
Polygraphs in homotopy type theory

Samuel Mimram
8-9 June 2023 / Métayer days

Polygraphs

The research of François

revolves around polygraphs.

1

A future for polygraphs

I will try to present an overview of recent results around
polygraphs in homotopy type theory
(which I recently started working on)

2

Some recent investigations around polygraphs

The general plan:

1. polygraphs for ω-categories are not right from a topological pov
2. we can define polygraphs for ∞-groupoids in HoTT
3. we can adapt traditional (rewriting) methods in this setting
4. we have new powerful methods to construct polygraphs

This is an overview: most of what I will present is not due to me (excepting errors).

We are currently investigating this with Émile Oleon.

3

Part I

Traditional polygraphs are not right

4

Polygraphs as free ω-categories

Polygraphs are (presentations of) free ω-categories, constructed from generators:

• 0-cells

x y z

• 1-cells
x x

f

• 2-cells
x

x x
⇓ α

ff

f

• etc.

This provides a good notion of presentation of category. 5

Equivalence between ω-categories

In an ω-category C, two cells f ,g : x → y are equivalent, noted f ∼ g, when there
are cells

α : f ⇒ g β : g⇒ f

such that

β ◦ α ∼ idf α ◦ β ∼ idg

x y

f

g

α⇓ ⇑β

(this is a coinductive definition!)
6

Equivalence between ω-categories

In an ω-category C, two cells f ,g : x → y are equivalent, noted f ∼ g, when there
are cells

α : f ⇒ g β : g⇒ f

such that

β ◦ α ∼ idf α ◦ β ∼ idg

An ω-functor F : C → D is a weak equivalence when it is
“surjective up to equivalence”: given f ,g : x → y and
β : Ff ⇒ Fg there is α : f ⇒ g such that Fα = β.

C x y

D

Fx Fy

f

g

⇓α

Ff

Fg

β⇓ ∼⇓Fα

6

Equivalence between ω-categories

In an ω-category C, two cells f ,g : x → y are equivalent, noted f ∼ g, when there
are cells

α : f ⇒ g β : g⇒ f

such that

β ◦ α ∼ idf α ◦ β ∼ idg

An ω-functor F : C → D is a weak equivalence when it is
“surjective up to equivalence”: given f ,g : x → y and
β : Ff ⇒ Fg there is α : f ⇒ g such that Fα = β.

C x y

D Fx Fy

f

g

⇓α

Ff

Fg

β⇓ ∼⇓Fα

6

Equivalence between ω-categories

In an ω-category C, two cells f ,g : x → y are equivalent, noted f ∼ g, when there
are cells

α : f ⇒ g β : g⇒ f

such that

β ◦ α ∼ idf α ◦ β ∼ idg

An ω-functor F : C → D is a weak equivalence when it is
“surjective up to equivalence”: given f ,g : x → y and
β : Ff ⇒ Fg there is α : f ⇒ g such that Fα = β.

C x y

D Fx Fy

f

g

⇓α

Ff

Fg

β⇓ ∼⇓Fα

6

Equivalence between ω-categories

In an ω-category C, two cells f ,g : x → y are equivalent, noted f ∼ g, when there
are cells

α : f ⇒ g β : g⇒ f

such that

β ◦ α ∼ idf α ◦ β ∼ idg

An ω-functor F : C → D is a weak equivalence when it is
“surjective up to equivalence”: given f ,g : x → y and
β : Ff ⇒ Fg there is α : f ⇒ g such that Fα = β.

C x y

D Fx Fy

f

g

⇓α

Ff

Fg

β⇓ ∼⇓Fα

6

Equivalence between ω-categories

In an ω-category C, two cells f ,g : x → y are equivalent, noted f ∼ g, when there
are cells

α : f ⇒ g β : g⇒ f

such that

β ◦ α ∼ idf α ◦ β ∼ idg

An ω-functor F : C → D is a weak equivalence when it is
“surjective up to equivalence”: given f ,g : x → y and
β : Ff ⇒ Fg there is α : f ⇒ g such that Fα = β.

C x y

D Fx Fy

f

g

⇓α

Ff

Fg

β⇓ ∼⇓Fα

6

Equivalence between ω-categories

In an ω-category C, two cells f ,g : x → y are equivalent, noted f ∼ g, when there
are cells

α : f ⇒ g β : g⇒ f

such that

β ◦ α ∼ idf α ◦ β ∼ idg

An ω-functor F : C → D is a weak equivalence when it is
“surjective up to equivalence”: given f ,g : x → y and
β : Ff ⇒ Fg there is α : f ⇒ g such that Fα = β.

C x y

D Fx Fy

f

g

⇓α

Ff

Fg

β⇓ ∼⇓Fα

6

Resolutions of categories

In the 2003 article of François

Resolutions by polygraphs

it is shown that for every category C, there is a polygraph P such that

P ≃ C

7

Resolutions of categories

For instance, if we start from the category BN2

⋆0 1

we can start to construct P with a surjection P↠ C as

• one 0-cell ⋆
• one 1-cell a : ⋆ → ⋆

• one 2-cell
⋆

⋆ ⋆

⇓ α
aa

id⋆• one 3-cell
⋆

⋆ ⋆ ⋆

⇓ α

aa

id⋆

a

A
⇛

⋆

⋆ ⋆ ⋆

⇓ α

a

a

a

id⋆

• and so on...

8

Resolutions of categories

For instance, if we start from the category BN2

⋆0 1

we can start to construct P with a surjection P↠ C as

• one 0-cell ⋆
• one 1-cell a : ⋆ → ⋆

• one 2-cell
⋆

⋆ ⋆

⇓ α
aa

id⋆• one 3-cell
⋆

⋆ ⋆ ⋆

⇓ α

aa

id⋆

a

A
⇛

⋆

⋆ ⋆ ⋆

⇓ α

a

a

a

id⋆

• and so on...

8

Resolutions of categories

For instance, if we start from the category BN2

⋆0 1

we can start to construct P with a surjection P↠ C as

• one 0-cell ⋆
• one 1-cell a : ⋆ → ⋆

• one 2-cell
⋆

⋆ ⋆

⇓ α
aa

id⋆

• one 3-cell
⋆

⋆ ⋆ ⋆

⇓ α

aa

id⋆

a

A
⇛

⋆

⋆ ⋆ ⋆

⇓ α

a

a

a

id⋆

• and so on...

8

Resolutions of categories

For instance, if we start from the category BN2

⋆0 1

we can start to construct P with a surjection P↠ C as

• one 0-cell ⋆
• one 1-cell a : ⋆ → ⋆

• one 2-cell
⋆

⋆ ⋆

⇓ α
aa

id⋆• one 3-cell
⋆

⋆ ⋆ ⋆

⇓ α

aa

id⋆

a

A
⇛

⋆

⋆ ⋆ ⋆

⇓ α

a

a

a

id⋆

• and so on...

8

Resolutions of categories

For instance, if we start from the category BN2

⋆0 1

we can start to construct P with a surjection P↠ C as

• one 0-cell ⋆
• one 1-cell a : ⋆ → ⋆

• one 2-cell
⋆

⋆ ⋆

⇓ α
aa

id⋆• one 3-cell
⋆

⋆ ⋆ ⋆

⇓ α

aa

id⋆

a

A
⇛

⋆

⋆ ⋆ ⋆

⇓ α

a

a

a

id⋆

• and so on... 8

Polygraphs as cofibrant replacements

In the 2010 article by Lafont, Métayer, Worytkiewicz,

A folk model structure on omega-cat

they construct a model structure on Catω where

• weak equivalences are weak equivalences
• cofibrant objects are polygraphs

In particular, every ω-category C has a cofibrant replacement

P
∼
↠ C

9

Polygraphic homology

Every polygraph P induces a chain complex

ZP0 ZP1 ZP2 ZP3 · · ·d0 d1 d2 d3

with our example

Z{⋆} Z{a} Z{α} Z{A} · · ·d0 d1 d2 d3

with
d1(α) = −2a

since
⋆

⋆ ⋆

⇓ α
aa

id⋆

10

Polygraphic homology

We define the homology of an ω-category HC as the homology of the associated
chain complex H(ZP) for some resolution P.

It does not depend on the choice of the resolution:

P Q

C
∼

F

∼

that’s the point of using polygraphs!

However, the smaller the polygraph is, the simpler the calculations are!

11

Thomason equivalences

In 1987, Street has defined a functor

O : ∆ → Catω
reworked by Ara, Lafont and Métayer in 2023 in

Orientals as free algebras

The images of objects n of ∆ can be pictured as

0 0 1
1

0 2
⇓ . . .

O0 O1 O2 . . .

12

Thomason equivalences

In 1987, Street has defined a functor

O : ∆ → Catω
reworked by Ara, Lafont and Métayer in 2023 in

Orientals as free algebras

which induces a nerve functor

N : Catω → ∆̂

with
(NC)n = Catω(On, C)

The Thomason equivalences are induced on Catω by the one of ∆̂.
12

Ara’s counter-example

Consider the polygraph P with

• one 0-generator ⋆
• one 2-generator α : id⋆ ⇒ id⋆

Its homology is the one of the chain complex

Z 0 Z 0 0 · · ·

In particular,
Hn(P) = 0

for n > 2.

13

Ara’s counter-example

The ω-category C presented by P is trivial excepting in dimension 2 where

C2 = N

It Thomason homology is the same as the one where we take the variant where

C2 = Z

which is the homology of K(Z, 2) = CP∞ and we have

HTh
n (C) =

Z for n even
0 for n odd

In particular,
HPol

4 (C) = 0 ̸= Z = HTh
4 (C)

14

Ara’s counter-example

The ω-category C presented by P is trivial excepting in dimension 2 where

C2 = N

It Thomason homology is the same as the one where we take the variant where

C2 = Z

which is the homology of K(Z, 2) = CP∞ and we have

HTh
n (C) =

Z for n even
0 for n odd

In particular,
HPol

4 (C) = 0 ̸= Z = HTh
4 (C)

14

Ara’s counter-example

The ω-category C presented by P is trivial excepting in dimension 2 where

C2 = N

It Thomason homology is the same as the one where we take the variant where

C2 = Z

which is the homology of K(Z, 2) = CP∞ and we have

HTh
n (C) =

Z for n even
0 for n odd

In particular,
HPol

4 (C) = 0 ̸= Z = HTh
4 (C)

14

Ara’s counter-example

The ω-category C presented by P is trivial excepting in dimension 2 where

C2 = N

It Thomason homology is the same as the one where we take the variant where

C2 = Z

which is the homology of K(Z, 2) = CP∞ and we have

HTh
n (C) =

Z for n even
0 for n odd

In particular,
HPol

4 (C) = 0 ̸= Z = HTh
4 (C)

14

Part II

Polygraphs in HoTT

15

Weak polygraphs

The morale is that polygraphs are not right from a topological point of view.

Or rather working with strict ω-categories is a bad idea.

One way out consists in working with polygraphs adapted to weak ω-categories
(Batanin) which is very technical.

16

Weak polygraphs

The morale is that polygraphs are not right from a topological point of view.

Or rather working with strict ω-categories is a bad idea.

One way out consists in working with polygraphs adapted to weak ω-categories
(Batanin) which is very technical.

16

Weak polygraphs

The morale is that polygraphs are not right from a topological point of view.

Or rather working with strict ω-categories is a bad idea.

One way out consists in working with polygraphs adapted to weak ω-categories
(Batanin) which is very technical.

16

Polygraphs for groupoids

Suppose that we are interested in ∞-groupoids instead of ∞-categories.

We get everything for “free” in homotopy type theory:

• every type is an ∞-groupoid
• polygraphs can be obtained as (some) higher inductive types

17

Homotopy type theory

Given a type A and two elements x, y : A, there is a type x =A y of identities
between x and y.

We can think that

• A is a space
• x, y : A are points in A
• p : x =A y is a path from x to y in A

Let’s do a crash course in 2 slides.

18

Identity types

The identity types are characterized the fact that

• for every x : A, there is a constant path reflx : x = x
• given a predicate P : {y : A} → (x = y) → U ,

if P(reflx) then P(p) for every p : x = y.

19

Identity types

The identity types are characterized the fact that

• for every x : A, there is a constant path reflx : x = x
• given a predicate P : {y : A} → (x = y) → U ,

if P(reflx) then P(p) for every p : x = y.

Because of this types act as ∞-groupoids:
• 0-cells are points x, y : A
• 1-cells are paths p : x =A y
• 2-cells are paths between paths α : p =x=Ay q
• etc.

x y

p

q

∥A
19

Identity types

The identity types are characterized the fact that

• for every x : A, there is a constant path reflx : x = x
• given a predicate P : {y : A} → (x = y) → U ,

if P(reflx) then P(p) for every p : x = y.

Lemma
Given a path p : x = y, there is an “inverse” path p : y = x.

Proof.
In the case where p is reflx (thus x and y are the same), we can take p := reflx.

Similarly, we can compose paths, composition is associative up to higher cells, etc.

19

Equivalences

Given f ,g : A→ B, we write f ∼ g when they are extensionally equivalent:

(x : A) → f (x) = g(x)

A map f : A→ B is an equivalence when there is g : B→ A such that

• there are homotopies

η : g ◦ f ∼ idA ε : f ◦ g ∼ idB

• such that (x : A) → f (η x) = ε (g x)

In homotopy type theory, univalence states that an identity A = B is the same as
an equivalence between A and B:

(A = B) ∼→ (A ≃ B)

20

Equivalences

Given f ,g : A→ B, we write f ∼ g when they are extensionally equivalent:

(x : A) → f (x) = g(x)

A map f : A→ B is an equivalence when there is g : B→ A such that

• there are homotopies

η : g ◦ f ∼ idA ε : f ◦ g ∼ idB

• such that (x : A) → f (η x) = ε (g x)

In homotopy type theory, univalence states that an identity A = B is the same as
an equivalence between A and B:

(A = B) ∼→ (A ≃ B)

20

Equivalences

Given f ,g : A→ B, we write f ∼ g when they are extensionally equivalent:

(x : A) → f (x) = g(x)

A map f : A→ B is an equivalence when there is g : B→ A such that

• there are homotopies

η : g ◦ f ∼ idA ε : f ◦ g ∼ idB

• such that (x : A) → f (η x) = ε (g x)

In homotopy type theory, univalence states that an identity A = B is the same as
an equivalence between A and B:

(A = B) ∼→ (A ≃ B)

20

Resolutions in HoTT

Those equivalence play an analogous role as weak equivalence for ω-categories.

Given a type A of interest, our goal is to construct a resolution,
i.e. a polygraph P such that

P ≃ A

. . . for a decent notion of “polygraph”.

21

Resolutions in HoTT

Those equivalence play an analogous role as weak equivalence for ω-categories.

Given a type A of interest, our goal is to construct a resolution,
i.e. a polygraph P such that

P ≃ A

. . . for a decent notion of “polygraph”.

21

Inductive types

In good programming languages, we can define inductive types:
type Bool : Type =

false : Bool

true : Bool

In good type theories, we can define higher inductive types:

22

Inductive types

In good programming languages, we can define inductive types:
type Nat : Type =

zero : Nat

succ : Nat → Nat

In good type theories, we can define higher inductive types:

22

Inductive types

In good programming languages, we can define inductive types:
type Nat : Type =

zero : Nat

succ : Nat → Nat

In good type theories, we can define higher inductive types:
type S¹ : Type =

base : S¹
loop : base = base

base loop

22

Inductive types

In good programming languages, we can define inductive types:
type Nat : Type =

zero : Nat

succ : Nat → Nat

In good type theories, we can define higher inductive types:
type S¹ : Type =

north : S¹
south : S¹
left : base = base’

right : base = base’

north

south

left right

22

Inductive types

In good programming languages, we can define inductive types:
type Nat : Type =

zero : Nat

succ : Nat → Nat

In good type theories, we can define higher inductive types:
type S² : Type =

north : S²
south : S²
left : base = base’

right : base = base’

back : left = right

front : left = right

left right

north

south
22

Inductive types

In good programming languages, we can define inductive types:
type Nat : Type =

zero : Nat

succ : Nat → Nat

In good type theories, we can define higher inductive types:
type id : A → A → Type =

refl : (x : A) → id x x

22

Higher inductive types

Since HITs are obtained by successively attaching disks, they play an analogous
role of to polygraphs or cellular complexes.

At least some of them.

23

Higher inductive types

Since HITs are obtained by successively attaching disks, they play an analogous
role of to polygraphs or cellular complexes.

At least some of them.

23

Homotopy levels

A type A can be

-2. contractible:
isContr(A) := Σ(x : A).(y : A) → x =A y

-1. a proposition:
isProp(A) := (x y : A) → isContr(x =A y)

0. a set:
isSet(A) := (x y : A) → isProp(x =A y)

n. a n-type: for every x, y : A, x =A y is an (n− 1)-type

24

Homotopy levels

A type A can be

-2. contractible:
isContr(A) := Σ(x : A).(y : A) → x =A y

-1. a proposition:
isProp(A) := (x y : A) → isContr(x =A y)

0. a set:
isSet(A) := (x y : A) → isProp(x =A y)

n. a n-type: for every x, y : A, x =A y is an (n− 1)-type

24

Homotopy levels

A type A can be

-2. contractible:
isContr(A) := Σ(x : A).(y : A) → x =A y

-1. a proposition:
isProp(A) := (x y : A) → isContr(x =A y)

0. a set:
isSet(A) := (x y : A) → isProp(x =A y)

n. a n-type: for every x, y : A, x =A y is an (n− 1)-type

24

Homotopy levels

A type A can be

-2. contractible:
isContr(A) := Σ(x : A).(y : A) → x =A y

-1. a proposition:
isProp(A) := (x y : A) → isContr(x =A y)

0. a set:
isSet(A) := (x y : A) → isProp(x =A y)

n. a n-type: for every x, y : A, x =A y is an (n− 1)-type

24

Propositional truncation

The propositional truncation ∥A∥−1 turns a type A into a proposition in a
universal way: for every proposition B,

A B

∥A∥−1

t

f

f̃

i.e. the map
− ◦ t : (∥A∥−1 → B) → (A→ B)

is an equivalence.

The n-truncation ∥A∥n can be defined similarly for n-types.

25

Propositional truncation

The propositional truncation ∥A∥−1 turns a type A into a proposition in a
universal way: for every proposition B,

A B

∥A∥−1

t

f

f̃

i.e. the map
− ◦ t : (∥A∥−1 → B) → (A→ B)

is an equivalence.

The n-truncation ∥A∥n can be defined similarly for n-types.

25

Propositional truncation

Propositional truncation can be implemented as a HIT:

type ∥A∥−1 : U =

in : A→ ∥A∥−1
path : (x y : ∥A∥−1) → x = y

For instance,

26

Propositional truncation

Propositional truncation can be implemented as a HIT:

type ∥A∥−1 : U =

in : A→ ∥A∥−1
path : (x y : ∥A∥−1) → x = y

For instance,

26

Propositional truncation

Propositional truncation can be implemented as a HIT:

type ∥A∥−1 : U =

in : A→ ∥A∥−1
path : (x y : ∥A∥−1) → x = y

For instance,

26

Propositional truncation

Propositional truncation can be implemented as a HIT:

type ∥A∥−1 : U =

in : A→ ∥A∥−1
path : (x y : ∥A∥−1) → x = y

For instance,

26

Propositional truncation

Propositional truncation can be implemented as a HIT:

type ∥A∥−1 : U =

in : A→ ∥A∥−1
path : (x y : ∥A∥−1) → x = y

For instance,

We can similarly define higher truncations ∥A∥n:
it fills in all spheres of dimension k > n.

26

Propositional truncation

Propositional truncation can be implemented as a HIT:

type ∥A∥−1 : U =

in : A→ ∥A∥−1
path : (x y : ∥A∥−1) → x = y

For instance,

Problem solved?

26

Propositional truncation

Propositional truncation can be implemented as a HIT:

type ∥A∥−1 : U =

in : A→ ∥A∥−1
path : (x y : ∥A∥−1) → x = y

For instance,

This is a recursive HIT, we do not want this as a “polygraph”.

26

Part III

The rewriting approach

27

Presenting BZ2

Consider the type BZ2. All we need to know is that

• it has one connected component
• its fundamental group is π1(BZ2) = Z2

• its higher homotopy groups are trivial: πn(BZ2) = 1

⋆0 1

Suppose that we want to construct a presentation of this type by a polygraph.

28

Presenting BZ2 = ⋆0 1

We thus define the following HIT:

type P1 : U =

⋆ : P1

a : ⋆ = ⋆

α : a · a = refl⋆

which looks like

⋆

⋆ ⋆

⇓α
aa

id⋆

P1 is a “good approximation” of BZ2 in the sense that it has one connected
component and the right fundamental group, but higher groups are not trivial!

29

Presenting BZ2 = ⋆0 1

We thus define the following HIT:

type P1 : U =

⋆ : P1

a : ⋆ = ⋆

α : a · a = refl⋆

which looks like

⋆

⋆

⋆ ⋆

⇓α
aa

id⋆

P1 is a “good approximation” of BZ2 in the sense that it has one connected
component and the right fundamental group, but higher groups are not trivial!

29

Presenting BZ2 = ⋆0 1

We thus define the following HIT:

type P1 : U =

⋆ : P1

a : ⋆ = ⋆

α : a · a = refl⋆

which looks like

a⋆

⋆

⋆ ⋆

⇓α
aa

id⋆

P1 is a “good approximation” of BZ2 in the sense that it has one connected
component and the right fundamental group, but higher groups are not trivial!

29

Presenting BZ2 = ⋆0 1

We thus define the following HIT:

type P1 : U =

⋆ : P1

a : ⋆ = ⋆

α : a · a = refl⋆

which looks like

α a⋆

⋆

⋆ ⋆

⇓α
aa

id⋆

P1 is a “good approximation” of BZ2 in the sense that it has one connected
component and the right fundamental group, but higher groups are not trivial!

29

Presenting BZ2 = ⋆0 1

We thus define the following HIT:

type P1 : U =

⋆ : P1

a : ⋆ = ⋆

α : a · a = refl⋆

which looks like

α a⋆

⋆

⋆ ⋆

⇓α
aa

id⋆

P1 is a “good approximation” of BZ2 in the sense that it has one connected
component and the right fundamental group, but higher groups are not trivial! 29

Killing higher groups

One way to obtain a faithful description of BZ2 consists in considering ∥P1∥1,
which amounts to change the definition to

type Q1 : U =

⋆ : Q1

a : ⋆ = ⋆

α : a · a = refl⋆

trunc : (x, y : Q1) (p,q : x = y) (α, β : p = q) → α = β

But this is a recursive definition!

30

Killing higher groups

One way to obtain a faithful description of BZ2 consists in considering ∥P1∥1,
which amounts to change the definition to

type Q1 : U =

⋆ : Q1

a : ⋆ = ⋆

α : a · a = refl⋆

trunc : (x, y : Q1) (p,q : x = y) (α, β : p = q) → α = β

But this is a recursive definition!

30

Killing π2(P1)

A non-trivial element of π2(P1) is

⋆ ⋆

⋆ ⋆

⇓α
a

⇓λ
aa

id⋆

a

A
⇛

⋆ ⋆

⋆ ⋆

⇓ρ id⋆

a

⇓α aa

a

This suggests extending the previous HIT as

type P2 : U =

⋆ : P2

a : ⋆ = ⋆

α : a · a = refl⋆

A : (α⊗ a) · λ = (a⊗ α) · ρ

This is enough to have π2(P2) = 1, but how do we show this?
We need to have an induction principle for paths!

31

Killing π2(P1)

A non-trivial element of π2(P1) is

⋆ ⋆

⋆ ⋆

⇓α
a

⇓λ
aa

id⋆

a

A
⇛

⋆ ⋆

⋆ ⋆

⇓ρ id⋆

a

⇓α aa

a

This suggests extending the previous HIT as

type P2 : U =

⋆ : P2

a : ⋆ = ⋆

α : a · a = refl⋆

A : (α⊗ a) · λ = (a⊗ α) · ρ

This is enough to have π2(P2) = 1, but how do we show this?
We need to have an induction principle for paths!

31

Killing π2(P1)

A non-trivial element of π2(P1) is

⋆ ⋆

⋆ ⋆

⇓α
a

⇓λ
aa

id⋆

a

A
⇛

⋆ ⋆

⋆ ⋆

⇓ρ id⋆

a

⇓α aa

a

This suggests extending the previous HIT as

type P2 : U =

⋆ : P2

a : ⋆ = ⋆

α : a · a = refl⋆

A : (α⊗ a) · λ = (a⊗ α) · ρ

This is enough to have π2(P2) = 1, but how do we show this?
We need to have an induction principle for paths! 31

Killing π2(P1)

Our aim is to show that
π2(P2) = 1

This is equivalent to showing that

• for every paths p,q : ⋆ = ⋆

• for every paths α, β : p = q

we have that there merely exists a path

A : α = β

as in

⋆ ⋆

⋆ ⋆

⇓α
a

⇓λ
aa

id⋆

a

A
⇛

⋆ ⋆

⋆ ⋆

⇓ρ id⋆

a

⇓α aa

a 32

Paths in homotopy quotients

Suppose given a type A with a relation R : A× A→ U , i.e. a graph.

The homotopy quotient A/R is

type A/R : U =

ι : A→ A/R
path : (x y : A) → R x y → x = y

For instance, with A = {0, 1} and R x y := (x ̸= y), we have

A/R = S1 = 0 1

Given x, y : A, we want to have a description of the type ι x = ι y in A/R.

33

Paths in homotopy quotients

Suppose given a type A with a relation R : A× A→ U , i.e. a graph.

The homotopy quotient A/R is

type A/R : U =

ι : A→ A/R
path : (x y : A) → R x y → x = y

For instance, with A = {0, 1} and R x y := (x ̸= y), we have

A/R = S1 = 0 1

Given x, y : A, we want to have a description of the type ι x = ι y in A/R.

33

Paths in homotopy quotients

Suppose given a type A with a relation R : A× A→ U , i.e. a graph.

The homotopy quotient A/R is

type A/R : U =

ι : A→ A/R
path : (x y : A) → R x y → x = y

For instance, with A = {0, 1} and R x y := (x ̸= y), we have

A/R = S1 = 0 1

Given x, y : A, we want to have a description of the type ι x = ι y in A/R.

33

Paths in homotopy quotients

Suppose given a type A with a relation R : A× A→ U , i.e. a graph.

The homotopy quotient A/R is

type A/R : U =

ι : A→ A/R
path : (x y : A) → R x y → x = y

For instance, with A = {0, 1} and R x y := (x ̸= y), we have

A/R = S1 = 0 1

Given x, y : A, we want to have a description of the type ι x = ι y in A/R.

33

Paths in homotopy quotients

Given A and R : A× A→ U , we define the free groupoid type

type FG : A→ A→ U =

[] : (x : A) → FG x x
:: : (f : R x y) → (p : FG y z) → FG x z
::’ : (f : R y x) → (p : FG y z) → FG x z
λ : (f : R x y) → (p : FG y z) → f::’f::p = p
ρ : (f : R x y) → (p : FG y z) → f::’f::p = p
coh : ...

Altenkirch, Kraus, von Raummer have shown

Theorem
Given x, y : A, we have (ι x = ι y) = FG x y.

34

Paths in homotopy quotients

Given A and R : A× A→ U , we define the free groupoid type

type FG : A→ A→ U =

[] : (x : A) → FG x x
:: : (f : R x y) → (p : FG y z) → FG x z

::’ : (f : R y x) → (p : FG y z) → FG x z
λ : (f : R x y) → (p : FG y z) → f::’f::p = p
ρ : (f : R x y) → (p : FG y z) → f::’f::p = p
coh : ...

Altenkirch, Kraus, von Raummer have shown

Theorem
Given x, y : A, we have (ι x = ι y) = FG x y.

34

Paths in homotopy quotients

Given A and R : A× A→ U , we define the free groupoid type

type FG : A→ A→ U =

[] : (x : A) → FG x x
:: : (f : R x y) → (p : FG y z) → FG x z
::’ : (f : R y x) → (p : FG y z) → FG x z

λ : (f : R x y) → (p : FG y z) → f::’f::p = p
ρ : (f : R x y) → (p : FG y z) → f::’f::p = p
coh : ...

Altenkirch, Kraus, von Raummer have shown

Theorem
Given x, y : A, we have (ι x = ι y) = FG x y.

34

Paths in homotopy quotients

Given A and R : A× A→ U , we define the free groupoid type

type FG : A→ A→ U =

[] : (x : A) → FG x x
:: : (f : R x y) → (p : FG y z) → FG x z
::’ : (f : R y x) → (p : FG y z) → FG x z
λ : (f : R x y) → (p : FG y z) → f::’f::p = p
ρ : (f : R x y) → (p : FG y z) → f::’f::p = p

coh : ...

Altenkirch, Kraus, von Raummer have shown

Theorem
Given x, y : A, we have (ι x = ι y) = FG x y.

34

Paths in homotopy quotients

Given A and R : A× A→ U , we define the free groupoid type

type FG : A→ A→ U =

[] : (x : A) → FG x x
:: : (f : R x y) → (p : FG y z) → FG x z
::’ : (f : R y x) → (p : FG y z) → FG x z
λ : (f : R x y) → (p : FG y z) → f::’f::p = p
ρ : (f : R x y) → (p : FG y z) → f::’f::p = p
coh : ...

Altenkirch, Kraus, von Raummer have shown

Theorem
Given x, y : A, we have (ι x = ι y) = FG x y.

34

Paths in homotopy quotients

If we want to show a property on paths, for instance

for every paths p,q : x = y there merely exists an equality p = q

it is enough to reason on the low-dimensional structure, i.e. zig-zags:

type FG : A→ A→ U =

[] : (x : A) → FG x x
:: : (f : R x y) → (p : FG y z) → FG x z
::’ : (f : R y x) → (p : FG y z) → FG x z

and we can reason by induction.

35

Paths in homotopy quotients

When reasoning with “lists” (or “zig-zags”) in the type

type FG : A→ A→ U =

[] : (x : A) → FG x x
:: : (f : R x y) → (p : FG y z) → FG x z
::’ : (f : R y x) → (p : FG y z) → FG x z

there is one problem with the base case: the elements of FG x x of length 0 is
equivalent to x = x, i.e. there can be more than simply [].

Things work out if we suppose that A is a set.

36

A coherent presentation

If we go back to the type

type P2 : U =

⋆ : P2

a : ⋆ = ⋆

α : a · a = refl⋆

A : (α⊗ a) · λ = (a⊗ α) · ρ

This implies that

• any path ⋆ = ⋆ has a representative as a list over {a,a}

• identities between two such lists are generated by

laal′ = ll′ laal′ = ll′ laal′ = ll′

• identities between identities are generated by A and coh

37

A coherent presentation

If we go back to the type

type P2 : U =

⋆ : P2

a : ⋆ = ⋆

α : a · a = refl⋆

A : (α⊗ a) · λ = (a⊗ α) · ρ

This implies that

• any path ⋆ = ⋆ has a representative as a list over {a,a}
• identities between two such lists are generated by

laal′ = ll′ laal′ = ll′ laal′ = ll′

• identities between identities are generated by A and coh

37

A coherent presentation

If we go back to the type

type P2 : U =

⋆ : P2

a : ⋆ = ⋆

α : a · a = refl⋆

A : (α⊗ a) · λ = (a⊗ α) · ρ

This implies that

• any path ⋆ = ⋆ has a representative as a list over {a,a}
• identities between two such lists are generated by

laal′ = ll′ laal′ = ll′ laal′ = ll′

• identities between identities are generated by A and coh

37

A coherent presentation

It can be noted that the string rewriting system over {a,a} with rules

aa→ 1 aa→ 1 aa→ 1 a→ a

is convergent

aaa

a a

a

aaa

a a

a

aaa

a a

a
aaa

a a

a

aaa

a a

a
and those coherence correspond to identities between identities.

38

A coherent presentation

By the Squier theorem (with polygraphs implemented in type theory!),

any two zig-zags can thus be filled by identities between identities and we deduce
(Kraus, von Raummer) that in the type

type P2 : U =

⋆ : P2

a : ⋆ = ⋆

α : a · a = refl⋆

β : a = a
A : (α⊗ a) · λ = (a⊗ α) · ρ
B : ...

C : ...

we have π2(P2) = 1.
39

A coherent presentation

By the Squier theorem (with polygraphs implemented in type theory!),

any two zig-zags can thus be filled by identities between identities and we deduce
(Kraus, von Raummer) that in the type

type P2 : U =

⋆ : P2

a : ⋆ = ⋆

α : a · a = refl⋆

β : a = a

A : (α⊗ a) · λ = (a⊗ α) · ρ
B : ...

C : ...

we have π2(P2) = 1.
39

The Squier theorem

aa→ 1 aa→ 1 aa→ 1 a→ a

We can show the following:

1. the local confluence diagrams commute modulo equality

2. the local confluence diagrams can be extended under context
3. the rewriting system is terminating, and thus we have confluence
4. any two parallel zig-zags are equal

aaa

a a

a

aaa

a a

a

aaa

a a

a
40

The Squier theorem

aa→ 1 aa→ 1 aa→ 1 a→ a

We can show the following:

1. the local confluence diagrams commute modulo equality
2. the local confluence diagrams can be extended under context

3. the rewriting system is terminating, and thus we have confluence
4. any two parallel zig-zags are equal

aaa

a a

a

implies

laaal′

lal′ lal′

lal′
40

The Squier theorem

aa→ 1 aa→ 1 aa→ 1 a→ a

We can show the following:

1. the local confluence diagrams commute modulo equality
2. the local confluence diagrams can be extended under context
3. the rewriting system is terminating, and thus we have confluence

4. any two parallel zig-zags are equal

(modulo equality!)
l

l1 l2

l′

∗ ∗

∗ ∗ 40

The Squier theorem

aa→ 1 aa→ 1 aa→ 1 a→ a

We can show the following:

1. the local confluence diagrams commute modulo equality
2. the local confluence diagrams can be extended under context
3. the rewriting system is terminating, and thus we have confluence
4. any two parallel zig-zags are equal

l

l′

∗ ∗

40

The Squier theorem

aa→ 1 aa→ 1 aa→ 1 a→ a

We can show the following:

1. the local confluence diagrams commute modulo equality
2. the local confluence diagrams can be extended under context
3. the rewriting system is terminating, and thus we have confluence
4. any two parallel zig-zags are equal

We thus have
π2(P2) = 1

40

What we have so far

We have constructed a type P2 which has the same π0, π1 and π2 as BZ2.

Extending P2 into P3 which also has the same π3 could certainly be done, but this
would require tremendous amounts of work!

Not to mention P4, Pn, or P∞...

Also, because of the previous remark, we are forced to reason with set-theoretic
polygraphs, where we have sets of cells.

41

What we have so far

We have constructed a type P2 which has the same π0, π1 and π2 as BZ2.

Extending P2 into P3 which also has the same π3 could certainly be done, but this
would require tremendous amounts of work!

Not to mention P4, Pn, or P∞...

Also, because of the previous remark, we are forced to reason with set-theoretic
polygraphs, where we have sets of cells.

41

What we have so far

We have constructed a type P2 which has the same π0, π1 and π2 as BZ2.

Extending P2 into P3 which also has the same π3 could certainly be done, but this
would require tremendous amounts of work!

Not to mention P4, Pn, or P∞...

Also, because of the previous remark, we are forced to reason with set-theoretic
polygraphs, where we have sets of cells.

41

What we have so far

We have constructed a type P2 which has the same π0, π1 and π2 as BZ2.

Extending P2 into P3 which also has the same π3 could certainly be done, but this
would require tremendous amounts of work!

Not to mention P4, Pn, or P∞...

Also, because of the previous remark, we are forced to reason with set-theoretic
polygraphs, where we have sets of cells.

41

Part IV

The Milnor construction

42

Some other methods allow us to construct P∞ such that

P∞ = BZ2

43

Projective spaces

In algebraic topology, there is a well-known model of BZ2,
the real projective space RP∞.

We know that it has a CW structure with one cell in every dimension.

There should be a corresponding HIT. How can we construct it?

There is a wonderful construction based on the join construction, due to Milnor,
Rijke, Finster, Joyal, . . .

. . . and the construction of orientals by Ara, Lafont and Métayer in Orientals as free
algebras is closely related to the join construction.

44

Projective spaces

In algebraic topology, there is a well-known model of BZ2,
the real projective space RP∞.

We know that it has a CW structure with one cell in every dimension.

There should be a corresponding HIT. How can we construct it?

There is a wonderful construction based on the join construction, due to Milnor,
Rijke, Finster, Joyal, . . .

. . . and the construction of orientals by Ara, Lafont and Métayer in Orientals as free
algebras is closely related to the join construction.

44

Projective spaces

In algebraic topology, there is a well-known model of BZ2,
the real projective space RP∞.

We know that it has a CW structure with one cell in every dimension.

There should be a corresponding HIT. How can we construct it?

There is a wonderful construction based on the join construction, due to Milnor,
Rijke, Finster, Joyal, . . .

. . . and the construction of orientals by Ara, Lafont and Métayer in Orientals as free
algebras is closely related to the join construction.

44

Projective spaces

The projective space Pn is the space of lines in Rn+1:

We thus have a pushout
S0 D1

P0 P1

p0

⌜

and Pn is build from exactly one cell in each dimension i ≤ n.

Moreover, there are exactly two points y such that pn(y) = x, i.e. fibpn(x) = S0.

45

Projective spaces

The projective space Pn is the space of lines in Rn+1:

We thus have a pushout
S0 D1

P0 P1

p0

⌜

and Pn is build from exactly one cell in each dimension i ≤ n.

Moreover, there are exactly two points y such that pn(y) = x, i.e. fibpn(x) = S0.

45

Projective spaces

The projective space Pn is the quotient of Sn under the antipodal action:

We thus have a pushout
S0 D1

P0 P1

p0

⌜

and Pn is build from exactly one cell in each dimension i ≤ n.

Moreover, there are exactly two points y such that pn(y) = x, i.e. fibpn(x) = S0.

45

Projective spaces

The projective space Pn is a disk Dn with antipodal points identified in ∂Dn:

We thus have a pushout
S0 D1

P0 P1

p0

⌜

and Pn is build from exactly one cell in each dimension i ≤ n.

Moreover, there are exactly two points y such that pn(y) = x, i.e. fibpn(x) = S0.

45

Projective spaces

The projective space Pn is a disk Dn with antipodal points identified in ∂Dn:

We thus have a pushout
S0 D1

P0 P1

p0

⌜

and Pn is build from exactly one cell in each dimension i ≤ n.

Moreover, there are exactly two points y such that pn(y) = x, i.e. fibpn(x) = S0.

45

Projective spaces

The projective space Pn is a disk Dn with antipodal points identified in ∂Dn:

We thus have a pushout
Sn Dn+1

Pn Pn+1

p0

⌜

and Pn is build from exactly one cell in each dimension i ≤ n.

Moreover, there are exactly two points y such that pn(y) = x, i.e. fibpn(x) = S0.

45

Projective spaces

The projective space Pn is a disk Dn with antipodal points identified in ∂Dn:

We thus have a pushout
Sn 1

Pn Pn+1

pn

⌜

and Pn is build from exactly one cell in each dimension i ≤ n.

Moreover, there are exactly two points y such that pn(y) = x, i.e. fibpn(x) = S0.

45

Projective spaces

The projective space Pn is a disk Dn with antipodal points identified in ∂Dn:

We thus have a pushout
Sn 1

Pn Pn+1

pn

⌜

and Pn is build from exactly one cell in each dimension i ≤ n.

Moreover, there are exactly two points y such that pn(y) = x, i.e. fibpn(x) = S0.

45

Projective spaces

The projective space Pn is a disk Dn with antipodal points identified in ∂Dn:

We thus have a pushout
Sn 1

Pn Pn+1

pn

⌜

and Pn is build from exactly one cell in each dimension i ≤ n.

Moreover, there are exactly two points y such that pn(y) = x, i.e. fibpn(x) = S0.

45

The join construction

Given two types A and B, their coproduct A ⊔ B is

B

A A ⊔ B

ι2

ι1

In type theory this can be defined as

type A ∗ B : U =

ι1 : A→ A ⊔ B
ι2 : B→ A ⊔ B

π : (a : A) → (b : B) → a = b

46

The join construction

Given two types A and B, their join A ∗ B is the homotopy pushout

A× B B

A A ∗ B

π1

π2

ι2

ι1

In type theory this can be defined as

type A ∗ B : U =

ι1 : A→ A ∗ B
ι2 : B→ A ∗ B
π : (a : A) → (b : B) → a = b

46

The join construction

For instance, consider A = 2. We have that A is

If compute the iterated joins A∗n the spaces get more and more connected.

Taking the inductive limit, we obtain A∗∞ =

1

.

47

The join construction

For instance, consider A = 2. We have that A ⊔ A is

If compute the iterated joins A∗n the spaces get more and more connected.

Taking the inductive limit, we obtain A∗∞ =

1

.

47

The join construction

For instance, consider A = 2. We have that A ∗ A is

If compute the iterated joins A∗n the spaces get more and more connected.

Taking the inductive limit, we obtain A∗∞ =

1

.

47

The join construction

For instance, consider A = 2. We have that A ∗ A ∗ A is

If compute the iterated joins A∗n the spaces get more and more connected.

Taking the inductive limit, we obtain A∗∞ =

1

.

47

The join construction

For instance, consider A = 2. We have that A ∗ A ∗ A is

If compute the iterated joins A∗n the spaces get more and more connected.

Taking the inductive limit, we obtain A∗∞ =

1

.

47

The join construction

For instance, consider A = 2. We have that A ∗ A ∗ A is

If compute the iterated joins A∗n the spaces get more and more connected.

Taking the inductive limit, we obtain A∗∞ =

1

.

47

The join construction

For instance, consider A = 2. We have that A ∗ A ∗ A is

If compute the iterated joins A∗n the spaces get more and more connected.

Taking the inductive limit, we obtain A∗∞ = 1.

47

The join construction

Previous example should not be surprising: we have

S0 = 2

and

A ∗ S0 = ΣA A = A

so that
(S0)∗n = ΣnS0 = Sn

The inductive limit is
(S0)∗∞ = S∞

which is known to be contractible.

48

The join construction

Previous example should not be surprising: we have

S0 = 2

and

A ∗ S0 = ΣA A = A

so that
(S0)∗n = ΣnS0 = Sn

The inductive limit is
(S0)∗∞ = S∞

which is known to be contractible.

48

The join construction

Previous example should not be surprising: we have

S0 = 2

and

A ∗ S0 = ΣA A = A

so that
(S0)∗n = ΣnS0 = Sn

The inductive limit is
(S0)∗∞ = S∞

which is known to be contractible.

48

The join construction

Previous example should not be surprising: we have

S0 = 2

and

A ∗ S0 = ΣA A = A

so that
(S0)∗n = ΣnS0 = Sn

The inductive limit is
(S0)∗∞ = S∞

which is known to be contractible. 48

Connecteness

A type A is n-connected when ∥A∥n = 1.

Proposition
If A is m-connected and B is n-connected then A ∗ B is (m+ n+ 1)-connected.

49

The join construction

We have seen that given a type A, we have

A∗∞ = 1

. . . excepting

when A = 0!

In fact, it can be shown that
A∗∞ = ∥A∥−1

This construction was known as the Milnor construction (1956).

50

The join construction

We have seen that given a type A, we have

A∗∞ = 1

. . . excepting when A = 0!

In fact, it can be shown that
A∗∞ = ∥A∥−1

This construction was known as the Milnor construction (1956).

50

The join construction

We have seen that given a type A, we have

A∗∞ = 1

. . . excepting when A = 0!

In fact, it can be shown that
A∗∞ = ∥A∥−1

This construction was known as the Milnor construction (1956).

50

The join construction

We have seen that given a type A, we have

A∗∞ = 1

. . . excepting when A = 0!

In fact, it can be shown that
A∗∞ = ∥A∥−1

This construction was known as the Milnor construction (1956).

50

The join of maps

Given a map f : A→ B, consider the following construction

A×B A A

A A ∗B A

B

π1

π2

ι2 f

f

ι1

f∗f

For b : B, we have
fibf∗f (b) = fibf (b) ∗ fibf (b)

with fibf (b) = Σ(a : A).f a = b.

51

The join of maps

Given a map f : A→ B, consider the following construction

A×B A A

A A ∗B A

B

π1

π2

ι2 f

f

ι1

f∗f

For b : B, we have
fibf∗f (b) = fibf (b) ∗ fibf (b)

with fibf (b) = Σ(a : A).f a = b.

51

The join of maps

Given a map f : A→ B, consider the following construction

A×B A A

A A ∗B A

B

π1

π2

ι2 f

f

ι1

f∗f

For b : B, we have
fibf∗f (b) = fibf (b) ∗ fibf (b)

with fibf (b) = Σ(a : A).f a = b.

51

The join of maps

Given a map f : A→ B, consider the following construction

A×B A A

A A ∗B A

B

π1

π2

ι2 f

f

ι1

f∗f

For b : B, we have
fibf∗f (b) = fibf (b) ∗ fibf (b)

with fibf (b) = Σ(a : A).f a = b.

51

The join of maps

Given a map f : A→ B, consider the following construction

A×B A A

A A ∗B A

B

π1

π2

ι2 f

f

ι1

f∗f

For b : B, we have
fibf∗f (b) = fibf (b) ∗ fibf (b)

with fibf (b) = Σ(a : A).f a = b.

51

The join of maps

If we compute iterated joins f ∗n = f ∗ f ∗ . . ., the fibers get more and more
connected and at the colimit we have

fibf∗∞(b) = (fibf (b))∗∞ = 1

excepting when fibf (b) = 0 where we get 0.

In other words, f ∗∞ is the canonical inclusion

im f := Σ(b : B).∥ fibf (b)∥−1 ↪→ B

52

The join of maps

If we compute iterated joins f ∗n = f ∗ f ∗ . . ., the fibers get more and more
connected and at the colimit we have

fibf∗∞(b) = (fibf (b))∗∞ = 1

excepting when fibf (b) = 0 where we get 0.

In other words, f ∗∞ is the canonical inclusion

im f := Σ(b : B).∥ fibf (b)∥−1 ↪→ B

52

Plan for the construction of BZ2

Rijke’s general recipe for constructing a resolution of BZ2 is the following:

1. consider the map f : 1 → BZ2

2. compute the iterated joins f ∗n : Pn → BZ2

3. take the inductive limit f ∗∞ : P∞ → BZ2

4. conclude that P∞ = im f = BZ2

5. observe that P∞ is a polygraph / CW-complex

This recipe works for any BG (excepting the last point)!

53

Plan for the construction of BZ2

Rijke’s general recipe for constructing a resolution of BZ2 is the following:

1. consider the map f : 1 → BZ2

2. compute the iterated joins f ∗n : Pn → BZ2

3. take the inductive limit f ∗∞ : P∞ → BZ2

4. conclude that P∞ = im f = BZ2

5. observe that P∞ is a polygraph / CW-complex

This recipe works for any BG (excepting the last point)!

53

Plan for the construction of BZ2

Rijke’s general recipe for constructing a resolution of BZ2 is the following:

1. consider the map f : 1 → BZ2

2. compute the iterated joins f ∗n : Pn → BZ2

3. take the inductive limit f ∗∞ : P∞ → BZ2

4. conclude that P∞ = im f = BZ2

5. observe that P∞ is a polygraph / CW-complex

This recipe works for any BG (excepting the last point)!

53

Plan for the construction of BZ2

Rijke’s general recipe for constructing a resolution of BZ2 is the following:

1. consider the map f : 1 → BZ2

2. compute the iterated joins f ∗n : Pn → BZ2

3. take the inductive limit f ∗∞ : P∞ → BZ2

4. conclude that P∞ = im f = BZ2

5. observe that P∞ is a polygraph / CW-complex

This recipe works for any BG (excepting the last point)!

53

Plan for the construction of BZ2

Rijke’s general recipe for constructing a resolution of BZ2 is the following:

1. consider the map f : 1 → BZ2

2. compute the iterated joins f ∗n : Pn → BZ2

3. take the inductive limit f ∗∞ : P∞ → BZ2

4. conclude that P∞ = im f = BZ2

5. observe that P∞ is a polygraph / CW-complex

This recipe works for any BG (excepting the last point)!

53

Plan for the construction of BZ2

Rijke’s general recipe for constructing a resolution of BZ2 is the following:

1. consider the map f : 1 → BZ2

2. compute the iterated joins f ∗n : Pn → BZ2

3. take the inductive limit f ∗∞ : P∞ → BZ2

4. conclude that P∞ = im f = BZ2

5. observe that P∞ is a polygraph / CW-complex

This recipe works for any BG (excepting the last point)!

53

Iterated joins

We have f ∗(n+1) = f ∗n ∗ f :

? 1

Pn Pn+1

BZ2

f

f∗n

f∗(n+1)

54

Iterated joins

We have f ∗(n+1) = f ∗n ∗ f :

Sn 1

Pn Pn+1

BZ2

f

f∗n

f∗(n+1)

54

Iterated joins: inductive case

Σ(x : Pn).(f ∗n(x) = S0) 1

Pn

BZ2

⌟
f

f∗n

And thus
Σ(x : Pn+1).f ∗(n+1) = (Σ(x : Pn).f ∗n(x)) ∗ S0

55

Iterated joins: inductive case

Σ(x : Pn).f ∗n(x) 1

Pn

BZ2

⌟
f

f∗n

And thus
Σ(x : Pn+1).f ∗(n+1) = (Σ(x : Pn).f ∗n(x)) ∗ S0

55

Iterated joins: inductive case

Σ(x : Pn).f ∗n(x) 1

Pn Pn+1⌜

And thus
Σ(x : Pn+1).f ∗(n+1) = (Σ(x : Pn).f ∗n(x)) ∗ S0

55

Iterated joins: inductive case

Σ(x : Pn).f ∗n(x) 1

Pn Pn+1

BZ2

⌜
f

f∗n

f∗(n+1)

And thus
Σ(x : Pn+1).f ∗(n+1) = (Σ(x : Pn).f ∗n(x)) ∗ S0

55

Iterated joins: inductive case

Σ(z : Σ(x : Pn).f ∗n(x)).f (⋆) Σ(x : 1).f (⋆)

Σ(x : Pn).f ∗n Σ(x : Pn+1)
⌜

And thus
Σ(x : Pn+1).f ∗(n+1) = (Σ(x : Pn).f ∗n(x)) ∗ S0

55

Iterated joins: inductive case

(Σ(x : Pn).f ∗n(x))× S0 S0

Σ(x : Pn).f ∗n(x) Σ(x : Pn+1).f ∗(n+1)
⌜

And thus
Σ(x : Pn+1).f ∗(n+1) = (Σ(x : Pn).f ∗n(x)) ∗ S0

55

Iterated joins: inductive case

(Σ(x : Pn).f ∗n(x))× S0 S0

Σ(x : Pn).f ∗n(x) Σ(x : Pn+1).f ∗(n+1)
⌜

And thus
Σ(x : Pn+1).f ∗(n+1) = (Σ(x : Pn).f ∗n(x)) ∗ S0

55

Iterated joins: inductive case

Σ(x : Pn).f ∗n(x) 1

Pn Pn+1⌜

And thus
Σ(x : Pn+1).f ∗(n+1) = (Σ(x : Pn).f ∗n(x)) ∗ S0

55

A concrete implementation of BZ2

In order to perform computations, we need a concrete implementation of BZ2.

Consider the type B := {0, 1} of booleans.

There are two isomorphisms B → B: the identity and the swap.

By univalence, we thus have (B = B) = Z2.

Bid swap

56

A concrete implementation of BZ2

In order to perform computations, we need a concrete implementation of BZ2.

Consider the type B := {0, 1} of booleans.

There are two isomorphisms B → B: the identity and the swap.

By univalence, we thus have (B = B) = Z2.

Bid swap

56

A concrete implementation of BZ2

In order to perform computations, we need a concrete implementation of BZ2.

Consider the type B := {0, 1} of booleans.

There are two isomorphisms B → B: the identity and the swap.

By univalence, we thus have (B = B) = Z2.

Bid swap

56

A concrete implementation of BZ2

In order to perform computations, we need a concrete implementation of BZ2.

Consider the type B := {0, 1} of booleans.

There are two isomorphisms B → B: the identity and the swap.

By univalence, we thus have (B = B) = Z2.

Bid swap

56

A concrete implementation of BZ2

In order to perform computations, we need a concrete implementation of BZ2.

Consider the type B := {0, 1} of booleans.

There are two isomorphisms B → B: the identity and the swap.

By univalence, we thus have (B = B) = Z2.

Bid swap

We can therefore define BZ2 as the connected component of B in the universe:

BZ2 = Σ(X : U).∥X = B∥−1

which satisfies
ΩBZ2 = Z2 56

A concrete implementation of BZ2

In order to perform computations, we need a concrete implementation of BZ2.

Consider the type B := {0, 1} of booleans.

There are two isomorphisms B → B: the identity and the swap.

By univalence, we thus have (B = B) = Z2.

Bid swap

More generally, we have, for A : BZ2

(B = A) = A

and thus, for A : X → BZ2,

Σ(x : X).(B = A(x)) = Σ(x : X).A(x)
56

A fiber sequence

Writing
p : Sn → Pn

it can be shown that for x : Pn, we have

fibp(x) = Σ(y : Sn).(p(y) = x) = S0

i.e. we have a fiber sequence

S0 Sn Pn
p

57

A long exact sequence

By general arguments, such a fiber sequence induces a long exact sequence of
homotopy groups

· · ·

π3(S0) π3(Sn) π3(Pn)

π2(S0) π2(Sn) π2(Pn)

π1(S0) π1(Sn) π1(Pn)

The Pn we have defined thus has the right homotopy groups!

58

A long exact sequence

By general arguments, such a fiber sequence induces a long exact sequence of
homotopy groups

· · ·

0 π3(Sn) π3(Pn)

0 π2(Sn) π2(Pn)

0 π1(Sn) π1(Pn)

The Pn we have defined thus has the right homotopy groups!

58

A long exact sequence

By general arguments, such a fiber sequence induces a long exact sequence of
homotopy groups

· · ·

0 π3(Sn) π3(Pn)

0 π2(Sn) π2(Pn)

0 π1(Sn) π1(Pn)

The Pn we have defined thus has the right homotopy groups!
58

Part V

Lens spaces

59

This generalizes to cyclic groups Zm!

(which requires a bit more than replacing 2 by m)

(work in progress with Émile Oleon)

60

Lens spaces

There is a geometric construction for BZm called infinite lens spaces

We can implement it in HoTT.

61

We first need to define BZm.

62

Equality between endomorphisms

We write
Finm = {0, 1, . . . ,m− 1}

and s : Finm→ Finm for the successor (modulo m).

An equality s = s is the same as an isomorphism f : Finm→ Finm such that

Finm Finm

Finm Finm

s

f

s

f

Such an isomorphism f is determined by the image of 0 since

f (k) = f (sk(0)) = sk(f (0))

i.e. (s = s) = Finm.

63

Equality between endomorphisms

We write
Finm = {0, 1, . . . ,m− 1}

and s : Finm→ Finm for the successor (modulo m).

An equality s = s is the same as an isomorphism f : Finm→ Finm such that

Finm Finm

Finm Finm

s

f

s

f

Such an isomorphism f is determined by the image of 0 since

f (k) = f (sk(0)) = sk(f (0))

i.e. (s = s) = Finm.

63

Equality between endomorphisms

We write
Finm = {0, 1, . . . ,m− 1}

and s : Finm→ Finm for the successor (modulo m).

An equality s = s is the same as an isomorphism f : Finm→ Finm such that

Finm Finm

Finm Finm

s

f

s

f

Such an isomorphism f is determined by the image of 0 since

f (k) = f (sk(0)) = sk(f (0))

i.e. (s = s) = Finm.

63

Equality between endomorphisms

We write
Finm = {0, 1, . . . ,m− 1}

and s : Finm→ Finm for the successor (modulo m).

An equality s = s is the same as an isomorphism f : Finm→ Finm such that

Finm Finm

Finm Finm

s

f

s

f

Such an isomorphism f is determined by the image of 0 since

f (k) = f (sk(0)) = sk(f (0))

i.e. (s = s) = Finm. 63

Equality between endomorphisms

The picture to have in mind is

64

Cyclic groups

We define the type of endomorphisms

U⟲ = Σ(A : U).(A→ A)

We consider the object
σ = (Finm, s)

We define
BZm = U⟲

S = Σ(X : U⟲).∥X = σ∥−1

65

Cyclic groups

We define the type of endomorphisms

U⟲ = Σ(A : U).(A→ A)

We consider the object
σ = (Finm, s)

We define
BZm = U⟲

S = Σ(X : U⟲).∥X = σ∥−1

65

Cyclic groups

We define the type of endomorphisms

U⟲ = Σ(A : U).(A→ A)

We consider the object
σ = (Finm, s)

We define
BZm = U⟲

S = Σ(X : U⟲).∥X = σ∥−1

65

Lens spaces

We have a map
f : 1 → BZm

given by S and we can define

BZm = im f = ∂−(f ∗∞)

We also have a map
f : S1 → BZm

and we can define
BZm = im f = ∂−(f ∗∞)

66

Lens spaces

We have a map
f : 1 → BZm

given by S and we can define

BZm = im f = ∂−(f ∗∞)

We also have a map
f : S1 → BZm

and we can define
BZm = im f = ∂−(f ∗∞)

66

Lens spaces

To be more precise there are multiple maps

f k : S1 → BZm
⋆ 7→ σ

loop 7→ sk : σ ≃ σ

Given k1, . . . , kn all relatively prime to m, we can define

L(k1, . . . , kn) = ∂−(f k1 ∗ . . . ∗ f kn)

which correspond to the well-known lens spaces.

By default,
Ln = L(1, . . . , 1)

and
L∞ = colimn Ln

67

Lens spaces

To be more precise there are multiple maps

f k : S1 → BZm
⋆ 7→ σ

loop 7→ sk : σ ≃ σ

Given k1, . . . , kn all relatively prime to m, we can define

L(k1, . . . , kn) = ∂−(f k1 ∗ . . . ∗ f kn)

which correspond to the well-known lens spaces.

By default,
Ln = L(1, . . . , 1)

and
L∞ = colimn Ln 67

Lens spaces

It can be shown that we have a pushout

S2n+1 1

Ln Ln+1⌜

from which we can deduce that we have a cellular decomposition
with one cell in each dimension:
at each step we are adding a cell in dimension 2n and one in dimension 2n+ 1.

68

Lens spaces: traditional definition

We can see S2n−1 as a subset of Cn:

S2n−1 = {(z1, . . . , zn) | |z1|2 + . . .+ |zn|2 = 1}

There is a free action ζ of Zm on S2n−1 given by

1 · (z1, . . . , zn) = (e2iπ/mz1, . . . , e2iπ/mzn)

and we define
Ln = S2n−1/ζ

we thus get a covering S2n−1 ↠ Ln with Zm as fiber, i.e. a fiber sequence

Zm ↪→ S2n−1 ↠ Ln

from which we deduce π1(Ln) = Zm and πk(Ln) = 0 for 1 < k < 2n− 1.

69

Lens spaces: traditional definition

We can see S2n−1 as a subset of Cn:

S2n−1 = {(z1, . . . , zn) | |z1|2 + . . .+ |zn|2 = 1}

There is a free action ζ of Zm on S2n−1 given by

1 · (z1, . . . , zn) = (e2iπ/mz1, . . . , e2iπ/mzn)

and we define
Ln = S2n−1/ζ

we thus get a covering S2n−1 ↠ Ln with Zm as fiber, i.e. a fiber sequence

Zm ↪→ S2n−1 ↠ Ln

from which we deduce π1(Ln) = Zm and πk(Ln) = 0 for 1 < k < 2n− 1.

69

Lens spaces: traditional definition

We can see S2n−1 as a subset of Cn:

S2n−1 = {(z1, . . . , zn) | |z1|2 + . . .+ |zn|2 = 1}

There is a free action ζ of Zm on S2n−1 given by

1 · (z1, . . . , zn) = (e2iπ/mz1, . . . , e2iπ/mzn)

and we define
Ln = S2n−1/ζ

we thus get a covering S2n−1 ↠ Ln with Zm as fiber, i.e. a fiber sequence

Zm ↪→ S2n−1 ↠ Ln

from which we deduce π1(Ln) = Zm and πk(Ln) = 0 for 1 < k < 2n− 1.

69

Lens spaces: traditional definition

We can see S2n−1 as a subset of Cn:

S2n−1 = {(z1, . . . , zn) | |z1|2 + . . .+ |zn|2 = 1}

There is a free action ζ of Zm on S2n−1 given by

1 · (z1, . . . , zn) = (e2iπ/mz1, . . . , e2iπ/mzn)

and we define
Ln = S2n−1/ζ

we thus get a covering S2n−1 ↠ Ln with Zm as fiber, i.e. a fiber sequence

Zm ↪→ S2n−1 ↠ Ln

from which we deduce π1(Ln) = Zm and πk(Ln) = 0 for 1 < k < 2n− 1.

69

Lens spaces: traditional definition

We can see S2n−1 as a subset of Cn:

S2n−1 = {(z1, . . . , zn) | |z1|2 + . . .+ |zn|2 = 1}

There is a free action ζ of Zm on S2n−1 given by

1 · (z1, . . . , zn) = (e2iπ/mz1, . . . , e2iπ/mzn)

and we define
Ln = S2n−1/ζ

we thus get a covering S2n−1 ↠ Ln with Zm as fiber, i.e. a fiber sequence

Zm ↪→ S2n−1 ↠ Ln

from which we deduce π1(Ln) = Zm and πk(Ln) = 0 for 1 < k < 2n− 1.

69

Lens spaces: traditional definition

We can see S2n−1 as a subset of Cn:

S2n−1 = (S1)∗n

There is a free action ζ of Zm on S2n−1 given by

1 · (z1, . . . , zn) = (e2iπ/mz1, . . . , e2iπ/mzn)

and we define
Ln = S2n−1/ζ

we thus get a covering S2n−1 ↠ Ln with Zm as fiber, i.e. a fiber sequence

Zm ↪→ S2n−1 ↠ Ln

from which we deduce π1(Ln) = Zm and πk(Ln) = 0 for 1 < k < 2n− 1.

69

Lens spaces

From
f : S1 → BZm

we obtained by joining n times a map

f ∗n : Ln → BZm

Via the family/fibration correspondence it corresponds to a map

g : BZm → U g(x) = fibf∗n(x) g(⋆) = S2n−1

i.e. an action of BZm on S2n−1 and we have

S2n−1/BZm = Σ(x : BZm).g(x) = Σ(x : BZm). fibf∗n(x) = Ln

which corresponds to the usual definition of lens spaces!

70

Lens spaces

From
f : S1 → BZm

we obtained by joining n times a map

f ∗n : Ln → BZm

Via the family/fibration correspondence it corresponds to a map

g : BZm → U g(x) = fibf∗n(x) g(⋆) = S2n−1

i.e. an action of BZm on S2n−1

and we have

S2n−1/BZm = Σ(x : BZm).g(x) = Σ(x : BZm). fibf∗n(x) = Ln

which corresponds to the usual definition of lens spaces!

70

Lens spaces

From
f : S1 → BZm

we obtained by joining n times a map

f ∗n : Ln → BZm

Via the family/fibration correspondence it corresponds to a map

g : BZm → U g(x) = fibf∗n(x) g(⋆) = S2n−1

i.e. an action of BZm on S2n−1 and we have

S2n−1/BZm = Σ(x : BZm).g(x) = Σ(x : BZm). fibf∗n(x) = Ln

which corresponds to the usual definition of lens spaces!

70

Compared to rewriting

We have a presentation
Zm = ⟨a | am = 1⟩

If we compute the critical branchings for Z4, we get 3 of them:

aaaaa

a a

a

aaaaaa

aa aa

aa

aaaaaaa

aaa aaa

aaa

which would inevitably lead to a larger presentation...

71

Lots remains to be done!

72

Closing words

Thank you François!

73

	Traditional polygraphs are not right
	Polygraphs in HoTT
	The rewriting approach
	The Milnor construction
	Lens spaces

