A Local View on Innocence

Samuel Mimram

Workshop in Roma

April 24th 2009

Congratulations Paolo!

Part I

Game Semantics

Denotational semantics

What are those programs/proofs doing?

Denotational semantics

What are those concurrent programs/proofs doing?

Game semantics

An interactive trace semantics:

- types are interpreted by games
- programs are interpreted by strategies

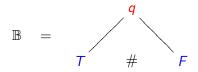
Games

A game

$$(M, \leq, \#, \lambda)$$

consists of

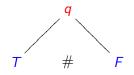
- a set of moves M
- a partial order \leq expressing causal dependencies
- a symmetric relation # expressing incompatibilities
- a polarization of the moves $\lambda : M \rightarrow \{ O, P \}$



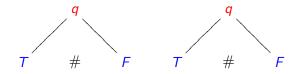
Strategies

- A **play** is a sequence of moves respecting the dependencies and the incompatibility.
- A strategy is a set of plays.

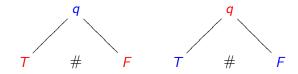
The game \mathbb{B} :



The game $\mathbb{B} \otimes \mathbb{B}$:

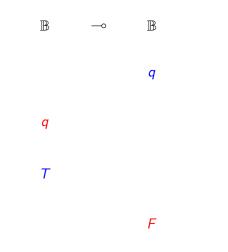


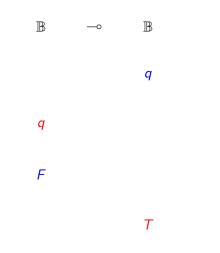
The game $\mathbb{B} \multimap \mathbb{B}$:



$\mathbb{B} \longrightarrow \mathbb{B}$

q

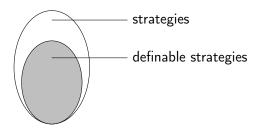




We get a model (of PCF / MLL / ...), but it's not very informative (yet).

Definable strategies

We have to characterize **definable** strategies (= strategies which are the interpretation of a proof)



Definable strategies

We have to characterize **definable** strategies (= strategies which are the interpretation of a proof)

Two series of work laid the foundations of game semantics:

- fully abstract models of PCF [HON,AJM]
- fully complete models of MLL [AJ,HO]

extended later on (references, control, non-determinism, \dots)

Definable strategies

We have to characterize **definable** strategies (= strategies which are the interpretation of a proof)

In these models, definable strategies are characterized using conditions such as innocence, bracketing, \ldots

innocent strategy \approx strategy behaving like a $\lambda\text{-term}$

We want to:

- build a model of MLL adapted to concurrency
- reformulate innocence in this model using local principles
- extend innocence to get a fully complete model of MLL
- define a unifying framework: recover preexisting models

Part II

Innocence

Arena games

In the framework of HO games:

- plays are alternating (and start with an Opponent move)
- strategies contain only even-length plays
- plays are pointed
- strategies σ are deterministic:

 $s \cdot m \in \sigma$ and $s \cdot n \in \sigma$ implies m = n

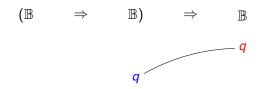
A strategy σ is **innocent** when it reacts only according to its view of the play:

 $s \cdot m \in \sigma$ and $\lceil s \rceil = \lceil t \rceil$ implies $t \cdot m \in \sigma$

Here, $\lceil s \rceil \sqsubseteq s$ is the **view** of the play *s*.

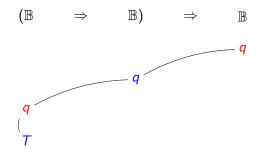
 1^{st} counter-example: uniformity

fun $f \rightarrow \cdots f \cdots$



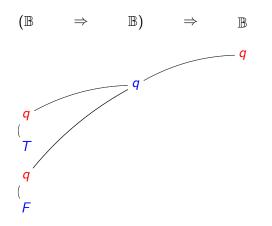
 1^{st} counter-example: uniformity

fun $f \rightarrow \cdots f$ true \cdots



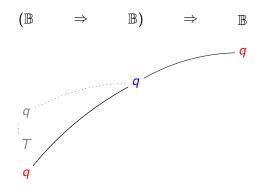
 1^{st} counter-example: uniformity

fun $f \rightarrow \cdots f$? \cdots

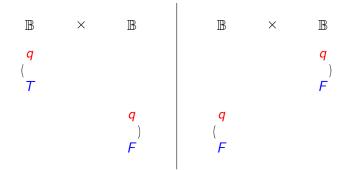


 1^{st} counter-example: uniformity

fun $f \rightarrow \cdots f$? \cdots



2nd counter example: history-freeness



Decomposing innocence

$$A \Rightarrow B = !A \multimap B$$

A linear decomposition of innocence:

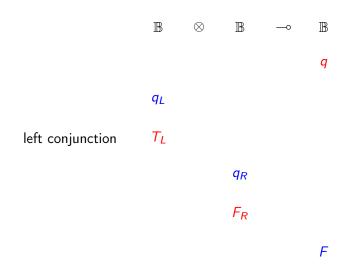
• !A is many copies of A which are handled uniformly

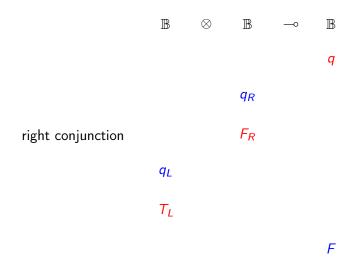
$$!A = \bigotimes_{\omega} A / \approx$$

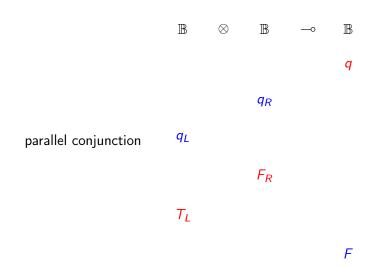
• innocent strategies on $A \multimap B$ are history-free

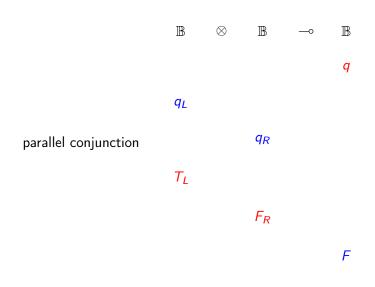
Part III

Asynchronous games







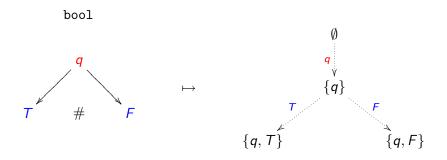


From plays to Mazurkiewicz traces Playing on asynchronous graphs



Definition asynchronous graph = graph + homotopy tiles

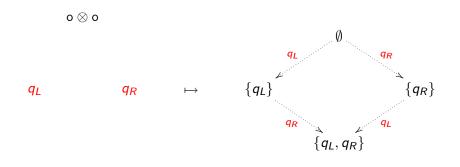
The asynchronous graph of a game



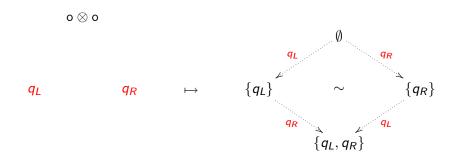
- Position: downward-closed set of compatible moves.
- Play: path from the initial position Ø.

The asynchronous graph of a game

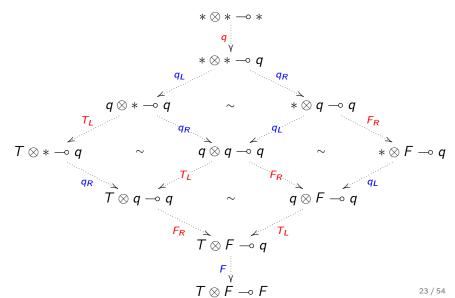
The asynchronous graph of a game



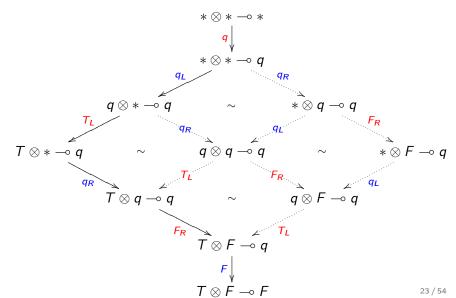
The asynchronous graph of a game



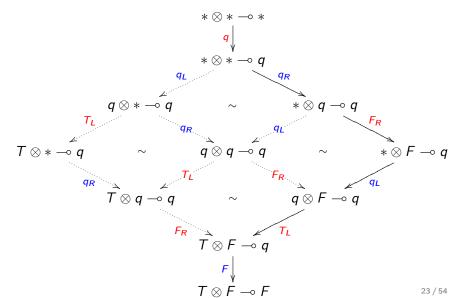
The game bool \otimes bool \multimap bool contains eight subgraphs:



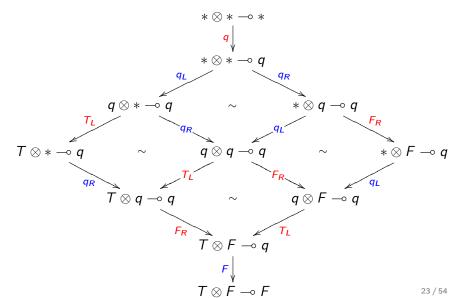
Left implementation of conjunction:



Right implementation of conjunction:



Parallel implementation of conjunction:



We want to be non-alternating!

MALL with lifts

• We consider here MALL formulas:

$$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \ \mathfrak{P} B}(\mathfrak{P}) \qquad \frac{\vdash \Gamma_1, A \vdash \Gamma_2, B}{\vdash \Gamma_1, \Gamma_2, A \otimes B}(\otimes)$$
$$\frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B}(\&) \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B}(\oplus)$$

MALL with lifts

• We consider here MALL formulas:

$$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \eth B}(\image) \qquad \frac{\vdash \Gamma_1, A \vdash \Gamma_2, B}{\vdash \Gamma_1, \Gamma_2, A \otimes B}(\bigotimes)$$
$$\frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B}(\&) \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B}(\oplus)$$

• with explicit lifts:

$$\frac{\vdash \Gamma, A}{\vdash \Gamma, \forall x. A} (\uparrow) \qquad \qquad \frac{\vdash [t/x]\Gamma, A}{\vdash \Gamma, \exists x. A} (\downarrow)$$

MALL with lifts

• We consider here MALL formulas:

$$\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \eth B}(\image) \qquad \frac{\vdash \Gamma_1, A \vdash \Gamma_2, B}{\vdash \Gamma_1, \Gamma_2, A \otimes B}(\bigotimes)$$
$$\frac{\vdash \Gamma, A \vdash \Gamma, B}{\vdash \Gamma, A \& B}(\&) \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B}(\oplus)$$

• with explicit lifts:

_

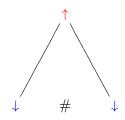
$$\frac{\vdash \Gamma, \mathcal{A}}{\vdash \Gamma, \uparrow \mathcal{A}}(\uparrow) \qquad \qquad \frac{\vdash \Gamma, \mathcal{A}}{\vdash \Gamma, \downarrow \mathcal{A}}(\downarrow)$$

The formula corresponding to booleans is

 $\mathbb{B} = \uparrow (\downarrow 1 \oplus \downarrow 1)$ \oplus

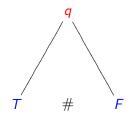
The formula corresponding to booleans is

 $\mathbb{B} = \uparrow (\downarrow 1 \oplus \downarrow 1)$



The formula corresponding to booleans is

 $\mathbb{B} = \uparrow (\downarrow 1 \oplus \downarrow 1)$



The formula corresponding to booleans is

 $\mathbb{B} = \uparrow (\downarrow 1 \oplus \downarrow 1)$ $\begin{array}{c} \ast \\ q \\ \downarrow \\ q \\ \downarrow \\ q \\ T \\ F \end{array}$

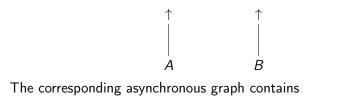
From proofs to strategies ted to $\uparrow A$ is of the form

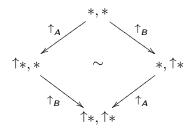
The game associated to $\uparrow A$

Α

The game associated to $\uparrow A \otimes \uparrow B = \uparrow A \ \Im \uparrow B$ is of the form

The game associated to $\uparrow A \otimes \uparrow B = \uparrow A \ \Re \uparrow B$ is of the form



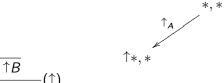


.

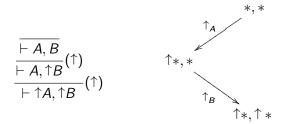
Three proofs of $\uparrow A \ \Im \uparrow B$:

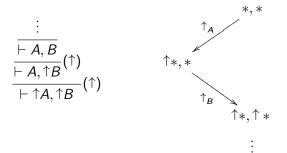
 ,

 $\vdash \uparrow A, \uparrow B$



$$\frac{\vdash A, \uparrow B}{\vdash \uparrow A, \uparrow B}(\uparrow)$$

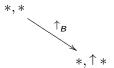




Three proofs of $\uparrow A \ \Im \uparrow B$:

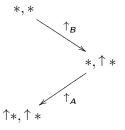
,

 $\vdash \uparrow A, \uparrow B$

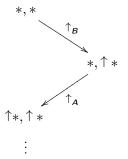


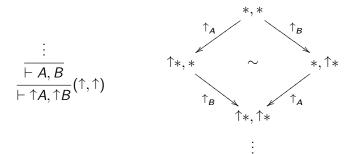
$$\frac{\vdash \uparrow A, B}{\vdash \uparrow A, \uparrow B}(\uparrow)$$

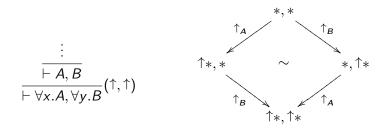
$$\frac{\overline{\vdash A,B}}{\vdash \uparrow A,B}(\uparrow) \\ \overline{\vdash \uparrow A,\uparrow B}(\uparrow)$$



$$\frac{\vdots}{\vdash A, B}{\vdash \uparrow A, B}(\uparrow) \\ \frac{\vdash \uparrow A, \uparrow B}{\vdash \uparrow A, \uparrow B}(\uparrow)$$





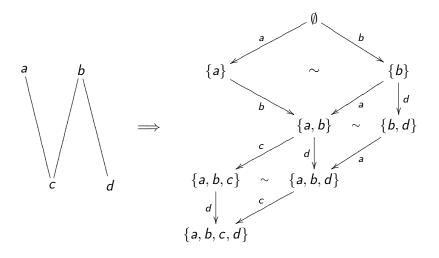


Proofs explore formulas

play = exploration of the formula proof = exploration strategy

From sequentiality to causality

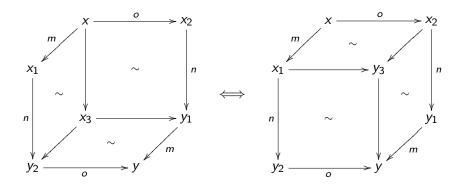
A game induces an asynchronous graph:



From sequentiality to causality

Conversely, one needs the Cube Property

The Cube Property



Theorem

Homotopy classes of paths are generated by a partial order on moves.

Asynchronous games

Definition

An **asynchronous game** is a pointed asynchronous graph satisfying the Cube Property.

Definition

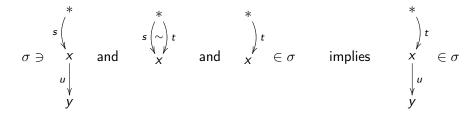
A strategy σ : A is a prefix closed set of plays on the asynchronous graph A.

How do we characterize "good" strategies?

Positional strategies

Definition

A strategy σ is **positional** when its plays form a subgraph of the game:



Ingenuous strategies

We consider strategies which **1** are **positional**,

We consider strategies which

- 1 are positional,
- 2 satisfy the Cube Property,

36 / 54

We consider strategies which

- 1 are positional,
- 2 satisfy the Cube Property,
- 3 satisfy

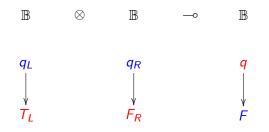


We consider strategies which

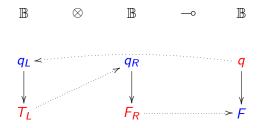
- 1 are positional,
- 2 satisfy the Cube Property,
- 3 satisfy ...
- 4 are deterministic:

where m is a Proponent move.

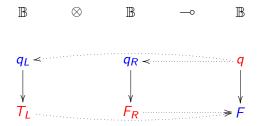
The game $\mathbb{B} \otimes \mathbb{B} \longrightarrow \mathbb{B}$:



The left conjunction



The parallel conjunction



A model of MLL

Property

Asynchronous games and strategies form a *-autonomous category (which is compact closed).

This category still has "too many" strategies!

$A \otimes B = A \ \mathcal{B} B$

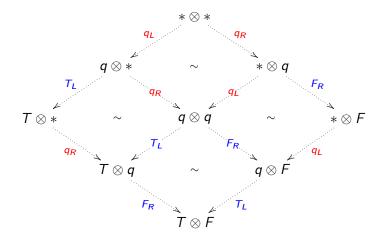
Halting positions

In the spirit of the relational model, a strategy σ should be characterized by its set σ° of halting positions.

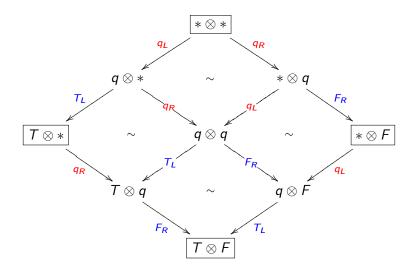
Definition

A halting position of a strategy σ is a position x such that there is no Player move $m : x \longrightarrow y$ that σ can play.

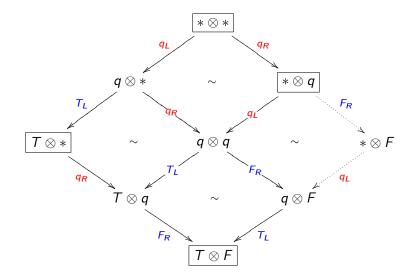
The game bool \otimes bool contains the subgraph:



The pair true \otimes false:



The left biased pair true \otimes false:



Courteous strategies

Definition

An ingenuous strategy σ is **courteous** when it satisfies

where m is a Player move.

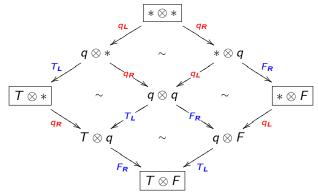
Theorem

A courteous ingenuous strategy σ is characterized by its set σ° of halting positions.

Concurrent strategies

The halting positions of such a strategy σ : *A* are precisely the fixpoints of a **closure operator** on the positions of *A*.

- We thus recover the model of **concurrent strategies**.
- A semantical counterpart of the **focalization** property: strategies can play all their Player moves in one "cluster" of moves.

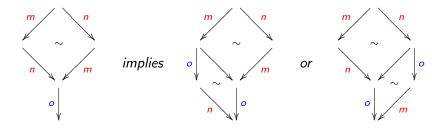


Innocence

Theorem

An innocent strategy σ : A is a strategy which is

- 1 ingenuous
- 2 courteous
- **3** receptive: if $s \in \sigma$ and $s \cdot m$ is a play then $s \cdot m \in \sigma$
- 4 sequential

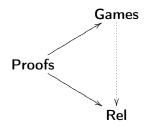


+ dual property

Sequentiality, which is an asynchronous counterpart of alternation, schedules composition and ensures that it will perform correctly.

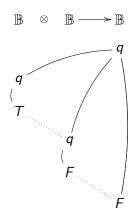
Without sequentiality...

The operation $(-)^{\circ}$ from the category of games and courteous ingenuous strategies to the category of relations is not functorial!

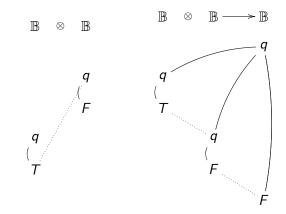


This mismatch is essentially due to **deadlock** situations occurring during the interaction.

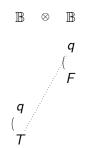
the left conjunction:

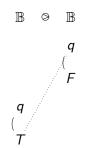


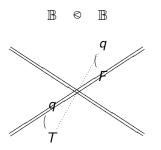
The right boolean composed with the left conjunction:



$$\mathbb{B} \otimes \mathbb{B} \multimap \mathbb{B} = \mathbb{B}^* \, \mathfrak{F} \, \mathbb{B}^* \, \mathfrak{F} \, \mathbb{B}$$







Functoriality

Theorem

Strategies which are

- ingenuous
- courteous
- receptive
- and satisfy the scheduling criterion compose and satisfy

$$(\sigma; \tau)^{\circ} = \sigma^{\circ}; \tau^{\circ}$$

Full completeness

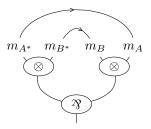
The criterion only detects oriented cycles.

 $(A^* \otimes B^*)$ $\mathcal{F}(B \otimes A)$

Full completeness

The criterion only detects oriented cycles.

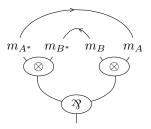
$$(A^*\otimes B^*)$$
 $\mathcal{F}(B\otimes A)$



Full completeness

The criterion only detects oriented cycles.

$$(A^*\otimes B^*)$$
 $\mathcal{F}(B\otimes A)$



Full completeness for MLL + MIX

If we implement atoms by

¥

Full completeness for MLL + MIX

If we implement axioms by

we get a fully complete model of MLL + MIX, similar to the AJ model.

Conclusion

We have:

- a game semantics adapted to concurrency
- an unifying framework in which we recover
 - innocent strategies
 - game semantics
 - concurrent games
 - the relational model
 - event structure semantics

In the future:

- extend this model (exponentials in particular)
- a local presentation of the correctness criterion
- typing of concurrent processes (CCS without deadlocks)

Thanks!