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The Universe is executing a program.
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Blame it on Feynman
I had some intuitions about analogies between physic and
semantics of programs and then I read [Fey96]:
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THERMODYNAMICS
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Information

Consider a set with n equiprobable elements.

The information brought by an element is

log2(n)

It can namely be identified by a string of log2(n) bits.

Writing p = 1
n for the probability, the information is thus

I(p) = log2(n) = log2

(
1

p

)
= − log2(p)
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Information

If each element xi has probability pi, the mean information is
called the entropy:

S =
∑
i

P(xi)I(xi) = −
∑
i

pi log2(pi)
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Information

A function I(p) for information should be

1. anti-monotonic: p1 ≤ p2 implies I(p1) ≥ I(p2)

2. positive: I(p) ≥ 0

3. I(1) = 0

4. I(p1p2) = I(p1) + I(p2)

The entropy is the only function satisfying this.
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Information
For instance, consider {a,b, c} with

p(a) =
1

2
p(b) =

1

4
p(c) =

1

4

These can be encoded as

0

a

1

0

b

1

c

and

S = −1

2
log2

(
1

2

)
− 1

4
log2

(
1

4

)
− 1

4
log2

(
1

4

)
=

1

2
log2(2) +

1

2
log2(4)

= 1.5
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Gas

Given a gas, the pressure P such that the resulting force is

F = PA

where A is the surface.
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Compression

Given a piston

V

x

⇝ V+ dV

x+ dx

the work done on the gas is

dW = Fdx

or equivalently

dW = PAdx = PdV
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Compression

We know that
PV = NkT

where
▶ N: number of particles
▶ k = 1.38× 10−23 JK−1

▶ T: temperature
▶ kT: (proportional to) the mean kinetic energy of particles
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Compression

The work is thus

dW =

∫ V2

V1
NkT

dV
V

If the compression is isothermal (no change in T):

W = NkT log
V2
V1

(this work is energy given to the environment!)
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Firs law of thermodynamics

The internal energy U satisfies

dU = δQ+ dW

where
▶ δQ is the heat brought to the system
▶ dW is the work done on the system

In our compression, dU = 0 so that

Q = −W
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Second law of thermodynamics

There is a quantity called entropy with

dS ≥ δQ
T

with equality for a reversible process:
▶ gas is at equilibrium,
▶ same temperature as surroundings,
▶ etc.

14 / 106



Compression

Suppose that we half the volume, with same temperature

V ⇝ V/2

We have

∆S =
∆Q
T

=
NkT log

( V
2V

)
T

= −Nk log(2)
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Compression

V ⇝ V/2

In particular for N = 1 particle, halving the volume means

∆S = −k log(2)

We have gained one bit of information! (up to a multiplicative
constant)
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Entropy

Boltzmann developed a statistical definition of entropy:

S = −k
∑
i

pi ln(pi)

where
▶ k is the Boltzmann constant,
▶ i ranges over possible microstates giving rise to the

macrostate.

In other words, S says how precisely we know what’s in the box.
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REVERSIBLE
COMPUTING
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Information in a tape

The information in a finite boolean tape

. . . 0 1 1 ? ? 0 ? 1 0 ? . . .

is the free energy required to reset the tape to 0 [Lan61]:
▶ if we know it is a 0, there is nothing to do
▶ if we know it is a 1 then it takes no energy to put it to 0:

▶ if we don’t know what it is it takes energy to put it to 0:

W = kT log(2)

19 / 106



Reversible computations

A computation is reversible if no data if ever erased.

For those there is no lower limit on the consumed energy!

This is wonderful but:
▶ bit erasure accounts for 1/10000-th of the consumed energy

in a CPU today,
▶ they have to be run at infinitesimal speed, otherwise we

loose energy: if we want the computer to have r times more
chance to run forward than backwards then each step
requires1

kT log(r)

1excepting in billiard ball, but here we are sensitive to fluctuations…
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Reversible boolean circuits

A boolean circuit is reversible if no information is lost.

Otherwise said, I can recover the inputs from the outputs.

Otherwise said, it computes an injective boolean function.

Example

▶ NOT is reversible
▶ AND, OR, XOR are not reversible
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Reversible gates

The gate
NOT : B → B

is reversible:
i0 o0
0 1
1 0
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Reversible gates

The controlled not gate

CNOT : B2 → B2

is reversible:
i0 i1 o0 o1
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0
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Reversible gates

The controlled controlled not (or Toffoli) gate

CCNOT : B3 → B3

is reversible: last bit is inverted in both other are true.

i0 i1 i2 o0 o1 o2
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0
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Reversible gates

The controlled swap (or Fredkin) gate

CSWAP : B3 → B3

is reversible: last two bits are exchanged if first is true.

i0 i1 i2 o0 o1 o2
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1
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Reversible gates

The swap gate
SWAP : B → B2

is reversible:
i0 i1 o0 o1
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1
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Reversible gates

Perhaps more surprisingly, the duplicator

DUP : B → B2

is also reversible:
i0 o0 o1
0 0 0
1 1 1
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Universal gates

A set of gates is universal if for every boolean function f, there is
a reversible circuit r built from those such that f is obtained by
discarding some outputs from r.

For instance,
▶ NOT + CNOT is not universal,
▶ CCNOT is universal,
▶ CSWAP is universal.
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Reversible computing

In general, starting from a blank tape, we want our machines to
give a blank tape (otherwise energy is required to reset it!) [Ben73]

Typically, starting from a blank tap and data, we

1. perform our computation, keeping intermediate results,

2. copy the final result to some memory,

3. reverse the computation to obtain again a blank tape.
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We can implement reversible computations
on physical devices!

[Ben82]
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The billiard-ball model
In the billiard-ball model [FT82], the switch:

and CSWAP:

In this model, only bijections which are conservative (preserve the
number of 1) can be implemented: we code a bit as a pair 01 / 10.
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A chemical machine
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A mechanical machine
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A mechanical machine
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A mechanical machine

Note that the brownian movement will make it move randomly, so
we only need a bit of energy to push it forward. If the function
was not reversible, we would get lost in possible backward paths.
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Relations

We know the gates to generate boolean circuits (do we?).

But what are the relations?

Lafont [Laf03] has investigated presentation for the
corresponding PROP.

PROP = symmetric monoidal category with N as objects
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The PROP of functions

The PROP with morphisms functions Bm → Bn is generated by

and
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The PROP of functions
Subject to relations:
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The PROP of functions

and
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The PROP of boolean bijections
For the PROP B of boolean bijections, we could hope that it is
generated by the CCNOT gate:

Theorem
The PROP B is not finitely generated.

Proof.
This follows from the remark that if

f : Bn → Bn

is a bijection, then

f× idB : Bn+1 → Bn+1

is an even permutation.
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The PROP of boolean bijections

However,

Theorem
The PROP A of even permutations is contained in the sub-PROP
of B generated by τ , T1, T2 and T3. It is thus finitely generated.

The relations are not known though.

As a corollary, we have

Theorem
The PROP B is generated by τ and the Tn for n ≥ 1.

The relations are not known though.
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Question

Since we have duplication, we are more interested in the PROP
for boolean injections.

It could also be interesting to consider conservative bijections.

I don’t know of any presentation.
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Unfoldings

▶ RCCS
▶ reversing = universal cover (we take a cofibrant replacement)
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There is another fundamental physical computer based on
quantum mechanics.

We need some more material to appreciate it.
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CLASSICAL
MECHANICS
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Newton’s law

Recall Newton’s law of motion

mq̈ = F

(we write q for the position of the particle).

It can be derived from first principles!
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Newton’s law

Recall Newton’s law of motion

ṗ = F

(we write p = mq̇ for the momentum of the particle).

It can be derived from first principles!
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Lagrangian mechanics
Axiom
Any mechanical system (e.g. a particle) is characterized by a
function, called Lagrangian

L(q, q̇)

depending on
▶ the position q,
▶ the velocity q̇,
▶ and not anything else (not q̈, a hidden variable, etc.)!

Remark
Here q̇ is a formal parameter (not a derivative), i.e.,

L : TQ → R

for some manifold Q.
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Action

The action is

S =

∫ t2

t1
L(q, q̇)dt

Axiom
The principle of least action: a mechanical system has minimal
(or, more precisely, stationary) action.
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The principle of least action
If we change q to q+ s δq, the first-order variation of the action
should be zero:

•t1

•t2
q q+ s δq ⇝ δS = 0

A variation of q is a function δq such that

δq(t1) = δq(t2) = 0

and we formally consider

δS =
d
ds
S(qs)

∣∣∣∣
s=0

with
qs = q+ s δq
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Euler-Lagrange equation
We have

δS = δ

∫ t2

t1
Ldt

=

∫ t2

t1

(
∂L
∂q
δq+

∂L
∂q̇
δq̇

)
dt

=

[
∂L
∂q̇
δq

]t2
t1

+

∫ t2

t1

(
∂L
∂q

− d
dt
∂L
∂q̇

)
δqdt

(by an i.p.p. since δq̇ = dδq /dt).

Therefore δS = 0 for every δq if and only if

d
dt
∂L
∂q̇

=
∂L
∂q

called the Euler-Lagrange equation.
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The Euler-Lagrange equation
We have:

d
dt
∂L
∂q̇

=
∂L
∂q

We define
▶ the momentum:

p =
∂L
∂q̇

▶ the force:

F =
∂L
∂q

The equation becomes

dp
dt

= F
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Conservative forces
A force F is conservative if there is a potential V : Q→ R such
that

F = −∂V
∂q

(or F = −∇V in general).

This is equivalent to the work

V(q) = −
∫ q

q0
F · dq = −

∫ t2

t1
q(t1)=q0
q(t2)=q

F(q) · q̇dt

being well-defined, i.e., not depending on the chosen path.

We will see that energy is conserved for those.
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Conservative forces

Axiom
All forces are conservative.

Example
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Conservative forces

Axiom
All forces are conservative.

Example
For the harmonic oscillator,

x

we have
F = −kx V =

1

2
kx2
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Conservative forces

Axiom
All forces are conservative.

Example
A friction force

F = −αẋ

is not conservative, but there are missing parts in our system!
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The Lagrangian

In general, the Lagrangian looks like

L = E− V =
1

2
mq̇2 − V

so that
d
dt
∂L
∂q̇

= mq̈ = F =
∂L
∂q

We recover Newton’s equation!
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Conservation of energy
The laws of physics are invariant by translation in time:

∂L
∂t

= 0

Therefore,
dL
dt

=
∂L
∂q

q̇+
∂L
∂q̇

q̈+
∂L
∂t

=
d
dt
∂L
∂q̇

q̇+
∂L
∂q̇

q̈

=
d
dt

(
∂L
∂q̇

q̇
)

We define the energy (or hamiltonian) as

H =
∂L
∂q̇

q̇− L

and have
dH
dt

= 0
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Noether’s theorem
Theorem
If there is a continuous symmetry of the system then there is a
conserved quantity.

We suppose given a map

QR × R → QR

(q, s) 7→ qs

Typically,

qs(t) = q(t+ s) qs(t) = q(t) + sv etc.

Consider and infinitesimal transformation and its effect on S:

δq =
d
ds
qs

∣∣∣∣
s=0

δL =
d
ds
S(qs, q̇s)

∣∣∣∣
s=0
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Noether’s theorem

We have (we already went through this)

δS = . . .

=

[
∂L
∂q̇
δq

]t2
t1

+

∫ t2

t1

(
∂L
∂q

− d
dt
∂L
∂q̇

)
︸ ︷︷ ︸

=0

δqdt

Therefore δS = 0 implies that the quantity

∂L
∂q̇
δq = pδq

is invariant with respect to t.
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Noether’s theorem

More generally, if

δL =
dℓ
dt

then the quantity
p δq− ℓ

is conserved over time.
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Noether’s theorem

A general galilean transformation is given by

x ⇝ x′ = Rx+ a+ vt

t ⇝ t′ = t+ s

symmetry invariant
translation in time (s) energy (hamiltonian)
translation in space (a) momentum
uniform move (v) center of mass
rotation (R) angular momentum
gauge invariance of the e.m. field conservation of charge
...

...
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Reversibility

There is another kind of symmetry which is not covered:

q 7→ q

q̇ 7→ −q̇
t 7→ −t

Time is reversible!

In fact, since the evolution is described by a differential equation it
is reversible: two states cannot lead to the same state.
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Parity inversion

If we negate all the coordinates, i.e.,

q ⇝ −q

This generally gives rise to a discrete symmetry, but is violated in
weak interactions (Wu experiment)!
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Hamiltonian mechanics

In Lagrangian mechanics, everything is indexed in (q, q̇) ∈ TQ.

We can also use the phase space (q,p) ∈ T∗Q.

We define the hamiltonian as
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Hamiltonian mechanics

In Lagrangian mechanics, everything is indexed in (q, q̇) ∈ TQ.

We can also use the phase space (q,p) ∈ T∗Q.

We define the hamiltonian as

H(q,p) = pq̇− L(q, q̇)

which is valid if

det
(
∂pi
∂q̇j

)
= det

(
∂2L
∂q̇i∂q̇j

)
̸= 0
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Hamiltonian mechanics

Hamilton’s equations are satisfied:

dq
dt

=
∂H
∂p

dp
dt

= −∂H
∂q

(the second by Euler-Lagrange)
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The Poisson bracket
Given A,B : T∗Q→ R, their Poisson bracket is

{A,B} =
∑
i

∂A
∂qi

∂B
∂pi

− ∂A
∂pi

∂B
∂qi

This is a Lie bracket:
▶ linear
▶ antisymmetric: {B,A} = −{A,B}
▶ satifying Jacobi: {{A,B},C}+ {{B,C},A}+ {{C,A},B} = 0

In particular

{qi,qj} = {pi,pj} = 0 {qi,pj} = δij
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hamiltonian = evolution

The hamiltonian encodes the evolution of a physical quantity
A : T∗Q→ R:

dA
dt

=
dA
dq

dq
dt

+
dA
dp

dp
dt

=
dA
dq

∂H
∂p

− dA
dp

∂H
∂q

= {A,H}

In particular, Hamilton equations are

dq
dt

= {q,H} dp
dt

= {p,H}

TODO: Noether’s theorem...................
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QUANTUM
MECHANICS
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Hilbert spaces

A Hilbert space H is a C-vector space equipped with an inner
product such that
▶ ⟨ϕ|−⟩ is linear
▶ ⟨−|ψ⟩ is antilinear
▶ ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗

▶ ⟨ψ|ψ⟩ ≥ 0

We write
▶ ∥ψ∥ =

√
⟨ψ|ψ⟩ for the norm

▶ |ψ⟩ ∈ H for a vector
▶ ⟨ψ| = ⟨ψ|−⟩ ∈ H∗
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Hilbert spaces

The bra-ket notation is nice:

⟨ϕ| |ψ⟩ = ⟨ϕ|ψ⟩

and more generally, for A : H → H

⟨A∗ϕ|ψ⟩ = ⟨ϕ|A |ψ⟩ = ⟨ϕ|Aψ⟩

where A∗ is the conjugate transpose of A:

⟨ϕ|A |ψ⟩ = ⟨ψ|A∗ |ϕ⟩
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Hilbert spaces

An Hilbert space H admits an orthonormal basis (ei):

⟨ei|ej⟩ = δij

▶ a vector:
|ψ⟩ =

∑
i

ψi |ei⟩

▶ an operator A : H → H

Aij = ⟨ej|A |ei⟩

and
A =

∑
i,j

|ej⟩Aij ⟨ei|
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Hilbert spaces

We do as if we were in finite-dimensional spaces (and trust smart
people for details).

This is not a good idea since a basis for our space typically
consists in all possible states q ∈ Q, or all possible values for
momentum.
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Self-adjoint operators

An operator A is self-adjoint when

A = A∗

This implies that
▶ its eigenvalues are real
▶ eigenvectors with distinct eigenvalues are orthogonal
▶ we can find an orthonormal basis of eigenvectors2

2 in good cases (e.g. finite dimension)
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Quantum mechanics
In quantum mechanics, the state of a system is given by a vector

|ψ⟩

and an observable (= physical quantity) is represented by a
self-adjoint operator

A

whose eigenvectors are the possible observations (with real
eigenvalues). Its expectation is

⟨A⟩ = tr(|ψ⟩ ⟨ψ| A) = ⟨ψ|A |ψ⟩

(supposing ⟨ψ|ψ⟩ = 1, otherwise divide by it) where

|ψ⟩ ⟨ψ|

is the density operator associated to |ψ⟩.
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Density operators

Note that we only care about the density operator

ρ = |ψ⟩ ⟨ψ|

this means that |ψ⟩ and eiθ |ψ⟩ cannot be distinguished.

More generally, we can consider as a density operators any ρ
which is self-adjoint, nonnegative (⟨ψ| ρ |ψ⟩ ≥ 0) and of unit trace,
those as above are pure states.

Expectation generalizes as expected

⟨A⟩ =
tr(ρA)
tr ρ
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Symmetries

A symmetry for a system has to preserve inner product and thus
be of the form

|ψ⟩ 7→ U |ψ⟩
A 7→ UAU∗

for some unitary transformation U

UU∗ = U∗U = I

Remark
Most operations are (sub)unitary because we want to preserve
normalization of states: ⟨ψ|ψ⟩ = 1.

74 / 106



Symmetries

Consider a continuous family of transformations U(s) such that

U(0) = I U(s1 + s2) = U(s1)U(s2)

The associated infinitesimal transformation is

δU =
dU
ds

∣∣∣∣
s=0

i.e.,
U = I+ s δU+O(s2)
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Symmetries

By unitarity, we have

I = UU∗ = I+ s(δU+ δU∗) + O(s2)

thus
δU+ δU∗ = 0

and therefore
δU = iK

for some self-adjoint (real) K.
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Symmetries

It determines U since

dU(s0 + s)
ds

∣∣∣∣
s=0

= δ(U(s0 + s)) = δ(U(s0)U(s)) = U(s0) δU

thus
dU(s)
ds

∣∣∣∣
s=s0

= U(s0) iK

i.e.,
dU
ds

= U iK

thus
U = eiKs
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Operators from symmetries
A general galilean transformation is

x ⇝ x′ = Rx+ a+ vt

t ⇝ t′ = t+ s

symmetry operator
rotation e−iθkJk

translation e−iakPk

velocity eivkGk

time eisH

Note: we should divide all operators by ℏ but nevermind.
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Evolution in time
A translation in time

t ⇝ t′ = t+ s

induces a transformation of a vector

|ψ(t)⟩ ⇝ |ψ′(t)⟩ = |ψ(t− s)⟩ = eisH |ψ(t)⟩

thus
|ψ(t)⟩ = e−itH |ψ(0)⟩

which is solution of Schrödinger’s equation

d
dt

|ψ(t)⟩ = −iH |ψ(t)⟩

or even
H = i d

dt
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Evolution in time
The position operator Q is

Q |x⟩ = x |x⟩

The velocity operator V has to satisfy

⟨V⟩ =
d
dt
⟨Q⟩

and thus

⟨ψ|V |ψ⟩ = d
dt

(⟨ψ|Q |ψ⟩) =
(
d
dt

⟨ψ|
)
Q |ψ⟩+ ⟨ψ|Q

(
d
dt

|ψ⟩
)

= i ⟨ψ|HQ |ψ⟩−i ⟨ψ|QH |ψ⟩

i.e.,
V = i(HQ−QH) = i[H,Q]
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Pictures of motion
The Heisenberg equation of motion is

i
dA
dt

= [A,H]

whose solution is

A(t) = U−1(t)A(0)U(t)

with U(t) = e−iHt.

In the Heisenberg picture

⟨A⟩ = ⟨ψ|
(
U−1A0U

)
|ψ⟩

In the Schrödinger picture

⟨A⟩ =
(
⟨ψ|U−1

)
A0 (U |ψ⟩)
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Noether’s theorem

Given a bounded self-adjoint operator O,

[O,H] = 0

if and only if for every state |ψ⟩ such that

d
dt

|ψ(t)⟩ = −iH |ψ(t)⟩

the expected value
⟨ψ(t)|O |ψ(t)⟩

is constant.
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Propagators

The evolution of the state is given by

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩

and we have

|ψ(x, t)⟩ =

∫
⟨x|U(t, t0) |x0⟩ψ(x0, t0)dx0

where the propagator

G(x, t, x0, t0) = ⟨x|U(t, t0) |x0⟩

is (proportional to) the probability of finding the particle in x at
time t if it was in x0 at t0.
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Feynman’s formula

The propagator can be expressed as a path integral

G(x, t, x0, t0) =

∫
q path

from (x0, t0)
to (x, t)

eiS(q)/ℏ

where S is the action

S(q) =

∫
L(q, q̇)dt
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The least action principle
How does light knows where the shortest path is?

(and also even more wired paths)

It does not, it tries everything:

G(x, t, x0, t0) =

∫
eiS(q)/ℏ Dq

However, the phases are pretty much random, excepting when S
is stable: we have recovered the least action principle!
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Quantizing physics

When quantizing the laws of physics
▶ we replace functions by operators
▶ the Poisson brackets become commutators

[Qi,Qj] = [Pi,Pj] = 0 [Qi,Pj] = iℏδij

▶ etc.
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The momentum coordinates

.....................
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The harmonic oscillator

Let’s work out a bit the classical harmonic oscillator where

H =
P2

2m
+

1

2
mω2Q2

We introduce the creation and anihilation operators

a =

√
mω
2ℏ

(
Q+

1

mω
iP
)

a∗ =

√
mω
2ℏ

(
Q− 1

mω
iP
)

and the number operator

N = aa∗
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The harmonic oscillator

The Hamiltonian is

H =
1

2
ℏω (aa∗ + a∗a) = ℏω

(
aa∗ − 1

2

)
= ℏω

(
N− 1

2

)

From [Q,P] = i follows

[a, a∗] = 1 [N, a] = −a [N, a∗] = a
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The harmonic oscillator

Given an eigenvector |n⟩ of N of eigenvalue n ∈ R, i.e.,

N |n⟩ = n |n⟩

we have

Na |n⟩ = a(N− I) |n⟩ = (n− 1)a |n⟩

We have constructed an eigenvector for the value n− 1.

However,

n = ⟨n|N |n⟩ = ⟨a| a∗ |n⟩ ≥ 0

Therefore the smallest eigenvalue can only be |0⟩.
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The harmonic oscillator

Therefore, the eigenvectors for the hamiltonian are

H |n⟩ = En |n⟩

with

En = ℏω
(
n+

1

2

)
with n ∈ N: energy levels are quantified.
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The harmonic oscillator

Note that the relation

[a, a∗] = aa∗ − a∗a = 1

means ∑
n

((n+ 1)− 1)−
∑
n

((n− 1) + 1) = 1
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HAMILTONIAN
FOR PROGRAMS
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Truth values

Consider one of the following possible rings of truth values:
▶ classical: B
▶ probabilistic: [0, 1]
▶ stochastic: N
▶ chemical: R
▶ quantum: C

94 / 106



States

Consider a boolean circuit with m inputs and n outputs.

A state |ψ⟩ is an element of k2m :

(i0, i1, i2, . . .) = (0, 0, 0, . . .) ⇝ 1

(i0, i1, i2, . . .) = (1, 0, 0, . . .) ⇝ 1

(i0, i1, i2, . . .) = (1, 1, 0, . . .) ⇝ 0

... ⇝ ...
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Hamiltonians

The hamiltonian of a boolean function

Bm → Bn

is a linear function
k2

m → k2
n

represented by a 2m × 2n-matrix.

For instance NOT:
0 1

0 0 1
1 1 0
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Operators
We define
▶ the creation operator

a =

(
0 0
1 0

)
a |0⟩ = |1⟩ a |1⟩ = 0

▶ the destruction operator

a∗ =

(
0 1
0 0

)
a |0⟩ = 0 a |1⟩ = |0⟩

▶ the number operator

Na = aa∗ =
(
0 0
0 1

)
Na |0⟩ = 0 |0⟩ Na |1⟩ = 1 |1⟩

Satisfying
aa∗ + a∗a = 1
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Hamiltonians

The hamiltonian associated to NOT is

a+ a∗

The hamiltonian associated to CNOT is

NOTbNa + (I− Na) = (b+ b∗)aa∗ + a∗a

Namely,

if a=1 then { b=not b }
if a=0 then {}
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Hamiltonians

Traces (= feedback) correspond to taking exponentials.
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THE GEOMETRY
OF INTERACTION
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Hamiltonian for programs

▶ Hamiltonian of a program
▶ GoI, execution formula (cf Abramsky, Ian Mackie)
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STOCHASTIC
MECHANICS
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TODO: Baez stochastic
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Dictionary

physics programming
physical system program

tangent bundle TQ control flow graph (+ states)
speed q̇ instruction
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