK

g 7→ (JΓ ` t : AK(g), JΓ ` u : BK(g))
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The set-theoretic interpretation

For instance, suppose that our proof ends with

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B
(→E)

By induction hypothesis we have

JΓ ` t : A→ BK ∈ JΓK→ (JAK→ JBK) JΓ ` u : AK ∈ JΓK→ JAK

and we define

JΓ ` t u : BK : JΓK→ JBK

g 7→ JΓ ` t : A→ BK(g)(JΓ ` u : AK(g))

Other cases are “similar”.
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The set-theoretic interpretation

This can further be extended to other connectives by setting

JA ∨ BK = JAK t JBK

and

J⊥K = ∅

and

J¬AK = JA⇒ ⊥K = JAK→ ∅
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The set-theoretic interpretation

We recover the previous interpretation by considering whether a set is empty or not:

A⇒ B ∅ 1

∅ 1 1

1 ∅ 1

A ∧ B ∅ 1

∅ ∅ ∅
1 ∅ 1

A ∨ B ∅ 1

∅ ∅ 1

1 1 1

¬A
∅ 1

1 ∅

We have shifted from provability to proofs!
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Classical logic

The interpretation of negation is

J¬AK = JA⇒ ⊥K = JAK→ ∅

Thus,

J¬AK =

∅ if A 6= ∅,

{?} if A = ∅,

and J¬¬AK =

∅ if JAK = ∅,

{?} if JAK 6= ∅.

We thus understand why we cannot expect to have a proof of

¬¬A⇒ A

in general! And that doubly negated formulas behave as in the boolean interpretation.
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Classical logic

If we add the rule
Γ ` ¬¬A

Γ ` A
(¬¬E)

we obtain classical logic.

Theorem
The boolean interpretation is correct and complete for classical logic.
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Part V

Dynamics

41



Executing programs

What makes programs interesting is that one can execute them.

In λ-calculus, execution is called β-reduction and consists in the rule

(λx .t) u −→β t[x := u]

which can be applied anywhere in a term.

For instance, if we define

double = λx .x + x

we have

double 5 = (λx .x + x) 5 −→β 5 + 5
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Executing programs

We should also add rules for products:

(λx .t) u −→β t[x := u]

πl 〈t, u〉 −→β t

πr 〈t, u〉 −→β u

A redex is a subterm which can reduce.
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Subject reduction

One of the most important properties of typing systems is called subject reduction:

Theorem
If Γ ` t : A is derivable and t −→β t ′ then Γ ` t ′ : A is also derivable.

Proof.
Transform the proof of Γ ` t : A into a proof of Γ ` t ′ : A.

It means that if a term is check to have type int, it will never reduce to "a".
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Subject reduction: proof

Suppose that Γ ` t : A and t −→β t ′ using the rule

πl〈u, v〉 −→β u

This means that the typing derivation of t will contain a subproof of the form

Γ ` πl〈u, v〉 : A

(×l
E)

 

...

Γ ` u : A

There is a “similar” transformation in the case where the rule is

(λx .t)u −→β t[x := u]
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Subject reduction: proof

Suppose that Γ ` t : A and t −→β t ′ using the rule

πr〈u, v〉 −→β v

This means that the typing derivation of t will contain a subproof of the form
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Γ ` 〈u, v〉 : A× B
(×I)

Γ ` πr〈u, v〉 : A
(×r

E)  

...

Γ ` v : B

There is a “similar” transformation in the case where the rule is

(λx .t)u −→β t[x := u]
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Cut elimination

By the Curry-Howard correspondence, we can interpret these operations as proof

transformations:

...

Γ ` u : A

...

Γ ` v : B

Γ ` 〈u, v〉 : A× B
(×I)

Γ ` πl〈u, v〉 : A
(×l

E)  

...

Γ ` u : A

Such a situation is called a cut (= introduction and elimination of a connective) and

this transformation is called cut elimination.
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Cut elimination

By the Curry-Howard correspondence, we can interpret these operations as proof

transformations:

...

Γ `

u :

A

...

Γ `

v :

B

Γ `

〈u, v〉 :

A ∧ B
(∧I)

Γ `

πl〈u, v〉 :

A
(∧l

E)  

...

Γ `

u :

A

Such a situation is called a cut (= introduction and elimination of a connective) and

this transformation is called cut elimination.
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Cut elimination

In the case of ⇒, it relies on the fact that the following rule is admissible:

Γ ` A Γ,A ` B

Γ ` B
(cut)

which corresponds to preservation of typing under substitutions.

Note that this rule has the following particular case:

A ` B B ` C

A ` C
(cut)
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Cut-elimination

The major theorem of proof theory:

Theorem (Strong normalization)
The reduction of any typable term Γ ` t : A eventually stops.

Theorem (Cut elimination)
If a sequent Γ ` A is provable then it admits a proof without cut.

Proof.
Apply previous theorem through Curry-Howard.

There are wonderful consequences of this (coherence, improvability of ¬¬A⇒ A, etc.)

but this will be for another time.

48



Cut-elimination

The major theorem of proof theory:

Theorem (Strong normalization)
The reduction of any typable term Γ ` t : A eventually stops.

Theorem (Cut elimination)
If a sequent Γ ` A is provable then it admits a proof without cut.

Proof.
Apply previous theorem through Curry-Howard.

There are wonderful consequences of this (coherence, improvability of ¬¬A⇒ A, etc.)

but this will be for another time.

48



Cut-elimination

The major theorem of proof theory:

Theorem (Strong normalization)
The reduction of any typable term Γ ` t : A eventually stops.

Theorem (Cut elimination)
If a sequent Γ ` A is provable then it admits a proof without cut.

Proof.
Apply previous theorem through Curry-Howard.

There are wonderful consequences of this (coherence, improvability of ¬¬A⇒ A, etc.)

but this will be for another time.

48



Cut-elimination

The major theorem of proof theory:

Theorem (Strong normalization)
The reduction of any typable term Γ ` t : A eventually stops.

Theorem (Cut elimination)
If a sequent Γ ` A is provable then it admits a proof without cut.

Proof.
Apply previous theorem through Curry-Howard.

There are wonderful consequences of this (coherence, improvability of ¬¬A⇒ A, etc.)

but this will be for another time.

48



Correctness of set-theoretic semantics

Theorem
The set-theoretic semantics is correct, in the sense that it is invariant under reduction

(= cut elimination): given a derivation of Γ ` t : A if t −→β t ′ then

JΓ ` t : AK = JΓ ` t ′ : AK

This can be seen as a modularity principle: the behavior of the whole program can be

determined from its components only (and not the interactions they can have).
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Denotational semantics

Definition
A semantics of a programming language is denotational when it is invariant under

reduction (and “co-reduction” / extensionality).

There are many alternatives to plain sets and functions:

• we might want to model more features:

fixpoints [while] (domains), equality (spaces / HoTT), etc.

• we might want to capture more precisely the language:

the interactive behavior (game semantics), etc.

• we might want to remove all functions which are not interpretations of programs.
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η-reduction

The “co-cuts” correspond to η-reduction which express some form of extensionality

λx .tx −→η t 〈πlt, πrt〉 −→η t

On the typing side:

...

Γ ` t : A× B

Γ ` πlt : A
(×l

E)

...

Γ ` t : A× B

Γ ` πrt : B
(×r

E)

Γ ` 〈πlt, πrt〉 : A× B
(×I)  

...

Γ ` t : A× B

51



η-reduction

The “co-cuts” correspond to η-reduction which express some form of extensionality

λx .tx −→η t 〈πlt, πrt〉 −→η t

On the typing side:

...

Γ ` t : A× B

Γ ` πlt : A
(×l

E)

...

Γ ` t : A× B

Γ ` πrt : B
(×r

E)

Γ ` 〈πlt, πrt〉 : A× B
(×I)  

...

Γ ` t : A× B

51



Part VI

Categorical semantics

52



Categorical axiomatization

Instead of checking each time that the model is denotational, people have studied

categorical axiomatizations.

We define algebraic structures on categories which ensure that

• operations: there is a canonical interpretation of proofs in those categories,

• axioms: the interpretation of proofs is invariant under reduction.
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Categories

A category C consists of

• a set of objects A,B, . . .

• a set of morphisms C(A,B) for every objects A and B

• a composition operations and identities

such that

• composition is associative: h ◦ (g ◦ f ) = (h ◦ g) ◦ f
• identities are neutral elements: id ◦f = f = f ◦ id.

Typically:

• the category Set of sets and functions,

• Top, Vect, ...
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Categories

The identity will correspond to the interpretation of

A ` A
(ax)

and composition to

A ` B B ` C

A ` C
(cut)

The axioms of categories will ensure that the interpretation is invariant under

cut-elimination.
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Cartesian categories

In order to interpret conjunction, we need for every objects A and B, an object A× B:

JA ∧ BK = JAK× JBK

We also need “projection” morphisms:

πA,B : A× B → A π′A,B : A× B → B

which interpret

A ∧ B ` A ∧ B
(ax)

A ∧ B ` A
(∧l

E)
A ∧ B ` A ∧ B

(ax)

A ∧ B ` B
(∧r

E)
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Cartesian categories

Given morphisms f : C → A and g : C → B, we need a morphism 〈f , g〉 : C → A× B:

Γ ` A Γ ` B

Γ ` A ∧ B
(∧I)

Moreover, invariance under cut elimination

...

Γ ` A

...

Γ ` B

Γ ` A ∧ B
(∧I)

Γ ` A
(∧l

E)  

...

Γ ` A

will impose
π ◦ 〈f , g〉 = f

π′ ◦ 〈f , g〉 = g

〈π ◦ f , π′ ◦ f 〉 = f
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Cartesian categories

A cartesian product of A and B in a category C is

C

A× B

A B

f
〈f ,g〉

g

π π′
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Cartesian closed categories

In order to interpret our fragment of logic we need a cartesian closed category:

• a category

• with cartesian products

• with a terminal object 1 to interpret >:

A 1

• with an exponential closure to interpret ⇒:

C(A× B,C ) ' C(A,B → C )
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Cartesian closed categories

Theorem (Soundness)
We have a denotational semantics of our logic in every cartesian closed category.

Theorem (Completeness)
Every categorical model of our logic has to be cartesian closed.
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Cartesian closed categories

Theorem (Soundness)
We have a denotational semantics of our logic in every cartesian closed category.

Theorem (Completeness)
Every categorical model of our logic has to be cartesian closed.

logics semantics

categories
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Part VII

Linear logic
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Reasoning about resources

A λ-term can use its argument many times:

λx .x + x

including zero times:

λx .0

Linear logic: we would like to distinguish between variables which can be used exactly

once or not in order to

• take resources in account,

• take complexity in account,

• have a fine grained understanding of logic.
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The linear λ-calculus

Let’s try to modify the rules for the λ-calculus in order to capture linear λ-terms only,

where each variable is used exactly once.

λx .λy .〈x , y〉 λx .λy .yx λx .λy .x λx .λy .xyy

linear linear not linear not linear

The main idea is that in sequents, the context Γ maintains the variables we are aware

of, which can be thought of as resources that we should handle carefully.
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Contraction

A rule is admissible when if we can derive the premises then we can derive the

conclusion.

Lemma
The following contraction rule is admissible:

Γ,A,A ` B

Γ,A ` B
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Contraction

Lemma
The following contraction rule is admissible:

Γ,A,A ` B

Γ,A ` B

Categorically,

A

A

A× A B

A

f
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Contraction

Lemma
The following contraction rule is admissible:

Γ,A,A ` B

Γ,A ` B

Categorically,

A

A A× A B

A

idA

idA

π

π′

f
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Contraction

Lemma
The following contraction rule is admissible:

Γ,A,A ` B

Γ,A ` B

Categorically,

A

A A× A B

A

idA

idA

δ

π

π′

f

In sets: δ(x) = (x , x).

This means that from (x , y) 7→ f (x , y), we can construct x 7→ f (x , x)! 65



Contraction

Lemma
The following contraction rule is admissible:

Γ,A,A ` B

Γ,A ` B

Categorically,

A

A A× A B

A

idA

idA

δ

π

π′

f

Closely related to the fact that we have the proof
A ` A

(ax)
A ` A

(ax)

A ` A ∧ A
(∧I) .
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Tensor

In linear logic, the traditional additive conjunction is noted &

Γ ` A & B

Γ ` A
(&l

E)
Γ ` A & B

Γ ` B
(&r

E)
Γ ` A Γ ` B

Γ ` A & B
(&I)

It allows deducing
A ` A

(ax)
A ` A

(ax)

A ` A & A
(&I)

We want to replace it by a multiplicative conjunction ⊗ which does not allow this

Γ ` A⊗ B Γ′,A,B ` C

Γ, Γ′ ` C
(⊗E)

Γ ` A Γ′ ` B

Γ, Γ′ ` A⊗ B
(⊗I)
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Linear implication

Similarly, we change the rules for implication to

Γ ` A( B Γ′ ` A

Γ, Γ′ ` B
((E)

Γ,A ` B

Γ ` A( B
((I)
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Axiom and unit

We replace the axiom rule

Γ,A ` A
(ax)

by

A ` A
(ax)

Similarly, we replace

Γ ` >
(>I)

by

` 1
(1I)
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Exchange

We also need to allow exchanging hypothesis in the context

Γ,B,A, Γ′ ` C

Γ,A,B, Γ′ ` C
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The simply-typed linear λ-calculus

Theorem
The λ-terms typable with ⊗, 1 and ( are precisely the λ-terms which

• are typable in the previous sense and

• linear.
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The simply-typed linear λ-calculus

The models of this logic are symmetric monoidal closed categories:

• monoidal: there is an object 1, and objects and morphisms equipped with a

binary operation ⊗ together with isomorphisms

αA,B,C : (A⊗ B)⊗ C ' A⊗ (B ⊗ C ) λA : 1⊗ A ' A

ρA : A⊗ 1 ' A

satisfying axioms

• symmetric:

γA,B : B ⊗ A→ A⊗ B

• closed: there is a closure

Hom(A⊗ B,C ) ' Hom(A,B ( C )

71



The simply-typed linear λ-calculus

The models of this logic are symmetric monoidal closed categories:

• monoidal: there is an object 1, and objects and morphisms equipped with a

binary operation ⊗ together with isomorphisms

αA,B,C : (A⊗ B)⊗ C ' A⊗ (B ⊗ C ) λA : 1⊗ A ' A

ρA : A⊗ 1 ' A

satisfying axioms

• symmetric:

γA,B : B ⊗ A→ A⊗ B

• closed: there is a closure

Hom(A⊗ B,C ) ' Hom(A,B ( C )

71



The simply-typed linear λ-calculus

The models of this logic are symmetric monoidal closed categories:

• monoidal: there is an object 1, and objects and morphisms equipped with a

binary operation ⊗ together with isomorphisms

αA,B,C : (A⊗ B)⊗ C ' A⊗ (B ⊗ C ) λA : 1⊗ A ' A

ρA : A⊗ 1 ' A

satisfying axioms

• symmetric:

γA,B : B ⊗ A→ A⊗ B

• closed: there is a closure

Hom(A⊗ B,C ) ' Hom(A,B ( C )
71



The simply-typed linear λ-calculus

Every typing derivation of a linear λ-term is a valid non-linear one: in terms of models,

we have that every cartesian closed category is a symmetric monoidal closed category.

Conversely, a symmetric monoidal closed category is a cartesian closed one when we

have the ability of duplicating and erasing objects:

Theorem
A monoidal category is cartesian precisely when for every object A is equipped with

δA : A→ A⊗ A ε1 : A→ 1

compatible with other morphisms and coassociative, counital and cocommutative:

A A⊗ A (A⊗ A)⊗ A

A⊗ A A⊗ (A⊗ A)

δA

δA δA⊗A

∼

A⊗δA

A

1⊗ A A⊗ A A⊗ 1

∼

εA⊗A

δA

A⊗εA

∼
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Linear logic

Linear logic builds on these observations and incorporates both worlds:

conjunction

disjunction

multiplicative ⊗

`

additive &

⊕

We write A∗ for the dual of a formula:

(A⊗ B)∗ = A∗ ` B∗ (A ` B)∗ = A∗ ⊗ B∗ (A & B)∗ = A∗ ⊕ B∗ . . .

It can be shown that we can define

A( B = A∗ ` B

(akin A⇒ B = ¬A ∨ B in classical logic).
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The exponential

In order to relate both worlds, linear logic introduces a last connective the

exponential !

(and its dual ?).

The intuition is that !A is an A which an be used any number of times, something like

!A =
⊗
n=0

A⊗n/ ∼

we will see the formal rules later on (if we have time), but we should have maps

!A( A !A(!!A
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The exponential

The main properties of exponential are that

• it turns additives into multiplicatives:

!(A & B) (( !A⊗!B

• we can recover the usual implication as

A⇒ B = !A( B
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Part VIII

The relational model
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The relational model

In order to gain intuition, we can build the following model of the logic we have so far,

in the category Rel of sets and relations.

We interpret A as a set:

• JA⊗ BK = JA ` BK = JA( BK = JAK× JBK

• JA & BK = JA⊕ BK = JAK t JBK

A proof π of A ` B is interpreted as a relation between JAK and JBK:

JπK ⊆ JAK× JBK

(intuitively, (a, b) ∈ JπK means that b is a possible result for a)
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The relational model: axiom

The axiom

A ` A
(ax)

is interpreted as the identity relation:

JA ` AK = {(a, a) | a ∈ JAK} ⊆ JAK× JAK
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The relational model: cut

For the cut rule
ρ

A ` B

σ

B ` C

A ` C
(cut)

given the respective interpretations

R ⊆ JAK× JBK S ⊆ JBK× JBK

of ρ and σ, we define the interpretation of the proof as

S ◦ R = {(a, c) ∈ JAK× JCK | (a, b) ∈ R and (b, c) ∈ S}
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The relational model

We thus interpret proof in the category Rel with

• sets as objects,

• relations as morphisms,

• compositions and identities defined as above.

When we interpret

JA⊗ BK = JAK× JBK JA & BK = JAK t JBK

The cartesian product (in terms of the categorical property) is the second one,

the first only induces a monoidal structure.
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Exponential

The exponential !A is interpreted as

J!AK = Mfin(JAK)

the set of finite multisets of elements of JAK, i.e. lists of elements of JAK considered up

to permutation.

For instance, we can check that we have the required isomorphism

J!(A & B)K ' J!A⊗!BK
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Enriching over sets

This model is not the most informative (every connective is interpreted as its dual, it is

not fully abstract, etc.).

A refined variant of this it can be obtained as follows.

The interpretation of a proof π of A ` B is

JπK ⊆ JAK× JBK

and (a, b) ∈ JπK means that b is a possible result for a, but we do not track why!
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Enriching over sets

A relation

R ⊆ X × Y

can alternatively be seen as a function

(X × Y )→ {0, 1}

We should get a better behaved model by switching to functions

(X × Y )→ Set
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Enriching over sets

We can extend previous constructions in order to get a “model” of linear logic.

Given two “relations”

R : X × Y → Set S : Y × Z → Set

their composite is given by

S ◦ R(x , z) =
⊔
y∈Y

R(x , y)× S(y , z)

it is not strictly associative but only associative up to isomorphism.

We thus get a (bi)category of sets and “generalized relations”, which corresponds to

Girard’s model of normal functors or Kock’s polynomial functors.
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Enriching over sets

In this model, the functions

A⇒ B = !A( B

are interpreted as “relations” R in

(MfinJAK× JBK)→ Set

An element of

R(a1a2 . . . an, b)

can be interpreted as an operation

a1

a2

...
an

b

and composition corresponds to the expected composition of trees.
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Generalized species

The exponential is interpreted as

!A = Mfin(JAK) = {a1 . . . an ∈ A∗ | n ∈ N}/ ∼

where we identify

a1 . . . an ∼ aσ(1) . . . aσ(n)

for every permutation σ ∈ Σn.

We would like to avoid quotienting and keep this action explicit.
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Generalized species

This suggests another generalization of the model [Fiore, Gambino, Hyland]:

• we model objects as groupoids,

• morphisms are functors (= profunctors)

(X × Y )→ Set

• the exponential !X is the free symmetric monoidal category on X .
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Generalized species

In particular, morphisms !1→ 1

• where functions N→ Set in previous model,

• are now functors Bij→ Set.

In this sense morphisms !A→ B are generalized species.

This suggests studying categorical structures present in this category, as well as further

generalizations of it.
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Questions?
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Part IX

Rules for linear logic
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Sequent calculus

In order to formulate the usual rules of linear logic, we perform two changes:

• we use sequent calculus instead of natural deduction: we change

Γ ` A Γ ` B

Γ ` A & B
(&R)

to

Γ,A ` ∆

Γ,A & B ` C
(&l

L)
Γ,B ` ∆

Γ,A & B ` C
(&r

L)
Γ ` A Γ ` B

Γ ` A & B
(&R)

• we shift to classical logic by allowing multiple sequents on the right: sequents are

of the form

Γ ` ∆
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Linear logic: categorical rules

Categorical rules:

Γ ` Γ
(ax)

Γ ` A,∆ Γ′,A ` B,∆′

Γ, Γ′ ` B,∆,∆′
(cut)

Structural rules:
Γ,B,A, Γ′ ` ∆

Γ,A,B, Γ′ ` ∆

Γ ` ∆,B,A,∆′

Γ ` ∆,A,B,∆′
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Linear logic: multiplicative rules

Multiplicative conjunction:

Γ,A,B ` ∆

Γ,A⊗ B ` ∆
(⊗L)

Γ ` A,∆ Γ′ ` B,∆

Γ, Γ′ ` A⊗ B,∆,∆′
(⊗R)

Multiplicative truth:

Γ ` A

Γ, 1 ` A
(1L)

` 1
(1R)

Multiplicative disjunction:

Γ,A ` ∆ Γ′,B ` ∆′

Γ, Γ′,A ` B ` ∆,∆′
(`L)

Γ ` A,B,∆

Γ ` A ` B,∆
(`R)

Multiplicative falsity:

⊥ `
(⊥L)

Γ ` ∆

Γ ` ⊥,∆
(⊥R)
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Linear logic: additives

Additive conjunction:

Γ,A ` ∆

Γ,A & B ` ∆
(&l

L)
Γ,B ` ∆

Γ,A & B ` ∆
(&r

L)
Γ ` A,∆ Γ ` B,∆

Γ ` A & B,∆
(&R)

Additive truth:

Γ ` >,∆
(>R)

Additive disjunction:

Γ,A ` ∆ Γ,B ` ∆

Γ,A⊕ B ` ∆
(⊕L)

Γ ` A,∆

Γ ` A⊕ B,∆
(⊕l

R)
Γ ` B,∆

Γ ` A⊕ B,∆
(⊕r

R)

Additive falsity:

Γ, 0 ` ∆
(0L)
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Linear logic: exponentials

Bang:

Γ,A ` ∆

Γ, !A ` ∆

Γ ` ∆

Γ, !A ` ∆

Γ, !A, !A ` ∆

Γ, !A ` ∆

!Γ ` A, ?∆

!Γ `!A, ?∆

Maybe:

Γ ` A,∆

Γ `?A,∆

Γ ` ∆

Γ `?A,∆

Γ `?A, ?A,∆

Γ `?A,∆

!Γ,A `?∆

!Γ, ?A `?∆

(dereliction / weakening / contraction / promotion)
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