
IMPLEMENTING
POLYGRAPHS

SAMUEL MIMRAM

CATHRE meeting

February 2nd 2015

Polygraphs

Polygraphs provide a notion of presentation of an n-category:

an n-polygraph P generates an n-category P∗

How can we describe P∗ in practice?

(by “in practice” I mean a real implementation)
(in OCaml)

2 / 52

Polygraphs

Polygraphs provide a notion of presentation of an n-category:

an n-polygraph P generates an n-category P∗

How can we describe P∗ in practice?

(by “in practice” I mean a real implementation)
(in OCaml)

2 / 52

Polygraphs

A 0-polygraph

Σ1 Σ2 Σ3

Σ0 Σ∗
1 Σ∗

2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example

0-polygraph

x y

3 / 52

Polygraphs

A 1-polygraph

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}

Σ2 Σ3

Σ0 Σ∗
1 Σ∗

2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example
1-polygraph

morphisms 2-polygraph

x a // y

b

��

x a // y b // y b // y

y b // y
b

��=
==

==
==

=

x

a
@@��������

a

22

r⇓ ⇓s

y

3 / 52

Polygraphs

A 1-polygraph generates a category

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}
i1
��

Σ2 Σ3

Σ0 Σ∗
1

s∗0oo

t∗0
oo Σ∗

2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example
1-polygraph morphisms

2-polygraph

x a // y

b

�� x a // y b // y b // y

y b // y
b

��=
==

==
==

=

x

a
@@��������

a

22

r⇓ ⇓s

y

3 / 52

Polygraphs

A 2-polygraph

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}
i1
��

Σ2
s1

~~}}
}}
}}
}}

t1~~}}
}}
}}
}}

Σ3

Σ0 Σ∗
1

s∗0oo

t∗0
oo Σ∗

2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example
1-polygraph morphisms 2-polygraph

x a // y

b

�� x a // y b // y b // y

y b // y
b

��=
==

==
==

=

x

a
@@��������

a

22

r⇓ ⇓s

y
3 / 52

Polygraphs

A 2-polygraph generates a 2-category

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}
i1
��

Σ2
s1

~~}}
}}
}}
}}

t1~~}}
}}
}}
}}
i2
��

Σ3

Σ0 Σ∗
1

s∗0oo

t∗0
oo Σ∗

2

s∗1oo

t∗1
oo

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example
1-polygraph morphisms 2-polygraph

x a // y

b

�� x a // y b // y b // y

y b // y
b

��=
==

==
==

=

x

a
@@��������

a

22

r⇓ ⇓s

y
3 / 52

Polygraphs

A 3-polygraph

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}
i1
��

Σ2
s1

~~}}
}}
}}
}}

t1~~}}
}}
}}
}}
i2
��

Σ3
s2

~~}}
}}
}}
}}

t2~~}}
}}
}}
}}

Σ0 Σ∗
1

s∗0oo

t∗0
oo Σ∗

2

s∗1oo

t∗1
oo

such that s∗1 ◦ s2 = s∗1 ◦ t2 and t∗1 ◦ s2 = t∗1 ◦ t2

Example
3-polygraph

y b // y
b

��=
==

==
==

=

x

a
@@��������

a

22
r⇓

α
⇛ ⇓s

y
3 / 52

Implementing free categories
generated by polygraphs

▶ I will present the ideas in order to construct the free
categories they generates.

▶ This is largely based on Burroni’s notion of logograph.
▶ I will mainly focus on implementation issues.
▶ For simplicity, I will detail mostly the case of globular sets
instead of general polygraphs.

▶ I want to convey the idea that when well-formulated,
categorical constructions can be implemented
“straightforwardly”.

4 / 52

Let’s start with a more simple example:

graphs

5 / 52

Graphs

A graph is a diagram in Set:

Σ0 Σ1

soo

t
oo

with Σ0 as objects and Σ1 as vertices.

We write Graph for the category of graphs.

6 / 52

Implementing graphs

In OCaml (which we are using), a graph can be implemented as:

type vertex = unit ref

type graph =
{
vertices : vertex list;
edges : (vertex * vertex) list;

}

7 / 52

Constructing a graph

let x = ref ()
let y = ref ()
let f = (x,x)
let g = (x,x)
let h = (x,y)
let gr = { vertices = [x;y]; edges = [f;g;h] }

Notice that here we should be using physical equality in order to
compare things:

8 / 52

Constructing a graph

let x = ref ()
let y = ref ()
let f = (x,x)
let g = (x,x)
let h = (x,y)
let gr = { vertices = [x;y]; edges = [f;g;h] }

Notice that here we should be using physical equality in order to
compare things:

x = y;;
- : bool = true
x == y;;
- : bool = false
x == x;;
- : bool = true

f = g;;
- : bool = true
f == g;;
- : bool = false
f == f;;
- : bool = true 8 / 52

Constructing a graph

let x = ref ()
let y = ref ()
let f = (x,x)
let g = (x,x)
let h = (x,y)
let gr = { vertices = [x;y]; edges = [f;g;h] }

Notice that here we should be using physical equality in order to
compare things:

▶ we consider that our universe U is the collection of memory
locations,

▶ constructions are invariant by action of the symmetric group
on U, i.e. what the garbage collector is doing.

8 / 52

Constructing a graph

let x = ref ()
let y = ref ()
let f = (x,x)
let g = (x,x)
let h = (x,y)
let gr = { vertices = [x;y]; edges = [f;g;h] }

Notice that here we should be using physical equality in order to
compare things:

▶ it follows the general philosophy that a polygraph should
describe a pure memory (pointer) data structure.

8 / 52

Constructing a graph

let x = ref ()
let y = ref ()
let f = (x,x)
let g = (x,x)
let h = (x,y)
let gr = { vertices = [x;y]; edges = [f;g;h] }

Notice that here we should be using physical equality in order to
compare things:

▶ we could also have assigned a different identifier
(e.g. integer) to each vertex / edge, but this way of doing
thing makes avoids many renaming issues.

8 / 52

Free graphs

The forgetful functor U : Cat → Graph admits a left adjoint:
the free category on

G = Σ0 Σ1

soo

t
oo

is the category G∗ with
▶ Σ0 as objects
▶ Σ∗

1 as morphisms: the paths in the graph

9 / 52

Free categories

Given a graph

G =
x

f

�� g // y

a path (= morphism in the free category G∗)

x f // x f // x
g // y

can be seen as a labeled graph, i.e. a graph in the slice category

Graph/G

This is not the most immediate way of seeing things, but this
point of view generalizes well!

10 / 52

Composing morphisms

Morphisms seen as labeled graphs can be composed by
pushout:

x f // x f // x
g // y

=

x f // x f // x x
g // y

x

^^>
>
>
>

@@�
�

�
�

11 / 52

Paths

Of course, not every element of Graph/G is a morphism in G∗:

x
f //

f
// x or x y or

x

f

��

Moreover, two elements in Graph/G represent the same
morphism when they are isomorphic.

The paths are precisely those which can be obtained by
composing atomic graphs:

x y x f // x x
g // y

Of course, we can explicitly characterize “valid” paths here, but
we won’t be able later on.

12 / 52

Paths

Of course, not every element of Graph/G is a morphism in G∗:

x
f //

f
// x or x y or

x

f

��

Moreover, two elements in Graph/G represent the same
morphism when they are isomorphic.

The paths are precisely those which can be obtained by
composing atomic graphs:

x y x f // x x
g // y

Of course, we can explicitly characterize “valid” paths here, but
we won’t be able later on.

12 / 52

Invariants

In this way, we can implement the free category over a graph.

The functions provided to the user (and not the data structure)
will ensure that we can only construct valid paths.

13 / 52

Instead of giving details in this case, let’s go on with a slightly
more elaborate (and more generic) example:

globular sets

14 / 52

Globular sets

An n-globular set G consists in

G0 G1

s0oo

t0
oo G2

s1oo

t1
oo

s2oo

t2
oo . . . Gn

sn−1oo

tn−1

oo

such that

si ◦ si+1 = si ◦ ti+1 ti ◦ si+1 = ti ◦ ti+1

and a morphism f : G → G′ is

G0

f0
��

G1

s0oo

t0
oo

ff
��

G2

s1oo

t1
oo

f2
��

s2oo

t2
oo . . . Gn

sn−1oo

tn−1

oo

fn
��

G′
0 G′

1

s′0oo

t′0
oo G2

s′1oo

t′1
oo

s′2oo

t′2
oo . . . G′

n

s′n−1oo

t′n−1

oo

We write Globn for their category.

15 / 52

Globular sets

An n-globular set G consists in

G0 G1

s0oo

t0
oo G2

s1oo

t1
oo

s2oo

t2
oo . . . Gn

sn−1oo

tn−1

oo

such that

si ◦ si+1 = si ◦ ti+1 ti ◦ si+1 = ti ◦ ti+1

and a morphism f : G → G′ is

G0

f0
��

G1

s0oo

t0
oo

ff
��

G2

s1oo

t1
oo

f2
��

s2oo

t2
oo . . . Gn

sn−1oo

tn−1

oo

fn
��

G′
0 G′

1

s′0oo

t′0
oo G2

s′1oo

t′1
oo

s′2oo

t′2
oo . . . G′

n

s′n−1oo

t′n−1

oo

We write Globn for their category.

15 / 52

Globular sets

An n-globular set G consists in

G0 G1

s0oo

t0
oo G2

s1oo

t1
oo

s2oo

t2
oo . . . Gn

sn−1oo

tn−1

oo

such that

si ◦ si+1 = si ◦ ti+1 ti ◦ si+1 = ti ◦ ti+1

and a morphism f : G → G′ is

G0

f0
��

G1

s0oo

t0
oo

ff
��

G2

s1oo

t1
oo

f2
��

s2oo

t2
oo . . . Gn

sn−1oo

tn−1

oo

fn
��

G′
0 G′

1

s′0oo

t′0
oo G2

s′1oo

t′1
oo

s′2oo

t′2
oo . . . G′

n

s′n−1oo

t′n−1

oo

We write Globn for their category.
15 / 52

The free category on a globular set

The same idea can be used in order to generate the free
n-category over n-globular set G:

n-cells will be (some) elements of the slice category

Globn/G

This is not the most simple way of implementing this (I would use
Batanin’s trees for instance), but it generalizes to polygraphs.

16 / 52

An algebraic approach

The definition of the free n-category on a globular set G is
algebraic (= free construction + relations), which we could use:

type morphism =
| Generator of generator
| Composition of morphism * int * morphism
| Identity of morphism

(a generator is an element of Gi). However, we would have to
work modulo the relations of n-categories.

In the case of globular sets, there is a normal form for equivalence
classes of terms modulo the relations such as exchange (this is
what Batanin trees are), but there is no such thing for polygraphs.

17 / 52

Let’s implement things
with the idea of

morphisms in Globn/G.

18 / 52

Generators

An element of Gn will be:

type generator =
{
dim : int;
name : string;
label : generator option;
source : generator;
target : generator;

}

where
▶ the name is only used for printing purposes,
▶ the label is here to be ready for the slice category.

19 / 52

Dummy generators

Since every generator has to have a source and a target, for
elements of G0 we will use:

let rec dummy_generator =
{
dim = -1;
name = "dummy";
label = None;
source = dummy_generator;
target = dummy_generator;

}

and similarly for other inductive constructions.

20 / 52

Globular sets

Globular sets can then be implemented as:

type gset =
{
dim : int;
generators : generator list;
prev : gset;

}

Again, notice that many things such as

assert (
List.for_all

(fun g -> g.dim = gset.dim)
gset.generators);

will be maintained as an invariants.

21 / 52

Globular sets

Globular sets can then be implemented as:

type gset =
{
dim : int;
generators : generator list;
prev : gset;

}

Again, notice that many things such as

assert (
List.for_all

(fun g -> g.dim = gset.dim)
gset.generators);

will be maintained as an invariants.
21 / 52

Auxiliary functions

Some auxiliary functions are implemented. For instance, the
canonical inclusion Gn ↪→ Gn+1:

let degenerate gset =
{
dim = gset.dim + 1;
generators = [];
prev = gset;

}

Moreover, I often use even dumber functions for “clarity”, e.g.

let create ~generators ~prev () =
let dim = dim prev + 1 in
assert (List.for_all (fun g -> G.dim g = dim) generators);
{ dim; generators; prev }

22 / 52

Auxiliary functions

Some auxiliary functions are implemented. For instance, the
canonical inclusion Gn ↪→ Gn+1:

let degenerate gset =
{
dim = gset.dim + 1;
generators = [];
prev = gset;

}

Moreover, I often use even dumber functions for “clarity”, e.g.

let create ~generators ~prev () =
let dim = dim prev + 1 in
assert (List.for_all (fun g -> G.dim g = dim) generators);
{ dim; generators; prev }

22 / 52

Morphisms between globular sets

Morphisms between globular sets are implemented as

type morphism =
{
dim : int;
source : gset;
target : gset;
map : (generator,generator) Mapq.t;
prev : morphism;

}

where
▶ ('a,'b) Mapq.t implements a map (= set-theoretic
function) from 'a to 'b where elements are compared with
physical equality

23 / 52

Auxiliary functions

Many auxiliary functions can be easily implemented:
▶ sequential composition:

seq : morphism -> morphism -> morphism
▶ application of a morphism to a generator:

app : morphism -> generator -> generator
▶ inclusion of a globular set into a bigger one:

inclusion : gset -> gset -> morphism
▶ identity:

id : gset -> morphism
▶ etc.

24 / 52

Warning

Up to now, I have been simplifying a bit the code (not deeply,
only to have clearer notations).

From now on, I just copy and paste, don’t hesitate to ask
questions...

25 / 52

Non-disjoint union

The non-disjoint union of two globular sets:

let rec union s1 s2 =
assert (dim s1 = dim s2);
let dim = dim s1 in
if dim < 0 then dummy else

let prev = union (prev s1) (prev s2) in
let generators =
Listq.union (generators s1) (generators s2)

in
create ~generators ~prev ()

26 / 52

Relocating globular sets

Since we use physical equality, we can easily create an
isomorphic copy of it:
let rec copy s =
let dim = dim s in
if dim < 0 then M.dummy else
let f' = copy (prev s) in
let g_copy g =
let source, target =
if G.dim g = 0 then G.dummy, G.dummy
else M.app f' (G.source g), M.app f' (G.target g)

in
G.create ~name:(G.name g) ?label:(Option.find G.label g)

~source ~target ()
in
let map = Mapq.of_list (List.map (fun g -> g, g_copy g)

(generators s)) in
let generators = List.map (Mapq.app map) (generators s) in
let target = create ~generators ~prev:(M.target f') () in
let f = M.create ~map ~prev:f' ~source:s ~target () in f 27 / 52

Coproduct

let coprod s1 s2 =
let i1 = copy s1 in
let i2 = copy s2 in
let s1' = M.target i1 in
let s2' = M.target i2 in
let s = union s1' s2' in
let i1' = M.inclusion s1' s in
let i2' = M.inclusion s2' s in
M.seq i1 i1', M.seq i2 i2'

28 / 52

Quotients

We can also have quotients:
▶ an equivalence class of elements x ∈ X can be coded as set
of pairs (x, x̂),

▶ the canonical representative is chosen arbitrarily (e.g. the last
inserted element)

▶ we can implement a “graded” version to have equivalence
relations on globular sets, and compute a quotient globular
set.

29 / 52

Coequalizers

We can compute the coequalizer of two morphisms f1 and f2:
let coeq f1 f2 =
assert (M.dim f1 = M.dim f2);
assert (eq (M.source f1) (M.source f2));
assert (eq (M.target f1) (M.target f2));
let rec equiv f1 f2 =
if M.dim f1 < 0 then Q.dummy else
let r = equiv (M.prev f1) (M.prev f2) in
let r = Q.degenerate ~set:(M.target f1) r in
let r =
List.fold_left (fun r g -> Q.add r (M.app f1 g) (M.app f2 g))

r (generators (M.source f1))
in

List.fold_left (fun r g -> Q.add r g g) r (generators (M.target f1))
in
let e = equiv f1 f2 in
let s = M.target f1 in
Q.set e

30 / 52

Pushouts

And thus pushouts (as we all know):

let pushout f1 f2 =
assert (M.dim f1 = M.dim f2);
assert (eq (M.source f1) (M.source f2));
let i1, i2 = coprod (M.target f1) (M.target f2) in
let g = coeq (M.seq f1 i1) (M.seq f2 i2) in
M.seq i1 g, M.seq i2 g

31 / 52

Universal maps

With slightly more work, we can also compute the universal maps
from a cocone of a coproduct or a pushout:

G′

P

f

OO

G1

f1

AA

i1

>>}}}}}}}}
G2

i2

``AAAAAAAA

f2

]]

G
p1

``AAAAAAAA p2

>>}}}}}}}}

32 / 52

Now that we have all required operations on globular sets,
we can implement free categories they generate.

33 / 52

Cells

type cell =
{
dim : int; (** dimension *)
set : gset; (** underlying globular set *)
source : cell; (** source (n-1)-cell *)
target : cell; (** target (n-1)-cell *)

}

where
▶ the underlying globular sets of the source and target are
sub-globular sets of the underlying globular set of the cell.

34 / 52

From generators to cells

Any generator of dimension n induces an n-cell with
▶ one (labeled) n-generator,
▶ two (labeled) k-generators for 0 ≤ k < n.

For instance, a 2-generator seen as a 2-cell is

x

f
''

g

77⇓ α y

35 / 52

Inductive definition

The 1-sphere

x

f
&&

g

88 y

can be inductively obtained as a “bi-pushout”

x

f
&& y

x

@@

��

y

^^

��
x

g

88 y

and then we add a top dimensional generator labeled by α.
36 / 52

of_generator (1/3)

let of_generator s g =
if G.dim g = 0 then

let g' = G.create ~label:g
~source:G.dummy ~target:G.dummy ()

in
let set = S.add (S.degenerate S.dummy) g' in
create ~set ~source:dummy ~target:dummy ()

else
...

37 / 52

of_generator (2/3)

let rec sphere sgn s t =
if G.dim s = 0 then ... else
let c = sphere (S.prev sgn) (G.source s) (G.target t) in
let gsrc' = List.element (S.generators (set (source c))) in
let gtgt' = List.element (S.generators (set (target c))) in
let gsrc = G.create ~label:s ~source:gsrc' ~target:gtgt' () in
let gtgt = G.create ~label:t ~source:gsrc' ~target:gtgt' () in
let source = add c gsrc in
let target = add c gtgt in
let set = set c in
let set = S.add set gsrc in
let set = S.add set gtgt in
let set = S.degenerate set in
create ~set ~source ~target ()

in
...

38 / 52

of_generator (3/3)

let c = sphere (S.prev s) (G.source g) (G.target g) in
let source = List.element (S.generators (set (source c))) in
let target = List.element (S.generators (set (target c))) in
let g = G.create ~label:g ~name:(G.name g) ~source ~target () in
add c g

39 / 52

Isomorphic cells

Given two cells which are isomorphic, we can inductively
construct the isomorphism between the underlying globular sets.

(there is only one isomorphism)

We call this function identify.

40 / 52

Composition
let seq d c1 c2 =
assert (dim c1 = dim c2);
assert (0 <= d && d < dim c1);
let k = dim c1 - d in
let t1 = iterate k target c1 in
let s2 = iterate k source c2 in
let f = identify t1 s2 in
let f1, f2 = S.pushout (target_morphism ~k c1)

(M.seq (iterate k M.degenerate f)
(source_morphism ~k c2)) in

let s = M.target f1 in
(* Recusive composition of the sources and targets. *)
let rec seq c1 f1 c2 f2 = ... in
let source, target =
(if k = 1 then map (M.prev f1) (source c1)
else seq (source c1) (M.prev f1) (source c2) (M.prev f2)),
(if k = 1 then map (M.prev f2) (target c2)
else seq (source c1) (M.prev f1) (source c2) (M.prev f2))

in
create ~set:s ~source ~target ()

41 / 52

Free n-categories on polygraphs is “the same”.

Notice that things get much more interleaved since we need the
definition of the free n-category to define an (n+ 1)-polygraph...

Let’s see the definition of polygraphs.

42 / 52

Polygraphs: generators

type generator =
{
g_dim : int;
g_name : string; (** name of the generator *)
g_source : cell; (** source (n-1)-cell *)
g_target : cell; (** target (n-1)-cell *)

}

43 / 52

Polygraphs: polygraphs

and polygraph =
{
p_dim : int;
(** n-dimensional generators

whose source and target are labeled
in the underlying (n-1)-polygraph *)

p_generators : generator list;
(** underlying (n-1)-dimensional polygraph *)
p_prev : polygraph;

}

44 / 52

Polygraphs: morphisms

and morphism =
{
(** function between top-dimensional generators *)
m_map : (generator,generator) Mapq.t;
(** morphism between lower-dimensional cells *)
m_prev : morphism;
m_source : polygraph; (** source of the map *)
m_target : polygraph; (** target of the map *)

}

45 / 52

Polygraphs: cells

and cell =
{
(** labeling morphism for the polygraph of the cell *)
c_label : morphism;
c_source : cell; (** source (n-1)-cell *)

(** inclusion of the polygraph of the source cell *)
c_source_morphism : morphism;
c_target : cell; (** target (n-1)-cell *)

(** inclusion of the polygraph of the target cell *)
c_target_morphism : morphism;

}

46 / 52

Most constructions can be performed similarly
(excepted that everything is more complicated).

47 / 52

Face inclusions

Consider a 2-category with
▶ a 0-cell: x
▶ a 1-cell: f : x → x
▶ 2-cells: η : idx ⇒ f and ε : f ⇒ idx

The 2-cell η is represented by the following polygraph:

48 / 52

Face inclusions

Consider a 2-category with
▶ a 0-cell: x
▶ a 1-cell: f : x → x
▶ 2-cells: η : idx ⇒ f and ε : f ⇒ idx

The 2-cell η is represented by the following polygraph:

x

x

77

��

x

gg

��
x

f

44 y

48 / 52

Face inclusions

Consider a 2-category with
▶ a 0-cell: x
▶ a 1-cell: f : x → x
▶ 2-cells: η : idx ⇒ f and ε : f ⇒ idx

The 2-cell η is represented by the following polygraph:

x

f

YY

48 / 52

Face inclusions

Consider a 2-category with
▶ a 0-cell: x
▶ a 1-cell: f : x → x
▶ 2-cells: η : idx ⇒ f and ε : f ⇒ idx

The 2-cell η is represented by the following polygraph:

x

f

YY
⇓

48 / 52

Face inclusions

Consider a 2-category with
▶ a 0-cell: x
▶ a 1-cell: f : x → x
▶ 2-cells: η : idx ⇒ f and ε : f ⇒ idx

The 2-cell η is represented by the following polygraph:

x

f

YY
⇓

x

@@

f
// x

^^

The source is not a sub-polygraph: we have to have an explicit
inclusion.

48 / 52

An example

let uid = uidebug in
let p0 = P.degenerate P.dummy in
let star = G.create ~name:"*" ~source:C.dummy ~target:C.dummy () in
let p0 = P.add p0 star in
let star_c = C.of_generator p0 star in
let p1 = P.degenerate p0 in
let one = G.create ~name:"a" ~source:star_c ~target:star_c () in
let p1 = P.add p1 one in
let one_c = C.of_generator p1 one in
let p2 = P.degenerate p1 in
let two_c = C.seq 0 one_c one_c in
let mu = G.create ~name:"µ" ~source:(C.seq 0 one_c one_c) ~target:one_c () in
let p2 = P.add p2 mu in
let mu_c = C.of_generator p2 mu in
let mumumu = C.seq 1 (C.seq 0 mu_c mu_c) mu_c in
Printf.printf "mumumu:\n%s\n%!" (C.to_string uid mumumu)

49 / 52

An example

mumumu:
2-cell:

dim 0:
*39(*0) *46(*0) *40(*0) *38(*0) *43(*0)

dim 1:
a37(a0) : *1(*46) → *1(*39)
a39(a0) : *1(*40) → *1(*46)
a41(a0) : *1(*40) → *1(*39)
a33(a0) : *1(*43) → *1(*40)
a35(a0) : *1(*38) → *1(*43)
a42(a0) : *1(*38) → *1(*40)
a32(a0) : *1(*38) → *1(*39)

dim 2:
µ6(µ0) : *9(*40) -a4(a39)→ *7(*46) -a5(a37)→ *8(*39)

=> *3(*40) -a1(a41)→ *2(*39)
µ7(µ0) : *9(*38) -a4(a35)→ *7(*43) -a5(a33)→ *8(*40)

=> *3(*38) -a1(a42)→ *2(*40)
µ8(µ0) : *9(*38) -a4(a42)→ *7(*40) -a5(a41)→ *8(*39)

=> *3(*38) -a1(a32)→ *2(*39)
1-source:
*42(*0) -a36(a0)→ *44(*0) -a34(a0)→ *41(*0) -a40(a0)→ *47(*0) -a38(a0)→ *45(*0)
1-source morphism:
*41�*40 *42�*38 *44�*43 *45�*39 *41�*40 *47�*46
a34�a33 a36�a35 a38�a37 a40�a39

1-target:
*3(*0) -a1(a0)→ *2(*0)

1-target morphism:
*3�*38 *2�*39
a1�a32

50 / 52

Compositions

As before, composition of f and g can be performed given an
isomorphism

∂+(f) ∼= ∂−(g)

However:
▶ there is no necessarily a unique isomorphism anymore,
e.g. along “floating 2-cells” (see the blackboard),

▶ I expect that this could be fixed by using the “algebraic
construction” on top of polygraphs in order to keep track of
the cells?

51 / 52

What’s next

▶ We have an implementation of polygraphs.
▶ I could not (yet) implement more interesting operations such
as homotopic reduction: we can fake (n, k)-polygraphs, but
the real issue is how to perform substitution of cells.

▶ We should implement other meaningful operations: pattern
matching (so that we can rewrite), Tietze transformations,
homotopic reduction, termination (Guiraud’s derivations),
etc.

▶ We need to interface traditional tools (e.g. rewriting
presentations of monoids).

52 / 52

