IMPLEMENTING
POLYGRAPHS

SAMUEL MIMRAM

CATHRE meeting
February 2nd 2015

Polygraphs

Polygraphs provide a notion of presentation of an n-category:

an n-polygraph P generates an n-category P*

<)
()

Polygraphs

Polygraphs provide a notion of presentation of an n-category:

an n-polygraph P generates an n-category P*

How can we describe P* in practice?

(by “in practice” | mean a real implementation)
(in OCaml)

<)
()

A 0-polygraph

Example
0-polygraph

X Y

Polygraphs

A 1-polygraph

21

Example
1-polygraph

b

)

X——=Y

Polygraphs

Polygraphs

A 1-polygraph generates a category

21

So
i1
§ito

Sp =——
t*
0

Example
1-polygraph morphisms

b
QXaybyby

X——=Y

A 2-polygraph

such that sfjos; =sjotiandtjos; =tjot

Example
1-polygraph morphisms

b
QXaybyby

X——=Y

Polygraphs

2-polygraph
y—2>y

Polygraphs

A 2-polygraph generates a 2-category

such that sfjos; =sjotiandtjos; =tjot

Example
1-polygraph morphisms 2-polygraph
b
y——=Yy

b
b
a Q X a)% b y b)% %I’U s \

X——=Y

Polygraphs

A 3-polygraph

such that sj o sy =sj oty and tj oSy =t} oty

Example
3-polygraph

v

Implementing free categories
generated by polygraphs

| will present the ideas in order to construct the free
categories they generates.

This is largely based on Burroni’s notion of logograph.
| will mainly focus on implementation issues.

For simplicity, | will detail mostly the case of globular sets
instead of general polygraphs.

| want to convey the idea that when well-formulated,
categorical constructions can be implemented
“straightforwardly”.

<)
()

Let’s start with a more simple example:

graphs

<)
()

Graphs

A graph is a diagram in Set:
S
E0 - E1
t
with X as objects and X7 as vertices.

We write Graph for the category of graphs.

Implementing graphs

In OCaml (which we are using), a graph can be implemented as:

type vertex = unit ref

type graph =
{
vertices : vertex list;
edges : (vertex * vertex) list;

}

Constructing a graph

let x = ref O
let y = ref ()
let £ = (x,x)
let g = (x,x)
let h = (x,y)

let gr = { vertices = [x;y]; edges = [f;g;h] }

Constructing a graph

let x = ref O
let y = ref O
let £ = (x,x)
let g = (x,x)
let h = (x,y)

let gr = { vertices = [x;y]; edges = [f;g;h] }

Notice that here we should be using physical equality in order to
compare things:

#x=y;; #f=g;;
- : bool = true - : bool = true
#x ==y;; # 1 ==g;;
- : bool = false - : bool = false
#x == x;; #f ==1;,;
- bool = true - : bool = true

8/5

ro

Constructing a graph

let x = ref O
let y = ref O
let £ = (x,x)
let g = (x,x)
let h = (x,y)

let gr = { vertices = [x;y]; edges = [f;g;h] }

Notice that here we should be using physical equality in order to
compare things:

» we consider that our universe il is the collection of memory
locations,

» constructions are invariant by action of the symmetric group
on i1, i.e. what the garbage collector is doing.

8/5

ro

Constructing a graph

let x = ref O
let y = ref ()
let £ = (x,x)
let g = (x,x)
let h = (x,y)

let gr = { vertices = [x;y]; edges = [f;g;h] }

Notice that here we should be using physical equality in order to
compare things:

» it follows the general philosophy that a polygraph should
describe a pure memory (pointer) data structure.

8/5

o

Constructing a graph

let x = ref O
let y = ref O
let £ = (x,x)
let g = (x,x)
let h = (x,y)

let gr = { vertices = [x;y]; edges = [f;g;h] }

Notice that here we should be using physical equality in order to
compare things:

» we could also have assigned a different identifier
(e.g. integer) to each vertex / edge, but this way of doing
thing makes avoids many renaming issues.

8/5

ro

Free graphs

The forgetful functor U : Cat — Graph admits a left adjoint:
the free category on

G = D=
t

is the category G* with
> X, as objects
» X7 as morphisms: the paths in the graph

<)
()

Free categories

Given a graph
¢
G = (),
X——=Y

a path (= morphism in the free category G*)

xfxfxgy

can be seen as a labeled graph, i.e. a graph in the slice category
Graph/G

This is not the most immediate way of seeing things, but this
point of view generalizes well!

<)
()

Composing morphisms

Morphisms seen as labeled graphs can be composed by
pushout:

Paths

Of course, not every element of Graph/G is a morphism in G*:

f
f
P G——'t or X 1% or)
f
X

Moreover, two elements in Graph/G represent the same
morphism when they are isomorphic.

<)
o

Paths

Of course, not every element of Graph/G is a morphism in G*:

f
f
P G——'t or X 1% or)
f
X

Moreover, two elements in Graph/G represent the same
morphism when they are isomorphic.

The paths are precisely those which can be obtained by
composing atomic graphs:

X y x—Tt o x x—2oy

Of course, we can explicitly characterize “valid” paths here, but
we won'’t be able later on.

<)
o

Invariants

In this way, we can implement the free category over a graph.

The functions provided to the user (and not the data structure)
will ensure that we can only construct valid paths.

<)
()

Instead of giving details in this case, let’s go on with a slightly
more elaborate (and more generic) example:

globular sets

<)
()

An n-globular set G consists in

So S1 S2

Go Gi Go

to t1 to
such that

Sjo0Sjiy1 =Sjolit1

Globular sets

tioSip1 =tiotiy

<)
o

Globular sets

An n-globular set G consists in

So S1 S2 Sn—1
Go Gy Go . == G,
to t1 to th—1
such that
SjoSiy1 =Sjotiy1 tioSip1 =tiotiy

and a morphism7: G — G’ is

So S1 So Sp—1
Go Gy Go e = G
to t t2 th—1
fol ffl f2l ifn
/ % / S S2 <S;];1 /
0 1 Go .. =G,

An n-globular set G consists in

So S1 S2

Go Gi Go

to ty to
such that
Sj0Sjiy1 =Sjolip1
and a morphism7: G — G’ is

So S1 S2

Go Gi Go

to t1 to
%l ﬁl &l
SH s S5

G, G G,

to ti ty

We write Glob,, for their category.

Globular sets

tioSip1 =tiotiy

<)
o

The free category on a globular set

The same idea can be used in order to generate the free
n-category over n-globular set G:

n-cells will be (some) elements of the slice category

Glob, /G

This is not the most simple way of implementing this (I would use
Batanin’s trees for instance), but it generalizes to polygraphs.

<)
()

An algebraic approach

The definition of the free n-category on a globular set G is
algebraic (= free construction + relations), which we could use:

type morphism =
| Generator of generator
| Composition of morphism * int * morphism
| Identity of morphism

(a generator is an element of G;). However, we would have to
work modulo the relations of n-categories.

In the case of globular sets, there is a normal form for equivalence
classes of terms modulo the relations such as exchange (this is
what Batanin trees are), but there is no such thing for polygraphs.

<)
()

Let’s implement things
with the idea of
morphisms in Glob, /G.

18

52

Generators

An element of G, will be:

type generator =
{
dim : int;
name : string;
label : generator option;
source : generator;
target : generator;

}

where

» the name is only used for printing purposes,
» the label is here to be ready for the slice category.

Dummy generators

Since every generator has to have a source and a target, for
elements of Gy we will use:

let rec dummy_generator =
{
dim = -1;
name = "dummy";
label = None;
source = dummy_generator;
target = dummy_generator;

}

and similarly for other inductive constructions.

20/52

Globular sets can then be implemented as:

type gset =
{
dim : int;
generators : generator list;
prev : gset;

}

Globular sets

Globular sets

Globular sets can then be implemented as:

type gset =
{
dim : int;
generators : generator list;
prev : gset;

}
Again, notice that many things such as

assert (
List.for_all
(fun g -> g.dim = gset.dim)
gset.generators) ;

will be maintained as an invariants.

Auxiliary functions

Some auxiliary functions are implemented. For instance, the
canonical inclusion G, < Gp11:

let degenerate gset =
{
dim = gset.dim + 1;
generators = [];
prev = gset;

3

<)
o

Auxiliary functions

Some auxiliary functions are implemented. For instance, the
canonical inclusion G, < Gp11:

let degenerate gset =

{
dim = gset.dim + 1;
generators = [];
prev = gset;

}

Moreover, | often use even dumber functions for “clarity”, e.g.

let create ~generators ~prev () =
let dim = dim prev + 1 in
assert (List.for_all (fun g -> G.dim g = dim) generators);
{ dim; generators; prev }

Morphisms between globular sets

Morphisms between globular sets are implemented as

type morphism =
{
dim : int;
source : gset;
target : gset;
map : (generator,generator) Mapq.t;
prev : morphism;

}

where
» ('a,'b) Mapq.t implements a map (= set-theoretic
function) from 'a to 'b where elements are compared with
physical equality

<)
()

Auxiliary functions

Many auxiliary functions can be easily implemented:
» sequential composition:
seq : morphism -> morphism -> morphism
» application of a morphism to a generator:
app : morphism -> generator -> generator
» inclusion of a globular set into a bigger one:
inclusion : gset -> gset -> morphism
> identity:
id : gset -> morphism
> etc.

Warning

Up to now, | have been simplifying a bit the code (not deeply,
only to have clearer notations).

From now on, | just copy and paste, don’t hesitate to ask
questions...

25

52

Non-disjoint union

The non-disjoint union of two globular sets:

let rec union sl s2 =

assert (dim s1 = dim s2);

let dim = dim sl in

if dim < O then dummy else
let prev = union (prev s1) (prev s2) in
let generators =

Listq.union (generators sl1) (generators s2)

in
create ~generators ~prev ()

Relocating globular sets

Since we use physical equality, we can easily create an
isomorphic copy of it:
let rec copy s =
let dim = dim s in
if dim < O then M.dummy else
let f' = copy (prev s) in
let g_copy g =
let source, target =
if G.dim g = 0 then G.dummy, G.dummy
else M.app f' (G.source g), M.app f' (G.target g)
in
G.create ~name: (G.name g) 7label:(Option.find G.label g)
~source ~target ()
in
let map = Mapq.of_list (List.map (fun g -> g, g_copy g)
(generators s)) in
let generators = List.map (Mapq.app map) (generators s) in
let target = create ~generators ~prev:(M.target £') () in
let f = M.create ~map ~prev:f' ~source:s ~target () in f

Coproduct

let coprod si1 s2 =
let i1 = copy sl in
let i2 = copy s2 in
let s1' = M.target il in
let s2' = M.target i2 in
let s = union s1' s2' in
let il1' = M.inclusion sl1l' s in
let i2' = M.inclusion s2' s in
M.seq i1 il', M.seq i2 i2'

Quotients

We can also have quotients:

» an equivalence class of elements x € X can be coded as set
of pairs (x, X),

» the canonical representative is chosen arbitrarily (e.g. the last
inserted element)

» we can implement a “graded” version to have equivalence
relations on globular sets, and compute a quotient globular
set.

<)
()

Coequalizers

We can compute the coequalizer of two morphisms f£1 and £2:

let coeq f1 f2 =
assert (M.dim f1 = M.dim £2);
assert (eq (M.source f1) (M.source £2));
assert (eq (M.target f1) (M.target £2));
let rec equiv f1 f2 =
if M.dim f1 < O then Q.dummy else
let r = equiv (M.prev f1) (M.prev £f2) in
let r = Q.degenerate ~set:(M.target f1) r in
let r =
List.fold_left (funr g->Q.add r (M.app f1 g) (M.app £2 g))
r (generators (M.source f1))

in
List.fold_left (funr g -> Q.add r g g) r (generators (M.target
in
let e
let s
Q.set e

equiv f1 f2 in
M.target f1 in

30/52

Pushouts

And thus pushouts (as we all know):

let pushout f1 f2 =
assert (M.dim f1 = M.dim £2);
assert (eq (M.source f1) (M.source £2));
let i1, i2 = coprod (M.target f1) (M.target f2) in
let g = coeq (M.seq f1 il1l) (M.seq f2 i2) in
M.seq i1 g, M.seq i2 g

31/52

Universal maps

With slightly more work, we can also compute the universal maps
from a cocone of a coproduct or a pushout:

G/
A A
f
f1 /D
AN
G,

fo
i2
Go

G

Now that we have all required operations on globular sets,
we can implement free categories they generate.

Cells

type cell =
{
dim : int; (** dimension *)
set : gset; (*x underlying globular set *)
source : cell; (*x*x source (n-1)-cell %)
target : cell; (**x target (n-1)-cell *)
}

where

» the underlying globular sets of the source and target are
sub-globular sets of the underlying globular set of the cell.

<)
()

From generators to cells

Any generator of dimension n induces an n-cell with
» one (labeled) n-generator,
» two (labeled) k-generators for 0 < k < n.

For instance, a 2-generator seen as a 2-cell is

Inductive definition

The 1-sphere

and then we add a top dimensional generator labeled by «.

of generator (1/3)

let of_generator s g =
if G.dim g = O then
let g' = G.create ~label:g
~source:G.dummy ~target:G.dummy ()
in
let set = S.add (S.degenerate S.dummy) g' in
create ~set ~source:dummy ~target:dummy ()
else

of generator (2/3)

let rec sphere sgn s t =

if G.dim s = O then ... else
let c = sphere (S.prev sgn) (G.source s) (G.target t) in
let gsrc' = List.element (S.generators (set (source c))) i
let gtgt' = List.element (S.generators (set (target c))) i
let gsrc = G.create ~label:s ~source:gsrc' ~target:gtgt' (
let gtgt = G.create ~label:t ~source:gsrc' ~target:gtgt' (

let source = add c gsrc in

let target = add c gtgt in

let set set c in

let set = S.add set gsrc in

let set = S.add set gtgt in

let set = S.degenerate set in

create ~set ~source ~target ()

in

of generator (3/3)

let ¢ = sphere (S.prev s) (G.source g) (G.target g) in
let source = List.element (S.generators (set (source c))) in
let target = List.element (S.generators (set (target c))) in

let g = G.create ~label:g ~name: (G.name g) ~source ~target ()
add c g

39/52

Isomorphic cells

Given two cells which are isomorphic, we can inductively
construct the isomorphism between the underlying globular sets.

(there is only one isomorphism)

We call this function identify.

<)
()

Composition

let seq d cl c2 =

assert (dim c1 = dim c2);
assert (0 <= d && d < dim c1);
let k = dim c1 - d in
let t1 iterate k target cl in
let s2 iterate k source c2 in
let £ = identify t1 s2 in
let f1, f2 = S.pushout (target_morphism ~k c1)
(M.seq (iterate k M.degenerate f)
(source_morphism ~k c2)) in
let s = M.target f1 in
(* Recusive composition of the sources and targets. *)
let rec seq cl1 f1 c2 £f2 = ... in
let source, target =
(if k¥ = 1 then map (M.prev f1) (source cl)
else seq (source c1) (M.prev £1) (source c2) (M.prev £2)),
(if k¥ = 1 then map (M.prev f2) (target c2)
else seq (source c1) (M.prev f1) (source c2) (M.prev £2))
in

create ~set:s ~source ~target ()

Free n-categories on polygraphs is “the same”.

Notice that things get much more interleaved since we need the
definition of the free n-category to define an (n + 1)-polygraph...

Let’s see the definition of polygraphs.

<)
()

Polygraphs: generators

type generator =
{
g_dim : int;
g_name : string; (** name of the generator *)
g_source : cell; (** source (n-1)-cell *)
g_target : cell; (*x target (n-1)-cell *)

Polygraphs: polygraphs

and polygraph =
{
p_dim : int;
(** n-dimensional generators
whose source and target are labeled
in the underlying (n-1)-polygraph *)
p_generators : generator list;
(** underlying (n-1)-dimensional polygraph *)
p_prev : polygraph;
b

Polygraphs: morphisms

and morphism =

{

(** function between top-dimensional generators *)
m_map : (generator,generator) Mapq.t;

(** morphism between lower-dimensional cells *)
m_prev : morphism;

m_source : polygraph; (** source of the map *)
m_target : polygraph; (** target of the map *)

Polygraphs: cells

and cell =

{

(** labeling morphism for the polygraph of the cell *)
c_label : morphism;
c_source : cell; (**x gource (n-1)-cell x*)

(** inclusion of the polygraph of the source cell *)
c_source_morphism : morphism;
c_target : cell; (x* target (n-1)-cell *)

(** inclusion of the polygraph of the target cell *)
c_target_morphism : morphism;

}

Most constructions can be performed similarly
(excepted that everything is more complicated).

<)
()

Face inclusions

Consider a 2-category with
» a0-cell: x
» al-cel: f:x—>x
» 2-cells: n:idy = fand e : f = idy

The 2-cell n is represented by the following polygraph:

<)
()

Face inclusions

Consider a 2-category with
» a0-cell: x
» al-cel: f:x—>x
» 2-cells: n:idy = fand e : f = idy

The 2-cell n is represented by the following polygraph:

48

52

Face inclusions

Consider a 2-category with
» a0-cell: x
» al-cel: f:x—>x
» 2-cells: n:idy = fand e : f = idy

The 2-cell n is represented by the following polygraph:

X

@)

f

<)
()

Face inclusions

Consider a 2-category with
» a0-cell: x
» al-cel: f:x—>x
» 2-cells: n:idy = fand e : f = idy

The 2-cell n is represented by the following polygraph:
X

)

f

<)
()

Face inclusions

Consider a 2-category with
» a0-cell: x
» al-cel: f:x—>x
» 2-cells: n:idy = fand e : f = idy

The 2-cell n is represented by the following polygraph:

X

The source is not a sub-polygraph: we have to have an explicit
inclusion.

<)
()

An example

let uid = uidebug in

let pO = P.degenerate P.dummy in

let star = G.create ~name:"*" ~source:C.dummy ~target:C.dummy () ir
let pO = P.add pO star in

let star_c = C.of_generator pO star in

let pl = P.degenerate pO in
let one = G.create ~name:"a"
let pl = P.add pl one in
let one_c = C.of_generator pl one in

let p2 = P.degenerate pl in

let two_c = C.seq O one_c one_c in

let mu = G.create ~name:"p" ~source: (C.seq O one_c one_c) ~target:o
let p2 = P.add p2 mu in

let mu_c = C.of_generator p2 mu in

let mumumu = C.seq 1 (C.seq O mu_c mu_c) mu_c in

Printf.printf "mumumu:\n%s\n%!" (C.to_string uid mumumu)

~source:star_c ~target:star_c () in

49/52

mumumu :
2-cell:
dim O:

An example

*39(*0) *46(*x0) *40(*0) *38(*0) *43(*0)

dim 1:
a37(a0)
a39(a0)
a41(a0)
a33(a0)
a35(a0)
a42(a0)
a32(a0)

dim 2:

pé (o)

7 (no)

p8(p0)

: *1(%46) - *1(%39)
: %1 (*40) - *1(*46)
: *x1(*40) - *1(*39)
: *1(*43) - *1(*40)
: x1(%38) = *x1(%43)
: *x1(*38) = *1(*40)
: x1(*38) - *1(*39)

*9(*40) -ad4(a39)-+ *7(*46) -ab(al37)— *8(*39)
=> *3(*x40) -al(adl)- *2(x39)

: *9(*38) -ad(a3b)-+ *7(*43) -ab(a33)-+ *8(*40)

=> *3(*38) -al(a42)-+ *2(*40)

: x9(*38) -ad(ad2)- *7(*x40) -ab(adl)-+ *8(*39)

=> %x3(%38) -al(a32)-+ *2(*39)

<)
()

Compositions

As before, composition of f and g can be performed given an
isomorphism

orn = 09

However:
» there is no necessarily a unique isomorphism anymore,
e.g. along “floating 2-cells” (see the blackboard),

» | expect that this could be fixed by using the “algebraic

construction” on top of polygraphs in order to keep track of
the cells?

<)
()

What’s next

We have an implementation of polygraphs.

| could not (yet) implement more interesting operations such
as homotopic reduction: we can fake (n, k)-polygraphs, but
the real issue is how to perform substitution of cells.

We should implement other meaningful operations: pattern
matching (so that we can rewrite), Tietze transformations,
homotopic reduction, termination (Guiraud’s derivations),
etc.

We need to interface traditional tools (e.g. rewriting
presentations of monoids).

<)
()

