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General remarks
I This was based on Street’s article Parity complexes.

Some definitions differ though, so blame me for mistakes!
I In the end, it turns out to be closer to Johson’s pasting

schemes.
I It can be also seen as a “set-theoretic version” of Steiner’s

augmented directed complexes.
I I had actually started implementing those as a variant of

Steiner’s ADC and Dimitri Ara recalled them to me.
I I tend to think while implementing, so not everything is

proved here. . .
I . . . which saved me time since it turns out that most of my

ideas were already thought of by other people.

http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/rewr/
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Diagrams

We have various formalizations of diagrams:
I parity complexes (Street)
I pasting schemes (Johnson)
I pasting schemes (Power)
I augmented directed complexes (Steiner)
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Quizz

Consider the free category on the graph

A′ Af ′oo

p

��

q

YY
f // B

g // C h // D

I What is the morphism which has {h, f , g} as generators?
I What is the morphism which has {p, q} as generators?
I What is the morphism which has {f , f ′} as generators?
I What is the morphism which has {f , h} as generators?
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PARITY
COMPLEXES

(my own version)
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Parity complexes

We first define our signatures:

Definition
A pre-parity complex S is a graded set

S =
∐
n∈N

Sn

together with, for every x ∈ Sn+1 subsets

x−, x+ ⊆ Sn

An element x ∈ Sn is called a generator of dimension n.

A parity complex is a pre-parity complex satisfying
suitable conditions.
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Example
Consider the polygraph

⇓p

A
g1 //

f

��
B

g2 //

h

FFC
g3 // D

⇓q

The corresponding parity complex is

S0 = {A,B,C ,D} f − = {A} p− = {f }
S1 = {f , gi , h} f + = {C} p+ = {g1, g2}
S2 = {p, q} . . . . . .
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General idea

We are going to see cells as subsets of the signature, for instance
the cell corresponding to p ∗0 g3 is

⇓p

A
g1 //

f

��
B

g2 //

h

FFC
g3 // D

⇓q

What conditions on signatures and cells
allow us to ensure that

the resulting ω-category is free on the generators?
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Axioms
We should first exclude “trivial loops”:

Axiom
For every generator x ∈ Sn+1, x− 6= ∅ and x+ 6= ∅.

A

y

YY
⇓x

Axiom
For every generator x ∈ Sn, x− ∩ x+ = ∅.

A

x

YY
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A preorder on generators
Given x , y ∈ Sn, we write

x / y

when
x+ ∩ y− 6= ∅

and take the reflexive and transitive closure.

Axiom (acyclicity)
The preorder / should be acyclic.

Af

��
B

g
44 C

h
hh

Remark
Previous axioms ensure precisely that there is no non-trivial way
for which x / x .
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Downward closure

Given C ⊆ S , we write ↓C for its downward closure, i.e. the
smallest graded set such that

x ∈ Cn+1 implies x− ∪ x+ ⊆ Cn
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Well-formedness

Axiom
For every x ∈ Cn, ↓x− and ↓x+ should be cells satisfying the
globular identities:

∂−(↓x−) = ∂−(↓x+) ∂+(↓x−) = ∂+(↓x+)

...for a good notion of cell and its source and target.
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Cells

Definition
A pre-cell of dimension n consists of finite sets (Ci)0≤i≤n with
Ci ⊆ Si .

⇓p

A
g1 //

f

��
B

g2 //

h

FFC
g3 // D

⇓q

A cell is a pre-cell satisfying suitable conditions.
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Source and target
Given a pre-cell C of dimension n, we define its source as the
pre-cell obtained by
I removing generators in Cn,
I removing the downward closure of their targets,
I taking the downward closure,
I removing Cn = ∅.

⇓p

A
g1 //

f

��
B

g2 // C
g3 // D

Given X ⊆ Sn, we write

d+(X ) = X ∪
⋃
x∈X

∂+(↓x)

so that
∂−(C ) = ↓

(
C \ d+(Cn)

)

14 / 123



Source and target
Given a pre-cell C of dimension n, we define its source as the
pre-cell obtained by
I removing generators in Cn,
I removing the downward closure of their targets,
I taking the downward closure,
I removing Cn = ∅.

A

f

��
B C

g3 // D

Given X ⊆ Sn, we write

d+(X ) = X ∪
⋃
x∈X

∂+(↓x)

so that
∂−(C ) = ↓

(
C \ d+(Cn)

)

14 / 123



Source and target
Given a pre-cell C of dimension n, we define its source as the
pre-cell obtained by
I removing generators in Cn,
I removing the downward closure of their targets,
I taking the downward closure,
I removing Cn = ∅.

A

f

��
B C

g3 // D

Given X ⊆ Sn, we write

d+(X ) = X ∪
⋃
x∈X

∂+(↓x)

so that
∂−(C ) = ↓

(
C \ d+(Cn)

)

14 / 123



Source and target
Given a pre-cell C of dimension n, we define its source as the
pre-cell obtained by
I removing generators in Cn,
I removing the downward closure of their targets,
I taking the downward closure,
I removing Cn = ∅.

A

f

��
B C

g3 // D
Given X ⊆ Sn, we write

d+(X ) = X ∪
⋃
x∈X

∂+(↓x)

so that
∂−(C ) = ↓

(
C \ d+(Cn)

)
14 / 123



Characterizing cells

A cell C ⊆ S of dimension n is a pre-cell satisfying:

1. C = ↓C

2. for every x , y ∈ Cn with x 6= y , x− ∩ y− = ∅ and x+ ∩ y+ = ∅
3. if dimC = 0 then C0 is a singleton

4. the relation on C0 such that x ≈ x ′ whenever there exists
y ∈ C1 with ∂−(y) = {x} and ∂+(y) = {x ′} should be the
full one (NB: this axiom will turn out to be superfluous)

Remark
In Steiner’s world, 2. is roughly unital basis and acyclicity is
loop-free.
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This is not enough!

The following is not excluded by our axioms:

⇓

A
��((
66 JJB

⇓

We cannot require the axiom 4. on 2-generators too:

A
f ))

f ′
55⇓ B

g
))

g′
55⇓ C

We could say that given two 2-generators, one should be either
below or on the left of the other.
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Global order
This suggests considering the relation J on all generators of C
generated by x J y whenever

x ∈ y− or y ∈ x+

Problem (Pratt)
The relation can have cycles:

0

f ''

⇓α
u

��

h
++

⇓γ 2

1

v
77

⇓β
g

HH
x
V 0

f ''

h
++

⇓δ 2

1
g

HH

We have:
f J 1 J v J β J x J δ J f

Those for which J is acyclic (for Steiner: strongly acyclic) are
very nice, but this restriction is clearly too strong.
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Characterizing cells

Note that the source of our pre-cell is

∂−


⇓

A
��((
66 JJB

⇓

 = A
��((
B

which is not a cell.

So we also require our cells to have cells as boundaries.

This also handles our connexity condition:

∂−
(
A f // B A′ f ′ // B ′

)
= A A′
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To sum up
A pre-parity complex is
I (Si)i∈N together with x−, x+ ⊆ Si for x ∈ Si+1

A pre-cell of dimension n is
I (Ci)0≤i≤n with Ci ⊆ Si

A cell of dimension n is a pre-cell which
I is closed under faces: C = ↓C ,
I has non-conflicting n-generators: xε ∩ y ε = ∅ for x ∈ Cn

I is a singleton if n = 0
I is s.t. ∂ε(C ) is a cell
I is s.t. ∂ε ◦ ∂η(C ) = ∂ε ◦ ∂η(C )

A parity complex is a pre-parity complex which
I is acyclic
I is s.t. ↓x is a cell

There might be simpler (to check) axioms, but it should be
enough for now.
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Canonicity of the definition

I do not think that those restrictions are “canonical”. In particular,
I believe that we could also have the same results if we restricted
to opetopes, with
I x− arbitrary (including empty!)
I x+ a singleton
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Composition

We can make an ω-category with n-cells as n-cells, where
I composition is given by (graded) union,
I identities amount to add Cn+1 = ∅,
I the axioms are satisfied (to be checked...)

Conjecture
This ω-category is freely generated by cells of the form ↓x for
some generator x ∈ S .

(Street has actually proved this, but axioms here differ from his)
(in fact, we need a bit more see next slide)
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Acyclicity and composition

It was noticed by Power that acyclicity is not preserved by
composition:

· //

��

⇓
·

��
· //

@@

·
⇓ V

· //

��
⇒

·

��
· // ·

V

· //

��

⇒
·

�� ��
· // ·

⇒

(note the loop in the diagonal in the underlying graph)
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DECOMPOSING
CELLS
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Decomposition

In order to prove this, we have to express each cell C as a formal
composite fC of generators, in a unique way. Let’s see my
algorithm.

I If C = (C0) is of dimension 0 then C0 = {x} and the formal
composition is

fC = x

I If C = (C0, . . . ,Cn) with Cn = ∅ it is the identity

fC = id
(
f(C0,...,Cn−1)

)
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Decomposition

If there are multiple top-dimensional cells, we are going to split
the cell in slices:

⇓
// ��$$99⇓ EE//

⇓

=

⇓
// ��$$ // ∗1 // $$99⇓ // ∗1 // 99 EE//

⇓
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Decomposition

I If Cn = {x1, . . . , xp} with p > 1 and x1 / . . . / xp. For each
1 ≤ i ≤ p, we write

C i = ↓
(
C \

(
d− ({x1, . . . , xi−1}) ∪ d+ ({xi+1, . . . , xn})

))
which is such that C i

n = {xi}

and we have

fC = fC1 ∗n−1 fC2 ∗n−1 . . . ∗n−1 fCn

Note that each C i has only one top-dimensional generator.
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Decomposition

If there is only one top-dimensional cell, we remove one layer of
whiskers:

⇓
// ��$$99⇓V⇓ EE//

⇓

=

⇓
// ��$$ // ∗1 // $$99⇓V⇓ // ∗1 // 99 EE//

⇓

Note that the morphism in the middle has lower-dimensional
whiskers.
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Decomposition
I If Cn = {x} then

C = (C0, . . . ,Ck , ∅, . . . , ∅, {x})

with k minimal such.

We write xk = (↓x)k ,

C ′k = Ck \ xk and C ′k = C−k t C
+
k

where
I y ∈ C−k if y / z for some z ∈ xk and
I y ∈ C+

k if ¬(y / z) for every z ∈ xk .
We write

C− = ↓
(
C \

(
{x} ∪ d−(C−k )

))
C x = ↓

(
C \

(
d−
(
C−k
)
∪ d+

(
C+

k

)))
and C+ similar to C−, and

fC = fC− ∗k−1 fC x ∗k−1 fC+
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k

)))
and C+ similar to C−, and

fC = fC− ∗k−1 fC x ∗k−1 fC+
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EXAMPLES
OF

PARITY
COMPLEXES
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Globes
The n-globe Gn is the signature with

Si = {xi , yi} x−i+1 = y−i+1 = xi z− = xn−1

Sn = {z} x+i+1 = y+i+1 = yi z+ = yn−1

In low dimensions:

z x0
z // y0 x0

x1

%%

y1

99⇓ z y0 . . .

0 1 2 3
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Let’s see that in rewr!

http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/rewr/
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Globes

# globe 4
# sigcat
x0
y0

x1 : x0 -> y0
y1 : x0 -> y0

x2 : x1 -> y1
y2 : x1 -> y1

x3 : x2 -> y2
y3 : x2 -> y2

z : x3 -> y3
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Orientals

The n-simplex ∆n has, as generators of dimension n, increasing
sequences of integers

x = 0 ≤ x0 < x1 < . . . < xn ≤ n + 1

writing ∂i(x) for the sequence with the i-th element removed, we
have

x− = {∂2i+1(x)}
x+ = {∂2i(x)}

We recover the usual formulas for orientals!
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Orientals

In low dimensions, we have

0 0 0<1 // 1

1
1<2

��⇑0<1<2
0

0<2
//

0<1
@@

2

. . .

0 1 2 3
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Orientals

# simplex 3
# sigcat
01 : 0 -> 1
02 : 0 -> 2
03 : 0 -> 3
12 : 1 -> 2
13 : 1 -> 3
23 : 2 -> 3

012 : 02 -> 01 *0 12
013 : 03 -> 01 *0 13
023 : 03 -> 02 *0 23
123 : 13 -> 12 *0 23

0123 : 023 *1 (012 *0 23) -> 013 *1 (01 *0 123)
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Chain complexes

A parity complex S induces a chain complex ZS of free abelian
groups

. . .
∂2 // ZS2

∂1 // ZS1
∂0 // ZS0

with ∂i(x) =
∑

x+ −
∑

x−.

Can we define a tensor product satisfying the following?

Z(S ⊗ T ) = ZS ⊗ ZT
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Products

The tensor product of two signatures S and T is defined

(S ⊗ T )n =
∐

i+j=n

Si × Tj

with faces
(x , y)− = (x−, yσ(x))

where σ(x) = − iff dim(x) is even and similarly for targets.
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Products
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Products

# street_gs 2
# sigcat
...
x0|012 : x0|02 -> x0|01 *0 x0|12
y0|012 : y0|02 -> y0|01 *0 y0|12
x1|01 : x0|01 *0 x1|1 -> x1|0 *0 y0|01
x1|02 : x0|02 *0 x1|2 -> x1|0 *0 y0|02
...

x1|012 : (x0|012 *0 x1|2) *1 (x0|01 *0 x1|12) *1 (x1|01 *0 y0|12) -> x1|02 *1 (x1|0 *0 y0|012)
y1|012 : (x0|012 *0 y1|2) *1 (x0|01 *0 y1|12) *1 (y1|01 *0 y0|12) -> y1|02 *1 (y1|0 *0 y0|012)
z|01 : x1|01 *1 (z|0 *0 y0|01) -> (x0|01 *0 z|1) *1 y1|01
z|02 : x1|02 *1 (z|0 *0 y0|02) -> (x0|02 *0 z|2) *1 y1|02
z|12 : x1|12 *1 (z|1 *0 y0|12) -> (x0|12 *0 z|2) *1 y1|12

z|012 : (x1|012 *1 (z|0 *0 y0|01 *0 y0|12)) *2 (z|02 *1 (y1|0 *0 y0|012)) -> ((x0|012 *0 x1|2) *1 (x0|01 *0 x1|12) *1 (z|01 *0 y0|12)) *2 ((x0|012 *0 x1|2) *1 (x0|01 *0 z|12) *1 (y1|01 *0 y0|12)) *2 ((x0|02 *0 z|2) *1 y1|012)
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Products

Remark
Street notes that the tensor product of signatures shall not
necessarily be so, because the resulting / might not be acyclic.

Can someone come up with an explicit example?
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Cubes

The n-cube is I⊗n where I is the standard interval (the 1-globe or
the 1-simplex):

I = − 0 // +

For instance, the 2-cube is

−−
0−
��

−0 //

⇓00

+−
0+
��

−+
+0
// ++
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Cubes

The n-cube is I⊗n where I is the standard interval (the 1-globe or
the 1-simplex):

I = − 0 // +

For instance, the 3-cube is

+++

−++

0++ ::

0+0
=⇒ ++−

++0dd

−−+

−0+
OO

−00
=⇒ −+−

−+0
dd

0+−
::

00−
=⇒ +−−

+0−
OO

−−−
−−0

dd
−0−
OO

0−−

::

V

+++

−++

0++ ::

00+
=⇒ +−+

+0+
OO

+00
=⇒ ++−

++0dd

−−+

−0+
OO

0−+
::

0−0
=⇒ +−−

+−0
dd

+0−
OO

−−−
−−0

dd

0−−

::
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Cubes
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Cubes

# cube 3
# sigcat
...

-00 : --0 *0 -0+ -> -0- *0 -+0
+00 : +-0 *0 +0+ -> +0- *0 ++0
0-0 : --0 *0 0-+ -> 0-- *0 +-0
0+0 : -+0 *0 0++ -> 0+- *0 ++0
00- : -0- *0 0+- -> 0-- *0 +0-
00+ : -0+ *0 0++ -> 0-+ *0 +0+

000 : (-00 *0 0++) *1 (-0- *0 0+0) *1 (00- *0 ++0) -> (--0 *0 00+) *1 (0-0 *0 +0+) *1 (0-- *0 +00)
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Cylinders
The n-cylinder is I ⊗ Gn. We recover François’ formulas:
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Cylinders
# globe 1 2
# sigcat
...
x0-|y1- : x0-|y0- -> x0-|y0+

x0-|y1+ : x0-|y0- -> x0-|y0+

x0+|y1- : x0+|y0- -> x0+|y0+

x0+|y1+ : x0+|y0- -> x0+|y0+

x|y0- : x0-|y0- -> x0+|y0-

x|y0+ : x0-|y0+ -> x0+|y0+

x0-|y : x0-|y1- -> x0-|y1+

x0+|y : x0+|y1- -> x0+|y1+

x|y1- : x0-|y1- *0 x|y0+ -> x|y0- *0 x0+|y1-

x|y1+ : x0-|y1+ *0 x|y0+ -> x|y0- *0 x0+|y1+

x|y : (x0-|y *0 x|y0+) *1 x|y1+

-> x|y1- *1 (x|y0- *0 x0+|y)
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Tensor products of globes

# globe 2 2
# sigcat
...

x1-|y : (x0-|y *0 x1-|y0+) *1 x1-|y1+ -> x1-|y1- *1 (x1-|y0- *0 x0+|y)
x1+|y : (x0-|y *0 x1+|y0+) *1 x1+|y1+ -> x1+|y1- *1 (x1+|y0- *0 x0+|y)
x|y1- : x1-|y1- *1 (x|y0- *0 x0+|y1-) -> (x0-|y1- *0 x|y0+) *1 x1+|y1-

x|y1+ : x1-|y1+ *1 (x|y0- *0 x0+|y1+) -> (x0-|y1+ *0 x|y0+) *1 x1+|y1+

x|y : (x1-|y *1 (x|y0- *0 x0+|y1+))
*2 (x|y1- *1 (x1+|y0- *0 x0+|y))
-> ((x0-|y *0 x1-|y0+) *1 x|y1+)
*2 ((x0-|y1- *0 x|y0+) *1 x1+|y)
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Tensor products of globes
Crans in Pasting schemes for the monoidal biclosed structure on
ω-Cat also manages to extract the formulas for the tensor
product of globes from those of (degenerated) cubes:
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Join

The join is defined by

(S • T )n = Sn +
∑

i+j+1=n

Si × Tj + Tn

with
I if i odd

(xy)− = x−y ∪ xy− (xy)+ = x+y ∪ xy+

I if i even

(xy)− = x−y ∪ xy+ (xy)+ = x+y ∪ xy−
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DES
SIGNES

DE
BON

GOÛT

∂(f ) =
∑

i

±∂i(f )
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Desuspension

Consider the simplicial category ∆ as a 2-category with ? as
0-cell. We can present it
I as a 2-category:
µ : 2→ 1, η : 0→ 1, . . .

I or as the category ∆(?, ?):
µn

i : n + 1→ n, ηn
i : n → n + 1, . . .

(in particular, to have a convergent presentation, we now
have to “orient exchange rules”)

We will play the same game with our simple examples.
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The associahedron

I The associahedron is the polytope generated by the critical
n-uple of the rewriting system
m(m(x , y), z)⇒ m(x ,m(y , z)). Can we come up with a
direct computation of the faces?

I It can also be seen as the hom-n-category

∆op
n+2((0 < 1) ∗0 (1 < 2) ∗0 . . . ∗0 (n − 1 < n), (0 < n))

of the (n + 2)-simplex.
I The operad Ass is the terminal non-unital operad: it is the

theory of an associative binary operation. An A∞ algebra is
an algebra over a resolution of this operad, and Stasheff
seems to have computed it all for us!
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The associahedron
Definition
An A∞-algebra consists of a graded vector space A together with
n-ary operations mn : A⊗n → A of degree n − 2 satsifying∑

p+q+r=n

(−1)p+qrmp+1+r ◦ (idp ⊗mq ⊗ idr )

In particular d = −m1 is a differential and the induced derivative is

∂(mn) = d ◦mn − (−1)n−2mn ◦

(∑
i

idi ⊗ d ⊗ idn−1−i

)
and explicitly

∂(mn) =
∑

p+q+r=n
p+1+r≥2

q≥2

(−1)p+qrmp+1+r ◦ (idp ⊗mq ⊗ idr )

e.g. ∂(m3) = m2 ◦ (m2 ⊗ id)−m2 ◦ (id⊗m2)
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The associahedron

We expect the n-associahedron to be defined as the complex
whose
I elements are trees with n + 2 leaves and nodes of arity ≥ 2
I the faces of a tree are obtained by splitting a node into two
I the degree of a tree is the sum of arities - 2 of nodes
I the signs are given by the above formula

. . . excepting that it does not work . . .
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The associahedron

# associahedron 2
# sigcat
(((..).).)
((.(..)).)
(.((..).))
(.(.(..)))
((..)(..))

((...).) : ((.(..)).) -> (((..).).)
(.(...)) : (.(.(..))) -> (.((..).))
((..)..) : ((..)(..)) -> (((..).).)
(.(..).) : (.((..).)) -> ((.(..)).)
(..(..)) : (.(.(..))) -> ((..)(..))

(....) : (.(...)) *0 (.(..).) *0 ((...).) -> (..(..)) *0 ((..)..)

54 / 123



The associahedron

# associahedron 3
((((..).).).) , (((.(..)).).) , ((.((..).)).) , ((.(.(..))).) , (((..)(..)).) , (.(((..).).)) , (.((.(..)).)) , (.(.((..).))) , (.(.(.(..)))) , (.((..)(..))) , (((..).)(..)) , ((.(..))(..)) , ((..)((..).)) , ((..)(.(..)))


(.....) : (.(....)),(.(..)..),(...(..)) -> ((....).),((...)..),(.(...).),(..(...)),((..)...),(..(..).)
# check
Error: Invalid signature (cylic).
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The associahedron

Remark
Can we also describe the following categories?
I ∆n(0, n)

I ∆n(left comb, right comb)

I etc.

56 / 123



Answer to the first question

Kapranov and Voevodsky note

∆n(0, n) = I⊗(n−1)/ ∼

(some squares corresponding to exchanges become equalities)
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(some squares corresponding to exchanges become equalities)

For instance:

1

��

13

��
0

01
@@

//

02 ��

3

2
23

@@

02 ∗ 23 012∗23//

0123⇒

01 ∗ 12 ∗ 23

03

023

OO

013
// 01 ∗ 13

01∗123

OO
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Answer to the first question

Kapranov and Voevodsky note

∆n(0, n) = I⊗(n−1)/ ∼

(some squares corresponding to exchanges become equalities)

For an answer to the other questions, see later on.
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The permutohedron

The same problem occurs with
the permutohedron,

let’s study this in more details...
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THE
PERMUTOHEDRON
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Categorical definition

The n-permutohedron is the hom-n-category of the
(n + 1)-cube:

Πn = I⊗(n+1)(−n+1,+n+1)

Note that because of this we have an orientation for most
generators, excepting exchange.
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Some pictures
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Some pictures

Le Conte de Poly-Barbut, Le diagramme du treillis permutoèdre
est intersection des diagrammes de deux produits directs d’ordres
totaux, 1990. 62 / 123



Geometric realization
The permutohedron can be defined as the convex hull of points

(σ(0), σ(1), . . . , σ(n)) ∈ Rn+1

where σ runs over Sn+1.

(1,2,3)

(1,3,2)

(2,3,1)

(3,2,1)

(3,1,2)

(2,1,3)

It lies in the hyperplane{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣∣ ∑
i

xi = n(n − 1)/2

}
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Edges

Edges correspond to transpositions:

210

|| ""
120

��

201

��
102

""

021

||
012
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Faces
More generally, cells are indexed by surjections (Loday-Ronco,
Permutads):
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Faces

More generally, cells are indexed by surjections
(same as previous figure up to symmetry):

210
100

||

110

""
201

101
��

000
=⇒

120

010
��

102

001 ""

021

011||
012
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Links with I⊗n
The correspondence between surjections and cells of the cube is
as follows:

−−0 ∗ −0+ ∗ 0++

−00∗0++ −−0∗00+

−0− ∗ −+0 ∗ 0++

−0−∗0+0 000
=⇒

−−0 ∗ 0−+ ∗+0+

0−0∗+0+

−0− ∗ 0+− ∗++0

00−∗++0

0−− ∗+−0 ∗+0+

0−−∗+00

0−− ∗ −0+ ∗ 0++
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A cochain complex
Chapoton, in Opérades différentielles graduées sur les simplexes
et les permutoèdres, defines a cochain complex Π(I ) ⊆ T (ΛX ):
I elements are of the form

π = π1 ⊗ π2 ⊗ . . .⊗ πn

with
πj = ij ,1 ∧ ij ,2 ∧ . . . ∧ ij ,pj

and we require that every element of I appears exactly once
in one of the πj

I dimensions are given by

dim(πj) = pj − 1 dim(π) =

p∑
j=1

dim(πj)

I the differential (of degree +1) is given by

d(π) =

p−1∑
j=1

(−1)
∑j

k=1 dim(πk )π1⊗ . . .⊗πj ∧πj+1⊗ . . .⊗πn
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d(π) =

p−1∑
j=1

(−1)
∑j

k=1 dim(πk )π1⊗ . . .⊗πj ∧πj+1⊗ . . .⊗πn
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A cochain complex

It can be checked that this is a codifferential:
I we have dim(πi ∧ πj) = dim(πi) + dim(πj)− 1,

I with n = 3, we have

d(π1 ⊗ π2 ⊗ π3) = (−1)dim(π1)π1 ∧ π2 ⊗ π3

+ (−1)dim(π1)+dim(π2)π1 ⊗ π2 ∧ π3

d2(π1 ⊗ π2 ⊗ π3) = (−1)2 dim(π1)+dim(π2)−1π1 ∧ π2 ∧ π3

+ (−1)2 dim(π1)+dim(π2)π1 ∧ π2 ∧ π3

= 0

and the general case is essentially similar.
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A point on notations

A surjection
0 1 2 3

0 1

can be denoted
I by images: 0100

I by preimages: (0 ∧ 2 ∧ 3)⊗ 1
(= ordered partitions of the source)

I by categorical notation, with explicit exchange:

....
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A point on notations

There are two possible actions. In the representation by images,
with τ = 12,
I on the left:

τ · 2031 = 2301

I on the right:
2031 · τ = 1032

The one on the right is more natural wrt to surjections:

2031 · µ12 = 1021

instead of
µ12 · 2031 = 30412
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Test in dimension 2

# permutohedron 2
# sigcat
012,102,021,120,201,210

001 : 102 -> 012
010 : 120 -> 021
011 : 021 -> 012
100 : 210 -> 201
101 : 201 -> 102
110 : 210 -> 120

000 : 100 *0 101 *0 001 -> 110 *0 010 *0 011
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Test in dimension 3

# permutohedron 3
0123 , 1023 , 0213 , 1203 , 2013 , 2103 , 0132 , 1032 , 0231 , 1230 , 2031 , 2130 , 0312 , 1302 , 0321 , 1320 , 2301 , 2310 , 3012 , 3102 , 3021 , 3120 , 3201 , 3210
0012 : 1023 -> 0123 , 0102 : 1203 -> 0213 , 0112 : 0213 -> 0123 , 1002 : 2103 -> 2013 , 1012 : 2013 -> 1023 , 1102 : 2103 -> 1203 , 0021 : 1032 -> 0132 , 0120 : 1230 -> 0231 , 0121 : 0231 -> 0132 , 1020 : 2130 -> 2031 , 1021 : 2031 -> 1032 , 1120 : 2130 -> 1230 , 0122 : 0132 -> 0123 , 1022 : 1032 -> 1023 , 0201 : 1302 -> 0312 , 0210 : 1320 -> 0321 , 0211 : 0321 -> 0312 , 1200 : 2310 -> 2301 , 1201 : 2301 -> 1302 , 1210 : 2310 -> 1320 , 0212 : 0312 -> 0213 , 1202 : 1302 -> 1203 , 0221 : 0321 -> 0231 , 1220 : 1320 -> 1230 , 2001 : 3102 -> 3012 , 2010 : 3120 -> 3021 , 2011 : 3021 -> 3012 , 2100 : 3210 -> 3201 , 2101 : 3201 -> 3102 , 2110 : 3210 -> 3120 , 2012 : 3012 -> 2013 , 2102 : 3102 -> 2103 , 2021 : 3021 -> 2031 , 2120 : 3120 -> 2130 , 2201 : 3201 -> 2301 , 2210 : 3210 -> 2310
0001 : 0012,1002,1012 -> 0102,0112,1102 , 0010 : 0021,1020,1021 -> 0120,0121,1120 , 0011 : 1022,0012 -> 0122,0021 , 0100 : 0201,1200,1201 -> 0210,0211,1210 , 0101 : 1202,0102 -> 0212,0201 , 0110 : 1220,0120 -> 0221,0210 , 0111 : 0112,0211,0212 -> 0121,0122,0221 , 1000 : 2001,2100,2101 -> 2010,2011,2110 , 1001 : 2102,1002 -> 2012,2001 , 1010 : 2120,1020 -> 2021,2010 , 1011 : 1012,2011,2012 -> 1021,1022,2021 , 1100 : 2210,1200 -> 2201,2100 , 1101 : 1102,2101,2102 -> 1201,1202,2201 , 1110 : 1120,2110,2120 -> 1210,1220,2210
0000 : 0010,0011,0110,1000,1001,1011,1100,1110 -> 0001,0100,0101,0111,1010,1101
# check
Error: Invalid signature (cylic).
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The signs are not right!
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Categorical permutohedra in nature
However, it should exist, e.g. Kapranov and Voevodsky, Braided
monoidal 2-categories and Manin-Schechtman higher braid
groups:
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The permutohedron
The signs obtained by this method are not right:

76 / 123



Our orientation

3210

zz �� $$
3201

zz
3120

zz $$
2310

$$
3102

��zz
3021

zz $$

1010
=⇒ 2130

zz $$
1320

�� $$
2103

$$
3012

��
2031

��
1230

��
0321

zz
2013

$$
1032

zz $$
0231

zz
1023

$$
0132

zz
0123

0000
V

3210

zz $$
3201

zz $$

1100
=⇒ 2310

zz $$
3102

zz
2301

��
1320

$$
2103

$$ **
1302

zz $$
0321

tt zz
2013

$$
1203

$$
0312

zz
0231

zz
1023

$$
0213

��
0132

zz
0123

For instance 2010 : 3120→ 3021 corresponds to 1 ∧ 3⊗ 2⊗ 0
and therefore occurs in the target (instead of the source) of 1010
which corresponds to 1 ∧ 3⊗ 0 ∧ 2.

77 / 123



Our orientation
The signs obtained by this method are not right:
I 1100 is badly oriented
I 1010 is badly oriented
I the type of 0000 is from

0010, 0011, 0110, 1000, 1001, 1011, 1100, 1110

to
0001, 0100, 0101, 0111, 1010, 1101

instead of from

0010, 0011, 0110, 1000, 1001, 1011, 1010, 1110

to
0001, 0100, 0101, 0111, 1100, 1101
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Reorienting# permutohedron 3
# check
Error: Invalid signature (cylic).
# reorient 1010
# reorient 1100
# remove 0000
# gen 0000

1000,1001,1011,1010,0011,0010,1110,0110
0001,1101,1100,0101,0111,0100

# sigcat
...
1010 : 2010 *0 2021 -> 2120 *0 1020
1011 : 2011 *0 2012 *0 1012 -> 2021 *0 1021 *0 1022
1100 : 2100 *0 2201 -> 2210 *0 1200
1101 : 2101 *0 2102 *0 1102 -> 2201 *0 1201 *0 1202
1110 : 2110 *0 2120 *0 1120 -> 2210 *0 1210 *0 1220

0000 : (2100 *0 2101 *0 1001 *0 1012 *0 0012) *1 (1000 *0 2012 *0 1012 *0 0012) *1 (2110 *0 2010 *0 1011 *0 0012) *1 (2110 *0 1010 *0 1021 *0 1022 *0 0012) *1 (2110 *0 2120 *0 1020 *0 1021 *0 0011) *1 (2110 *0 2120 *0 0010 *0 0122) *1 (1110 *0 0120 *0 0121 *0 0122) *1 (2210 *0 1210 *0 0110 *0 0121 *0 0122) -> (2100 *0 2101 *0 2102 *0 0001) *1 (2100 *0 1101 *0 0102 *0 0112) *1 (1100 *0 1201 *0 1202 *0 0102 *0 0112) *1 (2210 *0 1200 *0 1201 *0 0101 *0 0112) *1 (2210 *0 0100 *0 0212 *0 0112) *1 (2210 *0 1210 *0 0210 *0 0111)
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Coxeter groups

Question
Can we find categorical polytopes associated to finite Coxeter
groups?

For instance, the permutohedron is the Hasse diagram of the
weak Bruhat order (= “prefix order”) for An:

ε

xx &&s

��

t

��
st

%%

ts

yy
sts = tst
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Higher Bruhat orders

In fact, higher analogues of Bruhat orders have been defined by
Manin and Schechtman in
I Arrangements of real hyperplanes and Zamolodchikov

equations, 1986
I Higher Bruhat orders, related to the symmetric group, 1986
I Arrangements of hyperplanes, higher braid groups and higher

Bruhat orders, 1989

and reworked by Voevosky and Kapranov with exactly the same
motivations as us...
I Free n-categories generated by a cube, oriented matroids,

and higher Bruhat orders, 1990
I Combinatorial-geometric aspects of polycategory theory:

pasting schemes and higher Bruhat orders (list of results),
1991
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Desuspension

Given a (n + 1)-category C with initial object A− and terminal
object A+, we write ΩC = C(A−,A+).

In particular, we have seen
I Ω∆n+1 = I⊗n

I Ω2∆n+2 = n-associahedron
I ΩI⊗(n+1) = n-permutohedron
I Ωk I⊗n =?
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Higher Bruhat orders
M-S define posets B(n, k) so that B(n, 1) is Sn with the weak
Bruhat order.
I C (n, k): k-elements subsets of {0, . . . , n},
I we write x = x0 < . . . < xk−1 for an element and ∂ix for x

with i-th element removed,
I A(n, k): total orders on C (n, k) such that for each

x ∈ C (n, k + 1), either

∂0x < ∂1x < . . . < ∂kx or ∂0x > ∂1x > . . . > ∂kx

I we write a = a0 < . . . < aN , with N =

(
n
k

)
for an element

of A(n, k),
I for a, a′ ∈ A(n, k), we write a ∼ a′ when a′ is obtained from

a by permuting ai and ai+1 such that |ai ∩ ai+1| < k − 1,
I B(n, k) = A(n, k)/ ∼,
I a partial order can be defined on B(n, k).

83 / 123



Higher Bruhat orders

K-V have “shown”:

Theorem
B(n, k) ∼= ObΩk I⊗n.

They thus correspond to maximal cells (up to permutations).
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Higher Bruhat orders
I B(3, 2) is an edge:

+++

−++

0++ ::

0+0
=⇒ ++−

++0dd

−−+

−0+
OO

−00
=⇒ −+−

−+0
dd

0+−
::

00−
=⇒ +−−

+0−
OO

−−−
−−0

dd
−0−
OO

0−−

::

−→

+++

−++

0++ ::

00+
=⇒ +−+

+0+
OO

+00
=⇒ ++−

++0dd

−−+

−0+
OO

0−+
::

0−0
=⇒ +−−

+−0
dd

+0−
OO

−−−
−−0

dd

0−−

::

I B(4, 2) is an 8-gon:
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Higher Bruhat orders
I B(3, 2) is an edge:
I B(4, 2) is an 8-gon:
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Higher Bruhat orders
From Felsner and Ziegler, Zonotopes Associated with Higher
Bruhat Orders, B(5, 2) = Ω2I⊗5 is
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Higher Bruhat orders
F-Z observe that the graph of B(6, 3) is not polytopal:

Proof.
It has vertices of degree 3, thus it is not the graph of a polytope
of dimension ≥ 4. Moreover, it contains a K3,3 and is thus not
planar.

Is this because of the absence of explicit exchange? Or what?
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Back to the associahedron

I The analoguous of weak Bruhat order in the case of the
associahedron is the Tamari lattice, ordering planar trees.

I Higher-dimensional generalizations exist and correspond to
Ωk∆n.
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The multiplihedron
There are other interesting polytopes such as the multiplihedron

generated by (ab)c → a(bc) and f (a)f (b)→ f (ab).
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The composihedron
The composihedron is obtained from the multiplihedron by
quotienting under associativity (ab)c = a(bc):

From Forcey, Quotients of the multiplihedron as categorified
associahedra.

90 / 123



The composihedron
The composihedron is obtained from the multiplihedron by
quotienting under associativity (ab)c = a(bc):

From Forcey, Quotients of the multiplihedron as categorified
associahedra.

90 / 123



Graph composihedra

Composihedra associated to a graph (= graph composihedra)
have also been investigated, it would be interesting to look at
composihedra generated by 2-dimensional (or higher) pasting
schemes!
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The cyclohedron
The cyclohedron is close to the associahedron excepting that we
bracket a cycle instead of a word:
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Coxeteredra

Generalizing the permutohedron associated to the symmetric
group An, we have Coxeterhedra associated to other Coxeter
groups. From Reiner, Ziegler, Coxeter-associahedra:
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Biassociahedra
There are also biassociahedra, resolving bialgebra laws:

and as you have guessed there are also bipermutohedra.
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An online encyclopedia

Forcey has compiled an interesting list of polyhedra:

http://www.math.uakron.edu/~sf34/hedra.htm
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The erasohedron

We can even come up with “new” ones. For instance, consider the
free monoidal category C on ε : 1→ 0. I call C(n, 0) the
n-erasohedron En.

In low dimensions:
I E1:

1 ∗ // 0

I E2:

2

∗0
��

∗∗
=⇒

0∗ // 1

∗
��

1 ∗
// 0
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The erasohedron

We can even come up with “new” ones. For instance, consider the
free monoidal category C on ε : 1→ 0. I call C(n, 0) the
n-erasohedron En.

Conjecture
The cells of En are in bijection with injections m → n with m ≤ n.

Conjecture
The erasohedron is isomorphic to I⊗n.
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New examples

Anyone with interesting new examples?
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The Frobeniohedron
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A good question

Question
How do we generate signs in a general way?
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COMPARING
WITH

STREET’S
DEFINITION
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Parity complexes

Definition
A parity complex is a graded set S such that

1. x− 6= ∅ 6= x+ and x− ∩ x+ = ∅
2. x−− ∪ x++ = x−+ ∪ x+−

3. x− and x+ are well-formed:
I they contain at most one 0-generator
I for every y 6= z , we have (y− ∩ z−) ∪ (y+ ∩ z+) = ∅

4. / is acyclic

5. x / y , x ∈ zε, y ∈ zη imply ε = η
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About the second axiom

x−− ∪ x++ = x−+ ∪ x+−

Note that x−− is not exactly what you think of first:

x =

• // •
��

•

??

��

⇓ •

• // •

??

Therefore it is the closest we can do to globular identities
(this still ensures that we do have a chain complex for instance).
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About the third axiom
For y , z ∈ xε,

(y− ∩ z−) ∪ (y+ ∩ z+) = ∅

This typically forbids

• ''
77 •

��
•

??

��

⇓ •

• // •

??

•

��

•

??

��
⇓

•
��

•

•

??

��

⇓ •

??

•

??
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About the last axiom

x / y , x ∈ zε, y ∈ zη imply ε = η

Typically, the following is forbidden

• //

��

•
��

•

??

��

⇓ •

• // •

??
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About the last axiom

x / y , x ∈ zε, y ∈ zη imply ε = η

Note that it also forbids

A
f ))

f ′
55 B

g
))

g′
55 C

with

α : f ∗0 g ⇒ f ′ ∗0 g′ α− = {f , g} α+ =
{
f ′, g′

}
because f / g′.

Note that this excludes Power’s counter-example!
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Movement
Given subsets P,F ,Q of S , we say that F moves P to Q and
write F : P −→ Q when

Q = (P ∪ F+) \ F− P = (Q ∪ F−) \ F+

Example
The complex on the left moves the complex on the left to the
one on the right:

• // •
��

•

??

⇓ •

• •

−→

• •

•
��

⇓ •

• // •

??
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Typical movement

Lemma
Writing F∓ = F− \ F+, given F and P, there exists Q such that
F : P −→ Q if and only if

F∓ ⊆ P and P ∩ F+ = ∅
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The ω-category of a parity complex

Definition
A cell C = (P,Q) is a pair of non-empty well-formed finite
subsets such that

P : P −→ Q and Q : P −→ Q

Typically,
• // •

��
• // •

??

⇓ • // •

• •

,

• •

• // •
��

⇓ • // •

• // •

??


(or with multiple top-dimensional generators).
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The ω-category of a parity complex

Source and target are defined “as expected”:

sn(P,Q) = (P(n),Pn ∪Q(n−1))

where P(n) is the n-truncation (we empty sets Pi with i > n).

Composition is defined by

(P,Q) ∗n (P ′,Q ′) = (P ∪ (P ′ \ P ′n)), (Q \Qn) ∪Q ′)

The “only” difficult thing is to check that the composite of two
cells is a cell (which takes up a few pages).
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Freeness

To each n-generator x one can easily associate a cell 〈x〉 with x
as only n-generator: we take

Pn = {x} Pi = P∓i+1

and similarly for Q.

Theorem (Street)
The ω-category is freely generated by cells of this form.
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Excision of extremals
Consider an n-cell (P,Q) containing u ∈ Pn ∩Qn and different
from 〈u〉.
1. Find the largest m < n such that (Pm+1,Qm+1) 6= 〈u〉m+1

and pick w ∈ Pm+1 ∩Qm+1.

2. In Mn+1, pick x / w minimal and y . w maximal. One of
them belongs to Pm+1 ∩Qm+1, suppose x .

3. We get a decomposition (P,Q) = (P ′,Q ′) ∗m (P ′′,Q ′′) with

P ′ = P(m) ∪ {x} Q ′ = P(m−1) ∪
((
Mm ∪ x+

)
\ x−

)
∪ {x}

Q ′′ = P \ {x} P ′′ =
(
(P \ {x}) ∪ x+

)
\ x−

• // •
��

• x // • // •

??

��

⇓w • // •

• // •

??
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them belongs to Pm+1 ∩Qm+1, suppose x .
3. We get a decomposition (P,Q) = (P ′,Q ′) ∗m (P ′′,Q ′′) with

P ′ = P(m) ∪ {x} Q ′ = P(m−1) ∪
((
Mm ∪ x+

)
\ x−

)
∪ {x}

Q ′′ = P \ {x} P ′′ =
(
(P \ {x}) ∪ x+

)
\ x−

• // •
��

• x // • // •

??

��

⇓w • // •

• // •

??
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COMPARING
WITH

PASTING
SCHEMES

112 / 123



Pasting schemes

Those are defined in Johnson, The Combinatorics of
n-Categorical Pasting.
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Pasting schemes
A pasting scheme consists of
I a graded set (Ai) of generators
I relations B i

j ,E
i
j : Ai → Aj , for j ≤ i , expressing whether a

j-generators occurs in the beginning (resp. end) of a
generator

such that

1. E i
i is the identity on Ai ,

2. given x ∈ An+1, there exists y ∈ An such that xEn+1
n y ,

3. given n > k , xEn
k z iff there exists y , y ′ such that

xEn
n−1yE

n−1
k z xEn

n−1y
′Bn−1

k z

4. if xEn
n−1yE

n−1
k z then either xEn

k z or there exists y ′ with
xBn

n−1y
′En

k z ,

and dually (replace E with B and vice versa).
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Pasting schemes

Example

P

x ��

u //

⇑ε

Q
z

��
R

y

??

v
//

⇑η

S

has

E2
2 = {(ε, ε), (η, η)} B2

2 = {(ε, ε), (η, η)}
E2

1 = {(ε, u), (η, y), (η, z)} B2
1 = {(ε, x), (ε, y), (η, v)}

E2
0 = {(η,Q)} B2

0 = {(ε,R)}
...

...
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Directed loops

We write / for the preorder such that, for x , y ∈ An+1, x / y
whenever En(x) ∩ Bn(y) 6= ∅.

A has no directed loops when for x , y ∈ An,
I B(x) ∩ E (x) = {x}, and
I x / y then B(x) ∩ E (y) = ∅.
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Domain and codomain

Given a graded subset X ⊆ A, we define

dom(X ) = X \ E (X ) codom(X ) = X \ B(X )

and

sn
i (X ) = domn−i(X ) tn

i (X ) = codomn−i(X )

Theorem
If A has no directed loops then the globular identities are satisfied.
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Well-formedness

A subset X ⊆ A is well-formed when

1. X has no directed loops,

2. A is compatible: given x , y ∈ An+1 with x 6= y ,

Bn(x) ∩ Bn(y) = ∅ En(x) ∩ En(y) = ∅

and is a singleton if zero-dimensional,

3. for all k , domk(A) and codomk(A) are compatible subpasting
schemes of A.
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Loop-freeness

x

⇑

��// x // ···

@@

//

A pasting scheme A is loop-free when

1. A has no directed loops,
2. for all x ∈ A, R(x) is well formed

(R is the transitive closure of all Bn
k ∪ En

k , i.e. ↓),
3. [superfluous] for any (n − 1)-dimensional well-formed

subscheme X of A and x ∈ An with domR(x) ⊆ X ,
3.1 X ∩ E (x) = ∅,
3.2 if y ∈ X and B(x) ∩ R(y) 6= ∅ then y ∈ B(x),

4. for any well-formed j-dimensional subscheme X of A and
x ∈ A with sj(R(x)) ⊆ X , if y , y ′ ∈ sj(R(x)) and there exists
z ∈ Xj with y /X z /X y ′ then z ∈ sj(R(x)).

and dually.
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A free construction

Starting from a loop-free pasting scheme, Johnson defines an
ω-category (roughly as we do), with
I well-formed (not necessarily loop-free) subschemes as cells,
I source and target given by dom and codom,
I composition given by union.

Theorem
It is the free ω-category generated by the cells R(x).

Remark
Power’s counter-examples explains why we have to include
non-loop-free schemes, since loop-free are not closed under
composition.
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The pasting theorem

Theorem
The realization of a well-formed loop-free pasting scheme in a
category gives rise to a unique composite cell.
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SIDE
NOTES
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The permutohedron
Surjections are in bijection with leveled planar trees:

From leveled trees to surjections:
I label leaves from left to right

by 0, 1, . . . , n
I label levels downward

from 1 to k
I f (i) is the level attained by a

ball dropped between i and i +1

So, the permutohedron is a “leveled”
variant of the associahedron.
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