A Bit of Physics

Samuel Mimram

CEA, LIST

January 11, 2014

Lagrangian Mechanics

A force is **conservative** when the work

 $\int_{t_1}^{t_2} F(q(t)) \cdot \dot{q}(t)$

only depends on the endpoints $q(t_1)$ and $q(t_2)$.

A force is **conservative** when the work

 $\int_{t_1}^{t_2} F(q(t)) \cdot \dot{q}(t)$

only depends on the endpoints $q(t_1)$ and $q(t_2)$.

Principle

All forces are conservative.

A force is **conservative** when the work

 $\int_{t_1}^{t_2} F(q(t)) \cdot \dot{q}(t)$

only depends on the endpoints $q(t_1)$ and $q(t_2)$.

Principle

All forces are conservative.

Remark

This is not true for friction for instance since it clearly depends on the path: we neglect heat loss!

A force is **conservative** when the work

 $\int_{t_1}^{t_2} F(q(t)) \cdot \dot{q}(t)$

only depends on the endpoints $q(t_1)$ and $q(t_2)$.

1

Principle

All forces are conservative.

Remark

When the space is simply connected, this is equivalent to

$$dF = \nabla \times F = 0$$

which is equivalent to

$$F = -\nabla V$$

Newton's law

In the case of a conservative force, Newton's law gives

$$m\ddot{x} = -\frac{\mathrm{d}V}{\mathrm{d}x}$$

Newton's law

In the case of a conservative force, Newton's law gives

$$m\ddot{x} = -\frac{\mathrm{d}V}{\mathrm{d}x}$$

which turns out to be equivalent to the fact that the action

$$S = \int_{t_1}^{t_2} \left(\frac{1}{2}m\dot{x}^2 - V(x)\right) dt$$

is stationary wrt variations of the path x(t).

Principle (Hamilton)

A mechanical system is characterized by a function

 $L(q,\dot{q},t)$

called the **Lagrangian** where q is (a vector of) *position*, \dot{q} is (a vector of) *speed* and t is the *time* and the paths it takes follows the **least action principle**: it minimizes the **action**

$$S = \int_{t_1}^{t_2} L(q, \dot{q}, t) \,\mathrm{d}t$$

between any two instants t_1 and t_2 .

More formally, the position is a point q in a manifold M (for instance for the double pendulum in \mathbb{R}^3 , $M \cong S^2 \times S^2$) and the evolution of the system is given by a path

$$q$$
 : $[t_1, t_2] \rightarrow M$

More formally, the position is a point q in a manifold M (for instance for the double pendulum in \mathbb{R}^3 , $M \cong S^2 \times S^2$) and the evolution of the system is given by a path

$$q$$
 : $[t_1, t_2] \rightarrow M$

The velocity is $\dot{q}(t) \in T_{q(t)}M$. The Lagrangian is a function

L : $TM \rightarrow \mathbb{R}$

More formally, the position is a point q in a manifold M (for instance for the double pendulum in \mathbb{R}^3 , $M \cong S^2 \times S^2$) and the evolution of the system is given by a path

$$q$$
 : $[t_1, t_2] \rightarrow M$

The velocity is $\dot{q}(t) \in T_{q(t)}M$. The Lagrangian is a function

L : $TM \rightarrow \mathbb{R}$

Notice that when we write $L(q^i, \dot{q}^i)$, \dot{q}^i is a coordinate not the derivative of something.

The least action principle

Suppose that we perturb the position by taking

 $q + \delta q$

where δq is a (always small) function such that

 $\delta q(t_1) = \delta q(t_2) = 0$

The least action principle

Suppose that we perturb the position by taking

 $q + \delta q$

where δq is a (always small) function such that

$$\delta q(t_1) = \delta q(t_2) = 0$$

The resulting change in action is

$$\delta S = \int_{t_1}^{t_2} L(q+\delta q, \dot{q}+\delta \dot{q}, t) \, \mathrm{d}t - \int_{t_1}^{t_2} L(q, \dot{q}, t) \, \mathrm{d}t$$

and the least action principle says

$$\delta S = 0$$

Formalizing the δ

In order to make this formal, we consider a family of paths

$$q_s$$
 : $[0, T] \rightarrow M$

smoothly indexed by $s \in [-1,1]$, such that $q_s(0) = a$, $q_s(1) = b$ and $q_0 = q$.

Formalizing the δ

In order to make this formal, we consider a family of paths

$$q_s$$
 : $[0, T] \rightarrow M$

smoothly indexed by $s \in [-1,1]$, such that $q_s(0) = a$, $q_s(1) = b$ and $q_0 = q$.

We write

$$\delta$$
 for $\left. \frac{\mathsf{d}}{\mathsf{d}s} \right|_{s=0}$

so that the least action principle is

$$\delta S = 0$$

Euler-Lagrange equation

If we suppose that $q_s = q$ for every s outside a given chart,

$$0 = \delta S = \delta \int_{t_1}^{t_2} L(q, \dot{q}, t) dt$$
$$= \int_{t_1}^{t_2} \left(\frac{\partial L}{\partial q^i} \delta q^i + \frac{\partial L}{\partial \dot{q}^i} \delta \dot{q}^i \right) dt$$

with (q^i, \dot{q}^i) local basis for *TM* (by abuse of notation!).

Euler-Lagrange equation

If we suppose that $q_s = q$ for every s outside a given chart,

$$0 = \delta S = \delta \int_{t_1}^{t_2} L(q, \dot{q}, t) dt$$
$$= \int_{t_1}^{t_2} \left(\frac{\partial L}{\partial q^i} \delta q^i + \frac{\partial L}{\partial \dot{q}^i} \delta \dot{q}^i \right) dt$$

with (q^i, \dot{q}^i) local basis for *TM* (by abuse of notation!). Since $\delta \dot{q} = d\delta q/dt$, we have

$$0 = \delta S = \left[\frac{\partial L}{\partial \dot{q}^{i}} \delta q^{i}\right]_{t_{1}}^{t_{2}} + \int_{t_{1}}^{t_{2}} \left(\frac{\partial L}{\partial q^{i}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}^{i}}\right) \delta q^{i} \,\mathrm{d}t$$

and this it must be true for all δq :

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}^{i}}\right) - \frac{\partial L}{\partial q^{i}} = 0$$

called the Euler-Lagrange equation.

Momentum and force

The Euler-Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}^{i}}\right) - \frac{\partial L}{\partial q^{i}} = 0$$

relates

• the momentum:

• the force:

$$p_i = \frac{\partial L}{\partial \dot{q}^i}$$
$$F_i = \frac{\partial L}{\partial q^i}$$

01

Momentum and force

The Euler-Lagrange equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}^{i}}\right) - \frac{\partial L}{\partial q^{i}} = 0$$

relates

• the momentum:

• the force:

$$p_i = \frac{\partial L}{\partial \dot{q}^i}$$
$$F_i = \frac{\partial L}{\partial q^i}$$

91

In other words, it states

$$F_i = \dot{p}_i$$

In the case of a particle

We have

$$L = T - V$$

where

- $T = \frac{1}{2}mv^2$ is the **Kinetic energy**
- V is the **potential energy**

In the case of a particle

We have

$$L = T - V$$

where

- $T = \frac{1}{2}mv^2$ is the **Kinetic energy**
- V is the **potential energy**

In the E-L equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0$$

• $F = \partial L / \partial q$ is the **force**

• $p = \partial L / \partial \dot{q}$ is the momentum p = mv

in other words, we have recovered Newton's law

$$F(q(t)) = ma(t)$$

Principle (Galileo's relativity)

The laws of physics remain unchanged in an other referential moving at constant speed (think of a ball falling in a train).

Principle (Galileo's relativity)

The laws of physics remain unchanged in an other referential moving at constant speed (think of a ball falling in a train).

For a free particle, *L* does not depend on position or time, only on speed. Moreover, space being isotropic, it does not depend on the direction of speed, only on its magnitude v^2 :

$$L = L(v^2)$$

Principle (Galileo's relativity)

The laws of physics remain unchanged in an other referential moving at constant speed (think of a ball falling in a train).

For a free particle, *L* does not depend on position or time, only on speed. Moreover, space being isotropic, it does not depend on the direction of speed, only on its magnitude v^2 :

$$L = L(v^2)$$

Thus E-L gives $(d/dt)(\partial L/\partial v) = 0$, i.e.

Principle (Galileo's relativity)

The laws of physics remain unchanged in an other referential moving at constant speed (think of a ball falling in a train).

For a free particle, *L* does not depend on position or time, only on speed. Moreover, space being isotropic, it does not depend on the direction of speed, only on its magnitude v^2 :

$$L = L(v^2)$$

Thus E-L gives $(d/dt)(\partial L/\partial v) = 0$, i.e.

v = constant

By elaborating on these ideas, we find L proportional to v^2 :

$$L = \frac{1}{2}mv^2$$

We have (with Einstein summation convention)

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i + \frac{\partial L}{\partial t}$$

We have (with Einstein summation convention)

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i + \frac{\partial L}{\partial t}$$

By homogeneity of time, $\partial L/\partial t = 0$ and since, by E-L we have $\partial L/\partial q_i = (d/dt)(\partial L/\partial \dot{q}_i)$

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{q}_i \frac{\partial L}{\partial q_i} \right)$$

We have (with Einstein summation convention)

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i + \frac{\partial L}{\partial t}$$

By homogeneity of time, $\partial L/\partial t = 0$ and since, by E-L we have $\partial L/\partial q_i = (d/dt)(\partial L/\partial \dot{q}_i)$

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{q}_i \frac{\partial L}{\partial q_i} \right)$$

Therefore energy is conserved:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L \right) = 0$$

We have (with Einstein summation convention)

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\partial L}{\partial q_i} \dot{q}_i + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i + \frac{\partial L}{\partial t}$$

By homogeneity of time, $\partial L/\partial t = 0$ and since, by E-L we have $\partial L/\partial q_i = (d/dt)(\partial L/\partial \dot{q}_i)$

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \dot{q}_i \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) + \frac{\partial L}{\partial \dot{q}_i} \ddot{q}_i$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{q}_i \frac{\partial L}{\partial q_i} \right)$$

Therefore energy is conserved:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{q}_i \frac{\partial L}{\partial \dot{q}_i} - L \right) = 0$$

(for a particle,
$$E = mv^2 - (\frac{1}{2}mv^2 - V) = \frac{1}{2}mv^2 + V$$
).

Conservation of momentum

Similarly the momentum is conserved by invariance of space.

"If a system has a continuous symmetry property, then there are corresponding quantities whose values are conserved in time."

Consider a smooth map $\mathbb{R} \times \Gamma \to \Gamma$, called *family of symmetries*,

 $(s,q)\mapsto q_s$

with $q_0 = q$

Consider a smooth map $\mathbb{R} \times \Gamma \to \Gamma$, called *family of symmetries*,

 $(s,q)\mapsto q_s$

(e.g. $q_s(t) = q(s+t)$ or $q_s(t) = q(t) + sv$, etc.)

Consider a smooth map $\mathbb{R} \times \Gamma \to \Gamma$, called *family of symmetries*,

 $(s,q)\mapsto q_s$

such that there exists a function $\ell(q, \dot{q})$: $TM \to \mathbb{R}$ for which

Consider a smooth map $\mathbb{R} \times \Gamma \to \Gamma$, called *family of symmetries*,

 $(s,q)\mapsto q_s$

such that there exists a function $\ell(q,\dot{q}): TM
ightarrow \mathbb{R}$ for which

$$\delta L = \frac{\mathrm{d}\ell}{\mathrm{d}t}$$

i.e. for every path q,

$$\frac{\mathrm{d}}{\mathrm{d}s}L(q_s(t),\dot{q}_s(t))\Big|_{s=0} = \frac{\mathrm{d}}{\mathrm{d}t}\ell(q_s(t),\dot{q}_s(t))$$
Noether's theorem

Consider a smooth map $\mathbb{R} \times \Gamma \to \Gamma$, called *family of symmetries*,

 $(s,q)\mapsto q_s$

such that there exists a function $\ell(q,\dot{q}): TM
ightarrow \mathbb{R}$ for which

$$\delta L = \frac{\mathrm{d}\ell}{\mathrm{d}t}$$

i.e. for every path q,

$$\frac{\mathrm{d}}{\mathrm{d}s}L(q_s(t),\dot{q}_s(t))\Big|_{s=0} = \frac{\mathrm{d}}{\mathrm{d}t}\ell(q_s(t),\dot{q}_s(t))$$

then

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(p_i\delta q^i-\ell\right) = 0$$

Noether's theorem

Theorem

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(p_i\delta q^i-\ell\right) = 0$$

Proof.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(p_i \delta q^i - \ell \right) = \dot{p}_i \delta q_i + p_i \delta \dot{q}_i - \frac{\mathrm{d}\ell}{\mathrm{d}t}$$
$$= \frac{\partial L}{\partial q^i} \delta q^i + \frac{\partial L}{\partial \dot{q}^i} - \delta L$$
$$= \delta L - \delta L$$
$$= 0$$

Applications of Noether's theorem

Conservation of energy

Consider

$$q_s(t) = q(t+s)$$

We have

$$\delta L = \left. \frac{\mathrm{d}L(q_s)}{\mathrm{d}s} \right|_{s=0} = \frac{\mathrm{d}L}{\mathrm{d}t} = \dot{L}$$

and taking $\ell = L$, we deduce that the **energy**

$$E = p_i \dot{q}^i - L$$

is conserved.

Applications of Noether's theorem

Conservation of momentum

Consider

$$q_s(t) = q_s(t) + sv$$

For a free particle, we have $L = \frac{1}{2}m\dot{q}^2$, and

$$\delta L = 0$$

because $\delta \dot{q} = 0$ and L only depends on \dot{q} (not on q). Taking $\ell = 0$, we deduce that the **momentum**

$$p_i \delta q^i = m \dot{q}_i v^i = m \dot{q} \cdot v$$

is conserved.

(notice that this "momentum" is not the same as before, even though it has the same value on usual examples)

Applications of Noether's theorem

Conservation of angular momentum

Consider for $X \in \mathfrak{so}(n)$ an antisymmetric matrix (so that $e^{sX} \in SO(n)$),

$$q_s(t) = e^{sX} q(t)$$

We have

$$\delta L = rac{\partial L}{\partial q^i} \delta q^i + rac{\partial L}{\partial \dot{q}^i} \delta q^i$$

In the case of a free particle $\frac{\partial L}{\partial q^i} = 0$, $\frac{\partial L}{\partial \dot{q}^i} = m \dot{q}_i$, and

$$\delta \dot{q}^{i} = \left. \frac{\mathrm{d} \dot{q}^{i}}{\mathrm{d} s} \right|_{s=0} = \left. \frac{\mathrm{d}}{\mathrm{d} s} \frac{\mathrm{d}}{\mathrm{d} t} \left(\mathrm{e}^{sX} q \right) \right|_{s=0} = \frac{\mathrm{d}}{\mathrm{d} t} X q = X \dot{q}$$

i.e.

$$\delta L = m\dot{q} \cdot (X\dot{q}) = 0$$

by anisymmetry of X. The **angular momentum**

Hamiltonian Mechanics

The Hamiltonian

Instead of starting from the Lagrangian $L(q, \dot{q})$

L : $TM \rightarrow \mathbb{R}$

we can characterize the system from the energy

$$H(q,p) = p_i q^i - L(q, \dot{q})$$

called Hamiltonian and seen as

$$H$$
 : $T^*M \rightarrow \mathbb{R}$

since

$$p_i = \frac{\partial L}{\partial q^i}$$

Changing coordinates

We have a map λ : $TM \to T^*M$ $(q,\dot{q}) \mapsto (q,p)$ where $p_i = rac{\mathrm{d}L}{\mathrm{d}q^i}$

Changing coordinates

We have a map

$$\lambda : TM \rightarrow T^*M \ (q,\dot{q}) \mapsto (q,p)$$

where

$$p_i = \frac{\mathrm{d}L}{\mathrm{d}q^i}$$

which can be described in a coordinate-free way.

Regular Lagrangians

L is regular if it induces a diffeomorphism

$$\lambda$$
 : $TM \rightarrow X \subseteq T^*M$

to the phase space X. It is strongly regular when $X = T^*Q$.

Regular Lagrangians

L is regular if it induces a diffeomorphism

$$\lambda$$
 : $TM \rightarrow X \subseteq T^*M$

to the **phase space** X. It is **strongly regular** when $X = T^*Q$.

When $\lambda : TM \to X \subseteq T^*M$ is an isomorphism, we can see

$$\dot{q}^i:TM
ightarrow\mathbb{R}$$
 as $\dot{q}^i\circ\lambda:X
ightarrow\mathbb{R}$

which we both write \dot{q}^i . An in particular, we can see $p_i = \frac{\partial L}{\partial q^i}$ as $X \to \mathbb{R}$ instead of $M \to \mathbb{R}$.

Hamilton's equations

We have

$$dL = \frac{\partial L}{\partial q^{i}} dq^{i} + \frac{\partial L}{\partial \dot{q}^{i}} d\dot{q}^{i} = \dot{p}_{i} dq^{i} + p_{i} d\dot{q}^{i}$$

Hamilton's equations

We have

$$dL = \frac{\partial L}{\partial q^{i}} dq^{i} + \frac{\partial L}{\partial \dot{q}^{i}} d\dot{q}^{i} = \dot{p}_{i} dq^{i} + p_{i} d\dot{q}^{i}$$

 $\quad \text{and} \quad$

$$dH = d(p_i \dot{q}^i - L) = \dot{q}^i dp_i + p_i d\dot{q}^i - (\dot{p}_i dq^i + p_i d\dot{q}^i)$$

= $q^i dp_i - \dot{p}_i dq^i$

Hamilton's equations

We have

$$dL = \frac{\partial L}{\partial q^{i}} dq^{i} + \frac{\partial L}{\partial \dot{q}^{i}} d\dot{q}^{i} = \dot{p}_{i} dq^{i} + p_{i} d\dot{q}^{i}$$

and

$$dH = d(p_i \dot{q}^i - L) = \dot{q}^i dp_i + p_i d\dot{q}^i - (\dot{p}_i dq^i + p_i d\dot{q}^i)$$

= $q^i dp_i - \dot{p}_i dq^i$

And therefore

$$\dot{q}^{i} = rac{\partial H}{\partial p_{i}}$$
 $\dot{p}_{i} = -rac{\partial H}{\partial q_{i}}$

The principle of least action

Notice that the action can be defined as

$$S = \int_{t_1}^{t_2} \left(p_i \dot{q}^i - H \right) \mathrm{d}t$$

and the principle of least action holds iff Hamilton's equations

$$\dot{q}^{i} = rac{\partial H}{\partial p_{i}}$$
 $\dot{p}_{i} = -rac{\partial H}{\partial q_{i}}$

hold.

Given a function f(q, p, t) on the manifold, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}f = \frac{\partial f}{\partial p}\dot{p} + \frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial t}$$
$$= \frac{\partial f}{\partial p}\frac{\partial H}{\partial p} + \frac{\partial f}{\partial q}\frac{\partial H}{\partial q} + \frac{\partial f}{\partial t}$$
$$= \{f, H\} + \frac{\partial f}{\partial t}$$

Given a function f(q, p, t) on the manifold, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}f = \frac{\partial f}{\partial p}\dot{p} + \frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial t}$$
$$= \frac{\partial f}{\partial p}\frac{\partial H}{\partial p} + \frac{\partial f}{\partial q}\frac{\partial H}{\partial q} + \frac{\partial f}{\partial t}$$
$$= \{f, H\} + \frac{\partial f}{\partial t}$$

where the **Poisson bracket** is defined by

$$\{f,g\} = \frac{\partial f}{\partial q^{i}} \frac{\partial f}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial f}{\partial q^{i}}$$

Given a function f(q, p, t) on the manifold, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}f = \frac{\partial f}{\partial p}\dot{p} + \frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial t}$$
$$= \frac{\partial f}{\partial p}\frac{\partial H}{\partial p} + \frac{\partial f}{\partial q}\frac{\partial H}{\partial q} + \frac{\partial f}{\partial t}$$
$$= \{f, H\} + \frac{\partial f}{\partial t}$$

where the **Poisson bracket** is defined by

$$\{f,g\} = \frac{\partial f}{\partial q^{i}} \frac{\partial f}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial f}{\partial q^{i}}$$

In particular, an invariant f(q, p) satisfies $\{f, H\} = 0$.

Notice that we have

$$\dot{q} = \frac{\partial H}{\partial p} = \{q, H\}$$
 $\dot{p} = \frac{\partial H}{\partial q} = \{p, H\}$

Notice that we have

$$\dot{q} = \frac{\partial H}{\partial p} = \{q, H\}$$
 $\dot{p} = \frac{\partial H}{\partial q} = \{p, H\}$

And also

$$\left\{q^{i},q^{j}\right\}=0$$
 $\left\{p_{i},p_{j}\right\}=0$ $\left\{q^{i},p_{j}\right\}=\delta_{ij}$

Symplectic manifolds

The phase space can be more generally modeled as:

Definition

A symplectic manifold M is a manifold equipped with a 2-form ω which is

closed:

$$d\omega = 0$$

• non-degenerate: for every $p \in M$ and $v \in TM$,

$$\omega_p(v,-)$$
 : $TM \rightarrow \mathbb{R}$

is not 0 (everywhere)

Since $\boldsymbol{\omega}$ is non-degenerate, it provides a vector bundle isomorphism

 $TM \rightarrow T^*M$

Since ω is non-degenerate, it provides a vector bundle isomorphism

 $TM \rightarrow T^*M$

Therefore, a function (Hamiltonian)

H : $M \rightarrow \mathbb{R}$

determines a vector field $X_H \in \Gamma TM$ such that

$$dH = \omega(X_H, -)$$

Since ω is non-degenerate, it provides a vector bundle isomorphism

 $TM \rightarrow T^*M$

Therefore, a function (Hamiltonian)

H : M \rightarrow \mathbb{R}

determines a vector field $X_H \in \Gamma TM$ such that

 $\mathrm{d} H = \omega(X_H,-)$

The Poisson bracket is then defined by

$$\{f,g\} = \omega(X_g,X_f) = \mathrm{d}g(X_f)$$

For instance, given M of dimension 2n with canonical coordinates $(q^1, \ldots, q^n, p_1, \ldots, p_n)$, the simplectic form is

$$\omega = \sum_i \mathrm{d} q^i \wedge \mathrm{d} p_i$$

and we have

$$X_H = \left(\frac{\partial H}{\partial p_i}, \frac{\partial H}{\partial q^i}\right)$$

Special Relativity

The principle of relativity

Principle (Einstein)

The speed c of light is the same in two referentials moving at constant speed.

What can we draw from this?

Suppose that a particle moves at speed c from (x_1, y_1, z_1) to (x_2, y_2, z_2) between instants t_1 and t_2 . We have

$$-c^{2}(t_{2}-t_{1})^{2}+(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2} = 0$$

What can we draw from this?

Suppose that a particle moves at speed c from (x_1, y_1, z_1) to (x_2, y_2, z_2) between instants t_1 and t_2 . We have

$$-c^{2}(t_{2}-t_{1})^{2}+(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2} = 0$$

But also

$$-c^{2}(t_{2}'-t_{1}')^{2}+(x_{2}'-x_{1}')^{2}+(y_{2}'-y_{1}')^{2}+(z_{2}'-z_{1}')^{2} = 0$$

What can we draw from this?

Suppose that a particle moves at speed c from (x_1, y_1, z_1) to (x_2, y_2, z_2) between instants t_1 and t_2 . We have

$$-c^{2}(t_{2}-t_{1})^{2}+(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2} = 0$$

But also

$$-c^{2}(t'_{2}-t'_{1})^{2}+(x'_{2}-x'_{1})^{2}+(y'_{2}-y'_{1})^{2}+(z'_{2}-z'_{1})^{2} = 0$$

This suggests to introduce a metric of the form

$$\begin{pmatrix} -c^2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

on a **spacetime** manifold, which should be invariant of the referential.

Lorentz transformations

Suppose that we have a referential R' moving at speed v along x axis wrt R. Classically, we have

$$t' = t$$
 $x' = x - vt$ $y' = y$ $z' = z$

This is not consistent with relativity principle:

$$x^{2} + y^{2} + z^{2} = ct$$
 vs $(x - vt)^{2} + y^{2} + z^{2} = ct$

Lorentz transformations

Suppose that we have a referential R' moving at speed v along x axis wrt R. Classically, we have

$$t' = t$$
 $x' = x - vt$ $y' = y$ $z' = z$

This is not consistent with relativity principle:

$$x^{2} + y^{2} + z^{2} = ct$$
 vs $(x - vt)^{2} + y^{2} + z^{2} = ct$

And actually, now we have Lorentz transformations

$$t' = rac{t - rac{v}{c^2}x}{\sqrt{1 - rac{v^2}{c^2}}}$$
 $x' = rac{x - vt}{\sqrt{1 - rac{v^2}{c^2}}}$ $y' = y$ $z' = z$

Deriving Lorentz transformations

Suppose that light is moving along y axis in R.

• in R: • in R': c = $\frac{y}{t}$ c = $\frac{\sqrt{y^2 + v^2 t^2}}{t'}$ and therefore

$$t' = t \frac{\sqrt{y^2 + v^2 t^2}}{y}$$

The proper distance

One thing that one can notice about the metric defined by

$$s = \frac{1}{c}\sqrt{-c^2(t_2-t_1)^2+(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

is that the distance between two events is invariant under Lorentz transformations!

(which is not the case of distances, or time differences)

Moving clocks

From the fact that s is invariant it is easy to show that during a time dt in rest frame, in a frame moving at speed v a clock will have advanced from dt' such that

$$dt' = \frac{ds}{c} = dt\sqrt{1-\frac{v^2}{c^2}}$$

Moving clocks

From the fact that s is invariant it is easy to show that during a time dt in rest frame, in a frame moving at speed v a clock will have advanced from dt' such that

$$dt' = \frac{ds}{c} = dt\sqrt{1-\frac{v^2}{c^2}}$$

Moving clocks go more slowly!
For a free particle, the action must be of the form

$$S = -\alpha \int_a^b ds$$

with $\alpha \geq 0$.

For a free particle, the action must be of the form

$$S = -\alpha \int_a^b \mathrm{d}s$$

with $\alpha \geq$ 0. The Lagrangian satisfies

$$S = \int_{t_1}^{t_2} L dt$$

For a free particle, the action must be of the form

$$S = -\alpha \int_a^b ds$$

with $\alpha \geq$ 0. The Lagrangian satisfies

$$S = \int_{t_1}^{t_2} L \,\mathrm{d}t$$

Therefore

$$S = -\int_{t_1}^{t_2} \alpha c \sqrt{1 - \frac{v^2}{c^2}}$$

For a free particle, the action must be of the form

$$S = -\alpha \int_a^b ds$$

with $\alpha \geq$ 0. The Lagrangian satisfies

$$S = \int_{t_1}^{t_2} L \,\mathrm{d}t$$

Therefore

$$S = -\int_{t_1}^{t_2} \alpha c \sqrt{1-\frac{v^2}{c^2}}$$

Imposing $\lim_{c\to\infty} L = \frac{1}{2}mv^2$ implies $\alpha = mc$, i.e.

$$L = -mc^2 \sqrt{1 - \frac{v^2}{c^2}}$$

The relativistic momentum of a free particle is

$$p = \frac{\partial L}{\partial \dot{q}} = \frac{mv}{\sqrt{1-\frac{v^2}{c^2}}}$$

The relativistic momentum of a free particle is

$$p = \frac{\partial L}{\partial \dot{q}} = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}$$

and its energy is

$$E = p \cdot v - L = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

The relativistic momentum of a free particle is

$$p = \frac{\partial L}{\partial \dot{q}} = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}$$

and its energy is

$$E = p \cdot v - L = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

The rest energy of the particle is

$$\lim_{c\to\infty} E = mc^2$$

The relativistic momentum of a free particle is

$$p = \frac{\partial L}{\partial \dot{q}} = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}}$$

and its energy is

$$E = p \cdot v - L = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

The rest energy of the particle is

$$\lim_{c\to\infty} E = mc^2$$

Notice that we recover the classical notion of energy when $v \ll c$:

$$E \approx mc^2 + \frac{mv^2}{2} + \dots$$

Hamiltonian

From preceding formulas we have

$$\frac{E^2}{c^2} = p^2 + m^2 c^2$$

and therefore

$$H = c\sqrt{p^2 + m^2 c^2}$$

Hamiltonian

From preceding formulas we have

$$\frac{E^2}{c^2} = p^2 + m^2 c^2$$

and therefore

$$H = c\sqrt{p^2 + m^2 c^2}$$

In particular, when $v \ll c$,

$$H \approx mc^2 + \frac{p^2}{2m} + \dots$$

Electromagnetics

The electric force

The electric force from a charge q' on a charge q distant from \vec{r}

$$q' \xrightarrow{\vec{r}} q$$

$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{qq'}{r^2} \frac{\vec{r}}{r}$$

is

where

- q and q' are the charges (in Coulomb)
- *r* is the distance (in meters)
- *F* is the force in (in Newtons)
- ε_0 is the permittivity of free space (in $C^2 m^{-2} N^{-1}$)

Electric field

This can be reformulated by saying that a charge q is subject to a force

$$\vec{F} = q\vec{E}$$

and generates an electric field

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \frac{\vec{r}}{r}$$

The nabla symbol

In the following, we are going to make use of the nabla operator

$$\nabla \quad = \quad \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

Divergence

Definition The **divergence** of a vector field \vec{F} measures its flux

$$\nabla \cdot \vec{F} = \partial_1 F_1 + \partial_2 F_2 + \partial_3 F_3 = \lim_{V \to \{*\}} \iint_{S(V)} \frac{\vec{F} \cdot \vec{n}}{|V|} \, \mathrm{d}S$$

Curl

Definition

The **curl** measures rotation

$$\nabla \times \vec{F} = (\partial_2 F_3 - \partial_3 F_2, \partial_1 F_3 - \partial_3 F_1, \partial_1 F_2 - \partial_2 F_1)$$
$$= \lim_{A \to \{*\}} \oint_A \left(\frac{\vec{F} \cdot d\vec{r}_i}{|A|} \right)$$

Curl

Definition

The curl measures rotation

$$\nabla \times \vec{F} = (\partial_2 F_3 - \partial_3 F_2, \partial_1 F_3 - \partial_3 F_1, \partial_1 F_2 - \partial_2 F_1)$$
$$= \lim_{A \to \{*\}} \oint_A \left(\frac{\vec{F} \cdot d\vec{r}_i}{|A|} \right)$$

Example

$$\nabla \times (y \, \mathrm{d} x - x \, \mathrm{d} y) = -2 \, \mathrm{d} z$$

1	1	4	4	1	4	\checkmark	1	4	\checkmark	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$
\checkmark	1	4	\checkmark	1	4	\checkmark	\checkmark	1	\checkmark	1
1	\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1
1	\checkmark	\downarrow	\checkmark	1	\downarrow	\checkmark	\checkmark	\downarrow	\checkmark	1
4	\checkmark	\downarrow	4	\mathbf{V}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1
1	\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1
1	\checkmark	\downarrow	\checkmark	1	\downarrow	\checkmark	\checkmark	\downarrow	\checkmark	1
4	\checkmark	\downarrow	4	\mathbf{V}	\downarrow	\checkmark	\checkmark	\downarrow	\checkmark	1
4	\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1
1	\checkmark	\downarrow	\checkmark	1	\downarrow	\checkmark	1	\checkmark	\checkmark	1
4	\checkmark	\downarrow	4	\mathbf{V}	\downarrow	\downarrow	\checkmark	\downarrow	\downarrow	1

Curl

Definition

The curl measures rotation

$$\nabla \times \vec{F} = (\partial_2 F_3 - \partial_3 F_2, \partial_1 F_3 - \partial_3 F_1, \partial_1 F_2 - \partial_2 F_1)$$
$$= \lim_{A \to \{*\}} \oint_A \left(\frac{\vec{F} \cdot d\vec{r}_i}{|A|} \right)$$

Example

Maxwell equations

$$\nabla \cdot \vec{B} = 0$$
$$\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$
$$\nabla \cdot \vec{E} = \rho$$
$$\nabla \times \vec{B} - \frac{\partial \vec{E}}{\partial r} = \vec{j}$$

where:

- \vec{E} is the electric field
- \vec{B} is the magnetic field
- ρ is the charge density
- \vec{j} is the electric current density

Quantum Mechanics

Complex vector spaces

We will consider vector spaces over the field $\mathbb{C}.$

Complex vector spaces

We will consider vector spaces over the field \mathbb{C} .

We write $\overline{-}$ for the functor **Vect** \rightarrow **Vect** such that a linear $f: \overline{V} \multimap W$ is an **antilinear** $f: V \multimap W$, i.e.

$$f(\lambda v) = \overline{\lambda} f(v)$$

 \overline{V} is the same as V excepting that λv in \overline{V} is $\overline{\lambda} v$ in V.

Definition

A **Hilbert space** *H* is a complex (or real) inner product space:

$$\langle -|-\rangle$$
 : $\overline{H}\otimes H$ \multimap \mathbb{C}

Definition

A **Hilbert space** *H* is a complex (or real) inner product space:

$$\langle -|-\rangle$$
 : $\overline{H}\otimes H$ \multimap \mathbb{C}

such that

•
$$\langle x|\lambda y\rangle = \lambda \langle x|y\rangle$$

•
$$\langle x|y_1 + y_2 \rangle = \langle x|y_1 \rangle + \langle x|y_2 \rangle$$

•
$$\langle x|y\rangle = \overline{\langle y|x\rangle}$$

• $\langle x | x \rangle \geq 0$ with equality precisely when x = 0

Definition

A **Hilbert space** *H* is a complex (or real) inner product space:

$$\langle -|-\rangle$$
 : $\overline{H}\otimes H$ \multimap \mathbb{C}

such that

•
$$\langle x|\lambda y\rangle = \lambda \langle x|y\rangle$$

•
$$\langle x|y_1 + y_2 \rangle = \langle x|y_1 \rangle + \langle x|y_2 \rangle$$

•
$$\langle x|y\rangle = \overline{\langle y|x\rangle}$$

• $\langle x|x\rangle \geq 0$ with equality precisely when x=0

and *H* is complete wrt the distance function induced by the **norm** $||x|| = \sqrt{\langle x | x \rangle}$.

Definition

A **Hilbert space** *H* is a complex (or real) inner product space:

$$\langle -|-\rangle$$
 : $\overline{H}\otimes H$ \multimap \mathbb{C}

such that

•
$$\langle x|\lambda y\rangle = \lambda \langle x|y\rangle$$

•
$$\langle x|y_1 + y_2 \rangle = \langle x|y_1 \rangle + \langle x|y_2 \rangle$$

•
$$\langle x|y\rangle = \overline{\langle y|x\rangle}$$

• $\langle x | x \rangle \geq 0$ with equality precisely when x = 0

and *H* is complete wrt the distance function induced by the **norm** $||x|| = \sqrt{\langle x | x \rangle}$.

Remark

• Inner prod is antilinear wrt first argument: $\langle \lambda x | y \rangle = \overline{\lambda} \langle x | y \rangle$

•
$$\langle x|x \rangle$$
 is real

Examples

The famous examples

• \mathbb{C}^{n}

Examples

The famous examples

- \mathbb{C}^{n}
- ℓ^2 : the sequences $(z_i)_{i\in\mathbb{N}}$ such that

$$\sum_{i\in\mathbb{N}}|z_i|^2 \quad < \quad \infty$$

with

$$\langle y|z\rangle = \sum_{i\in\mathbb{N}}\overline{y_i}z_i$$

Examples

The famous examples

- \mathbb{C}^{n}
- ℓ^2 : the sequences $(z_i)_{i\in\mathbb{N}}$ such that

$$\sum_{i\in\mathbb{N}}|z_i|^2 \quad < \quad \infty$$

with

$$\langle y|z\rangle = \sum_{i\in\mathbb{N}}\overline{y_i}z_i$$

• $L^2(X,\mu)$: given a measure space (X, M, μ) where M is a σ -algebra of subsets of X, the space of functions $f: X \to \mathbb{C}$ such that

$$\int_X |f|^2 \,\mathrm{d}\mu \quad < \quad \infty$$

with

$$\langle g|f\rangle = \int_X \overline{g(t)}f(t)\,\mathrm{d}t$$

A category

The most general notion of morphism we consider are continuous linear functions between Hilbert spaces.

The category of Hilbert spaces is denoted

Hilb

and the full subcategory of finite dimensional spaces

FdHilb

Riesz representation theorem

Theorem Given a Hilbert space H

 $\overline{H} \cong \operatorname{Hilb}(H, \mathbb{C})$

Proof.

- To $v \in \overline{H}$, we associate $\langle v | \rangle : H \multimap \mathbb{C}$.
- To $f : H \to C$, ker f is one-dimensional. Take $z \in \ker f$ such that ||z|| = 1. Then $x = \overline{f(z)} z$ suits.

Riesz representation theorem

Theorem Given a Hilbert space H

 $\overline{H} \cong \operatorname{Hilb}(H, \mathbb{C})$

Proof.

- To $v \in \overline{H}$, we associate $\langle v | \rangle : H \multimap \mathbb{C}$.
- To $f : H \to C$, ker f is one-dimensional. Take $z \in \ker f$ such that ||z|| = 1. Then $x = \overline{f(z)} z$ suits.

Remark

We also have $H \cong \operatorname{Hilb}(\overline{H}, \mathbb{C})$.

Riesz representation theorem

Theorem Given a Hilbert space H

 $\overline{H} \cong \operatorname{Hilb}(H, \mathbb{C})$

Remark We also have $H \cong \operatorname{Hilb}(\overline{H}, \mathbb{C})$.

Notation We define the functor

 $-^{\dagger}$: Hilb \rightarrow Hilb^{op}

by

 $H^{\dagger} = \operatorname{Hilb}(\overline{H}, \mathbb{C})$

Notations

• We write

 $|v\rangle$

for a vector

v : 1 ⊸ H

Notations

• We write $|v\rangle$ for a vector $v : 1 \multimap H$ • Given a vector $v : 1 \multimap H$, we write $\langle v|$ for

 v^{\dagger} : $H \rightarrow 1$

Notations

 We write $|v\rangle$ for a vector v : 1 - H• Given a vector $v : 1 \multimap H$, we write $\langle v |$ for v^{\dagger} : $H \rightarrow 1$

• Wunderbar, this justifies the notation

$$\langle w | v \rangle = \langle w | \circ | v \rangle$$
 : 1 - \circ 1
Orthonormal basis

A finite basis $\left|1\right\rangle,\left|2\right\rangle,\ldots$ is orthonormal when

$$\langle i|j\rangle = \delta_{ij}$$

Orthonormal basis

A finite basis $\left|1\right\rangle,\left|2\right\rangle,\ldots$ is **orthonormal** when

$$\langle i|j\rangle = \delta_{ij}$$

Proposition (Graham-Schmidt)

A finite basis can be transformed into an orthonormal one.

Orthonormal basis

A finite basis $\left|1\right\rangle,\left|2\right\rangle,\ldots$ is **orthonormal** when

$$\langle i|j\rangle = \delta_{ij}$$

Proposition (Graham-Schmidt)

A finite basis can be transformed into an orthonormal one.

In such a basis, for a vector $v = (v_1, \ldots, v_n)$, we have $v_i = \langle i | v \rangle$:

$$\ket{m{v}} = \sum_{i} \ket{i} \langle i \ket{m{v}}$$

Notations

In such a basis, we write for an element $v \in H$:

$$|v\rangle = \sum_{i} v_{i} |i\rangle$$

Notations

In such a basis, we write for an element $v \in H$:

$$|v\rangle = \sum_{i} v_{i} |i\rangle$$

and the corresponding $v \in H^\dagger$

$$\langle \mathbf{v} | = \sum_{i} \overline{\mathbf{v}}_{i} \langle i |$$

Notations

In such a basis, we write for an element $v \in H$:

$$|v\rangle = \sum_{i} v_{i} |i\rangle$$

and the corresponding $v \in H^\dagger$

$$\langle \mathbf{v} | = \sum_{i} \overline{\mathbf{v}}_{i} \langle i |$$

So that

$$\langle w|v\rangle = \sum_{i}\sum_{j}\overline{w_{i}}v_{i}$$

As vectors

We can see those as vectors

$$|v\rangle = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \qquad \langle v| = \begin{pmatrix} \overline{v_1} & \dots & \overline{v_n} \end{pmatrix}$$

As vectors

We can see those as vectors

$$|v\rangle = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \qquad \langle v| = \begin{pmatrix} \overline{v_1} & \dots & \overline{v_n} \end{pmatrix}$$

and we have

$$\langle w | v \rangle = \left(\overline{w_1} \quad \dots \quad \overline{w_n} \right) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

Operators

An operator is a morphism

A : $H \rightarrow H$

in our category Hilb.

Operators

An operator is a morphism

$$A : H \rightarrow H$$

in our category Hilb.

In an orthonormal basis, its components are

$$A_{ij} = \langle i | A | j \rangle$$

Operators

An operator is a morphism

$$A : H \multimap H$$

in our category Hilb.

In an orthonormal basis, its components are

$$A_{ij} = \langle i | A | j \rangle$$

Notice that

$$\langle \lambda v | = \overline{\lambda} \langle v |$$
 $\langle Av | = \langle v | A^{\dagger}$

Self-adjoint operators

Definition

An operator A is **self-adjoint** (or **hermitian**) when

$$A^{\dagger} = A$$

and skew-adjoint (or anti-hermitian) when

$$A^{\dagger} = -A$$

Self-adjoint operators

Definition

An operator A is **self-adjoint** (or **hermitian**) when

$$A^{\dagger} = A$$

and skew-adjoint (or anti-hermitian) when

$$A^{\dagger} = -A$$

Proposition

We can generalize the decomposition of real / imaginary:

$$A = \frac{A+A^{\dagger}}{2} + \frac{A-A^{\dagger}}{2}$$

Spectral theorem

Lemma

The eigenvalues of a self-adjoint operator are real.

Spectral theorem

Lemma

The eigenvalues of a self-adjoint operator are real.

Theorem

Given a self-adjoint operator on a finite-dimensional space, there exists an orthonormal basis in which it is diagonal.

Spectral theorem

Lemma

The eigenvalues of a self-adjoint operator are real.

Theorem

Given a compact self-adjoint operator A, there exists an orthonormal basis constituted of eigenvectors of A.

Definition

A is **compact** if the image of a bounded set is relatively compact (its closure is compact).

Unitary operators

Definition An operator $A : H \multimap H'$ is **unitary** when $A^{\dagger}A = id_{H}$ and $AA^{\dagger} = id_{H'}$

Dagger categories

Definition

A dagger category is a category equipped with a functor

$$-^{\dagger}$$
 : $\mathcal{C}^{\mathsf{op}} \to \mathcal{C}$

such that

id[†]_A = id_A (the functor is identity-on-objects)
 -^{††} = Id_C

Dagger categories

Definition

A dagger category is a category equipped with a functor

$$-^{\dagger}$$
 : $\mathcal{C}^{\mathsf{op}} o \mathcal{C}$

such that

id[†]_A = id_A (the functor is identity-on-objects)
-^{††} = Id_C

On says that

- an invertible morphism $f: A \rightarrow B$ is **unitary** when $f^{\dagger} = f^{-1}$
- an endomorphism $f : A \rightarrow A$ is **self-adjoint** when $f^{\dagger} = f$

Dagger monoidal categories

Definition

A **dagger symmetric monoidal category** is a symmetric monoidal category equipped with a dagger such that

- the dagger functor is strictly monoidal
- the components of the structural natural transformations $\alpha,\lambda,\rho,\sigma$ are unitary, e.g.

$$\alpha^{\dagger}_{A,B,C} = \alpha^{-1}_{A,B,C} : A \otimes (B \otimes C) \rightarrow (A \otimes B) \otimes C$$

Dagger compact categories

Definition

A **dagger compact category** is a dagger symmetric monoidal category which is compact closed, such that

In infinite dimensions

Warning: the few next slides are sloppy (maybe someday I'll dig into measures and distributions).

In infinite dimensions

Warning: the few next slides are sloppy (maybe someday I'll dig into measures and distributions).

We can consider the space of functions $[0,1] \to \mathbb{C}$ equipped with

$$\langle f|g\rangle = \int_0^1 \overline{f(x)}g(x)\,\mathrm{d}x$$

In infinite dimensions

Warning: the few next slides are sloppy (maybe someday I'll dig into measures and distributions).

We can consider the space of functions $[0,1] \to \mathbb{C}$ equipped with

$$\langle f|g\rangle = \int_0^1 \overline{f(x)}g(x)\,\mathrm{d}x$$

An orthonormal basis for those is Dirac's "functions" δ_y such that

- $\delta_y(x) = 0$ when $x \neq y$
- $\int_0^1 \delta_y(x) \, \mathrm{d}x = 1$

with which

$$\langle x|f\rangle = \langle \delta_x|f\rangle = f(x)$$

About Dirac's functions

We can think of δ as

$$\delta_y(x) = \lim_{\Delta \to 0} \frac{1}{\sqrt{\pi \Delta^2}} \exp\left(-\frac{x-y}{\Delta^2}\right)$$

or using Fourier transforms

$$\delta_y(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(x-y)t} dt$$

The derivation operator

Consider the operator D such that

$$D|f\rangle = |f'\rangle$$

The derivation operator

Consider the operator D such that

$$D|f\rangle = |f'\rangle$$

so that

$$\langle x | D | f \rangle = \langle x | f' \rangle = f'(x)$$

The derivation operator

Consider the operator D such that

$$D|f\rangle = |f'\rangle$$

so that

$$\langle x | D | f \rangle = \langle x | f' \rangle = f'(x)$$

with

$$\langle x | D | y \rangle = \delta'_y(x)$$

i.e.

$$\int \delta'_{y}(x)f(x)\,\mathrm{d}x \quad = \quad f'(x)$$

A self-adjoint derivation operator

Notice that *D* looks skew-adjoint:

$$D_{xy}^{\dagger}=ra{y}\left|\left.D\left|x
ight
angle=\delta_{x}^{\prime}(y)=-\delta_{y}^{\prime}(x)=-ra{x}\left|\left.D\left|y
ight
angle=D_{xy}^{\dagger}
ight.$$

we thus would get a self-adjoint operator

$$K = -iD$$

A self-adjoint derivation operator

Notice that *D* looks skew-adjoint:

$$D_{xy}^{\dagger}=ra{y}\left|\left.D\left|x
ight
angle=\delta_{x}^{\prime}(y)=-\delta_{y}^{\prime}(x)=-ra{x}\left|\left.D\left|y
ight
angle=D_{xy}^{\dagger}
ight.$$

we thus would get a self-adjoint operator

$$K = -iD$$

But this is not enough: we also want

$$\langle g | K | f \rangle = \overline{\langle f | K | g \rangle}$$

$$\int \int \langle g | x \rangle \langle x | K | y \rangle \langle y | f \rangle \, dx \, dy = \overline{\int \int \langle f | x \rangle \langle x | K | y \rangle \langle y | g \rangle \, dx \, dy}$$

$$\int \overline{g(x)} (-i f'(x)) \, dx = \int f(x) \left(i \overline{g'(x)} \right) \, dx$$

$$-i \overline{g(x)} f(x) \Big|_{0}^{1} = 0$$

(using integration by parts)

Bibliography

General introductions

Where I found this material (apart from wikipedia).

- [BM94]: the book that got me all started, quite an incredible book, you get both the ideas and the technical details.
- [Law12]

Classical mechanics

- [Bae05]: a quick and very readable introduction.
- [Lan76]: great step by step introduction, not the most shiny recent mathematics, but you get to understand everything.
- [SWM01]: an interesting book written for computer scientists.

John C Baez.

Lectures on classical mechanics. 2005.

John C Baez and Javier P Muniain.

Gauge fields, knots and gravity, volume 6. World Scientific Singapore, 1994.

LD Landau.

Mechanics: Volume 1 (course of theoretical physics) author: Ld landau, em lifshitz, publisher: Butterwor. 1976.

Ian D Lawrie.

A unified grand tour of theoretical physics. CRC Press, 2012.

 Gerald Jay Sussman, Jack Wisdom, and Meinhard Edwin Mayer.
 Structure and interpretation of classical mechanics.
 MIT Press, 2001.