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Conservative forces
A force is conservative when the work∫ t2

t1
F (q(t)) · q̇(t)

only depends on the endpoints q(t1) and q(t2).

Principle
All forces are conservative.
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t1
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only depends on the endpoints q(t1) and q(t2).

Principle
All forces are conservative.

Remark
This is not true for friction for instance since it clearly depends on
the path: we neglect heat loss!
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Conservative forces
A force is conservative when the work∫ t2

t1
F (q(t)) · q̇(t)

only depends on the endpoints q(t1) and q(t2).

Principle
All forces are conservative.

Remark
When the space is simply connected, this is equivalent to

dF = ∇× F = 0

which is equivalent to

F = −∇V
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Newton’s law

In the case of a conservative force, Newton’s law gives

mẍ = −dV
dx

which turns out to be equivalent to the fact that the action

S =

∫ t2

t1

(1
2mẋ2 − V (x)

)
dt

is stationary wrt variations of the path x(t).
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The Lagrangian

Principle (Hamilton)
A mechanical system is characterized by a function

L(q, q̇, t)

called the Lagrangian where q is (a vector of) position, q̇ is (a
vector of) speed and t is the time and the paths it takes follows
the least action principle: it minimizes the action

S =

∫ t2

t1
L(q, q̇, t) dt

between any two instants t1 and t2.
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The Lagrangian

More formally, the position is a point q in a manifold M (for
instance for the double pendulum in R3, M ∼= S2 × S2) and the
evolution of the system is given by a path

q : [t1, t2] → M

The velocity is q̇(t) ∈ Tq(t)M. The Lagrangian is a function

L : TM → R

Notice that when we write L(qi , q̇i ), q̇i is a coordinate not the
derivative of something.
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The least action principle
Suppose that we perturb the position by taking

q + δq

where δq is a (always small) function such that

δq(t1) = δq(t2) = 0

The resulting change in action is

δS =

∫ t2

t1
L(q + δq, q̇ + δq̇, t) dt −

∫ t2

t1
L(q, q̇, t) dt

and the least action principle says

δS = 0
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Formalizing the δ

In order to make this formal, we consider a family of paths

qs : [0,T ]→ M

smoothly indexed by s ∈ [−1, 1], such that qs(0) = a, qs(1) = b
and q0 = q.

We write
δ for d

ds

∣∣∣∣
s=0

so that the least action principle is

δS = 0
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Euler-Lagrange equation
If we suppose that qs = q for every s outside a given chart,

0 = δS = δ

∫ t2

t1
L(q, q̇, t) dt

=

∫ t2

t1

(
∂L
∂qi δq

i +
∂L
∂q̇i δq̇

i
)
dt

with (qi , q̇i ) local basis for TM (by abuse of notation!).

Since δq̇ = dδq/ dt, we have

0 = δS =

[
∂L
∂q̇i δq

i
]t2

t1

+

∫ t2

t1

(
∂L
∂qi −

d
dt

∂L
∂q̇i

)
δqi dt

and this it must be true for all δq:

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi = 0

called the Euler-Lagrange equation.
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Momentum and force
The Euler-Lagrange equation

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi = 0

relates
• the momentum:

pi =
∂L
∂q̇i

• the force:
Fi =

∂L
∂qi

In other words, it states

Fi = ṗi
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In the case of a particle
We have

L = T − V
where

• T = 1
2mv2 is the Kinetic energy

• V is the potential energy

In the E-L equation
d
dt

(
∂L
∂q̇

)
− ∂L
∂q = 0

• F = ∂L/∂q is the force
• p = ∂L/∂q̇ is the momentum p = mv

in other words, we have recovered Newton’s law

F (q(t)) = ma(t)
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How do we know that?
Principle (Galileo’s relativity)
The laws of physics remain unchanged in an other referential
moving at constant speed (think of a ball falling in a train).

For a free particle, L does not depend on position or time, only on
speed. Moreover, space being isotropic, it does not depend on the
direction of speed, only on its magnitude v2:

L = L(v2)

Thus E-L gives (d/ dt)(∂L/∂v) = 0, i.e.

v = constant

By elaborating on these ideas, we find L proportional to v2:

L =
1
2mv2
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Conservation of energy
We have (with Einstein summation convention)

dL
dt =

∂L
∂qi

q̇i +
∂L
∂q̇i

q̈i +
∂L
∂t

By homogeneity of time, ∂L/∂t = 0 and since, by E-L we have
∂L/∂qi = (d/ dt)(∂L/∂q̇i )

dL
dt = q̇i

d
dt

(
∂L
∂q̇i

)
+
∂L
∂q̇i

q̈i

=
d
dt

(
q̇i
∂L
∂qi

)
Therefore energy is conserved:

dE
dt =

d
dt

(
q̇i
∂L
∂q̇i
− L

)
= 0

(for a particle, E = mv2 −
(

1
2mv2 − V

)
= 1

2mv2 + V ).
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Conservation of momentum

Similarly the momentum is conserved by invariance of space.
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Noether’s theorem

“If a system has a continuous symmetry property, then there are
corresponding quantities whose values are conserved in time.”
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Noether’s theorem

Consider a smooth map R× Γ→ Γ, called family of symmetries,

(s, q) 7→ qs

with q0 = q

δL =
d`
dt

i.e. for every path q,

d
ds L(qs(t), q̇s(t))

∣∣∣∣
s=0

=
d
dt `(qs(t), q̇s(t))

then
d
dt
(
piδqi − `

)
= 0
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Noether’s theorem

Theorem

d
dt
(
piδqi − `

)
= 0

Proof.

d
dt
(
piδqi − `

)
= ṗiδqi + piδq̇i −

d`
dt

=
∂L
∂qi δq

i +
∂L
∂q̇i − δL

= δL− δL
= 0
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Applications of Noether’s theorem
Conservation of energy
Consider

qs(t) = q(t + s)

We have
δL =

dL(qs)

ds

∣∣∣∣
s=0

=
dL
dt = L̇

and taking ` = L, we deduce that the energy

E = pi q̇i − L

is conserved.
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Applications of Noether’s theorem
Conservation of momentum
Consider

qs(t) = qs(t) + sv

For a free particle, we have L = 1
2mq̇2, and

δL = 0

because δq̇ = 0 and L only depends on q̇ (not on q).
Taking ` = 0, we deduce that the momentum

piδqi = mq̇iv i = mq̇ · v

is conserved.

(notice that this “momentum” is not the same as before, even
though it has the same value on usual examples)
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Applications of Noether’s theorem
Conservation of angular momentum
Consider for X ∈ so(n) an antisymmetric matrix
(so that esX ∈ SO(n)),

qs(t) = esX q(t)

We have
δL =

∂L
∂qi δq

i +
∂L
∂q̇i δq

i

In the case of a free particle ∂L
∂qi = 0, ∂L

∂q̇i = mq̇i , and

δq̇i =
dq̇i

ds

∣∣∣∣∣
s=0

=
d
ds

d
dt
(
esX q

)∣∣∣∣
s=0

=
d
dt Xq = Xq̇

i.e.
δL = mq̇ · (Xq̇) = 0

by anisymmetry of X . The angular momentum

piδqi = mq̇i · (Xq)i

is conserved.
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Hamiltonian
Mechanics
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The Hamiltonian

Instead of starting from the Lagrangian L(q, q̇)

L : TM → R

we can characterize the system from the energy

H(q, p) = piqi − L(q, q̇)

called Hamiltonian and seen as

H : T ∗M → R

since
pi =

∂L
∂qi
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Changing coordinates

We have a map

λ : TM → T ∗M
(q, q̇) 7→ (q, p)

where
pi =

dL
dqi

which can be described in a coordinate-free way.
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Regular Lagrangians

L is regular if it induces a diffeomorphism

λ : TM → X ⊆ T ∗M

to the phase space X . It is strongly regular when X = T ∗Q.

When λ : TM → X ⊆ T ∗M is an isomorphism, we can see

q̇i : TM → R as q̇i ◦ λ : X → R

which we both write q̇i . An in particular, we can see pi = ∂L
∂qi as

X → R instead of M → R.
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Hamilton’s equations

We have

dL =
∂L
∂qi dq

i +
∂L
∂q̇i dq̇

i = ṗi dqi + pi dq̇i

and

dH = d(pi q̇i − L) = q̇i dpi + pi dq̇i −
(
ṗi dqi + pi dq̇i

)
= qi dpi − ṗi dqi

And therefore
q̇i =

∂H
∂pi

ṗi = −∂H
∂qi
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ṗi = −∂H
∂qi

23 / 71



Hamilton’s equations

We have

dL =
∂L
∂qi dq

i +
∂L
∂q̇i dq̇
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The principle of least action

Notice that the action can be defined as

S =

∫ t2

t1

(
pi q̇i − H

)
dt

and the principle of least action holds iff Hamilton’s equations

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

hold.
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The Poisson bracket

Given a function f (q, p, t) on the manifold, we have

d
dt f =

∂f
∂p ṗ +

∂f
∂q q̇ +

∂f
∂t

=
∂f
∂p

∂H
∂p +

∂f
∂q

∂H
∂q +

∂f
∂t

= {f ,H}+
∂f
∂t

where the Poisson bracket is defined by

{f , g} =
∂f
∂qi

∂f
∂pi
− ∂f
∂pi

∂f
∂qi

In particular, an invariant f (q, p) satisfies {f ,H} = 0.
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The Poisson bracket

Notice that we have

q̇ =
∂H
∂p = {q,H} ṗ =

∂H
∂q = {p,H}

And also{
qi , qj

}
= 0 {pi , pj} = 0

{
qi , pj

}
= δij
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Symplectic manifolds

The phase space can be more generally modeled as:

Definition
A symplectic manifold M is a manifold equipped with a 2-form ω
which is

• closed:
dω = 0

• non-degenerate: for every p ∈ M and v ∈ TM,

ωp(v ,−) : TM → R

is not 0 (everywhere)
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Hamiltonian on a simplectic manifold
Since ω is non-degenerate, it provides a vector bundle isomorphism

TM → T ∗M

Therefore, a function (Hamiltonian)

H : M → R

determines a vector field XH ∈ ΓTM such that

dH = ω(XH ,−)

The Poisson bracket is then defined by

{f , g} = ω(Xg ,Xf ) = dg(Xf )
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Hamiltonian on a simplectic manifold

For instance, given M of dimension 2n with canonical coordinates
(q1, . . . , qn, p1, . . . , pn), the simplectic form is

ω =
∑

i
dqi ∧ dpi

and we have
XH =

(
∂H
∂pi

,
∂H
∂qi

)
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Special
Relativity
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The principle of relativity

Principle (Einstein)
The speed c of light is the same in two referentials moving at
constant speed.
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What can we draw from this?
Suppose that a particle moves at speed c from (x1, y1, z1) to
(x2, y2, z2) between instants t1 and t2. We have

−c2(t2 − t1)2 + (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = 0

But also

−c2(t ′2 − t ′1)2 + (x ′2 − x ′1)2 + (y ′2 − y ′1)2 + (z ′2 − z ′1)2 = 0

This suggests to introduce a metric of the form
−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


on a spacetime manifold, which should be invariant of the
referential.

32 / 71



What can we draw from this?
Suppose that a particle moves at speed c from (x1, y1, z1) to
(x2, y2, z2) between instants t1 and t2. We have

−c2(t2 − t1)2 + (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = 0

But also

−c2(t ′2 − t ′1)2 + (x ′2 − x ′1)2 + (y ′2 − y ′1)2 + (z ′2 − z ′1)2 = 0

This suggests to introduce a metric of the form
−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


on a spacetime manifold, which should be invariant of the
referential.

32 / 71



What can we draw from this?
Suppose that a particle moves at speed c from (x1, y1, z1) to
(x2, y2, z2) between instants t1 and t2. We have

−c2(t2 − t1)2 + (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = 0

But also

−c2(t ′2 − t ′1)2 + (x ′2 − x ′1)2 + (y ′2 − y ′1)2 + (z ′2 − z ′1)2 = 0

This suggests to introduce a metric of the form
−c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


on a spacetime manifold, which should be invariant of the
referential.

32 / 71



Lorentz transformations

Suppose that we have a referential R ′ moving at speed v along x
axis wrt R. Classically, we have

t ′ = t x ′ = x − vt y ′ = y z ′ = z

This is not consistent with relativity principle:

x2 + y2 + z2 = ct vs (x − vt)2 + y2 + z2 = ct

And actually, now we have Lorentz transformations

t ′ =
t − v

c2 x√
1− v2

c2

x ′ =
x − vt√
1− v2

c2

y ′ = y z ′ = z
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Deriving Lorentz transformations

Suppose that light is moving along y axis in R.
• in R:

c =
y
t

• in R ′:
c =

√
y2 + v2t2

t ′
and therefore

t ′ = t
√
y2 + v2t2

y
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The proper distance

One thing that one can notice about the metric defined by

s =
1
c

√
−c2(t2 − t1)2 + (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

is that the distance between two events is invariant under Lorentz
transformations!

(which is not the case of distances, or time differences)
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Moving clocks

From the fact that s is invariant it is easy to show that during a
time dt in rest frame, in a frame moving at speed v a clock will
have advanced from dt ′ such that

dt ′ =
ds
c = dt

√
1− v2

c2

Moving clocks go more slowly!
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The relativistic Lagrangian
For a free particle, the action must be of the form

S = −α
∫ b

a
ds

with α ≥ 0.

The Lagrangian satisfies

S =

∫ t2

t1
L dt

Therefore

S = −
∫ t2

t1
αc

√
1− v2

c2

Imposing limc→∞ L = 1
2mv2 implies α = mc, i.e.

L = −mc2

√
1− v2

c2
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Momentum and energy
The relativistic momentum of a free particle is

p =
∂L
∂q̇ =

mv√
1− v2

c2

and its energy is

E = p · v − L =
mc2√
1− v2

c2

The rest energy of the particle is

lim
c→∞

E = mc2

Notice that we recover the classical notion of energy when v � c:

E ≈ mc2 +
mv2

2 + . . .
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Hamiltonian

From preceding formulas we have

E 2

c2 = p2 + m2c2

and therefore
H = c

√
p2 + m2c2

In particular, when v � c,

H ≈ mc2 +
p2

2m + . . .
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Electromagnetics
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The electric force

The electric force from a charge q′ on a charge q distant from ~r

q′ ~r // q

is
~F =

1
4πε0

qq′
r2
~r
r

where
• q and q′ are the charges (in Coulomb)
• r is the distance (in meters)
• F is the force in (in Newtons)
• ε0 is the permittivity of free space (in C2m−2N−1)
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Electric field

This can be reformulated by saying that a charge q is subject to a
force

~F = q~E

and generates an electric field

~E (~r) =
1

4πε0

q
r2
~r
r
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The nabla symbol

In the following, we are going to make use of the nabla operator

∇ =

(
∂

∂x ,
∂

∂y ,
∂

∂z

)
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Divergence

Definition
The divergence of a vector field ~F measures its flux

∇ · ~F = ∂1F1 + ∂2F2 + ∂3F3 = lim
V→{∗}

∫∫
S(V )

~F · ~n
|V | dS
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Curl
Definition
The curl measures rotation

∇× ~F = (∂2F3 − ∂3F2, ∂1F3 − ∂3F1, ∂1F2 − ∂2F1)

= lim
A→{∗}

∮
A

(
~F · d~ri
|A|

)
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The curl measures rotation

∇× ~F = (∂2F3 − ∂3F2, ∂1F3 − ∂3F1, ∂1F2 − ∂2F1)

= lim
A→{∗}

∮
A

(
~F · d~ri
|A|

)
Example

∇× (y dx − x dy) = −2 dz
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Maxwell equations

∇ · ~B = 0

∇× ~E +
∂~B
∂t = 0

∇ · ~E = ρ

∇× ~B − ∂~E
∂r = ~j

where:
• ~E is the electric field
• ~B is the magnetic field
• ρ is the charge density
• ~j is the electric current density
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Quantum
Mechanics
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Complex vector spaces

We will consider vector spaces over the field C.

We write − for the functor Vect→ Vect such that a linear
f : V ( W is an antilinear f : V ( W , i.e.

f (λv) = λf (v)

V is the same as V excepting that λv in V is λv in V .
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Hilbert spaces
Definition
A Hilbert space H is a complex (or real) inner product space:

〈−|−〉 : H ⊗ H ( C

such that
• 〈x |λy〉 = λ 〈x |y〉
• 〈x |y1 + y2〉 = 〈x |y1〉+ 〈x |y2〉
• 〈x |y〉 = 〈y |x〉
• 〈x |x〉 ≥ 0 with equality precisely when x = 0

and H is complete wrt the distance function induced by the norm
‖x‖ =

√
〈x |x〉.

Remark
• Inner prod is antilinear wrt first argument: 〈λx |y〉 = λ 〈x |y〉
• 〈x |x〉 is real
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Examples
The famous examples

• Cn

• `2: the sequences (zi )i∈N such that∑
i∈N
|zi |2 < ∞

with
〈y |z〉 =

∑
i∈N

yizi

• L2(X , µ): given a measure space (X ,M, µ) where M is a
σ-algebra of subsets of X , the space of functions f : X → C
such that ∫

X
|f |2 dµ < ∞

with
〈g |f 〉 =

∫
X
g(t)f (t) dt
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A category

The most general notion of morphism we consider are continuous
linear functions between Hilbert spaces.

The category of Hilbert spaces is denoted

Hilb

and the full subcategory of finite dimensional spaces

FdHilb
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Riesz representation theorem
Theorem
Given a Hilbert space H

H ∼= Hilb(H,C)

Proof.
• To v ∈ H, we associate 〈v |−〉 : H ( C.
• To f : H → C, ker f is one-dimensional. Take z ∈ ker f such
that ‖z‖ = 1. Then x = f (z) z suits.

Remark
We also have H ∼= Hilb(H,C).

Notation
We define the functor

−† : Hilb → Hilbop

by
H† = Hilb(H,C)
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Notations
• We write

|v〉

for a vector
v : 1 ( H

• Given a vector v : 1 ( H, we write

〈v |

for
v † : H ( 1

• Wunderbar, this justifies the notation

〈w |v〉 = 〈w | ◦ |v〉 : 1 ( 1
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Orthonormal basis

A finite basis |1〉 , |2〉 , . . . is orthonormal when

〈i |j〉 = δij

Proposition (Graham-Schmidt)
A finite basis can be transformed into an orthonormal one.

In such a basis, for a vector v = (v1, . . . , vn), we have vi = 〈i |v〉:

|v〉 =
∑

i
|i〉 〈i |v〉
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Notations

In such a basis, we write for an element v ∈ H:

|v〉 =
∑

i
vi |i〉

and the corresponding v ∈ H†

〈v | =
∑

i
v i 〈i |

So that
〈w |v〉 =

∑
i

∑
j
wivi
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As vectors

We can see those as vectors

|v〉 =

v1
...
vn

 〈v | =
(
v1 . . . vn

)

and we have

〈w |v〉 =
(
w1 . . . wn

)v1
...
vn
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Operators
An operator is a morphism

A : H ( H

in our category Hilb.

In an orthonormal basis, its components are

Aij = 〈i |A |j〉

Notice that

〈λv | = λ 〈v | 〈Av | = 〈v |A†
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Self-adjoint operators
Definition
An operator A is self-adjoint (or hermitian) when

A† = A

and skew-adjoint (or anti-hermitian)when

A† = −A

Proposition
We can generalize the decomposition of real / imaginary:

A =
A + A†

2 +
A− A†

2
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Spectral theorem

Lemma
The eigenvalues of a self-adjoint operator are real.
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Spectral theorem

Lemma
The eigenvalues of a self-adjoint operator are real.

Theorem
Given a self-adjoint operator on a finite-dimensional space, there
exists an orthonormal basis in which it is diagonal.
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Spectral theorem

Lemma
The eigenvalues of a self-adjoint operator are real.

Theorem
Given a compact self-adjoint operator A, there exists an
orthonormal basis constituted of eigenvectors of A.

Definition
A is compact if the image of a bounded set is relatively compact
(its closure is compact).
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Unitary operators

Definition
An operator

A : H ( H ′

is unitary when
A†A = idH

and
AA† = idH′

60 / 71



Dagger categories

Definition
A dagger category is a category equipped with a functor

−† : Cop → C

such that
• id†A = idA (the functor is identity-on-objects)
• −†† = IdC

On says that
• an invertible morphism f : A→ B is unitary when f † = f −1

• an endomorphism f : A→ A is self-adjoint when f † = f
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Dagger monoidal categories

Definition
A dagger symmetric monoidal category is a symmetric
monoidal category equipped with a dagger such that

• the dagger functor is strictly monoidal
• the components of the structural natural transformations
α, λ, ρ, σ are unitary, e.g.

α†A,B,C = α−1
A,B,C : A⊗ (B ⊗ C) → (A⊗ B)⊗ C
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Dagger compact categories

Definition
A dagger compact category is a dagger symmetric monoidal
category which is compact closed, such that

I
ε†A //

ηA ""

A⊗ A∗

γA,A∗

��
A∗ ⊗ A
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In infinite dimensions
Warning: the few next slides are sloppy (maybe someday I’ll dig
into measures and distributions).

We can consider the space of functions [0, 1]→ C equipped with

〈f |g〉 =

∫ 1

0
f (x)g(x) dx

An orthonormal basis for those is Dirac’s “functions” δy such that
• δy (x) = 0 when x 6= y
•
∫ 1

0 δy (x) dx = 1
with which

〈x |f 〉 = 〈δx |f 〉 = f (x)
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About Dirac’s functions

We can think of δ as

δy (x) = lim
∆→0

1√
π∆2

exp
(
−x − y

∆2

)
or using Fourier transforms

δy (x) =
1
2π

∫ ∞
−∞

ei(x−y)t dt
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The derivation operator

Consider the operator D such that

D |f 〉 =
∣∣f ′〉

so that
〈x |D |f 〉 =

〈
x
∣∣f ′〉 = f ′(x)

with
〈x |D |y〉 = δ′y (x)

i.e. ∫
δ′y (x)f (x) dx = f ′(x)
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A self-adjoint derivation operator
Notice that D looks skew-adjoint:

D†xy = 〈y |D |x〉 = δ′x (y) = −δ′y (x) = −〈x |D |y〉 = D†xy

we thus would get a self-adjoint operator

K = − iD

But this is not enough: we also want

〈g |K |f 〉 = 〈f |K |g〉∫ ∫
〈g |x〉 〈x |K |y〉 〈y |f 〉 dx dy =

∫ ∫
〈f |x〉 〈x |K |y〉 〈y |g〉 dx dy∫

g(x)
(
− i f ′(x)

)
dx =

∫
f (x)

(
i g ′(x)

)
dx

− i g(x)f (x)
∣∣∣1
0

= 0

(using integration by parts)
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