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Two recent works

Higher-dimensional weak categories have become a
fundamental tool: algebraic topology / HoTT / ...

I will present two recent works in order to approach them with
computers:

1. a definition of weak ω-categories as a type theory
(joint with Thibaut Benjamin and Eric Finster):
check the validity of structural morphisms

2. an extension of rewriting techniques to tricategories
(joint with Simon Forest):
show coherence theorems
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HIGHER
CATEGORIES

3 / 69



Higher categories
The definition of (strict) ω-category generalizes categories by
taking higher cells into account.
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Higher categories
The definition of (strict) ω-category generalizes categories by
taking higher cells into account.

In such a category, you have
▶ 0-cells (objects): x

▶ 1-cells (morphisms): x yf

▶ 2-cells: x yϕ⇓

f

g

▶ 3-cells: x yϕ⇓
F
⇛⇓ψ

f

g

▶ …
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Higher categories
The definition of (strict) ω-category generalizes categories by
taking higher cells into account.

In such a category, you have compositions

x

f
##

ϕ⇓

f′

;; y

g
##

g′

;;ψ⇓ z ⇝ x

f
''

f′

77ϕ∗0ψ⇓ z

x

f

��
g //

h

AA

ϕ⇓

ψ⇓
y ⇝ x

f

��

h

AA
ϕ∗1ψ⇓ y

More generally, n-cells can be composed in n ways.
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Higher categories
The definition of (strict) ω-category generalizes categories by
taking higher cells into account.

In such a category, you have axioms:

1. associativity of composition:

x y z wϕ⇓

f

f′

ψ⇓

g

g′

χ⇓

h

h′

2. neutrality of identities

3. interchange laws:

x

f

��
g //

h

AA

ϕ⇓

ψ⇓
y

f′

��
g′ //

h′

AA

ϕ′⇓

ψ′⇓
z
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Higher categories
The definition of (strict) ω-category generalizes categories by
taking higher cells into account.

In the case where the orientation of arrows is not really relevant,
you can consider (strict) ω-groupoids which are ω-categories in
which all n-cells are invertible.

x

f
%%

ϕ⇓

g

99 y ⇝ x

f
%%

ϕ−1⇑

g

99 y
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Weak ω-groupoids
It turns out that this definition is too strict.

Given a topological space X, one expects to be able to build an
ω-groupoid whose
▶ 0-cells are the points of X,
▶ 1-cells are the paths in X,

(we do have concatenation, constant paths, and inverses)
▶ 2-cells are homotopies,
▶ 3-cells are homotopies between homotopies,
▶ etc.

However,
▶ concatenation is only associative up to homotopy,
▶ interchange is not strict.
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Grothendieck’s homotopy hypothesis

A definition of ω-groupoids should satisfy Grothendieck’s
homotopy hypothesis:

weak ω-groupoids
≈

topological spaces
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A definition of ω-groupoids should satisfy Grothendieck’s
homotopy hypothesis:

weak ω-groupoids
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topological spaces
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Type-theoretic weak ω-categories

Here, we fill the following gap:

groupoids categories

category theory Grothendieck Maltsiniotis
type theory Brunerie Finster-Mimram
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Why is this useful

▶ We have a simple definition
(no advanced categorical concepts, a few inference rules)

▶ We have a syntax
(we can reason by induction, etc.)

▶ We have tools
(we can have the machine check our terms)

▶ A step toward directed homotopy type theory?
(we are still far from handling variance, univalence, etc.)
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A
TYPE-THEORETIC

DEFINITION
OF

CATEGORIES
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Judgments in type-theory

▶ Γ is a well-formed context:

Γ ⊢

▶ A is a well-formed type in context Γ:

Γ ⊢ A

▶ t is a term of type A in context Γ:

Γ ⊢ t : A

▶ t and u are equal terms of type A in context Γ:

Γ ⊢ t = u : A
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A type-theoretic definition of categories
Cartmell, 1984:
▶ type constructors:

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ x : ⋆ Γ ⊢ y : ⋆
Γ ⊢ x→ y

▶ term constructors:

x : ⋆ ⊢ id(x) : x→ x

x : ⋆, y : ⋆, f : x→ y, z : ⋆,g : y→ z ⊢ comp(f,g) : x→ z

▶ axioms:

Γ ⊢ f : x→ y

Γ ⊢ comp(id(x), f) = f

Γ ⊢ f : x→ y

Γ ⊢ comp(f, id(y)) = f
. . .

▶ plus “standard rules” (contexts, weakening, substitutions, …)
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Models of the type theory

A model of the type theory consists in interpreting
▶ closed types as sets,
▶ closed terms as elements of their type,

in such a way that axioms are satisfied.

A model of the previous type theory consists of
▶ a set J⋆K
▶ for each x, y ∈ J⋆K, a set J→Kx,y
▶ for each x ∈ J⋆K, an element JidKx ∈ J→Kx,x
▶ …

In other words, a model of the type theory is precisely a category
(and a morphism is a functor).
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Going higher
We could gradually implement weak n-categories:
▶ bicategories
▶ tricategories
▶ tetracategories
▶ pentacategories
▶ ...

The problem is that
▶ the number of axioms is exploding
▶ nobody knows the definition excepting in low dimensions
▶ we would like to have a “uniform” definition

(note: it might still be a good idea in low dimensions!)
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Unbiased definition

Since the composition is associative for categories, the
composite of any diagram like

x0
f1 // x1

f2 // . . .
fn // xn

is uniquely defined.

So, instead of having a binary composition and identities, we
could have a more general rule

x0 : ⋆, x1 : ⋆, f1 : x0 → x1, . . . , xn : ⋆, fn : xn−1 → xn ⊢ comp(f1, . . . , fn) : x0 → xn

14 / 69



Unbiased definition
We can axiomatize categories with n-ary composition.
▶ This is very redundant, for instance

comp(comp(f,g), h) = comp(f,g, h) = comp(f, comp(g, h))

or even
comp(f) = f

▶ We have to characterize what we want to compose exactly.
For instance, should be able to compose

x0
f1 // x1

f2 // . . .
fn // xn

but not

x
f

(( y
g

hh z or x f // y z
g

oo

▶ However, this generalizes nicely in higher dimensions!
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A
TYPE-THEORETIC

DEFINITION
OF

GLOBULAR SETS
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Globular sets
Definition
A globular set consists of
▶ a set G, and
▶ for every x, y ∈ G, a globular set Gx

y.

Example

x
f

((

g
77ϕ⇓ y h // z

corresponds to

G = {x, y, z} Gx
y = {f,g} (Gx

y)
f
g = {ϕ} ((Gx

y)
f
g)
ϕ
ϕ = ∅ . . .
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Globular sets
Definition
A globular set consists of
▶ a set G, and
▶ for every x, y ∈ G, a globular set Gx

y.

Alternatively, this can be defined as
▶ a sequence of sets Gn of n-cells for n ∈ N,
▶ with source and target maps

sn, tn : Gn+1 → Gn

satisfying suitable axioms.
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Globular sets
Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t→
A
u

. . .
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Globular sets
Proposition
Globular sets are precisely the models of the type theory

Γ ⊢
Γ ⊢ ⋆

Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t→
A
u

. . .

Remark
A finite globular set

x
f

$$

g
::⇓α y zhoo

can be encoded as a context

x : ⋆, y : ⋆, z : ⋆, f : x→
⋆
y,g : x→

⋆
y, h : z→

⋆
y, α : f →

x→
⋆
y
g
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PASTING
SCHEMES
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Pasting schemes

We now want to define pasting schemes which are diagrams for
which we expect to have a composition. For instance,

x

f

��⇓α
f′ //

⇓β

f′′

CC
y

g
// z h // w

is a pasting scheme, but not

x
f

(( y
g

hh z or x f // y z
g

oo
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Disks

Given n ∈ N, the n-disk Dn is the globular set corresponding to a
general n-cell:

x x // y x ((
77⇓ y x ((

77⇓⇛⇓ y

D0 D1 D2 D3

(these are the representable globular sets)
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Pasting schemes

A pasting scheme is a globular set

x

f

��⇓α
f′ //

⇓β

f′′

CC
y

g
// z h // w

▶ Grothendieck: which can be obtained as a particular colimit
of disks

x

f

��⇓α
f′ // y x f′ //

⇓β

f′′

CC
y y

g
// z z h // w

x f′ // y y z

^^ @@
VV HH VV HH
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Pasting schemes

A pasting scheme is a globular set

x

f

��⇓α
f′ //

⇓β

f′′

CC
y

g
// z h // w

▶ Batanin: which is described by a particular tree

x20
α

x21
β

x10f

f′

f′′

CCCCCCC

{{{{{{{
x11

g

x12

h

x00x

y z

w

CCCCCCC

{{{{{{{
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Pasting schemes

A pasting scheme is a globular set

x

f

��⇓α
f′ //

⇓β

f′′

CC
y

g
// z h // w

▶ Finster-Mimram: which is “totally ordered”
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Order relation

We can define a preorder ◁ on the cells of a globular set by

source(x) ◁ x and x ◁ target(x)

For the globular set

x

f

��⇓α
f′ //

⇓β

f′′

CC
y

g
// z h // w

we have

x ◁ f ◁ α ◁ f′ ◁ β ◁ f′′ ◁ y ◁ g ◁ z ◁ h ◁ w
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Characterization of pasting schemes

Theorem
A globular set is a pasting scheme if and only if it is
▶ non-empty,
▶ finite, and
▶ the relation ◁ is a total order.
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Construction of pasting schemes
A pointed globular set is a globular set with a distinguished cell.

Theorem
A pasting scheme is a pointed globular set which can be
constructed as follows:

▶ we start from a 0-cell x

▶ we can add a new (n+1)-cell and its new target,
its source being the distinguished n-cell

x

f
!!

y ⇝ x

f
!!

g

==
α⇓ y

▶ or the distinguished cell becomes the target of the previous
one

x

f
!!

g

==
α⇓ y ⇝ x

f
!!

g

==
α⇓ y
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Construction of pasting schemes

The construction of the pasting scheme

x

⇓α

⇓β
y z w

corresponds to its order

x

◁ f ◁ α ◁ f′ ◁ β ◁ f′′ ◁ y ◁ g ◁ z ◁ h ◁ w
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Type-theoretic pasting schemes

Now, recall that a pasting scheme

x

f

��⇓α
f′ //

⇓β

f′′

CC
y

g
// z h // w

can be seen as a context

x : ⋆, y : ⋆, f : x→ y, f′ : x→ y,

α : f→ f′, f′′ : x→ y, β : f′ → f′′,

z : ⋆,g : y→ z,w : ⋆, h : z→ w
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Type-theoretic pasting schemes

A context Γ (seen as a globular set) is a pasting scheme iff

Γ ⊢ps

is derivable with the rules

x : ⋆ ⊢ps x : ⋆
Γ ⊢ps x : ⋆

Γ ⊢ps

Γ ⊢ps x : A
Γ, y : A, f : x→

A
y ⊢ps f : x→

A
y

Γ ⊢ps f : x→
A
y

Γ ⊢ps y : A
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Type-theoretic pasting schemes

Note that with those rules
▶ the order of cells matters:

x
f

&&
⇓α

f′
88 y

g
// z

▶ because of this we can easily check
▶ proofs are canonical
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Source and targets
A pasting scheme Γ has

x

f

��⇓α
f′ //

⇓β

f′′

CC
y

g
// z h // w

▶ a source ∂−(Γ):

x

f

��

y
g

// z h // w

▶ a target ∂+(Γ):

x

f′′

CC
y

g
// z h // w

both of which can be defined by induction on contexts.
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A
TYPE-THEORETIC

DEFINITION
OF

ω-CATEGORIES
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Type-theoretic ω-groupoids
We expect that in an ω-category every pasting scheme has a
composite:

Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

You can derive expected operations, such as composition:

x : ⋆, y : ⋆, f : x→
⋆
y, z : ⋆,g : y→

⋆
z ⊢ coh : x→

⋆
z

However, you can derive too much:

x : ⋆, y : ⋆, f : x→
⋆
y ⊢ coh : y→

⋆
x

We have in fact a definition of ω-groupoids (close to Brunerie’s).
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Type-theoretic ω-groupoids
We need to take care of side-conditions and in fact split the rule
in two:
▶ operations:

Γ ⊢ps Γ ⊢ t→
A
u ∂−(Γ) ⊢ t : A ∂+(Γ) ⊢ u : A

Γ ⊢ cohΓ,t→
A
u : t→

A
u

whenever

FV(t) = FV(∂−(Γ)) and FV(u) = FV(∂+(Γ))

▶ coherences:
Γ ⊢ps Γ ⊢ A
Γ ⊢ cohΓ,A : A

whenever
FV(A) = FV(Γ)
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Type-theoretic ω-groupoids

Definition
An ω-category is a model of this type theory.

Theorem
This definition coincides with Grothendieck-Maltsiniotis’.

(conjecture recently proved by Thibaut Benjamin)
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Type-theoretic ω-groupoids

A typical example of operation is composition

x

f

��
g //

h

CC

α⇓

β⇓
y ⊢ coh : x

f

��

y → x

h

CC
y

(this coherence is noted “comp” in the following).
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Type-theoretic ω-groupoids

A typical example of coherence is associativity

x f // y
g

// z h // w
⊢

coh : x
comp(comp(f,g),h)

// w → x
comp(f,comp(g,h))

// w
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Implementation(s)
There are currently three implementations:
▶ https://github.com/ericfinster/catt

▶ follows closely the rules of the article
▶ https://github.com/smimram/catt

▶ has support for implicit arguments
▶ has support for (some) Π-types
▶ has support for “Hom” type variables:

let comp (X : Hom) =
coh (x : X) (y : X) (f : x -> y) (z : X) (g : y -> z)

: (x -> z)
▶ has a web interface

▶ https://github.com/ThiBen/catt
▶ best of both worlds

In practice,
▶ you simply enter a list of coherences

(there is no reduction, etc.),
▶ if the program does not complain then they are valid

operations in weak ω-categories.
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“Demo”

▶ identity 1-cells

coh id (x : *) : * | x -> x ;

▶ composition of 1-cells:

coh comp (x : *) (y : *) (f : * | x -> y)
(z : *) (g : * | y -> z)
: * | x -> z ;

▶ associativity of composition of 1-cells:

coh assoc
(x : *) (y : *) (f : * | x -> y) (z : *)
(g : * | y -> z) (w : *) (h : * | z -> w)
: * | x -> w

| comp x z (comp x y f z g) w h ->
comp x y f w (comp y z g w h) ;

▶ …
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“Demo”

Only defining the Eckmann-Hilton morphism takes 300 lines

x

id

��

id //

id

AA

α⇓

β⇓
x ⇛ x

id

��

id //

id

AA

β⇓

α⇓
x

because you have to
▶ define usual operations and coherences,
▶ explicitly insert and remove identities,
▶ take care of bracketing of composites.
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“Demo”
let eh (X : Hom) (x : X)

(a : id x -> id x) (b : id x -> id x)
: (comp' a b -> comp' b a)
=
comp11
(comp' (unitl'- a) (unitr'- b))
(assoc3 _ _ _ _)
(compl2r' _ _ (unitlr x) _)
(compl2' _ _ (comp3 (assoc- _ _ _)
(comp' (unitr+- (id x)) (id _)) (unitl _)))
(compl' _ (assoc- _ _ _)) (complr' _ (ich b a) _)
(complr' _ (compr' (comp (unitr- _) (compl' _ (unitr+-- _))) _) _)
(comp (complr' _ (assoc3 _ _ _ _) _) (compl' _ (assoc4 _ _ _ _ _)))
(comp' (unitlr- x) (compl' _ (compl' _ (comp' (unitrl- x) (compl' _ (unitrl x))))))
(assoc3- _ _ _ _)
(comp' (unitr' b) (unitl' a))
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“Demo”

▶ no inverses:

coh inv (x : *) (y : *) (f : * | x -> y)
: * | y -> x ;

produces

Checking coherence: inv
Valid tree context
Src/Tgt check forced
Source context: (x : *)
Target context: (y : *)
Failure: Source is not algebraic for y : *
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SEMI-STRICT
CATEGORIES
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The theory we presented is the canonical globular theory of
higher-categories.

It works well, but we need many “very small steps” in proofs.

It seems that the interchange law is the “culprit”, so let’s try to
keep this weak and everything else strict.

It turns out that this works (at least in low dimensions) and
provides a nice framework for rewriting.
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Higher-categories

A strict higher category is
▶ a globular set
▶ with compositions (n for n-cells) and identities

such that
▶ composition is associative
▶ identities are units
▶ interchange laws are satisfied
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Identities

Given a 2-cell α and a 1-cell g, we can define

x y zα⇓

f

f′

g
:= x y zα⇓

f

f′

idg⇓ g

g

g

α ∗0 g := α ∗0 idg

More generally, given an m-cell ϕ and an n-cell ψ, we can define
an (m ∨ n)-cell

ϕ ∗i ψ

for 0 ≤ i < m ∧ n.
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Compositions

Given 2-cells α and β there are many ways to express the same
composition:

x y z
α⇓
f

f′ β⇓

g

g′

x y zα⇓

f

f′

β⇓

g

g′

x y z
α⇓
f

f′

β⇓

g

g′

(α ∗0 g) ∗1 (f′ ∗0 β) α ∗0 β (f ∗0 β) ∗1 (α ∗0 g′)

We can restrict to compositions

ϕ ∗i ψ

with i = dim(ϕ) ∧ dim(ψ)− 1.
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Precategories
A precategory C is a globular set

C0 C1 C2 · · ·
s0

t0

s1

t1

s2

t2

together with
▶ compositions

∗ : Ci ×
i∧j−1

Cj → Ci∨j

▶ identities
id : Ci → Ci+1

such that compositions and identities have expected source and
target and are (suitably) associative.

An n-precategory is a precategory C in which Ci = ∅ for i > n.
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Gray categories
A Gray category is a 3-precategory equipped for every 2-cells

x y⇓ϕ
u

u′

and y z⇓ψ
v

v′

with an invertible interchanger 3-cell

Xϕ,ψ : (ϕ ∗ v) ∗ (u′ ∗ ψ) ⇛ (u ∗ ψ) ∗ (ϕ ∗ v′)

x y z
⇓ϕ
u

u′ ⇓ψ
v

v′

⇛ x y z⇓ϕ
u ⇓ψ

v

v′

such that
▶ interchangers are compatible with compositions and id,
▶ interchangers are “natural”,
▶ the interchange law is strict for 3-cells.
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Gray categories

In other words, a Gray category is

▶ a (strict) 3-category in which interchange equality of 2-cells
has been replaced by an invertible 3-cell,

▶ a tricategory in which all coherence morphisms are strict
excepting interchangers.
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Coherence for tricategories

Theorem (Gordon-Power-Street)
Every tricategory is (suitably) equivalent to a Gray category.
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A proof assistant for Gray categories
We could therefore think of making a proof-assistant for Gray
categories (or higher semi-strict categories).

http://globular.science
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Pros and cons

Vicary had this nice idea that semi-strict categories could be
useful in practice.

Pros:
▶ most of the boring manipulations is taken care of for us
▶ very nice graphical interface

Cons:
▶ we do not know whether it properly generalizes to dimension

n > 3 (and how)
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Can we automate some of the proofs?
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Coherence

Typically, we want to show coherence theorems: in a given Gray
category, there is at most one 3-cell between any pair of parallel
2-cells.

↓ ↓

General idea: when generalizing an algebraic structure to higher
dimensions, we want to replace equality by unique isomorphism.

We are generally interested in Gray groupoids, i.e., Gray
categories with invertible 3-cells.
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COHERENT
PRESENTATIONS

OF
GRAY

CATEGORIES
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Signatures

A signature P consists of sets
▶ P0: generating 0-cells
▶ P1: generating 1-cells
▶ P2: generating 2-cells

together with their source and targets.

We have a 2-precategory P∗ with sets of i-cells

P∗
i

obtained by formally composing i-generators.
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Generated morphisms
Given a signature P,
▶ elements of P∗

1 are of the form

a1 ∗ a2 ∗ . . . ∗ an

with ai ∈ P1,

▶ elements of P∗
2 are of the form

(u1 ∗ α1 ∗w1) ∗ (u2 ∗ α2 ∗w2) ∗ . . . ∗ (un ∗ αn ∗wn)

with ui,wi ∈ P∗
1, αi ∈ P2:

ui ∗ αi ∗wi = x′i xi yi y′i
ui

αi⇓

vi

v′i

wi

▶ and this generalizes to arbitrary dimension

Note: this is a canonical form modulo the theory of precategories!

57 / 69



Generated morphisms
Given a signature P,
▶ elements of P∗

1 are of the form

a1 ∗ a2 ∗ . . . ∗ an

with ai ∈ P1,
▶ elements of P∗

2 are of the form

(u1 ∗ α1 ∗w1) ∗ (u2 ∗ α2 ∗w2) ∗ . . . ∗ (un ∗ αn ∗wn)

with ui,wi ∈ P∗
1, αi ∈ P2:

ui ∗ αi ∗wi = x′i xi yi y′i
ui

αi⇓

vi

v′i

wi

▶ and this generalizes to arbitrary dimension

Note: this is a canonical form modulo the theory of precategories!

57 / 69



Generated morphisms
Given a signature P,
▶ elements of P∗

1 are of the form

a1 ∗ a2 ∗ . . . ∗ an

with ai ∈ P1,
▶ elements of P∗

2 are of the form

(u1 ∗ α1 ∗w1) ∗ (u2 ∗ α2 ∗w2) ∗ . . . ∗ (un ∗ αn ∗wn)

with ui,wi ∈ P∗
1, αi ∈ P2:

ui ∗ αi ∗wi = x′i xi yi y′i
ui

αi⇓

vi

v′i

wi

▶ and this generalizes to arbitrary dimension

Note: this is a canonical form modulo the theory of precategories!

57 / 69



Generated morphisms
Given a signature P,
▶ elements of P∗

1 are of the form

a1 ∗ a2 ∗ . . . ∗ an

with ai ∈ P1,
▶ elements of P∗

2 are of the form

(u1 ∗ α1 ∗w1) ∗ (u2 ∗ α2 ∗w2) ∗ . . . ∗ (un ∗ αn ∗wn)

with ui,wi ∈ P∗
1, αi ∈ P2:

ui ∗ αi ∗wi = x′i xi yi y′i
ui

αi⇓

vi

v′i

wi

▶ and this generalizes to arbitrary dimension

Note: this is a canonical form modulo the theory of precategories!
57 / 69



Monoids

For instance the signature for monoids is

P0 = {⋆} P1 = {a : ⋆→ ⋆} P2 = {µ : 2 ⇒ 1, η : 0 ⇒ 1}

(where 2 = aa, etc.)

We draw
µ = η =

We have the following morphism in P∗
2:

(µ ∗ 2) ∗ (1 ∗ µ) ∗ µ =
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Compositions

Note that we have

and
(µ ∗ 2) ∗ (1 ∗ µ) (2 ∗ µ) ∗ (µ ∗ 1)

but

does not make sense.
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Rewriting systems
A rewriting system consists of
▶ a presentation (P0,P1,P2),
▶ a set of rewriting rules P3 between elements of P∗

2.

A rewriting step is a rewriting rule “in context”.

We write P∗
3 for the rewriting paths.

For monoids, the rules are

A : (µ ∗ 1) ∗ µ⇛ (1 ∗ µ) ∗ µ L : (η ∗ 1) ∗ µ⇛ µ

⇛ ⇛
R : (1 ∗ η) ∗ µ⇛ µ

⇛

Note that in models we have in mind, these are invertible.
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Coherent presentations

A coherent presentation P consists of
▶ a rewriting system (P0,P1,P2,P3),
▶ a set P4 of relations between elements of P∗

3.

For monoids, we want to put the relations
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Generated categories

Given a coherent presentation, we write
▶ P∗ for the 3-precategory with cells (P∗

0,P
∗
1,P

∗
2,P

∗
3)

▶ P⊤ for the 3-precategory P∗ with 3-cells formally inverted

▶ P for the 3-precategory P⊤ with 3-cells quotiented by the
congruence generated by P4: the presented precategory.
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Presenting Gray categories
Lemma
P is a Gray category when P is such that
▶ for each 2-generators α, β ∈ P2 and 1-cell v ∈ P∗

1 there is an
interchange 3-cell

Xα,v,β :
α

β
⇛ β

α

▶ for each A : α⇛ α′ ∈ P3, u ∈ P∗
1 and β ∈ P2 there is a

relation
α

β

β

α

α′

β

β

α′

▶ relations generating interchange of 3-cells
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The theory of monoids

We consider the theory of monoids with the additional
▶ rewriting rules

⇛ ⇛

⇛ ⇛

▶ and relations
...
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Rewriting

A critical branching is a minimal and non-trivial1 overlapping of
two rewriting rules.

For instance,

⇚ ⇛

or

⇚ ⇛

1Including according to the relations of interchange!
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Coherence via rewriting
Theorem
Suppose given a presentation
▶ which is terminating (no infinite sequence of rewriting steps),
▶ has confluent critical pairs, i.e.,

ϕ

ϕ1 == ϕ2

ψ

P1P1 P2P2

Q1Q1 Q2Q2

where == is the congruence generated by P4.

Then P is coherent: ϕ ψ==

Proof.
Variants of critical pairs + Newman + Church-Rosser lemmas.
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Critical branchings
Theorem
A presentation with finite number of rewriting rules (excepting for
interchangers) has a finite number of critical branchings.

Proof.

ϕ1
ψ

ϕ2

ϕ1=ϕ′1∗(u∗ψ) ϕ1=ϕ′1∗(ψ∗v) ϕ1=ϕ′1∗ψ ϕ1=ϕ′1∗(u∗ψ∗v) ϕ1=ϕ′1∗(u∗ψ∗v)∗ϕ′′1
ϕ2=(ψ∗v)∗ϕ′2 ϕ2=(u∗ψ)∗ϕ′2 ϕ2=(u∗ψ∗v)∗ϕ′2 ϕ2=ψ∗ϕ′2 ϕ2=ψ

Note:
▶ even though there is an infinite number of interchangers!
▶ this is not true for 3-categories
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Results

We have been able to show coherence for various classical
structures in tricategories, including:
▶ pseudomonoids,
▶ adjunctions,
▶ etc.
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THANKS!
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