COMPLEX PARITIES

SAMUEL MIMRAM École Polytechnique

Groupe de travail de catégories

March 25, 2016

General remarks

- This was based on Street's article Parity complexes. Some definitions differ though, so blame me for mistakes!
- In the end, it turns out to be closer to Johson's pasting schemes.
- It can be also seen as a "set-theoretic version" of Steiner's augmented directed complexes.
- I had actually started implementing those as a variant of Steiner's ADC and Dimitri Ara recalled them to me.
- I tend to think while implementing, so not everything is proved here...
- ... which saved me time since it turns out that most of my ideas were already thought of by other people.

http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/rewr/

Diagrams

We have various formalizations of diagrams:

- parity complexes (Street)
- pasting schemes (Johnson)
- pasting schemes (Power)
- augmented directed complexes (Steiner)

Consider the free category on the graph

▶ What is the morphism which has {*h*, *f*, *g*} as generators?

- ▶ What is the morphism which has {*h*, *f*, *g*} as generators?
- ▶ What is the morphism which has {*p*, *q*} as generators?

- ▶ What is the morphism which has {*h*, *f*, *g*} as generators?
- ▶ What is the morphism which has {*p*, *q*} as generators?
- What is the morphism which has $\{f, f'\}$ as generators?

- ▶ What is the morphism which has {*h*, *f*, *g*} as generators?
- ▶ What is the morphism which has {*p*, *q*} as generators?
- ▶ What is the morphism which has {*f*, *f*'} as generators?
- ▶ What is the morphism which has {*f*, *h*} as generators?

PARITY COMPLEXES

(my own version)

Parity complexes

We first define our *signatures*:

Definition

A pre-parity complex S is a graded set

$$S = \prod_{n \in \mathbb{N}} S_n$$

together with, for every $x \in S_{n+1}$ subsets

$$x^-, x^+ \subseteq S_n$$

An element $x \in S_n$ is called a *generator* of *dimension* n.

A **parity complex** is a pre-parity complex satisfying <u>suitable conditions</u>.

Example

Consider the polygraph

The corresponding parity complex is

$$S_0 = \{A, B, C, D\} \qquad f^- = \{A\} \qquad p^- = \{f\}$$

$$S_1 = \{f, g_i, h\} \qquad f^+ = \{C\} \qquad p^+ = \{g_1, g_2\}$$

$$S_2 = \{p, q\} \qquad \dots \qquad \dots$$

General idea

We are going to see cells as subsets of the signature, for instance the cell corresponding to $p *_0 g_3$ is

What conditions on signatures and cells allow us to ensure that the resulting ω-category is free on the generators?

Axioms

We should first exclude "trivial loops":

Axiom

For every generator $x \in S_{n+1}$, $x^- \neq \emptyset$ and $x^+ \neq \emptyset$.

Axioms

We should first exclude "trivial loops":

Axiom For every generator $x \in S_{n+1}$, $x^- \neq \emptyset$ and $x^+ \neq \emptyset$.

Axiom For every generator $x \in S_n$, $x^- \cap x^+ = \emptyset$.

A preorder on generators Given $x, y \in S_n$, we write

 $X \triangleleft Y$

when

$$x^+ \cap y^- \neq \emptyset$$

and take the reflexive and transitive closure.

A preorder on generators

Given $x, y \in S_n$, we write

 $X \triangleleft Y$

when

$$x^+ \cap y^- \neq \emptyset$$

and take the reflexive and transitive closure.

Axiom (acyclicity)

The preorder \triangleleft should be acyclic.

Remark

Previous axioms ensure precisely that there is no non-trivial way for which $x \triangleleft x$.

Downward closure

Given $C \subseteq S$, we write $\downarrow C$ for its *downward closure*, i.e. the smallest graded set such that

$$x \in C_{n+1}$$
 implies $x^- \cup x^+ \subseteq C_n$

Well-formedness

Axiom

For every $x \in C_n$, $\downarrow x^-$ and $\downarrow x^+$ should be cells satisfying the globular identities:

$$\partial^{-}(\downarrow x^{-}) = \partial^{-}(\downarrow x^{+}) \qquad \qquad \partial^{+}(\downarrow x^{-}) = \partial^{+}(\downarrow x^{+})$$

... for a good notion of **cell** and its **source** and **target**.

Cells

Definition A **pre-cell** of dimension *n* consists of finite sets $(C_i)_{0 \le i \le n}$ with $C_i \subseteq S_i$.

A **cell** is a pre-cell satisfying <u>suitable conditions</u>.

Given a pre-cell C of dimension n, we define its **source** as the pre-cell obtained by

- removing generators in C_n ,
- removing the downward closure of their targets,
- taking the downward closure,
- removing $C_n = \emptyset$.

Given a pre-cell C of dimension n, we define its **source** as the pre-cell obtained by

- removing generators in C_n ,
- removing the downward closure of their targets,
- taking the downward closure,
- removing $C_n = \emptyset$.

Given a pre-cell C of dimension n, we define its **source** as the pre-cell obtained by

- removing generators in C_n ,
- removing the downward closure of their targets,
- taking the downward closure,
- removing $C_n = \emptyset$.

Given a pre-cell C of dimension n, we define its **source** as the pre-cell obtained by

- removing generators in C_n ,
- removing the downward closure of their targets,
- taking the downward closure,
- removing $C_n = \emptyset$.

so that

$$\partial^{-}(C) = \downarrow (C \setminus d^{+}(C_n))$$

A **cell** $C \subseteq S$ of dimension *n* is a pre-cell satisfying: 1. $C = \downarrow C$

A **cell** $C \subseteq S$ of dimension *n* is a pre-cell satisfying:

- 1. $C = \downarrow C$
- 2. for every $x, y \in C_n$ with $x \neq y, x^- \cap y^- = \emptyset$ and $x^+ \cap y^+ = \emptyset$

 $B' \xleftarrow{f'} A \xrightarrow{f} B$

A **cell** $C \subseteq S$ of dimension *n* is a pre-cell satisfying:

1.
$$C = \downarrow C$$

- 2. for every $x, y \in C_n$ with $x \neq y, x^- \cap y^- = \emptyset$ and $x^+ \cap y^+ = \emptyset$
- 3. if dim C = 0 then C_0 is a singleton

A B

A **cell** $C \subseteq S$ of dimension *n* is a pre-cell satisfying:

1.
$$C = \downarrow C$$

- 2. for every $x, y \in C_n$ with $x \neq y, x^- \cap y^- = \emptyset$ and $x^+ \cap y^+ = \emptyset$
- 3. if dim C = 0 then C_0 is a singleton
- 4. the relation on C_0 such that $x \approx x'$ whenever there exists $y \in C_1$ with $\partial^-(y) = \{x\}$ and $\partial^+(y) = \{x'\}$ should be the full one (NB: this axiom will turn out to be superfluous)

$$A \xrightarrow{f} B \qquad A' \xrightarrow{f'} B'$$

A **cell** $C \subseteq S$ of dimension *n* is a pre-cell satisfying:

1.
$$C = \downarrow C$$

- 2. for every $x, y \in C_n$ with $x \neq y, x^- \cap y^- = \emptyset$ and $x^+ \cap y^+ = \emptyset$
- 3. if dim C = 0 then C_0 is a singleton
- 4. the relation on C_0 such that $x \approx x'$ whenever there exists $y \in C_1$ with $\partial^-(y) = \{x\}$ and $\partial^+(y) = \{x'\}$ should be the full one (NB: this axiom will turn out to be superfluous)

Remark

In Steiner's world, 2. is roughly *unital basis* and acyclicity is *loop-free*.

This is not enough!

The following is not excluded by our axioms:

This is not enough!

The following is not excluded by our axioms:

We cannot require the axiom 4. on 2-generators too:

This is not enough!

The following is not excluded by our axioms:

We cannot require the axiom 4. on 2-generators too:

We could say that given two 2-generators, one should be either below or on the left of the other.

Global order

This suggests considering the relation \blacktriangleleft on all generators of *C* generated by $x \blacktriangleleft y$ whenever

 $x \in y^-$ or $y \in x^+$

Global order

This suggests considering the relation \blacktriangleleft on all generators of *C* generated by $x \blacktriangleleft y$ whenever

$$x \in y^-$$
 or $y \in x^+$

Problem (Pratt)

The relation can have cycles:

We have:

$$f \blacktriangleleft 1 \blacktriangleleft v \blacktriangleleft \beta \blacktriangleleft x \blacktriangleleft \delta \blacktriangleleft f$$

Global order

This suggests considering the relation \blacktriangleleft on all generators of *C* generated by $x \blacktriangleleft y$ whenever

$$x \in y^-$$
 or $y \in x^+$

Problem (Pratt)

The relation can have cycles:

We have:

 $f \blacktriangleleft 1 \blacktriangleleft v \blacktriangleleft \beta \blacktriangleleft x \blacktriangleleft \delta \blacktriangleleft f$

Those for which \blacktriangleleft is acyclic (for Steiner: *strongly acyclic*) are very nice, but this restriction is clearly too strong.

Note that the source of our pre-cell is

$$\partial^{-} \left(\begin{array}{c} \swarrow \\ A \\ \swarrow \\ \Psi \end{array} \right) = A \begin{array}{c} \swarrow \\ B \\ B \\ B \end{array}$$

which is not a cell.

So we also require our cells to have cells as boundaries.

Note that the source of our pre-cell is

which is not a cell.

So we also require our cells to have cells as boundaries.

This also handles our connexity condition:

$$\partial^{-}\left(A \xrightarrow{f} B \qquad A' \xrightarrow{f'} B'\right) = A \qquad A'$$
A pre-parity complex is

• $(S_i)_{i \in \mathbb{N}}$ together with x^- , $x^+ \subseteq S_i$ for $x \in S_{i+1}$

A pre-parity complex is

• $(S_i)_{i\in\mathbb{N}}$ together with x^- , $x^+ \subseteq S_i$ for $x \in S_{i+1}$

A **pre-cell** of dimension *n* is

•
$$(C_i)_{0 \le i \le n}$$
 with $C_i \subseteq S_i$

A pre-parity complex is

• $(S_i)_{i\in\mathbb{N}}$ together with x^- , $x^+ \subseteq S_i$ for $x \in S_{i+1}$

A **pre-cell** of dimension *n* is

• $(C_i)_{0 \le i \le n}$ with $C_i \subseteq S_i$

A **cell** of dimension *n* is a pre-cell which

• is closed under faces: $C = \downarrow C$,

- ▶ has non-conflicting *n*-generators: $x^{\epsilon} \cap y^{\epsilon} = \emptyset$ for $x \in C_n$
- is a singleton if n = 0
- ▶ is s.t. $\partial^{\epsilon}(C)$ is a cell
- is s.t. $\partial^{\epsilon} \circ \partial^{\eta}(C) = \partial^{\epsilon} \circ \partial^{\overline{\eta}}(C)$

A pre-parity complex is

• $(S_i)_{i\in\mathbb{N}}$ together with $x^-, x^+ \subseteq S_i$ for $x \in S_{i+1}$

A **pre-cell** of dimension *n* is

• $(C_i)_{0 \le i \le n}$ with $C_i \subseteq S_i$

A **cell** of dimension *n* is a pre-cell which

• is closed under faces: $C = \downarrow C$,

- ▶ has non-conflicting *n*-generators: $x^{\epsilon} \cap y^{\epsilon} = \emptyset$ for $x \in C_n$
- is a singleton if n = 0
- ▶ is s.t. $\partial^{\epsilon}(C)$ is a cell
- is s.t. $\partial^{\epsilon} \circ \partial^{\eta}(C) = \partial^{\epsilon} \circ \partial^{\overline{\eta}}(C)$
- A parity complex is a pre-parity complex which
 - ► is acyclic
 - ▶ is s.t. $\downarrow x$ is a cell

A pre-parity complex is

• $(S_i)_{i\in\mathbb{N}}$ together with $x^-, x^+ \subseteq S_i$ for $x \in S_{i+1}$

A **pre-cell** of dimension *n* is

• $(C_i)_{0 \le i \le n}$ with $C_i \subseteq S_i$

A **cell** of dimension *n* is a pre-cell which

• is closed under faces: $C = \downarrow C$,

- ▶ has non-conflicting *n*-generators: $x^{\epsilon} \cap y^{\epsilon} = \emptyset$ for $x \in C_n$
- is a singleton if n = 0
- ▶ is s.t. $\partial^{\epsilon}(C)$ is a cell
- is s.t. $\partial^{\epsilon} \circ \partial^{\eta}(C) = \partial^{\epsilon} \circ \partial^{\overline{\eta}}(C)$
- A parity complex is a pre-parity complex which
 - ► is acyclic
 - ▶ is s.t. $\downarrow x$ is a cell

There might be simpler (to check) axioms, but it should be enough for now.

Canonicity of the definition

I do not think that those restrictions are "canonical". In particular, I believe that we could also have the same results if we restricted to **opetopes**, with

- ► *x*⁻ arbitrary (including empty!)
- \triangleright x^+ a singleton

Composition

We can make an ω -category with *n*-cells as *n*-cells, where

- composition is given by (graded) union,
- identities amount to add $C_{n+1} = \emptyset$,
- ▶ the axioms are satisfied (to be checked...)

Composition

We can make an ω -category with *n*-cells as *n*-cells, where

- composition is given by (graded) union,
- identities amount to add $C_{n+1} = \emptyset$,
- the axioms are satisfied (to be checked...)

Conjecture

This ω -category is freely generated by cells of the form $\downarrow x$ for some generator $x \in S$.

(Street has actually proved this, but axioms here differ from his) (in fact, we need a bit more see next slide)

Acyclicity and composition

It was noticed by Power that acyclicity is not preserved by composition:

$$\begin{array}{c} \cdot & \bullet & \cdot \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ \cdot & \bullet \\ \bullet &$$

(note the loop in the diagonal in the underlying graph)

DECOMPOSING CELLS

In order to prove this, we have to express each cell C as a formal composite f_C of generators, in a unique way. Let's see my algorithm.

In order to prove this, we have to express each cell C as a formal composite f_C of generators, in a unique way. Let's see my algorithm.

If C = (C₀) is of dimension 0 then C₀ = {x} and the formal composition is

$$f_C = x$$

In order to prove this, we have to express each cell C as a formal composite f_C of generators, in a unique way. Let's see my algorithm.

If C = (C₀) is of dimension 0 then C₀ = {x} and the formal composition is

$$f_C = x$$

• If $C = (C_0, ..., C_n)$ with $C_n = \emptyset$ it is the identity

$$f_C = \operatorname{id} \left(f_{(C_0, \dots, C_{n-1})} \right)$$

If there are multiple top-dimensional cells, we are going to split the cell in slices:

• If $C_n = \{x_1, \ldots, x_p\}$ with p > 1 and $x_1 \triangleleft \ldots \triangleleft x_p$. For each $1 \le i \le p$, we write

$$C^{i} \quad = \quad \downarrow \left(C \setminus \left(d^{-} \left(\{ x_{1}, \ldots, x_{i-1} \} \right) \cup d^{+} \left(\{ x_{i+1}, \ldots, x_{n} \} \right) \right) \right)$$

which is such that $C_n^i = \{x_i\}$

• If $C_n = \{x_1, \ldots, x_p\}$ with p > 1 and $x_1 \triangleleft \ldots \triangleleft x_p$. For each $1 \le i \le p$, we write

$$C^{i} \quad = \quad \downarrow \left(C \setminus \left(d^{-} \left(\{ x_{1}, \ldots, x_{i-1} \} \right) \cup d^{+} \left(\{ x_{i+1}, \ldots, x_{n} \} \right) \right) \right)$$

which is such that $C_n^i = \{x_i\}$ and we have

$$f_C = f_{C^1} *_{n-1} f_{C^2} *_{n-1} \dots *_{n-1} f_{C^n}$$

• If $C_n = \{x_1, \ldots, x_p\}$ with p > 1 and $x_1 \triangleleft \ldots \triangleleft x_p$. For each $1 \le i \le p$, we write

$$C^{i} \quad = \quad \downarrow \left(C \setminus \left(d^{-} \left(\{ x_{1}, \ldots, x_{i-1} \} \right) \cup d^{+} \left(\{ x_{i+1}, \ldots, x_{n} \} \right) \right) \right)$$

which is such that $C_n^i = \{x_i\}$ and we have

$$f_C = f_{C^1} *_{n-1} f_{C^2} *_{n-1} \dots *_{n-1} f_{C^n}$$

Note that each C^i has only one top-dimensional generator.

If there is only one top-dimensional cell, we remove one layer of whiskers:

If there is only one top-dimensional cell, we remove one layer of whiskers:

Note that the morphism in the middle has lower-dimensional whiskers.

• If $C_n = \{x\}$ then

$$C = (C_0, \ldots, C_k, \emptyset, \ldots, \emptyset, \{x\})$$

with k minimal such.

• If $C_n = \{x\}$ then

$$C = (C_0, \ldots, C_k, \emptyset, \ldots, \emptyset, \{x\})$$

with k minimal such. We write $x_k = (\downarrow x)_k$,

$$C'_k = C_k \setminus x_k$$
 and $C'_k = C^-_k \sqcup C^+_k$

where

▶
$$y \in C_k^-$$
 if $y \triangleleft z$ for some $z \in x_k$ and
▶ $y \in C_k^+$ if $\neg(y \triangleleft z)$ for every $z \in x_k$.

• If $C_n = \{x\}$ then

$$C = (C_0, \ldots, C_k, \emptyset, \ldots, \emptyset, \{x\})$$

with k minimal such. We write $x_k = (\downarrow x)_k$,

$$C'_k = C_k \setminus x_k$$
 and $C'_k = C^-_k \sqcup C^+_k$

where

•
$$y \in C_k^-$$
 if $y \triangleleft z$ for some $z \in x_k$ and
• $y \in C_k^+$ if $\neg (y \triangleleft z)$ for every $z \in x_k$.
We write

$$C^{-} = \downarrow (C \setminus (\{x\} \cup d^{-}(C_{k}^{-})))$$

$$C^{x} = \downarrow (C \setminus (d^{-}(C_{k}^{-}) \cup d^{+}(C_{k}^{+})))$$

and C^+ similar to C^- ,

• If $C_n = \{x\}$ then

$$C = (C_0, \ldots, C_k, \emptyset, \ldots, \emptyset, \{x\})$$

with k minimal such. We write $x_k = (\downarrow x)_k$,

$$C'_k = C_k \setminus x_k$$
 and $C'_k = C^-_k \sqcup C^+_k$

where

•
$$y \in C_k^-$$
 if $y \triangleleft z$ for some $z \in x_k$ and
• $y \in C_k^+$ if $\neg (y \triangleleft z)$ for every $z \in x_k$.
We write

$$C^{-} = \downarrow (C \setminus (\{x\} \cup d^{-}(C_{k}^{-})))$$

$$C^{x} = \downarrow (C \setminus (d^{-}(C_{k}^{-}) \cup d^{+}(C_{k}^{+})))$$

and C^+ similar to C^- , and

$$f_C = f_{C^-} *_{k-1} f_{C^{\times}} *_{k-1} f_{C^+}$$

EXAMPLES OF PARITY COMPLEXES

Globes

The *n*-**globe** G_n is the signature with

1

$$S_{i} = \{x_{i}, y_{i}\} \qquad x_{i+1}^{-} = y_{i+1}^{-} = x_{i} \qquad z^{-} = x_{n-1}$$

$$S_{n} = \{z\} \qquad x_{i+1}^{+} = y_{i+1}^{+} = y_{i} \qquad z^{+} = y_{n-1}$$

In low dimensions:

0

2

3

Let's see that in rewr!

http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/rewr/

Globes

globe 4 # sigcat x0 y0 x1 : x0 -> y0 y1 : x0 -> y0 x2 : x1 -> y1 y2 : x1 -> y1 x3 : x2 -> y2 y3 : x2 -> y2 z : x3 -> y3

Orientals

The *n*-simplex Δ_n has, as generators of dimension *n*, increasing sequences of integers

$$x = 0 \le x_0 < x_1 < \ldots < x_n \le n+1$$

writing $\partial_i(x)$ for the sequence with the *i*-th element removed, we have

$$x^- = \{\partial_{2i+1}(x)\}$$

 $x^+ = \{\partial_{2i}(x)\}$

We recover the usual formulas for orientals!

Orientals

In low dimensions, we have

Orientals

- # simplex 3
 # sigcat
 01 : 0 -> 1
 02 : 0 -> 2
 03 : 0 -> 3
 12 : 1 -> 2
 13 : 1 -> 3
 23 : 2 -> 3
 012 : 02 -> 01 *₀ 12
- 013 : 03 -> 01 $*_0$ 13 023 : 03 -> 02 $*_0$ 23 123 : 13 -> 12 $*_0$ 23

0123 : 023 $*_1$ (012 $*_0$ 23) -> 013 $*_1$ (01 $*_0$ 123)

Chain complexes

A parity complex S induces a chain complex $\mathbb{Z}S$ of free abelian groups

$$\ldots \xrightarrow{\partial_2} \mathbb{Z}S_2 \xrightarrow{\partial_1} \mathbb{Z}S_1 \xrightarrow{\partial_0} \mathbb{Z}S_0$$

with $\partial_i(x) = \sum x^+ - \sum x^-$.

Chain complexes

A parity complex S induces a chain complex $\mathbb{Z}S$ of free abelian groups

$$\ldots \xrightarrow{\partial_2} \mathbb{Z}S_2 \xrightarrow{\partial_1} \mathbb{Z}S_1 \xrightarrow{\partial_0} \mathbb{Z}S_0$$

with $\partial_i(x) = \sum x^+ - \sum x^-$.

Can we define a tensor product satisfying the following?

$$\mathbb{Z}(S \otimes T) = \mathbb{Z}S \otimes \mathbb{Z}T$$

Products

The **tensor product** of two signatures S and T is defined

$$(S \otimes T)_n = \prod_{i+j=n} S_i \times T_j$$

with faces

$$(x, y)^{-} = (x^{-}, y^{\sigma(x)})$$

where $\sigma(x) = -$ iff dim(x) is even and similarly for targets.

R. STREET. PARITY COMPLEXES

Products

Products

```
# street_gs 2
# sigcat
. . .
x0|012 : x0|02 \rightarrow x0|01 *_0 x0|12
y0|012 : y0|02 \rightarrow y0|01 *_0 y0|12
x1|01 : x0|01 *_0 x1|1 \rightarrow x1|0 *_0 y0|01
x1|02 : x0|02 *<sub>0</sub> x1|2 -> x1|0 *<sub>0</sub> y0|02
. . .
x1|012 : (x0|012 *_0 x1|2) *_1 (x0|01 *_0 x1|12) *_1 (x1|01 *_0 x1|12)
y_1|_{012} : (x_0|_{012} *_0 y_1|_2) *_1 (x_0|_{01} *_0 y_1|_{12}) *_1 (y_1|_{01} *_0 y_1|_{01})
z|01 : x1|01 *_1 (z|0 *_0 y0|01) \rightarrow (x0|01 *_0 z|1) *_1 y1|01
z|02 : x1|02 *_1 (z|0 *_0 y0|02) \rightarrow (x0|02 *_0 z|2) *_1 y1|02
z|12 : x1|12 *_1 (z|1 *_0 y0|12) \rightarrow (x0|12 *_0 z|2) *_1 y1|12
```

z|012 : (x1|012 *₁ ($z|0 *_0 y0|01 *_0 y0|12$)) *₂ ($z|02 *_1$ (y1

Products

Remark

Street notes that the tensor product of signatures shall not necessarily be so, because the resulting \triangleleft might not be acyclic.

Can someone come up with an explicit example?
The *n*-cube is $I^{\otimes n}$ where *I* is the standard interval (the 1-globe or the 1-simplex):

$$I = - \xrightarrow{0} +$$

For instance, the 2-cube is

The *n*-**cube** is $I^{\otimes n}$ where *I* is the standard interval (the 1-globe or the 1-simplex):

$$I = - \xrightarrow{0} +$$

For instance, the 3-cube is

0-00

00-0

+000

cube 3
sigcat

• • •

000 : (-00 $*_0$ 0++) $*_1$ (-0- $*_0$ 0+0) $*_1$ (00- $*_0$ ++0) -> (--0

Cylinders

The *n*-**cylinder** is $I \otimes G_n$. We recover François' formulas:

$$\begin{array}{rcl} x0^{-} | y & : & x0^{-} | y1^{-} & -> & x0^{-} | y1^{+} \\ x0^{+} | y & : & x0^{+} | y1^{-} & -> & x0^{+} | y1^{+} \\ x | y1^{-} & : & x0^{-} | y1^{-} & *_{0} & x | y0^{+} & -> & x | y0^{-} & *_{0} & x0^{+} | y1^{-} \\ x | y1^{+} & : & x0^{-} | y1^{+} & *_{0} & x | y0^{+} & -> & x | y0^{-} & *_{0} & x0^{+} | y1^{+} \end{array}$$

$$x0^{-}|y1^{-}: x0^{-}|y0^{-} \rightarrow x0^{-}|y0^{+}$$

$$x0^{-}|y1^{+}: x0^{-}|y0^{-} \rightarrow x0^{-}|y0^{+}$$

$$x0^{+}|y1^{-}: x0^{+}|y0^{-} \rightarrow x0^{+}|y0^{+}$$

$$x0^{+}|y1^{+}: x0^{+}|y0^{-} \rightarrow x0^{+}|y0^{+}$$

$$x|y0^{-}: x0^{-}|y0^{+} \rightarrow x0^{+}|y0^{+}$$

globe 1 2
sigcat

Cylinders

Tensor products of globes

globe 2 2
sigcat

. . .

 $\begin{array}{rcl} x \mid y : & (x1^{-} \mid y \ast_{1} & (x \mid y0^{-} \ast_{0} & x0^{+} \mid y1^{+})) \\ & \ast_{2} & (x \mid y1^{-} \ast_{1} & (x1^{+} \mid y0^{-} \ast_{0} & x0^{+} \mid y)) \\ & -> & ((x0^{-} \mid y \ast_{0} & x1^{-} \mid y0^{+}) & \ast_{1} & x \mid y1^{+}) \\ & & \ast_{2} & ((x0^{-} \mid y1^{-} \ast_{0} & x \mid y0^{+}) & \ast_{1} & x1^{+} \mid y) \end{array}$

Tensor products of globes

Crans in *Pasting schemes for the monoidal biclosed structure on* ω -*Cat* also manages to extract the formulas for the tensor product of globes from those of (degenerated) cubes:

Join

The **join** is defined by

$$(S \bullet T)_n = S_n + \sum_{i+j+1=n} S_i \times T_j + T_n$$

with

▶ if *i* odd

$$(xy)^{-} = x^{-}y \cup xy^{-}$$
 $(xy)^{+} = x^{+}y \cup xy^{+}$

► if *i* even

$$(xy)^{-} = x^{-}y \cup xy^{+}$$
 $(xy)^{+} = x^{+}y \cup xy^{-}$

DES **SIGNES** DE BON GOÛT

DES **SIGNES** DE BON GOÛT

$$\partial(f) = \sum_i \pm \partial_i(f)$$

Desuspension

Consider the simplicial category Δ as a 2-category with \star as 0-cell. We can present it

- ▶ as a 2-category: $\mu: 2 \rightarrow 1, \eta: 0 \rightarrow 1, \ldots$
- or as the category $\Delta(\star, \star)$: $\mu_i^n : n + 1 \rightarrow n, \ \eta_i^n : n \rightarrow n + 1, \ldots$ (in particular, to have a convergent presentation, we now have to "orient exchange rules")

We will play the same game with our simple examples.

► The associahedron is the polytope generated by the critical *n*-uple of the rewriting system $m(m(x, y), z) \Rightarrow m(x, m(y, z))$. Can we come up with a direct computation of the faces?

- The associahedron is the polytope generated by the critical *n*-uple of the rewriting system m(m(x, y), z) ⇒ m(x, m(y, z)). Can we come up with a direct computation of the faces?
- ▶ It can also be seen as the hom-*n*-category

$$\Delta_{n+2}^{op}((0 < 1) *_0 (1 < 2) *_0 \dots *_0 (n - 1 < n), (0 < n))$$

of the (n+2)-simplex.

- The associahedron is the polytope generated by the critical *n*-uple of the rewriting system m(m(x, y), z) ⇒ m(x, m(y, z)). Can we come up with a direct computation of the faces?
- ▶ It can also be seen as the hom-*n*-category

$$\Delta_{n+2}^{op}((0 < 1) *_0 (1 < 2) *_0 \dots *_0 (n - 1 < n), (0 < n))$$

of the (n+2)-simplex.

► The operad Ass is the terminal non-unital operad: it is the theory of an associative binary operation. An A_∞ algebra is an algebra over a resolution of this operad, and Stasheff seems to have computed it all for us!

Definition

An A_{∞} -algebra consists of a graded vector space A together with n-ary operations $m_n : A^{\otimes n} \to A$ of degree n - 2 satsifying

$$\sum_{p+q+r=n} (-1)^{p+qr} m_{p+1+r} \circ (\mathrm{id}_p \otimes m_q \otimes \mathrm{id}_r)$$

Definition

An A_{∞} -algebra consists of a graded vector space A together with n-ary operations $m_n : A^{\otimes n} \to A$ of degree n - 2 satsifying

$$\sum_{p+q+r=n} (-1)^{p+qr} m_{p+1+r} \circ (\mathrm{id}_p \otimes m_q \otimes \mathrm{id}_r)$$

In particular $d = -m_1$ is a differential and the induced derivative is

$$\partial(m_n) = d \circ m_n - (-1)^{n-2} m_n \circ \left(\sum_i \mathrm{id}_i \otimes d \otimes \mathrm{id}_{n-1-i}\right)$$

Definition

An A_{∞} -algebra consists of a graded vector space A together with n-ary operations $m_n : A^{\otimes n} \to A$ of degree n - 2 satsifying

$$\sum_{p+q+r=n} (-1)^{p+qr} m_{p+1+r} \circ (\mathrm{id}_p \otimes m_q \otimes \mathrm{id}_r)$$

In particular $d = -m_1$ is a differential and the induced derivative is

$$\partial(m_n) = d \circ m_n - (-1)^{n-2} m_n \circ \left(\sum_i \mathrm{id}_i \otimes d \otimes \mathrm{id}_{n-1-i}\right)$$

and explicitly

$$\partial(m_n) = \sum_{\substack{p+q+r=n\\p+1+r\geq 2\\q\geq 2}} (-1)^{p+qr} m_{p+1+r} \circ (\mathrm{id}_p \otimes m_q \otimes \mathrm{id}_r)$$

Definition

An A_{∞} -algebra consists of a graded vector space A together with n-ary operations $m_n : A^{\otimes n} \to A$ of degree n - 2 satsifying

$$\sum_{p+q+r=n} (-1)^{p+qr} m_{p+1+r} \circ (\mathrm{id}_p \otimes m_q \otimes \mathrm{id}_r)$$

In particular $d = -m_1$ is a differential and the induced derivative is

$$\partial(m_n) = d \circ m_n - (-1)^{n-2} m_n \circ \left(\sum_i \mathrm{id}_i \otimes d \otimes \mathrm{id}_{n-1-i}\right)$$

and explicitly

$$\partial(m_n) = \sum_{\substack{p+q+r=n\\p+1+r\geq 2\\q\geq 2}} (-1)^{p+qr} m_{p+1+r} \circ (\mathrm{id}_p \otimes m_q \otimes \mathrm{id}_r)$$

e.g. $\partial(m_3) = m_2 \circ (m_2 \otimes \mathrm{id}) - m_2 \circ (\mathrm{id} \otimes m_2)$

We expect the n-associahedron to be defined as the complex whose

- elements are trees with n + 2 leaves and nodes of arity ≥ 2
- ▶ the faces of a tree are obtained by splitting a node into two
- ▶ the degree of a tree is the sum of arities 2 of nodes
- the signs are given by the above formula

We expect the n-associahedron to be defined as the complex whose

- elements are trees with n + 2 leaves and nodes of arity ≥ 2
- ▶ the faces of a tree are obtained by splitting a node into two
- ▶ the degree of a tree is the sum of arities 2 of nodes
- the signs are given by the above formula

... excepting that it does not work ...

```
# associahedron 2
# sigcat
(((..)))
((.(.)))
(.((..)))
(.(.(.)))
((..)(..))
((...)) : ((.(..))) -> (((..)))
(.(...)) : (.(.(..))) \rightarrow (.((...)))
```

$$((..)..) : ((..)(..)) \rightarrow (((..).)) \\ (.(..).) : (.((..).)) \rightarrow ((.(..)).) \\ (..(..)) : (.(.(..))) \rightarrow ((..)(..))$$

 (\dots) : $(.(\dots)) *_0 (.(\dots).) *_0 ((\dots).) -> (\dots(\dots)) *_0 ((\dots))$

Error: Invalid signature (cylic).

Remark

Can we also describe the following categories?

- $\Delta_n(0, n)$
- Δ_n (left comb, right comb)
- ► etc.

Kapranov and Voevodsky note

$$\Delta_n(0,n) = I^{\otimes (n-1)}/\sim$$

(some squares corresponding to exchanges become equalities)

Kapranov and Voevodsky note

$$\Delta_n(0,n) = I^{\otimes (n-1)}/\sim$$

(some squares corresponding to exchanges become equalities)

For instance:

$$02 \xrightarrow{012} 01 *_0 12$$

Kapranov and Voevodsky note

$$\Delta_n(0,n) = I^{\otimes (n-1)}/\sim$$

(some squares corresponding to exchanges become equalities)

For instance:

Kapranov and Voevodsky note

$$\Delta_n(0,n) = I^{\otimes (n-1)}/\sim$$

(some squares corresponding to exchanges become equalities)

For an answer to the other questions, see later on.

The permutohedron

The same problem occurs with the *permutohedron*, let's study this in more details...

THE PERMUTOHEDRON

Categorical definition

The *n*-**permutohedron** is the hom-*n*-category of the (n + 1)-cube:

$$\Pi_n = I^{\otimes (n+1)}(-^{n+1}, +^{n+1})$$

Categorical definition

The *n*-**permutohedron** is the hom-*n*-category of the (n + 1)-cube:

$$\Pi_n = I^{\otimes (n+1)}(-^{n+1}, +^{n+1})$$

Note that because of this we have an orientation for most generators, excepting exchange.

Some pictures

Some pictures

Le Conte de Poly-Barbut, *Le diagramme du treillis permutoèdre est intersection des diagrammes de deux produits directs d'ordres totaux*, 1990.

Geometric realization

The permutohedron can be defined as the convex hull of points

$$(\sigma(0), \sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^{n+1}$$

where σ runs over \mathfrak{S}_{n+1} .

It lies in the hyperplane

$$\left\{(x_0,\ldots,x_n)\in\mathbb{R}^{n+1}\ \bigg|\ \sum_i x_i=n(n-1)/2\right\}$$

Edges

Edges correspond to transpositions:

Faces

More generally, cells are indexed by surjections (Loday-Ronco, *Permutads*):

Figure 1: The permutad clock

Faces

More generally, cells are indexed by surjections (same as previous figure up to symmetry):

Links with $I^{\otimes n}$

The correspondence between surjections and cells of the cube is as follows:

Chapoton, in *Opérades différentielles graduées sur les simplexes* et les permutoèdres, defines a cochain complex $\Pi(I) \subseteq T(\Lambda X)$:

elements are of the form

$$\pi = \pi_1 \otimes \pi_2 \otimes \ldots \otimes \pi_n$$

with

$$\pi_j \quad = \quad i_{j,1} \wedge i_{j,2} \wedge \ldots \wedge i_{j,p_j}$$

and we require that every element of I appears exactly once in one of the π_i

D

Chapoton, in *Opérades différentielles graduées sur les simplexes* et les permutoèdres, defines a cochain complex $\Pi(I) \subseteq T(\Lambda X)$:

elements are of the form

$$\pi = \pi_1 \otimes \pi_2 \otimes \ldots \otimes \pi_n$$

with

$$\pi_j = i_{j,1} \wedge i_{j,2} \wedge \ldots \wedge i_{j,p_j}$$

and we require that every element of I appears exactly once in one of the π_i

dimensions are given by

$$\dim(\pi_j) = p_j - 1 \qquad \qquad \dim(\pi) = \sum_{j=1}^{j} \dim(\pi_j)$$

Chapoton, in *Opérades différentielles graduées sur les simplexes* et les permutoèdres, defines a cochain complex $\Pi(I) \subseteq T(\Lambda X)$:

elements are of the form

$$\pi = \pi_1 \otimes \pi_2 \otimes \ldots \otimes \pi_n$$

with

$$\pi_j = i_{j,1} \wedge i_{j,2} \wedge \ldots \wedge i_{j,p_j}$$

and we require that every element of I appears exactly once in one of the π_i

dimensions are given by

$$\dim(\pi_j) = p_j - 1 \qquad \qquad \dim(\pi) = \sum_{j=1}^p \dim(\pi_j)$$

▶ the differential (of degree +1) is given by

$$d(\pi) = \sum_{j=1}^{p-1} (-1)^{\sum_{k=1}^{j} \dim(\pi_k)} \pi_1 \otimes \ldots \otimes \pi_j \wedge \pi_{j+1} \otimes \ldots \otimes \pi_n_{68/6}$$

It can be checked that this is a codifferential:

• we have
$$\dim(\pi_i \wedge \pi_j) = \dim(\pi_i) + \dim(\pi_j) - 1$$
,

It can be checked that this is a codifferential:

- we have $\dim(\pi_i \wedge \pi_j) = \dim(\pi_i) + \dim(\pi_j) 1$,
- with n = 3, we have

$$d(\pi_1 \otimes \pi_2 \otimes \pi_3) = (-1)^{\dim(\pi_1)} \pi_1 \wedge \pi_2 \otimes \pi_3 + (-1)^{\dim(\pi_1) + \dim(\pi_2)} \pi_1 \otimes \pi_2 \wedge \pi_3 d^2(\pi_1 \otimes \pi_2 \otimes \pi_3) = (-1)^{2\dim(\pi_1) + \dim(\pi_2) - 1} \pi_1 \wedge \pi_2 \wedge \pi_3 + (-1)^{2\dim(\pi_1) + \dim(\pi_2)} \pi_1 \wedge \pi_2 \wedge \pi_3 = 0$$

and the general case is essentially similar.

can be denoted

▶ by images: 0100

can be denoted

- ▶ by images: 0100
- by preimages: $(0 \land 2 \land 3) \otimes 1$
 - (= ordered partitions of the source)

can be denoted

- ▶ by images: 0100
- by preimages: $(0 \land 2 \land 3) \otimes 1$
 - (= ordered partitions of the source)
- by categorical notation, with explicit exchange:

There are two possible actions. In the representation by images, with $\tau=$ 12,

▶ on the left:

$$\tau \cdot 2031 = 2301$$

▶ on the right:

 $2031 \cdot \tau = 1032$

There are two possible actions. In the representation by images, with $\tau=$ 12,

▶ on the left:

$$\tau \cdot 2031 = 2301$$

▶ on the right:

$$2031 \cdot \tau = 1032$$

The one on the right is more natural wrt to surjections:

$$2031 \cdot \mu_{12} = 1021$$

instead of

$$\mu_{12} \cdot 2031 = 30412$$

Test in dimension 2

permutohedron 2
sigcat
012,102,021,120,201,210

- 001 : 102 -> 012
- 010 : 120 -> 021
- 011 : 021 -> 012
- 100 : 210 -> 201
- 101 : 201 -> 102
- 110 : 210 -> 120

000 : 100 $*_0$ 101 $*_0$ 001 -> 110 $*_0$ 010 $*_0$ 011

Test in dimension 3

permutohedron 3

0123 , 1023 , 0213 , 1203 , 2013 , 2103 , 0132 , 1032 , 023 0012 : 1023 -> 0123 , 0102 : 1203 -> 0213 , 0112 : 0213 -> 0001 : 0012,1002,1012 -> 0102,0112,1102 , 0010 : 0021,1020 0000 : 0010,0011,0110,1000,1001,1011,1100,1110 -> 0001,0100 # check

Error: Invalid signature (cylic).

The signs are not right!

Categorical permutohedra in nature

However, it should exist, e.g. Kapranov and Voevodsky, *Braided* monoidal 2-categories and Manin-Schechtman higher braid groups:

The permutohedron

The signs obtained by this method are not right:

(100

Our orientation

For instance 2010 : $3120 \rightarrow 3021$ corresponds to $1 \land 3 \otimes 2 \otimes 0$ and therefore occurs in the target (instead of the source) of 1010 which corresponds to $1 \land 3 \otimes 0 \land 2$.

Our orientation

The signs obtained by this method are not right:

- ▶ 1100 is badly oriented
- ▶ 1010 is badly oriented
- the type of 0000 is from

0010, 0011, 0110, 1000, 1001, 1011, <mark>1100</mark>, 1110

to

0001, 0100, 0101, 0111, 1010, 1101

instead of from

0010, 0011, 0110, 1000, 1001, 1011, <mark>1010</mark>, 1110

to

0001, 0100, 0101, 0111, 1100, 1101

```
# permutohedron 3
                                        Reorienting
# check
Error: Invalid signature (cylic).
\# reorient 1010
# reorient 1100
# remove 0000
# gen 0000
      1000,1001,1011,1010,0011,0010,1110,0110
      0001,1101,1100,0101,0111,0100
# sigcat
. . .
1010 : 2010 *_0 2021 \rightarrow 2120 *_0 1020
1011 : 2011 *_0 2012 *_0 1012 -> 2021 *_0 1021 *_0 1022
1100 : 2100 *_0 2201 \rightarrow 2210 *_0 1200
1101 : 2101 *_0 2102 *_0 1102 -> 2201 *_0 1201 *_0 1202
1110 : 2110 *_0 2120 *_0 1120 -> 2210 *_0 1210 *_0 1220
```

0000 : (2100 $*_0$ 2101 $*_0$ 1001 $*_0$ 1012 $*_0$ 0012) $*_1$ (1000 $*_0$ 20

Coxeter groups

Question

Can we find categorical polytopes associated to finite Coxeter groups?

Coxeter groups

Question

Can we find categorical polytopes associated to finite Coxeter groups?

For instance, the permutohedron is the Hasse diagram of the weak Bruhat order (= "prefix order") for A_n :

In fact, higher analogues of Bruhat orders have been defined by Manin and Schechtman in

- Arrangements of real hyperplanes and Zamolodchikov equations, 1986
- ► Higher Bruhat orders, related to the symmetric group, 1986
- Arrangements of hyperplanes, higher braid groups and higher Bruhat orders, 1989

In fact, higher analogues of Bruhat orders have been defined by Manin and Schechtman in

- Arrangements of real hyperplanes and Zamolodchikov equations, 1986
- ► Higher Bruhat orders, related to the symmetric group, 1986
- Arrangements of hyperplanes, higher braid groups and higher Bruhat orders, 1989

and reworked by Voevosky and Kapranov with exactly the same motivations as us...

- Free n-categories generated by a cube, oriented matroids, and higher Bruhat orders, 1990
- Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results), 1991

Desuspension

Given a (n + 1)-category C with initial object A_- and terminal object A_+ , we write $\Omega C = C(A_-, A_+)$.

Desuspension

Given a (n + 1)-category C with initial object A_{-} and terminal object A_{+} , we write $\Omega C = C(A_{-}, A_{+})$.

In particular, we have seen

- $\Omega \Delta_{n+1} = I^{\otimes n}$
- $\Omega^2 \Delta_{n+2} = n$ -associahedron
- $\Omega I^{\otimes (n+1)} = n$ -permutohedron
- $\Omega^k I^{\otimes n} = ?$

M-S define posets B(n, k) so that B(n, 1) is S_n with the weak Bruhat order.

- C(n, k): k-elements subsets of $\{0, \ldots, n\}$,
- ▶ we write x = x₀ < ... < x_{k-1} for an element and ∂_ix for x with *i*-th element removed,
- A(n, k): total orders on C(n, k) such that for each $x \in C(n, k + 1)$, either

$$\partial_0 x < \partial_1 x < \ldots < \partial_k x$$
 or $\partial_0 x > \partial_1 x > \ldots > \partial_k x$

- we write $a = a_0 < \ldots < a_N$, with $N = \binom{n}{k}$ for an element of A(n, k).
- ▶ for $a, a' \in A(n, k)$, we write $a \sim a'$ when a' is obtained from a by permuting a_i and a_{i+1} such that $|a_i \cap a_{i+1}| < k 1$,
- $\blacktriangleright B(n,k) = A(n,k)/\sim,$
- a partial order can be defined on B(n, k).

K-V have "shown":

Theorem $B(n, k) \cong \operatorname{Ob} \Omega^k I^{\otimes n}.$

They thus correspond to maximal cells (up to permutations).

▶ B(3, 2) is an edge:

- ► *B*(3, 2) is an edge:
- ► B(4, 2) is an 8-gon:

R. STREET. PARITY COMPLEXES

From Felsner and Ziegler, *Zonotopes Associated with Higher* Bruhat Orders, $B(5, 2) = \Omega^2 I^{\otimes 5}$ is

F-Z observe that the graph of B(6,3) is not polytopal:

Proof.

It has vertices of degree 3, thus it is not the graph of a polytope of dimension \geq 4. Moreover, it contains a $K_{3,3}$ and is thus not planar.

F-Z observe that the graph of B(6,3) is not polytopal:

Proof.

It has vertices of degree 3, thus it is not the graph of a polytope of dimension \geq 4. Moreover, it contains a $K_{3,3}$ and is thus not planar.

Is this because of the absence of explicit exchange? Or what?

Back to the associahedron

- ► The analoguous of weak Bruhat order in the case of the associahedron is the *Tamari lattice*, ordering planar trees.
- Higher-dimensional generalizations exist and correspond to $\Omega^k \Delta_n$.

The multiplihedron

There are other interesting polytopes such as the multiplihedron

generated by $(ab)c \rightarrow a(bc)$ and $f(a)f(b) \rightarrow f(ab)$.
The multiplihedron

There are other interesting polytopes such as the multiplihedron

89/123

The composihedron

The **composihedron** is obtained from the multiplihedron by quotienting under associativity (ab)c = a(bc):

From Forcey, *Quotients of the multiplihedron as categorified associahedra*.

The composihedron

The **composihedron** is obtained from the multiplihedron by quotienting under associativity (ab)c = a(bc):

From Forcey, *Quotients of the multiplihedron as categorified associahedra.*

Graph composihedra

Composihedra associated to a graph (= graph composihedra) have also been investigated, it would be interesting to look at composihedra generated by 2-dimensional (or higher) pasting schemes!

The cyclohedron

The **cyclohedron** is close to the associahedron excepting that we bracket a cycle instead of a word:

Coxeteredra

Generalizing the permutohedron associated to the symmetric group A_n , we have **Coxeterhedra** associated to other Coxeter groups. From Reiner, Ziegler, *Coxeter-associahedra*:

Figure 1: The Coxeterhedra PA₂, PB₃, PD₃

Biassociahedra

There are also **biassociahedra**, resolving bialgebra laws:

Figure 2. The biassociahedron $KK_{2,3}$.

Biassociahedra

There are also **biassociahedra**, resolving bialgebra laws:

and as you have guessed there are also bipermutohedra.

An online encyclopedia

Forcey has compiled an interesting list of polyhedra:

http://www.math.uakron.edu/~sf34/hedra.htm

The erasohedron

We can even come up with "new" ones. For instance, consider the free monoidal category C on $\varepsilon : 1 \to 0$. I call C(n, 0) the *n*-erasohedron E_n .

In low dimensions:

► E₁:

► E₂:

The erasohedron

We can even come up with "new" ones. For instance, consider the free monoidal category C on $\varepsilon : 1 \to 0$. I call C(n, 0) the *n*-erasohedron E_n .

Conjecture

The cells of E_n are in bijection with injections $m \rightarrow n$ with $m \leq n$.

Conjecture

The erasohedron is isomorphic to $I^{\otimes n}$.

New examples

Anyone with interesting new examples?

The Frobeniohedron

Your search - "frobeniohedron" - did not match any documents.

Suggestions:

- · Make sure that all words are spelled correctly.
- · Try different keywords.
- Try more general keywords.

A good question

Question How do we generate signs in a general way?

COMPARING WITH STREET'S DEFINITION

Parity complexes

Definition

A **parity complex** is a graded set *S* such that

1.
$$x^- \neq \emptyset \neq x^+$$
 and $x^- \cap x^+ = \emptyset$

2.
$$x^{--} \cup x^{++} = x^{-+} \cup x^{+-}$$

3. x^- and x^+ are well-formed:

- they contain at most one 0-generator
- for every $y \neq z$, we have $(y^- \cap z^-) \cup (y^+ \cap z^+) = \emptyset$

4. ⊲ is acyclic

5.
$$x \triangleleft y, x \in z^{\varepsilon}, y \in z^{\eta}$$
 imply $\varepsilon = \eta$

About the second axiom

$$x^{--} \cup x^{++} = x^{-+} \cup x^{+-}$$

Note that x^{--} is not exactly what you think of first:

Therefore it is the closest we can do to globular identities (this still ensures that we do have a chain complex for instance).

About the second axiom

$$x^{--} \cup x^{++} = x^{-+} \cup x^{+-}$$

Note that x^{--} is not exactly what you think of first:

Therefore it is the closest we can do to globular identities (this still ensures that we do have a chain complex for instance).

About the second axiom

$$x^{--} \cup x^{++} = x^{-+} \cup x^{+-}$$

Note that x^{--} is not exactly what you think of first:

• • x⁻⁻⁻ = •

Therefore it is the closest we can do to globular identities (this still ensures that we do have a chain complex for instance).

About the third axiom

For
$$y, z \in x^{\epsilon}$$
,
 $(y^{-} \cap z^{-}) \cup (y^{+} \cap z^{+}) = \emptyset$

This typically forbids

About the last axiom

$$x \triangleleft y, x \in z^{\varepsilon}, y \in z^{\eta} \text{ imply } \varepsilon = \eta$$

Typically, the following is forbidden

About the last axiom

$$x \triangleleft y, x \in z^{\varepsilon}, y \in z^{\eta} \text{ imply } \varepsilon = \eta$$

Note that it also forbids

with

$$\alpha: f *_0 g \Rightarrow f' *_0 g' \qquad \alpha^- = \{f, g\} \qquad \alpha^+ = \{f', g'\}$$

because $f \triangleleft g'$.

Note that this excludes Power's counter-example!

Movement

Given subsets P, F, Q of S, we say that F **moves** P to Q and write $F : P \longrightarrow Q$ when

$$Q = (P \cup F^+) \setminus F^- \qquad P = (Q \cup F^-) \setminus F^+$$

Movement

Given subsets P, F, Q of S, we say that F moves P to Q and write $F : P \longrightarrow Q$ when

 $Q = (P \cup F^+) \setminus F^- \qquad P = (Q \cup F^-) \setminus F^+$

Example

The complex on the left moves the complex on the left to the one on the right:

Typical movement

Lemma Writing $F^{\mp} = F^- \setminus F^+$, given F and P, there exists Q such that $F : P \longrightarrow Q$ if and only if

$$F^{\mp} \subseteq P$$
 and $P \cap F^{+} = \emptyset$

Definition

A cell C = (P, Q) is a pair of non-empty well-formed finite subsets such that

 $P: P \longrightarrow Q$ and $Q: P \longrightarrow Q$

Typically,

(or with multiple top-dimensional generators).

Source and target are defined "as expected":

$$s_n(P, Q) = (P^{(n)}, P_n \cup Q^{(n-1)})$$

where $P^{(n)}$ is the *n*-truncation (we empty sets P_i with i > n).

Source and target are defined "as expected":

$$s_n(P, Q) = (P^{(n)}, P_n \cup Q^{(n-1)})$$

where $P^{(n)}$ is the *n*-truncation (we empty sets P_i with i > n).

Composition is defined by

$$(P, Q) *_n (P', Q') = (P \cup (P' \setminus P'_n)), (Q \setminus Q_n) \cup Q')$$

Source and target are defined "as expected":

$$s_n(P, Q) = (P^{(n)}, P_n \cup Q^{(n-1)})$$

where $P^{(n)}$ is the *n*-truncation (we empty sets P_i with i > n).

Composition is defined by

$$(P, Q) *_n (P', Q') = (P \cup (P' \setminus P'_n)), (Q \setminus Q_n) \cup Q')$$

The "only" difficult thing is to check that the composite of two cells is a cell (which takes up a few pages).

Freeness

To each *n*-generator x one can easily associate a cell $\langle x \rangle$ with x as only *n*-generator: we take

$$P_n = \{x\} \qquad \qquad P_i = P_{i+1}^{\mp}$$

and similarly for Q.

Freeness

To each *n*-generator x one can easily associate a cell $\langle x \rangle$ with x as only *n*-generator: we take

$$P_n = \{x\} \qquad \qquad P_i = P_{i+1}^{\mp}$$

and similarly for Q.

Theorem (Street)

The ω -category is freely generated by cells of this form.

Excision of extremals

Consider an *n*-cell (*P*, *Q*) containing $u \in P_n \cap Q_n$ and different from $\langle u \rangle$.

1. Find the largest m < n such that $(P_{m+1}, Q_{m+1}) \neq \langle u \rangle_{m+1}$ and pick $w \in P_{m+1} \cap Q_{m+1}$.

Excision of extremals

Consider an *n*-cell (*P*, *Q*) containing $u \in P_n \cap Q_n$ and different from $\langle u \rangle$.

- 1. Find the largest m < n such that $(P_{m+1}, Q_{m+1}) \neq \langle u \rangle_{m+1}$ and pick $w \in P_{m+1} \cap Q_{m+1}$.
- 2. In M_{n+1} , pick $x \triangleleft w$ minimal and $y \triangleright w$ maximal. One of them belongs to $P_{m+1} \cap Q_{m+1}$, suppose x.

Excision of extremals

Consider an *n*-cell (*P*, *Q*) containing $u \in P_n \cap Q_n$ and different from $\langle u \rangle$.

- 1. Find the largest m < n such that $(P_{m+1}, Q_{m+1}) \neq \langle u \rangle_{m+1}$ and pick $w \in P_{m+1} \cap Q_{m+1}$.
- 2. In M_{n+1} , pick $x \triangleleft w$ minimal and $y \triangleright w$ maximal. One of them belongs to $P_{m+1} \cap Q_{m+1}$, suppose x.
- 3. We get a decomposition $(P, Q) = (P', Q') *_m (P'', Q'')$ with

$$P' = P^{(m)} \cup \{x\} \quad Q' = P^{(m-1)} \cup \left(\left(M_m \cup x^+\right) \setminus x^-\right) \cup \{x\}$$
$$Q'' = P \setminus \{x\} \qquad P'' = \left(\left(P \setminus \{x\}\right) \cup x^+\right) \setminus x^-$$

COMPARING WITH PASTING SCHEMES
Those are defined in Johnson, *The Combinatorics of n*-*Categorical Pasting*.

A pasting scheme consists of

- a graded set (A_i) of generators
- relations Bⁱ_j, Eⁱ_j : A_i → A_j, for j ≤ i, expressing whether a j-generators occurs in the beginning (resp. end) of a generator

A pasting scheme consists of

- a graded set (A_i) of generators
- relations Bⁱ_j, Eⁱ_j : A_i → A_j, for j ≤ i, expressing whether a j-generators occurs in the beginning (resp. end) of a generator

such that

1. E_i^i is the identity on A_i ,

A pasting scheme consists of

- ▶ a graded set (A_i) of generators
- relations Bⁱ_j, Eⁱ_j : A_i → A_j, for j ≤ i, expressing whether a j-generators occurs in the beginning (resp. end) of a generator

such that

- 1. E_i^i is the identity on A_i ,
- 2. given $x \in A_{n+1}$, there exists $y \in A_n$ such that $xE_n^{n+1}y$,

A pasting scheme consists of

- ▶ a graded set (A_i) of generators
- relations Bⁱ_j, Eⁱ_j : A_i → A_j, for j ≤ i, expressing whether a j-generators occurs in the beginning (resp. end) of a generator

such that

- 1. E_i^i is the identity on A_i ,
- 2. given $x \in A_{n+1}$, there exists $y \in A_n$ such that $xE_n^{n+1}y$,
- 3. given n > k, $xE_k^n z$ iff there exists y, y' such that

$$xE_{n-1}^n yE_k^{n-1}z \qquad xE_{n-1}^n y'B_k^{n-1}z$$

A pasting scheme consists of

- ▶ a graded set (A_i) of generators
- relations Bⁱ_j, Eⁱ_j : A_i → A_j, for j ≤ i, expressing whether a j-generators occurs in the beginning (resp. end) of a generator

such that

- 1. E_i^i is the identity on A_i ,
- 2. given $x \in A_{n+1}$, there exists $y \in A_n$ such that $xE_n^{n+1}y$,
- 3. given n > k, $xE_k^n z$ iff there exists y, y' such that

$$xE_{n-1}^{n}yE_{k}^{n-1}z \qquad \qquad xE_{n-1}^{n}y'B_{k}^{n-1}z$$

4. if $xE_{n-1}^n yE_k^{n-1}z$ then either $xE_k^n z$ or there exists y' with $xB_{n-1}^n y'E_k^n z$,

A pasting scheme consists of

- ▶ a graded set (A_i) of generators
- relations Bⁱ_j, Eⁱ_j : A_i → A_j, for j ≤ i, expressing whether a j-generators occurs in the beginning (resp. end) of a generator

such that

- 1. E_i^i is the identity on A_i ,
- 2. given $x \in A_{n+1}$, there exists $y \in A_n$ such that $xE_n^{n+1}y$,
- 3. given n > k, $xE_k^n z$ iff there exists y, y' such that

$$xE_{n-1}^{n}yE_{k}^{n-1}z \qquad xE_{n-1}^{n}y'B_{k}^{n-1}z$$

4. if $xE_{n-1}^n yE_k^{n-1}z$ then either $xE_k^n z$ or there exists y' with $xB_{n-1}^n y'E_k^n z$,

and dually (replace E with B and vice versa).

Example

÷

has

÷

$$E_2^2 = \{(\varepsilon, \varepsilon), (\eta, \eta)\}$$

$$E_1^2 = \{(\varepsilon, u), (\eta, y), (\eta, z)\}$$

$$E_0^2 = \{(\eta, Q)\}$$

$$B_2^2 = \{(\varepsilon, \varepsilon), (\eta, \eta)\}$$
$$B_1^2 = \{(\varepsilon, x), (\varepsilon, y), (\eta, v)\}$$
$$B_0^2 = \{(\varepsilon, R)\}$$

Directed loops

We write \triangleleft for the preorder such that, for $x, y \in A_{n+1}, x \triangleleft y$ whenever $E_n(x) \cap B_n(y) \neq \emptyset$.

Directed loops

We write \triangleleft for the preorder such that, for $x, y \in A_{n+1}$, $x \triangleleft y$ whenever $E_n(x) \cap B_n(y) \neq \emptyset$.

A has **no directed loops** when for $x, y \in A_n$,

- $B(x) \cap E(x) = \{x\}$, and
- $x \triangleleft y$ then $B(x) \cap E(y) = \emptyset$.

Domain and codomain

Given a graded subset $X \subseteq A$, we define

 $dom(X) = X \setminus E(X)$ $codom(X) = X \setminus B(X)$

Domain and codomain

Given a graded subset $X \subseteq A$, we define

 $\operatorname{dom}(X) = X \setminus E(X) \qquad \qquad \operatorname{codom}(X) = X \setminus B(X)$

and

$$s_i^n(X) = \operatorname{dom}^{n-i}(X)$$
 $t_i^n(X) = \operatorname{codom}^{n-i}(X)$

Domain and codomain

Given a graded subset $X \subseteq A$, we define

 $dom(X) = X \setminus E(X)$ $codom(X) = X \setminus B(X)$

and

$$s_i^n(X) = \operatorname{dom}^{n-i}(X)$$
 $t_i^n(X) = \operatorname{codom}^{n-i}(X)$

Theorem

If A has no directed loops then the globular identities are satisfied.

Well-formedness

A subset $X \subseteq A$ is **well-formed** when

1. X has no directed loops,

Well-formedness

A subset $X \subseteq A$ is **well-formed** when

- 1. X has no directed loops,
- 2. A is *compatible*: given $x, y \in A_{n+1}$ with $x \neq y$,

$$B_n(x) \cap B_n(y) = \emptyset$$
 $E_n(x) \cap E_n(y) = \emptyset$

and is a singleton if zero-dimensional,

Well-formedness

A subset $X \subseteq A$ is **well-formed** when

- 1. X has no directed loops,
- 2. A is *compatible*: given $x, y \in A_{n+1}$ with $x \neq y$,

$$B_n(x) \cap B_n(y) = \emptyset$$
 $E_n(x) \cap E_n(y) = \emptyset$

and is a singleton if zero-dimensional,

3. for all k, dom^k(A) and codom^k(A) are compatible subpasting schemes of A.

A pasting scheme A is **loop-free** when

1. A has no directed loops,

A pasting scheme A is **loop-free** when

- 1. A has no directed loops,
- 2. for all $x \in A$, R(x) is well formed

(*R* is the transitive closure of all $B_k^n \cup E_k^n$, i.e. \downarrow),

A pasting scheme A is **loop-free** when

- 1. A has no directed loops,
- 2. for all $x \in A$, R(x) is well formed (*R* is the transitive closure of all $B_k^n \cup E_k^n$, i.e. \downarrow),
- 3. [superfluous] for any (n − 1)-dimensional well-formed subscheme X of A and x ∈ A_n with dom R(x) ⊆ X,
 3.1 X ∩ E(x) = Ø,
 3.2 if y ∈ X and B(x) ∩ R(y) ≠ Ø then y ∈ B(x),

A pasting scheme A is **loop-free** when

- 1. A has no directed loops,
- 2. for all $x \in A$, R(x) is well formed (*R* is the transitive closure of all $B_{k}^{n} \cup E_{k}^{n}$, i.e. \downarrow),
- [superfluous] for any (n − 1)-dimensional well-formed subscheme X of A and x ∈ A_n with dom R(x) ⊆ X,
 3.1 X ∩ E(x) = Ø,

3.2 if $y \in X$ and $B(x) \cap R(y) \neq \emptyset$ then $y \in B(x)$,

4. for any well-formed *j*-dimensional subscheme X of A and $x \in A$ with $s_j(R(x)) \subseteq X$, if $y, y' \in s_j(R(x))$ and there exists $z \in X_j$ with $y \triangleleft_X z \triangleleft_X y'$ then $z \in s_j(R(x))$.

A pasting scheme A is **loop-free** when

- 1. A has no directed loops,
- 2. for all $x \in A$, R(x) is well formed (*R* is the transitive closure of all $B_{k}^{n} \cup E_{k}^{n}$, i.e. \downarrow),
- [superfluous] for any (n − 1)-dimensional well-formed subscheme X of A and x ∈ A_n with dom R(x) ⊆ X,
 3.1 X ∩ E(x) = Ø,

3.2 if $y \in X$ and $B(x) \cap R(y) \neq \emptyset$ then $y \in B(x)$,

4. for any well-formed *j*-dimensional subscheme *X* of *A* and $x \in A$ with $s_j(R(x)) \subseteq X$, if $y, y' \in s_j(R(x))$ and there exists $z \in X_j$ with $y \triangleleft_X z \triangleleft_X y'$ then $z \in s_j(R(x))$.

and dually.

A free construction

Starting from a loop-free pasting scheme, Johnson defines an ω -category (roughly as we do), with

- well-formed (not necessarily loop-free) subschemes as cells,
- source and target given by dom and codom,
- composition given by union.

Theorem

It is the free ω -category generated by the cells R(x).

Remark

Power's counter-examples explains why we have to include non-loop-free schemes, since loop-free are not closed under composition.

The pasting theorem

Theorem

The realization of a well-formed loop-free pasting scheme in a category gives rise to a unique composite cell.

SIDE NOTES

The permutohedron

Surjections are in bijection with leveled planar trees:

surjection leveled planar tree

 $t: \underline{n} \to \underline{k}$ n+1 leaves, k levels

From leveled trees to surjections:

- ▶ label leaves from left to right by 0, 1, ..., *n*
- label levels downward from 1 to k
- f(i) is the level attained by a ball dropped between i and i + 1

So, the permutohedron is a "leveled" variant of the associahedron.