Towards Efficient Computation of Trace Spaces
of Concurrent Programs

Samuel Mimram

CEA, LIST

/48

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check
(exponential in the number of processes)

N

48

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check
(exponential in the number of processes)

Many executions are equivalent:
we want here to provide a minimal number of execution traces
which describe all the possible cases

N

48

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check
(exponential in the number of processes)

Many executions are equivalent:
we want here to provide a minimal number of execution traces
which describe all the possible cases

Joint work with M. Raussen, L. Fajstrup, E. Goubault and
E. Haucourt.

N

48

Programs generate trace spaces

Consider the program

x:=1;y:=2 | y:=3

It can be scheduled in three different ways:

y:=3;x:=1;y:=2

x:=1;y:=3;y:=2 x:=1;y:=2;y:=3

Giving rise to the following graph of traces:

48

Programs generate trace spaces

Consider the program

x:=1;y:=2 | y:=3
It can be scheduled in three different ways:
y:=3;x:=1;y:=2 x:=1;y:=3;y:=2

(x,y) =(1,2) (x,y)=(1,2)

Giving rise to the following graph of traces:

homotopy: commutation / filled square

48

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, .. .:

e P.: lock the mutex a

e V,: unlock the mutex a

48

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, .. .:

e P.: lock the mutex a

e V,: unlock the mutex a

x:=1;y:=2 | y:=3

48

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, .. .:

e P.: lock the mutex a

e V,: unlock the mutex a

Ppix:=1;Vp; Pasy:=2; Vo | Payy:=3;V,

48

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, .. .:

e P.: lock the mutex a

e V,: unlock the mutex a

Py.Vy.PaV, | P,V

48

Geometric semantics
A program will be interpreted as a directed space:
o Pb.Vb.Pa.Va

5/48

Geometric semantics
A program will be interpreted as a directed space:
o Pb.Vb.Pa.Va

e PV,

5/48

Geometric semantics
A program will be interpreted as a directed space:
o Pb.Vb.Pa.Va

e PV,

o Po.Vp.PoV, | P..V,

5/48

Geometric semantics
A program will be interpreted as a directed space:
o Py Vy.P,.V,

e PV,

o PoVu.PoV, | PV,

P,.Py.Vs.Vy.Ps.V,

5/48

Geometric semantics
A program will be interpreted as a directed space:
o Py Vy.P,.V,

e PV,
H—H
P, V,
o Pp.Vp.P.V, | P,.V, Homotopy
Vst
Pt

P,.Py.Vs.Vy.Ps.V,

48

Geometric semantics

A program will be interpreted as a directed space:
o Py VPV,

e PV,

o PoVu.PoV, | PV,

Pp.Vp.Py.P3.V,. Vs Forbidden region

Schedulings

A scheduling is the homotopy class of a path.

6/48

Schedulings

A scheduling is the homotopy class of a path.

We want to compute a path in every scheduling

/48

Schedulings

A scheduling is the homotopy class of a path.

We want to compute a path in every scheduling

We do this by testing possible ways to go around forbidden regions:

a S
Pat Pat

Pb Vb Pa Va Pb Vb 'Da Va

/48

The Swiss flag

P..Py.Vy.Vs | Pp.PsVsVi

A forbidden region

7/48

The Swiss flag

P..Py.Vy.Vs | Pp.PsVsVi

Pa Pb Vb Va

A trace: Pp.P;.V,.P,.Vp.Pp. V.V,

7/48

The Swiss flag

P..Py.Vy.Vs | Pp.PsVsVi

A deadlock: Pp.P;

7/48

The Swiss flag

P..Py.Vy.Vs | Pp.PsVsVi

An unreachable region
7/48

The Swiss flag

P,.Ppy.Vp.Vy | Pp.P,.V,aVy

FZ F% V% b;

Here we are interested in maximal paths modulo homotopy
7/48

@ Trace semantics of programs
® Geometric semantics of programs

©® Computation of the trace space

Plan

48

Resources

We suppose fixed a set R of resources a with capacity x, € N.

The execution of programs are such that
@ a resource a cannot be locked (V) more than k, times

® a resource a cannot be freed if it has not been locked

Example

A mutex is a resource of capacity 1.

48

Programs

We consider programs of the form:

p = 1 | Po| Vol pp | plp | ptp | p

10/48

Programs

We consider programs of the form:

p = 1| Po | Vo pp | plp

We omit non-deterministic choice, loops

10/48

Programs

We consider programs of the form:

p = 1| Po | Vo pp | plp

We omit non-deterministic choice, loops, thread creation an join:

A = P, | V, actions
t = At | 1 threads
p = tt|...|t programs

10/48

Trace semantics

The trace semantics of a program will be an asynchronous graph:

e a graph G = (V, E) labeled by actions

e with an independence relation |

relating paths of length 2

11/48

Trace semantics

The trace semantics of a program will be an asynchronous graph:

e a graph G = (V, E) labeled by actions

e with an independence relation |

relating paths of length 2

11/48

Trace semantics

The trace semantics of a program will be an asynchronous graph:

e a graph G = (V, E) labeled by actions

e with an independence relation |

relating paths of length 2

Homotopy is the smallest congruence on paths containing /.

11/48

Trace semantics
To every program p we associate (Up, by, €,) defined by:
e U;: terminal graph
° UPa: bPa L ep, UVa: bPa A ey,
o Upg:
bp

J is the “cartesian product” of U, and Ug:

plg
(x,y) —2= (<, y) when x A,/ €U,
(va/)i>(x7y,) when y4B>y/ < Uq

(v, x') —2=(v,¥')

12 /48

Trace semantics
Example:

Pp. V. PV, | P,.V,

48

Trace semantics
Example:

Py.Vp.Po Vs | Py.V,

The resource function r, associates to every vertex x:

number of releases of a - number locks of a

48

Trace semantics
Example:

Py.Vp.Po Vs | Py.V,

Va ~ oV, Voo, o~ TVQ

—Pp—=> —Vp> X —P;> —V,—>
SIS PR
P Pb Vb Pa Va

The resource function r, associates to every vertex x:

number of releases of a - number locks of a

Ex: ra(x) = —1, rp(x) =0

48

Trace semantics

Example:
Pp.Vp.P,.V, | PaV,

Va ~ oV, Voo, o~ Va

—Pp—= —Vp> —P,> Y —V,—>

ST

P Pb Vb Pa Va

The resource function r, associates to every vertex x:

number of releases of a - number locks of a

Ex: ra(y) =-2, n(y) =0 o

48

Trace semantics
Example:

Py.Vp.Po Vs | Py.V,

Va ~ oV, Voo, o~ Va

—Pp—> —Vp> —P,>Y —V,—>

ST

P Pb Vb Pa Va

The resource function r, associates to every vertex x:

number of releases of a - number locks of a

Ex: n(y)=-2<-1=k,

48

Trace semantics
Trace semantics Tp:
Up where we remove vertices x which do not satisfy

0 < ra(x) 4+ Ka < Ka

Example:
Pp.Vp.P,.V, | PV,

Py Vi P, Va
Va ~ \I}a ~ \¢a Tva

pl ~ A~ I

Py Vi P, Va

48

Geometric semantics

The trace semantics is difficult to use to build intuitions. ..

In a similar way, one can define a geometric semantics where
programs are interpreted by directed spaces.

15/48

Geometric semantics
A path in a topological space X is a continuous map / = [0,1] — X.

Definition
A d-space (X, dX) consists of
e a topological space X
e a set dX of paths in X, called directed paths, such that

e constant paths. every constant path is directed,

e reparametrization: dX is closed under precomposition with
increasing maps | — I, which are called reparametrizations,

e concatenation: dX is closed under concatenation.

16 /48

Geometric semantics
A path in a topological space X is a continuous map / = [0,1] — X.

Definition
A d-space (X, dX) consists of
e a topological space X
e a set dX of paths in X, called directed paths, such that

e constant paths. every constant path is directed,

e reparametrization: dX is closed under precomposition with
increasing maps | — I, which are called reparametrizations,

e concatenation: dX is closed under concatenation.

Example
(X, <) space with a partial order, dX = {increasing maps | — X}

I: d-space induced by [0, 1]

16 /48

Geometric semantics
A path in a topological space X is a continuous map / = [0,1] — X.

Definition
A d-space (X, dX) consists of
e a topological space X
e a set dX of paths in X, called directed paths, such that

e constant paths. every constant path is directed,

e reparametrization: dX is closed under precomposition with
increasing maps | — I, which are called reparametrizations,

e concatenation: dX is closed under concatenation.

Example
St={eil0<h<2r @
dS*: p(t) = eif(t) for some increasing function f : | — R

16 /48

Geometric semantics
To each program p we associate a d-space (Hp, bp, €p):
o Hyi: o
L4 HPa = 7 H\/‘a = 7
* Hpg:

by

* Hpigt Hp x Hq, bpjg = (bp, bg), €pq = (&p, &q)

17 /48

Geometric semantics
To each program p we associate a d-space (Hp, bp, €p):
o Hyi: o
° HPa = 7 H\/‘a = 7
* Hpg:

by

® Hypjq: Hp X Hq, bpjq = (bp, bg). €jq = (€p, &)

Resource function: r,(x) € N for each a € R and point x

17 /48

Geometric semantics
To each program p we associate a d-space (Hp, bp, €p):
o Hyi: o
° HPa = 7 H\/‘a = 7
* Hpg:

by

® Hypjq: Hp X Hq, bpjq = (bp, bg). €jq = (€p, &)
Resource function: r,(x) € N for each a € R and point x

Forbidden region:
Fop={x€H,/3aeR, rix)+k,<0 or ry(x)>0}

17 /48

Geometric semantics
To each program p we associate a d-space (Hp, bp, €p):
o Hyi: o
° HPa = 7 H\/‘a = 7
* Hpg:

by

® Hypjq: Hp X Hq, bpjq = (bp, bg). €jq = (€p, &)
Resource function: r,(x) € N for each a € R and point x

Forbidden region:
Fop={x€H,/3aeR, rix)+k,<0 or ry(x)>0}

Geometric semantics: G, = H, \ Fp,

17 /48

P,.V4|P,.V,

Examples of geometric semantics

18/48

P,.V4|P,.V,

Examples of geometric semantics

Pa.Py. Vo Vs|Pp.Py. Vs Vi

Ep

+

18/48

P,.V4|P,.V,

Examples of geometric semantics

Pa.Py. Vo Vs|Pp.Py. Vs Vi

Ep

+

P,.(V4.P.)*|P,.V,

0,

18/48

Examples of geometric semantics

P3.V4|P,.V,| Py V, P3.V4|P,.V,| Py V,
(ka=2) (ka=1)

t1

ta . to

to

t1

to

19/48

Geometric realization

The two semantics are “essentially the same”: the geometric
semantics is the geometric realization of a cubical set

neld 5
G, = / To(n) - T"

Proposition

Given a program p, with T, as trace semantics and G, as
geometric semantics,

e every pathm: b — e in T, induces a path: b — e in Gp,
e m~pin T, impliesT~pin Gy

e every path p of Gy, is homotopic to a path T (m path in Gp)

20 /48

Computing the trace space

Goal
Given a program p, we describe an algorithm to compute a trace in
each equivalence class of traces m : b, — e, up to homotopy in Gp.

The proposition before ensures that it is the same to compute this
in the trace semantics or in the geometric semantics.

21/48

The algorithm

Suppose given a program

p = polpl---[pn-1

with n threads.

22 /48

The algorithm

Suppose given a program

p = polpl---[pn-1
with n threads.

Under mild assumptions, the geometric semantics is of the form

G, = 1"\ U R'
where R — H] y
jr7j

are | open rectangles.

to 22 /48

The algorithm

Under mild assumptions, the geometric semantics is of the form

-1
G = I"\ U R
where R — H] y
= Lyl
are | open rectangles.
Example Py V. Py V| Pb.Vi.Pa.V,

0.0 .1 .1
Xo Yo X0 Yo

22 /48

The algorithm

The main idea of the algorithm is to extend the forbidden cubes
downwards in various directions and look whether there is a path
from b to e in the resulting space.

t1 t1 ty
| | |
| | |

to to to

By combining those information, we will be able to compute traces
modulo homotopy.

23 /48

The algorithm

The main idea of the algorithm is to extend the forbidden cubes
downwards in various directions and look whether there is a path
from b to e in the resulting space.

t1 t1 ty
| | |
| | |

to to to

By combining those information, we will be able to compute traces
modulo homotopy.

The directions in which to extend the holes will be coded by
boolean matrices M.

23 /48

The index poset

M, p: boolean matrices with / rows and n columns.

24 /48

Min

Xm:

The index poset

: boolean matrices with / rows and n columns.

space obtained by extending
for every (i, /) such that M(i,j) =1
the forbidden cube i downwards
in every direction other than j

24 /48

The index poset

M, p: boolean matrices with / rows and n columns.

space obtained by extending
for every (i, j) such that M(i,j) =1
the forbidden cube i downwards
in every direction other than j

Xm:

t1 t1 t1
0 0 0
| | |
to to to

o) o) (o]

24 /48

The index poset

M, p: boolean matrices with / rows and n columns.

space obtained by extending

Xw: for every (i, j) such that M(i,j) =1
the forbidden cube i downwards
in every direction other than j
t1 t1

t
0 0 0
|] |
to to to

o)

01
10
VM ,—{0,1}:

e WU(M) =0 if there is a path b — e: M is alive
e W(M) =1 if there is no path b — e: M is dead

10
01

24 /48

P,.V,.Pp. Vi

The index poset

P.VaPyVy | PyVaPy.Vi

o =
o o
= O

to to

to

R
= O
o O
o =
~_
R
= O
= O

)

alive dead

25 /48

The index poset

M, is equipped with the pointwise ordering
WV is increasing: more 1 = more obstructions
MF:# matrices with non-null rows

ME : matrices with unit column vectors

26

48

The index poset

M, is equipped with the pointwise ordering
e U is increasing: more 1 = more obstructions
MF:# matrices with non-null rows

ME : matrices with unit column vectors

Definition
The index poset C(X) = {M ¢ Mf,, / V(M) =0}
(the alive matrices).

26 /48

The index poset

M, is equipped with the pointwise ordering
e U is increasing: more 1 = more obstructions
MF:# matrices with non-null rows

ME : matrices with unit column vectors

Definition
The index poset C(X) = {M ¢ Mf,, / V(M) =0}
(the alive matrices).

Definition
The dead poset D(X) = {M € Mf, / W(M)=1}.

26

48

The index poset

M, is equipped with the pointwise ordering
e U is increasing: more 1 = more obstructions
MF:# matrices with non-null rows

ME : matrices with unit column vectors

Definition
The index poset C(X) = {M ¢ .Mf:,, / V(M) =0}
(the alive matrices).

Definition
The dead poset D(X) = {M € Mf, / W(M)=1}.

D(X) ~ C(X) ~ homotopy classes of traces

26

48

The dead poset

Proposition
A matrix M € M,Cm is in D(X) iff it satisfies
V(i,j) € [0: I[x][0: nl, M(i,j)=1 = xj < min yj-"/

i"eR(M)

where R(M): indexes of non-null rows of M.

27 /48

The dead poset
Proposition
A matrix M € an is in D(X) iff it satisfies

V(i,j) € [0: I[x][0: nl, M(i,j)=1 = xj < min yjﬂ

i"€R(M)

where R(M): indexes of non-null rows of M.

Example

M is dead:

t1

i

xi - Y, <0 1) X =1<2=min(y?, y})
0 = 1 in(vO 1

Y 10 Xy =2 <3 =min(y;,
L 0 (%0 %0)

X1

0,1,0.,1
XO XO yo _yo 27 /48

The index poset

Proposition
A matrix M is in C(X) iff for every N € D(X), N £ M.

28 /48

The index poset

Proposition
A matrix M is in C(X) iff for every N € D(X), N £ M.

Remark
N £ M: there exists (i,j) s.t. N(i,j) =1 and M(i,j) = 0.

Remark
Since C(X) is downward closed it will be enough to compute the
set Cmax(X) of maximal alive matrices.

28 /48

Remark
The index poset contains all the geometrical information!

29 /48

Connected components

M A N: pointwise min of M and N

Definition
Two matrices M and N are connected when M A N does not
contain any null row.

Proposition
The connected components of C(X) are in bijection with homotopy
classes of traces b — e in X.

30 /48

Dining philosophers

n processes py in parallel: t

to

Pk = Pak Pak+1 Vs Vak+1 fo

n | sched. | ALCOOL (s) | ALCOOL (MB) | sPIN (s) | sPIN (MB)
8 254 0.1 0.8 0.3 12
9 510 0.8 1.4 1.5 41
10 1022 5 4 8 179
11 2046 32 9 42 816
12 | 4094 227 26 313 3508
13| 8190 1681 58 00 00
14 | 16382 13105 143 00 00

31/48

How do we extend this methodology
to program with loops?

32/48

Loops

Given a thread p, we write p* for its looping: while(...){p}.

33/48

Loops

Given a thread p, we write p* for its looping: while(...){p}.

Given a program p with n threads:

p = pilp2|.--|pn

we write p* for
p* = pilpsl---Ip;

33/48

Loops

Given a thread p, we write p* for its looping: while(...){p}.

Given a program p with n threads:

p = pilp2|.--|pn

we write p* for
*

p* = pilpzl.--Ipn

Notice that the geometric semantics X, can be deduced from the
semantics of p by glueing copies of X}, in every direction:

pi = Pi-pi-pi---

33/48

Deloopings
Notice that the geometric semantics X,+ can be deduced from the
semantics of p by glueing copies of X, in every direction.

Example

Consider the program p = q|q|q with g = P,.V, (and a of arity 3):

t
B, Gy ™
to . t) %..
to to
X p X p*

34/48

Deloopings
Notice that the geometric semantics X,+ can be deduced from the
semantics of p by glueing copies of X, in every direction.

Example

Consider the program p = q|q|q with g = P,.V, (and a of arity 3):

t
a1
by Ty
’ "™
& Myl
to to
Xp Xp(3,2,2)

Finite deloopings:

X2y = (Y®1Y)BaAYE1Y) with Y = Xp@oXpPoXp

p

34/48

Similarly, given schedulings
M=(1 0 0)
of the previous program p

t1

to

and

Schedulings
N=(0 0 1)

t1

to

35/48

Schedulings

Similarly, given schedulings
M=(1 0 0) and N=(0 0 1)

of the previous program p

t1 t1
Q@ t2@
to to

100
M@oN-(O 0 1)

7]-’1)

we write

for the following scheduling of X,g2 = X, ©o Xp

ty

to

XMeaoN =

35/48

Schedulings

Similarly, given schedulings
M=(1 0 0) and N=(0 0 1)

of the previous program p

t1 t1
t2@ t2@
to to

100
M@oN-(O 0 1)

71’1)

we write

for the following scheduling of X,g2 =X, ©o Xp

ty t1

tr to
,@ to # \@@ to

XMeaoN =

= Xnm®oXn

35/48

Shadows

In fact, scheduling drop “shadows” on previous schedulings

t1 t
., | @
fo # o — Xy@oXn

XMeaoN =

36 /48

Shadows

In fact, scheduling drop “shadows” on previous schedulings

t1 t
., | @
fo # o — Xy@oXn

Write Xy, for the shadow projected by scheduling M in direction j:

XMeaoN =

t1
gL
£
Xno 0
so that
Xman = (Xm0 X)) @ Xn

36 /48

Alive matrices for programs with loops

Every scheduling M of a delooping of X}, is composed by glueing
submatrices (Mj,.._i,).

37/48

Alive matrices for programs with loops

Every scheduling M of a delooping of X}, is composed by glueing
submatrices (Mj,.._i,).

.....

a deadlock:

Lemma
If a matrix M is alive then all its submatrices are alive.

37 /48

Alive matrices for programs with loops

Every scheduling M of a delooping of X}, is composed by glueing
submatrices (Mj,.._i,).

.....

a deadlock:

Lemma
If a matrix M is alive then all its submatrices are alive.

The converse is not true!

37 /48

Shadows can create deadlocks

The following matrices P and Q coding the schedulings
t1 ty
to to
Xp Xo

of p are alive, however the matrix P &g Q is dead:

51

to
to

XPEBOQ =

38/48

The shadow automaton

We construct an automaton which describes all the schedulings
possible in the future (which won't create deadlocks by their
shadow): given a scheduling M and a direction j, it describes all
the matrices N such that M @; N is alive.

39 /48

The shadow automaton

Definition
The shadow automaton of a program p is a non-deterministic
automaton whose

e states are shadows
e transitions p; 27,y are labeled by a direction j (with
0 <j < n) and a scheduling M
defined as the smallest automaton
e containing the empty scheduling ()

e and such that for every state N/, for every direction j and for
every scheduling M such that the scheduling M U N’ is alive,
and M is maximal with this property, there is a transition
N M with N = (MU N)|;.

All the states of the automaton are both initial and final.

40 /48

The shadow automaton
For instance consider the program p = P,.V,|P,.V,

41/48

The shadow automaton
For instance consider the program p = P,.V,|P,.V,

t1

_ to
X, =
There are two maximal schedulings

t1 t1

to to

41/48

The shadow automaton
For instance consider the program p = P,.V,|P,.V,

which can drop three possible shadows

t1 t1 t1

to to to 41/48

The shadow automaton

The shadow automaton of p is

oS e
=
0, 17|1 0,

LR] Dol

42/48

The shadow automaton

The shadow automaton of p is

lll

)

T
>

07 07
-
17

1|LCE ILDOJL

al

. . 0, .
For instance, the transition EHE is computed as follows:

e consider the shadow M = E U E = E

e compute its shadow in direction 0: E

42 /48

The shadow automaton

Theorem
Given a program p to any total path in a delooping of p is
represented by a path in the shadow automaton of p such that

e every path in the automaton comes from a total path in X,

e if two total paths in X correspond to the same path in the
automaton then they are homotopic

Paths in the shadow automaton describe homotopy classes in
deloopings of p.

43 /48

The shadow automaton

Theorem
Given a program p to any total path in a delooping of p is
represented by a path in the shadow automaton of p such that

e every path in the automaton comes from a total path in X,

e if two total paths in X correspond to the same path in the
automaton then they are homotopic

Paths in the shadow automaton describe homotopy classes in
deloopings of p.

is represented by L OL L OL L 1L L

43 /48

Reducing the size of the automaton

The shadow automaton is too big:

e we can determinize it:

_’t/lp\it
_,ggo/)

o ®

44 /48

Reducing the size of the automaton

The shadow automaton is too big:

e we can determinize it:

,b,/’L;b
/ Y

= (o

—

ol ®
e two distinct paths in the automaton can represent the same
homotopy class of paths: we can quotient paths under
connexity.

44 /48

An application to static analysis

(Ps(a= g)v)

[a:=a—1] [a:=7]

(\P [a:=2] Q
—— 2=y

0 ~ai=a—-1

The program

pt = (Pa.a =a-— 1.Va)*

induces the automaton

45 /48

An application to static analysis
The program

po= (Pua=a-1V,)|(P.(a= g)v)
induces the automaton
[a:=a—1] [a:=F]
() oy Q

0, ~ai=a— 1]/
and thus the set of equations

Ao IU(Ao—l)U(Al—]_)
Al = [Udu

45 /48

An application to static analysis
The program

po= (Pua=a-1V,)|(P.(a= g)v)
induces the automaton
[a:=a—1] [a:=F]
() oy Q

0, ~ai=a— 1]/
and thus the set of equations

Ay = IU(Ao—l)U(Al—]_)
Al = [Udu

which admits a least fixed point

AP = A =]-ool]

45 /48

An example: the two-phase protocol
We consider n programs locking / resources:

Pni=qlq|...|q with q=Ps....Py. V...V,

46 /48

An example: the two-phase protocol
We consider n programs locking / resources:

Pni=qlq|...|q with q=Ps....Py. V...V,
For instance, p22 = q|q is

ty

to

46 /48

An example: the two-phase protocol
We consider n programs locking / resources:

Pni=qlq|...|q with q=Pa....P;.Va.... V,
For instance, p22 = q|q is

ty

We get the following results compared to spin:

to

n| s t|s t'| s | t" SSPIN | tspIN
2|1 31 83|10 1| 1 58 65
2|2 31 83|10 1| 1 112 129
213 3] 83|10 1|1 180 209
3111199 | 4[24 1| 1 171 218
312111990424 1| 1 441 602
31311191001 41124 11| 1 817 | 1128

46 /48

About geometric models

Was the use of the geometric model necessary?

47 /48

About geometric models

Was the use of the geometric model necessary?

= No: we could have formulated it directly on the trace space

47 /48

About geometric models

Was the use of the geometric model necessary?

= No: we could have formulated it directly on the trace space

Was the geometric model useful?

47 /48

About geometric models

Was the use of the geometric model necessary?

= No: we could have formulated it directly on the trace space

Was the geometric model useful?

= Yes: it would have been very hard to think of the algorithm
without “seeing” the spaces

47 /48

About geometric models

Was the use of the geometric model necessary?

= No: we could have formulated it directly on the trace space

Was the geometric model useful?

= Yes: it would have been very hard to think of the algorithm
without “seeing” the spaces

= Yes: computers are much better at manipulating booleans
than complex algebraic structures

47 /48

Future works

We compute one execution trace in each homotopy class.

48 /48

Future works

We compute one execution trace in each homotopy class.

What remains to do:

e use these trace to do static analysis
(e.g. abstract interpretation)

e speed improvements
e implementation improvements (e.g. GPU)

e |ots of work remain to be done on the theoretical side

48 /48

