
Towards Efficient Computation of Trace Spaces
of Concurrent Programs

Samuel Mimram

CEA, LIST

1 / 48

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check

(exponential in the number of processes)

Many executions are equivalent:
we want here to provide a minimal number of execution traces

which describe all the possible cases

Joint work with M. Raussen, L. Fajstrup, É. Goubault and
E. Haucourt.

2 / 48

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check

(exponential in the number of processes)

Many executions are equivalent:
we want here to provide a minimal number of execution traces

which describe all the possible cases

Joint work with M. Raussen, L. Fajstrup, É. Goubault and
E. Haucourt.

2 / 48

Goal

When verifying a concurrent program,
there is a priori a large number of possible interleavings to check

(exponential in the number of processes)

Many executions are equivalent:
we want here to provide a minimal number of execution traces

which describe all the possible cases

Joint work with M. Raussen, L. Fajstrup, É. Goubault and
E. Haucourt.

2 / 48

Programs generate trace spaces
Consider the program

x:=1;y:=2 | y:=3

It can be scheduled in three different ways:

y:=3;x:=1;y:=2 x:=1;y:=3;y:=2 x:=1;y:=2;y:=3

(x , y) = (1, 2) (x , y) = (1, 2) (x , y) = (1, 3)

Giving rise to the following graph of traces:

x:=1 // y:=2 //

y:=3

OO

x:=1
//

y:=3

OO

y:=2
//

y:=3

OO

homotopy: commutation / filled square

3 / 48

Programs generate trace spaces
Consider the program

x:=1;y:=2 | y:=3

It can be scheduled in three different ways:

y:=3;x:=1;y:=2 x:=1;y:=3;y:=2 x:=1;y:=2;y:=3
(x , y) = (1, 2) (x , y) = (1, 2) (x , y) = (1, 3)

Giving rise to the following graph of traces:

x:=1 // y:=2 //

y:=3

OO

x:=1
//

∼ y:=3

OO

y:=2
//

y:=3

OO

homotopy: commutation / filled square
3 / 48

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, . . .:

• Pa: lock the mutex a
• Va: unlock the mutex a

4 / 48

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, . . .:

• Pa: lock the mutex a
• Va: unlock the mutex a

x:=1;y:=2 | y:=3

4 / 48

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, . . .:

• Pa: lock the mutex a
• Va: unlock the mutex a

Pb;x:=1;Vb;Pa;y:=2;Va | Pa;y:=3;Va

4 / 48

Mutexes

Concurrent access to shared variables should be protected
using mutexes a, b, . . .:

• Pa: lock the mutex a
• Va: unlock the mutex a

Pb.Vb.Pa.Va | Pa.Va

4 / 48

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pb.Vb.Pa.Pa.Va.Va Forbidden region

5 / 48

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pb.Vb.Pa.Pa.Va.Va Forbidden region

5 / 48

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pb.Vb.Pa.Pa.Va.Va Forbidden region

5 / 48

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pa.Pb.Va.Vb.Pa.Va

Forbidden region

5 / 48

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va Homotopy

Pb Vb Pa Va

Pa

Va

Pa.Pb.Va.Vb.Pa.Va

Forbidden region

5 / 48

Geometric semantics
A program will be interpreted as a directed space:

• Pb.Vb.Pa.Va

Pb Vb Pa Va

• Pa.Va

Pa Va

• Pb.Vb.Pa.Va | Pa.Va

Pb Vb Pa Va

Pa

Va

Pb.Vb.Pa.Pa.Va.Va Forbidden region
5 / 48

Schedulings
A scheduling is the homotopy class of a path.

Pb Vb Pa Va

Pa

Va

We want to compute a path in every scheduling

We do this by testing possible ways to go around forbidden regions:

Pb Vb Pa Va

Pa

Va

Pb Vb Pa Va

Pa

Va

6 / 48

Schedulings
A scheduling is the homotopy class of a path.

Pb Vb Pa Va

Pa

Va

We want to compute a path in every scheduling

We do this by testing possible ways to go around forbidden regions:

Pb Vb Pa Va

Pa

Va

Pb Vb Pa Va

Pa

Va

6 / 48

Schedulings
A scheduling is the homotopy class of a path.

Pb Vb Pa Va

Pa

Va

We want to compute a path in every scheduling

We do this by testing possible ways to go around forbidden regions:

Pb Vb Pa Va

Pa

Va

Pb Vb Pa Va

Pa

Va

6 / 48

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

A forbidden region
7 / 48

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

A trace: Pb.Pa.Va.Pa.Vb.Pb.Vb.Va
7 / 48

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

A deadlock: Pb.Pa
7 / 48

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

An unreachable region
7 / 48

The Swiss flag

Pa.Pb.Vb.Va | Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

Here we are interested in maximal paths modulo homotopy
7 / 48

Plan

1 Trace semantics of programs
2 Geometric semantics of programs
3 Computation of the trace space

8 / 48

Resources

We suppose fixed a set R of resources a with capacity κa ∈ N.

The execution of programs are such that
1 a resource a cannot be locked (Va) more than κa times
2 a resource a cannot be freed if it has not been locked

Example
A mutex is a resource of capacity 1.

9 / 48

Programs

We consider programs of the form:

p ::= 1 | Pa | Va | p.p | p|p | p+p | p∗

We omit non-deterministic choice, loops

, thread creation an join:

A ::= Pa | Va actions
t ::= A.t | 1 threads
p ::= t|t| . . . |t programs

10 / 48

Programs

We consider programs of the form:

p ::= 1 | Pa | Va | p.p | p|p

| p+p | p∗

We omit non-deterministic choice, loops

, thread creation an join:

A ::= Pa | Va actions
t ::= A.t | 1 threads
p ::= t|t| . . . |t programs

10 / 48

Programs

We consider programs of the form:

p ::= 1 | Pa | Va | p.p | p|p

| p+p | p∗

We omit non-deterministic choice, loops, thread creation an join:

A ::= Pa | Va actions
t ::= A.t | 1 threads
p ::= t|t| . . . |t programs

10 / 48

Trace semantics

The trace semantics of a program will be an asynchronous graph:

• a graph G = (V ,E) labeled by actions
• with an independence relation I

y1
B // z

x
A

OO

B
// y2

A

OO

relating paths of length 2

Homotopy is the smallest congruence on paths containing I.

11 / 48

Trace semantics

The trace semantics of a program will be an asynchronous graph:

• a graph G = (V ,E) labeled by actions
• with an independence relation I

y1
B //

∼

z

x
A

OO

B
// y2

A

OO

relating paths of length 2

Homotopy is the smallest congruence on paths containing I.

11 / 48

Trace semantics

The trace semantics of a program will be an asynchronous graph:

• a graph G = (V ,E) labeled by actions
• with an independence relation I

y1
B //

∼

z

x
A

OO

B
// y2

A

OO

relating paths of length 2

Homotopy is the smallest congruence on paths containing I.

11 / 48

Trace semantics
To every program p we associate (Up, bp, ep) defined by:

• U1: terminal graph
• UPa : bPa

Pa // ePa UVa : bPa
Va // eVa

• Up.q:
Up Uqbp ep = bq eq

• Up|q is the “cartesian product” of Up and Uq:

(x , y)
A // (x ′, y) when x A // x ′ ∈ Up

(x , y ′) B // (x , y ′) when y B // y ′ ∈ Uq

(y , x ′) B //

∼

(y , y ′)

(x , x ′)

A

OO

B
// (x , y ′)

A

OO

12 / 48

Trace semantics
Example:

Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa //

∼ ∼

Va // ep

Va

OO

Pb //

∼

Va

OO

Vb //

∼

x

Pa //

Va

OO

∼

y

Va //

Va

OO

∼

Va

OO

bp

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

Pa

OO

The resource function ra associates to every vertex x :
number of releases of a - number locks of a

Ex: ra(y) = −2

13 / 48

Trace semantics
Example:

Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa //

∼ ∼

Va // ep

Va

OO

Pb //

∼

Va

OO

Vb //

∼

x

Pa //

Va

OO

∼

y

Va //

Va

OO

∼

Va

OO

bp

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

Pa

OO

The resource function ra associates to every vertex x :
number of releases of a - number locks of a

Ex: ra(y) = −2

13 / 48

Trace semantics
Example:

Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa //

∼ ∼

Va // ep

Va

OO

Pb //

∼

Va

OO

Vb //

∼

x Pa //

Va

OO

∼

y

Va //

Va

OO

∼

Va

OO

bp

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

Pa

OO

The resource function ra associates to every vertex x :
number of releases of a - number locks of a

Ex: ra(x) = −1, rb(x) = 0 13 / 48

Trace semantics
Example:

Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa //

∼ ∼

Va // ep

Va

OO

Pb //

∼

Va

OO

Vb //

∼

x

Pa //

Va

OO

∼

y Va //

Va

OO

∼

Va

OO

bp

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

Pa

OO

The resource function ra associates to every vertex x :
number of releases of a - number locks of a

Ex: ra(y) = −2, rb(y) = 0 13 / 48

Trace semantics
Example:

Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa //

∼ ∼

Va // ep

Va

OO

Pb //

∼

Va

OO

Vb //

∼

x

Pa //

Va

OO

∼

y Va //

Va

OO

∼

Va

OO

bp

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

Pa

OO

The resource function ra associates to every vertex x :
number of releases of a - number locks of a

Ex: ra(y) = −2 < −1 = κa 13 / 48

Trace semantics
Trace semantics Tp:
Up where we remove vertices x which do not satisfy

0 6 ra(x) + κa 6 κa

Example:
Pb.Vb.Pa.Va | Pa.Va

Pb //

∼

Vb //

∼

Pa // Va //

Va

OO

Pb //

∼

Va

OO

Vb //

∼

Va

OO

Va

OO

Pa

OO

Pb
//

Vb
//

Pa

OO

Pa
//

Pa

OO

Va
//

Pa

OO

14 / 48

Geometric semantics

The trace semantics is difficult to use to build intuitions. . .

In a similar way, one can define a geometric semantics where
programs are interpreted by directed spaces.

15 / 48

Geometric semantics
A path in a topological space X is a continuous map I = [0, 1]→ X .

Definition
A d-space (X , dX) consists of

• a topological space X
• a set dX of paths in X , called directed paths, such that

• constant paths: every constant path is directed,
• reparametrization: dX is closed under precomposition with

increasing maps I → I, which are called reparametrizations,
• concatenation: dX is closed under concatenation.

16 / 48

Geometric semantics
A path in a topological space X is a continuous map I = [0, 1]→ X .

Definition
A d-space (X , dX) consists of

• a topological space X
• a set dX of paths in X , called directed paths, such that

• constant paths: every constant path is directed,
• reparametrization: dX is closed under precomposition with

increasing maps I → I, which are called reparametrizations,
• concatenation: dX is closed under concatenation.

Example
(X ,6) space with a partial order, dX = {increasing maps I → X}

~I: d-space induced by [0, 1]

16 / 48

Geometric semantics
A path in a topological space X is a continuous map I = [0, 1]→ X .

Definition
A d-space (X , dX) consists of

• a topological space X
• a set dX of paths in X , called directed paths, such that

• constant paths: every constant path is directed,
• reparametrization: dX is closed under precomposition with

increasing maps I → I, which are called reparametrizations,
• concatenation: dX is closed under concatenation.

Example
S1 = {ei θ}0 6 θ < 2π
dS1: p(t) = ei f (t) for some increasing function f : I → R

16 / 48

Geometric semantics
To each program p we associate a d-space (Hp, bp, ep):

• H1: •
• HPa =~I HVa =~I
• Hp.q:

Hp Hqbp ep = bq eq

• Hp|q: Hp × Hq, bp|q = (bp, bq), ep|q = (ep, eq)

Resource function: ra(x) ∈ N for each a ∈ R and point x

Forbidden region:
Fp = {x ∈ Hp / ∃a ∈ R, ra(x) + κa < 0 or ra(x) > 0}

Geometric semantics: Gp = Hp \ Fp

17 / 48

Geometric semantics
To each program p we associate a d-space (Hp, bp, ep):

• H1: •
• HPa =~I HVa =~I
• Hp.q:

Hp Hqbp ep = bq eq

• Hp|q: Hp × Hq, bp|q = (bp, bq), ep|q = (ep, eq)

Resource function: ra(x) ∈ N for each a ∈ R and point x

Forbidden region:
Fp = {x ∈ Hp / ∃a ∈ R, ra(x) + κa < 0 or ra(x) > 0}

Geometric semantics: Gp = Hp \ Fp

17 / 48

Geometric semantics
To each program p we associate a d-space (Hp, bp, ep):

• H1: •
• HPa =~I HVa =~I
• Hp.q:

Hp Hqbp ep = bq eq

• Hp|q: Hp × Hq, bp|q = (bp, bq), ep|q = (ep, eq)

Resource function: ra(x) ∈ N for each a ∈ R and point x

Forbidden region:
Fp = {x ∈ Hp / ∃a ∈ R, ra(x) + κa < 0 or ra(x) > 0}

Geometric semantics: Gp = Hp \ Fp

17 / 48

Geometric semantics
To each program p we associate a d-space (Hp, bp, ep):

• H1: •
• HPa =~I HVa =~I
• Hp.q:

Hp Hqbp ep = bq eq

• Hp|q: Hp × Hq, bp|q = (bp, bq), ep|q = (ep, eq)

Resource function: ra(x) ∈ N for each a ∈ R and point x

Forbidden region:
Fp = {x ∈ Hp / ∃a ∈ R, ra(x) + κa < 0 or ra(x) > 0}

Geometric semantics: Gp = Hp \ Fp
17 / 48

Examples of geometric semantics

Pa.Va|Pa.Va

Pa.Pb.Vb.Va|Pb.Pa.Va.Vb Pa.(Va.Pa)∗|Pa.Va

bp

ep

bp

ep

bp
ep

18 / 48

Examples of geometric semantics

Pa.Va|Pa.Va Pa.Pb.Vb.Va|Pb.Pa.Va.Vb

Pa.(Va.Pa)∗|Pa.Va

bp

ep

bp

ep

bp
ep

18 / 48

Examples of geometric semantics

Pa.Va|Pa.Va Pa.Pb.Vb.Va|Pb.Pa.Va.Vb Pa.(Va.Pa)∗|Pa.Va

bp

ep

bp

ep

bp
ep

18 / 48

Examples of geometric semantics

Pa.Va|Pa.Va|Pa.Va Pa.Va|Pa.Va|Pa.Va
(κa = 2) (κa = 1)

t0

t1

t2

t0

t1

t2

19 / 48

Geometric realization

The two semantics are “essentially the same”: the geometric
semantics is the geometric realization of a cubical set

Gp =

∫ n∈�
Tp(n) ·~In

Proposition
Given a program p, with Tp as trace semantics and Gp as
geometric semantics,

• every path π : b → e in Tp induces a path π : b → e in Gp,
• π ∼ ρ in Tp implies π ∼ ρ in Gp

• every path ρ of Gp is homotopic to a path π (π path in Gp)

20 / 48

Computing the trace space

Goal
Given a program p, we describe an algorithm to compute a trace in
each equivalence class of traces π : bp → ep up to homotopy in Gp.

The proposition before ensures that it is the same to compute this
in the trace semantics or in the geometric semantics.

21 / 48

The algorithm
Suppose given a program

p = p0|p1| . . . |pn−1

with n threads.

Under mild assumptions, the geometric semantics is of the form

Gp = ~In \
l−1⋃
i=0

R i

where R i =
n−1∏
j=0

]x i
j , y i

j [

are l open rectangles.

Example Pa.Va.Pb.Vb|Pb.Vb.Pa.Va

t0

t1

0

1

x0
0 y0

0 x1
0 y1

0

x1
1

y1
1

x0
1

y0
1

a b
b

a

22 / 48

The algorithm
Suppose given a program

p = p0|p1| . . . |pn−1

with n threads.

Under mild assumptions, the geometric semantics is of the form

Gp = ~In \
l−1⋃
i=0

R i

where R i =
n−1∏
j=0

]x i
j , y i

j [

are l open rectangles.

t0

t1

t2

Example Pa.Va.Pb.Vb|Pb.Vb.Pa.Va

t0

t1

0

1

x0
0 y0

0 x1
0 y1

0

x1
1

y1
1

x0
1

y0
1

a b
b

a

22 / 48

The algorithm
Under mild assumptions, the geometric semantics is of the form

Gp = ~In \
l−1⋃
i=0

R i

where R i =
n−1∏
j=0

]x i
j , y i

j [

are l open rectangles.
Example Pa.Va.Pb.Vb|Pb.Vb.Pa.Va

t0

t1

0

1

x0
0 y0

0 x1
0 y1

0

x1
1

y1
1

x0
1

y0
1

a b
b

a

22 / 48

The algorithm
The main idea of the algorithm is to extend the forbidden cubes
downwards in various directions and look whether there is a path
from b to e in the resulting space.

t0

t1

t0

t1

t0

t1

By combining those information, we will be able to compute traces
modulo homotopy.

The directions in which to extend the holes will be coded by
boolean matrices M.

23 / 48

The algorithm
The main idea of the algorithm is to extend the forbidden cubes
downwards in various directions and look whether there is a path
from b to e in the resulting space.

t0

t1

t0

t1

t0

t1

By combining those information, we will be able to compute traces
modulo homotopy.

The directions in which to extend the holes will be coded by
boolean matrices M.

23 / 48

The index poset
Ml ,n: boolean matrices with l rows and n columns.

XM : space obtained by extending
for every (i , j) such that M(i , j) = 1
the forbidden cube i downwards
in every direction other than j

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

(
1 0
1 0

) (
0 1
1 0

) (
1 0
0 1

)
Ψ :Ml ,n → {0, 1}:

• Ψ(M) = 0 if there is a path b → e: M is alive
• Ψ(M) = 1 if there is no path b → e: M is dead

24 / 48

The index poset
Ml ,n: boolean matrices with l rows and n columns.

XM : space obtained by extending
for every (i , j) such that M(i , j) = 1
the forbidden cube i downwards
in every direction other than j

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

(
1 0
1 0

) (
0 1
1 0

) (
1 0
0 1

)
Ψ :Ml ,n → {0, 1}:

• Ψ(M) = 0 if there is a path b → e: M is alive
• Ψ(M) = 1 if there is no path b → e: M is dead

24 / 48

The index poset
Ml ,n: boolean matrices with l rows and n columns.

XM : space obtained by extending
for every (i , j) such that M(i , j) = 1
the forbidden cube i downwards
in every direction other than j

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

(
1 0
1 0

) (
0 1
1 0

) (
1 0
0 1

)

Ψ :Ml ,n → {0, 1}:
• Ψ(M) = 0 if there is a path b → e: M is alive
• Ψ(M) = 1 if there is no path b → e: M is dead

24 / 48

The index poset
Ml ,n: boolean matrices with l rows and n columns.

XM : space obtained by extending
for every (i , j) such that M(i , j) = 1
the forbidden cube i downwards
in every direction other than j

0

1
t0

t1

0

1
t0

t1

0

1
t0

t1

(
1 0
1 0

) (
0 1
1 0

) (
1 0
0 1

)
Ψ :Ml ,n → {0, 1}:

• Ψ(M) = 0 if there is a path b → e: M is alive
• Ψ(M) = 1 if there is no path b → e: M is dead 24 / 48

The index poset

Pa.Va.Pb.Vb | Pa.Va.Pb.Vb | Pa.Va.Pb.Vb

t0

t1

t2 0

1

t0

t1

t2

t0

t1

t2

t0

t1

t2

(
0 0 0
0 0 0

) (
1 0 0
0 0 1

) (
0 0 1
1 0 0

) (
0 0 0
1 1 1

)

alive alive alive dead
25 / 48

The index poset
• Ml ,n is equipped with the pointwise ordering
• Ψ is increasing: more 1 ⇒ more obstructions
• MR

l ,n: matrices with non-null rows
• MC

l ,n: matrices with unit column vectors

Definition
The index poset C(X) = {M ∈MR

l ,n / Ψ(M) = 0}
(the alive matrices).

Definition
The dead poset D(X) = {M ∈MC

l ,n / Ψ(M) = 1}.

D(X) C(X) homotopy classes of traces

26 / 48

The index poset
• Ml ,n is equipped with the pointwise ordering
• Ψ is increasing: more 1 ⇒ more obstructions
• MR

l ,n: matrices with non-null rows
• MC

l ,n: matrices with unit column vectors

Definition
The index poset C(X) = {M ∈MR

l ,n / Ψ(M) = 0}
(the alive matrices).

Definition
The dead poset D(X) = {M ∈MC

l ,n / Ψ(M) = 1}.

D(X) C(X) homotopy classes of traces

26 / 48

The index poset
• Ml ,n is equipped with the pointwise ordering
• Ψ is increasing: more 1 ⇒ more obstructions
• MR

l ,n: matrices with non-null rows
• MC

l ,n: matrices with unit column vectors

Definition
The index poset C(X) = {M ∈MR

l ,n / Ψ(M) = 0}
(the alive matrices).

Definition
The dead poset D(X) = {M ∈MC

l ,n / Ψ(M) = 1}.

D(X) C(X) homotopy classes of traces

26 / 48

The index poset
• Ml ,n is equipped with the pointwise ordering
• Ψ is increasing: more 1 ⇒ more obstructions
• MR

l ,n: matrices with non-null rows
• MC

l ,n: matrices with unit column vectors

Definition
The index poset C(X) = {M ∈MR

l ,n / Ψ(M) = 0}
(the alive matrices).

Definition
The dead poset D(X) = {M ∈MC

l ,n / Ψ(M) = 1}.

D(X) C(X) homotopy classes of traces

26 / 48

The dead poset
Proposition
A matrix M ∈MC

l ,n is in D(X) iff it satisfies

∀(i , j) ∈ [0 : l [×[0 : n[, M(i , j) = 1 ⇒ x i
j < min

i ′∈R(M)
y i ′

j

where R(M): indexes of non-null rows of M.

Example
M is dead:

t0

t1

0

1

x0
0 x1

0 y0
0 y1

0

x0
1

y0
1

x1
1

y1
1

M =

(
0 1
1 0

)
x0

1 = 1 < 2 = min(y0
1 , y1

1)
x1

0 = 2 < 3 = min(y0
0 , y1

0)

27 / 48

The dead poset
Proposition
A matrix M ∈MC

l ,n is in D(X) iff it satisfies

∀(i , j) ∈ [0 : l [×[0 : n[, M(i , j) = 1 ⇒ x i
j < min

i ′∈R(M)
y i ′

j

where R(M): indexes of non-null rows of M.

Example
M is dead:

t0

t1

0

1

x0
0 x1

0 y0
0 y1

0

x0
1

y0
1

x1
1

y1
1

M =

(
0 1
1 0

)
x0

1 = 1 < 2 = min(y0
1 , y1

1)
x1

0 = 2 < 3 = min(y0
0 , y1

0)

27 / 48

The index poset

Proposition
A matrix M is in C(X) iff for every N ∈ D(X), N 66 M.

Remark
N 66 M: there exists (i , j) s.t. N(i , j) = 1 and M(i , j) = 0.

Remark
Since C(X) is downward closed it will be enough to compute the
set Cmax(X) of maximal alive matrices.

28 / 48

The index poset

Proposition
A matrix M is in C(X) iff for every N ∈ D(X), N 66 M.

Remark
N 66 M: there exists (i , j) s.t. N(i , j) = 1 and M(i , j) = 0.

Remark
Since C(X) is downward closed it will be enough to compute the
set Cmax(X) of maximal alive matrices.

28 / 48

Remark
The index poset contains all the geometrical information!

29 / 48

Connected components

M ∧ N: pointwise min of M and N

Definition
Two matrices M and N are connected when M ∧ N does not
contain any null row.

Proposition
The connected components of C(X) are in bijection with homotopy
classes of traces b → e in X.

30 / 48

Dining philosophers
n processes pk in parallel:

pk = Pak .Pak+1 .Vak .Vak+1
t0

t1

t2

n sched. alcool (s) alcool (MB) spin (s) spin (MB)
8 254 0.1 0.8 0.3 12
9 510 0.8 1.4 1.5 41

10 1022 5 4 8 179
11 2046 32 9 42 816
12 4094 227 26 313 3508
13 8190 1681 58 ∞ ∞
14 16382 13105 143 ∞ ∞

31 / 48

How do we extend this methodology
to program with loops?

32 / 48

Loops
Given a thread p, we write p∗ for its looping: while(...){p}.

Given a program p with n threads:

p = p1|p2| . . . |pn

we write p∗ for
p∗ = p∗1 |p∗2 | . . . |p∗n

Notice that the geometric semantics Xp∗ can be deduced from the
semantics of p by glueing copies of Xp in every direction:

p∗i = pi .pi .pi . . .

33 / 48

Loops
Given a thread p, we write p∗ for its looping: while(...){p}.

Given a program p with n threads:

p = p1|p2| . . . |pn

we write p∗ for
p∗ = p∗1 |p∗2 | . . . |p∗n

Notice that the geometric semantics Xp∗ can be deduced from the
semantics of p by glueing copies of Xp in every direction:

p∗i = pi .pi .pi . . .

33 / 48

Loops
Given a thread p, we write p∗ for its looping: while(...){p}.

Given a program p with n threads:

p = p1|p2| . . . |pn

we write p∗ for
p∗ = p∗1 |p∗2 | . . . |p∗n

Notice that the geometric semantics Xp∗ can be deduced from the
semantics of p by glueing copies of Xp in every direction:

p∗i = pi .pi .pi . . .

33 / 48

Deloopings
Notice that the geometric semantics Xp∗ can be deduced from the
semantics of p by glueing copies of Xp in every direction.

Example
Consider the program p = q|q|q with q = Pa.Va (and a of arity 3):

t0

t1

t2

t0

t1

t2

Xp Xp∗

Finite deloopings:
Xp(3,2,2) = (Y⊕1Y)⊕2(Y⊕1Y) with Y = Xp⊕0Xp⊕0Xp

34 / 48

Deloopings
Notice that the geometric semantics Xp∗ can be deduced from the
semantics of p by glueing copies of Xp in every direction.

Example
Consider the program p = q|q|q with q = Pa.Va (and a of arity 3):

t0

t1

t2

t0

t1

t2

Xp Xp(3,2,2)

Finite deloopings:
Xp(3,2,2) = (Y⊕1Y)⊕2(Y⊕1Y) with Y = Xp⊕0Xp⊕0Xp

34 / 48

Schedulings
Similarly, given schedulings

M = (1 0 0) and N = (0 0 1)

of the previous program p

t0

t1
t2

t0

t1
t2

we write
M ⊕0 N =

(
1 0 0
0 0 1

)
for the following scheduling of X (2,1,1)

p = Xp ⊕0 Xp

XM⊕0N = t0

t1
t2

6= t0

t1
t2

= XM⊕0XN

35 / 48

Schedulings
Similarly, given schedulings

M = (1 0 0) and N = (0 0 1)

of the previous program p

t0

t1
t2

t0

t1
t2

we write
M ⊕0 N =

(
1 0 0
0 0 1

)
for the following scheduling of X (2,1,1)

p = Xp ⊕0 Xp

XM⊕0N = t0

t1
t2

6= t0

t1
t2

= XM⊕0XN

35 / 48

Schedulings
Similarly, given schedulings

M = (1 0 0) and N = (0 0 1)

of the previous program p

t0

t1
t2

t0

t1
t2

we write
M ⊕0 N =

(
1 0 0
0 0 1

)
for the following scheduling of X (2,1,1)

p = Xp ⊕0 Xp

XM⊕0N = t0

t1
t2

6= t0

t1
t2

= XM⊕0XN
35 / 48

Shadows
In fact, scheduling drop “shadows” on previous schedulings

XM⊕0N = t0

t1
t2

6= t0

t1
t2

= XM⊕0XN

Write XM|j for the shadow projected by scheduling M in direction j :

XN|0 = t0

t1
t2

so that
XM⊕j N = (XM ∩ XN|j)⊗j XN

36 / 48

Shadows
In fact, scheduling drop “shadows” on previous schedulings

XM⊕0N = t0

t1
t2

6= t0

t1
t2

= XM⊕0XN

Write XM|j for the shadow projected by scheduling M in direction j :

XN|0 = t0

t1
t2

so that
XM⊕j N = (XM ∩ XN|j)⊗j XN

36 / 48

Alive matrices for programs with loops

Every scheduling M of a delooping of Xp is composed by glueing
submatrices (Mi1,...,in).

If XM contains a deadlock then some subspace X(Mi1,...,in)
contains

a deadlock:

Lemma
If a matrix M is alive then all its submatrices are alive.

The converse is not true!

37 / 48

Alive matrices for programs with loops

Every scheduling M of a delooping of Xp is composed by glueing
submatrices (Mi1,...,in).

If XM contains a deadlock then some subspace X(Mi1,...,in)
contains

a deadlock:

Lemma
If a matrix M is alive then all its submatrices are alive.

The converse is not true!

37 / 48

Alive matrices for programs with loops

Every scheduling M of a delooping of Xp is composed by glueing
submatrices (Mi1,...,in).

If XM contains a deadlock then some subspace X(Mi1,...,in)
contains

a deadlock:

Lemma
If a matrix M is alive then all its submatrices are alive.

The converse is not true!

37 / 48

Shadows can create deadlocks

The following matrices P and Q coding the schedulings

t0

t1
t2

t0

t1
t2

XP XQ

of p are alive, however the matrix P ⊕0 Q is dead:

XP⊕0Q = t0

t1
t2

38 / 48

The shadow automaton

We construct an automaton which describes all the schedulings
possible in the future (which won’t create deadlocks by their
shadow): given a scheduling M and a direction j , it describes all
the matrices N such that M ⊕j N is alive.

39 / 48

The shadow automaton

Definition
The shadow automaton of a program p is a non-deterministic
automaton whose

• states are shadows
• transitions N

j,M // N ′ are labeled by a direction j (with
0 6 j < n) and a scheduling M

defined as the smallest automaton
• containing the empty scheduling ∅
• and such that for every state N ′, for every direction j and for
every scheduling M such that the scheduling M ∪ N ′ is alive,
and M is maximal with this property, there is a transition

N
j,M // N ′ with N = (M ∪ N ′)|j .

All the states of the automaton are both initial and final.

40 / 48

The shadow automaton
For instance consider the program p = Pa.Va|Pa.Va

Xp = t0

t1

There are two maximal schedulings

t0

t1

t0

t1

which can drop three possible shadows

t0

t1

t0

t1

t0

t1

41 / 48

The shadow automaton
For instance consider the program p = Pa.Va|Pa.Va

Xp = t0

t1

There are two maximal schedulings

t0

t1

t0

t1

which can drop three possible shadows

t0

t1

t0

t1

t0

t1

41 / 48

The shadow automaton
For instance consider the program p = Pa.Va|Pa.Va

Xp = t0

t1

There are two maximal schedulings

t0

t1

t0

t1

which can drop three possible shadows

t0

t1

t0

t1

t0

t1

41 / 48

The shadow automaton
The shadow automaton of p is

1, 11

1,
,,

0,

1,

QQ

1,
,,

0,

ll

0,

ll 0,mm

For instance, the transition 0, // is computed as follows:

• consider the shadow M = ∪ =

• compute its shadow in direction 0:

42 / 48

The shadow automaton
The shadow automaton of p is

1, 11

1,
,,

0,

1,

QQ

1,
,,

0,

ll

0,

ll 0,mm

For instance, the transition 0, // is computed as follows:

• consider the shadow M = ∪ =

• compute its shadow in direction 0:
42 / 48

The shadow automaton
Theorem
Given a program p to any total path in a delooping of p is
represented by a path in the shadow automaton of p such that

• every path in the automaton comes from a total path in Xp?

• if two total paths in Xp? correspond to the same path in the
automaton then they are homotopic

Paths in the shadow automaton describe homotopy classes in
deloopings of p.

t0

t1

is represented by 0, // 0, // 1, //

43 / 48

The shadow automaton
Theorem
Given a program p to any total path in a delooping of p is
represented by a path in the shadow automaton of p such that

• every path in the automaton comes from a total path in Xp?

• if two total paths in Xp? correspond to the same path in the
automaton then they are homotopic

Paths in the shadow automaton describe homotopy classes in
deloopings of p.

t0

t1

is represented by 0, // 0, // 1, //

43 / 48

Reducing the size of the automaton

The shadow automaton is too big:
• we can determinize it:

I
_,

��

_,

��
0_, 99

1,
** 1

0,

jj _,ee

• two distinct paths in the automaton can represent the same
homotopy class of paths: we can quotient paths under
connexity.

44 / 48

Reducing the size of the automaton

The shadow automaton is too big:
• we can determinize it:

I
_,

��

_,

��
0_, 99

1,
** 1

0,

jj _,ee

• two distinct paths in the automaton can represent the same
homotopy class of paths: we can quotient paths under
connexity.

44 / 48

An application to static analysis
The program

p∗ =
(
Pa.a := a − 1.Va

)∗∣∣∣(Pa.
(
a :=

a
2
)
.Va
)∗

induces the automaton

0

[a:=a−1]

�� [a:= a
2] ** 1

[a:=a−1]
jj

[a:= a
2]

��

and thus the set of equations{
A0 = I ∪ (A0 − 1) ∪ (A1 − 1)

A1 = I ∪ A1
2 ∪

A0
2

which admits a least fixed point

A∞0 = A∞1 =]−∞, 1]

45 / 48

An application to static analysis
The program

p∗ =
(
Pa.a := a − 1.Va

)∗∣∣∣(Pa.
(
a :=

a
2
)
.Va
)∗

induces the automaton

0

[a:=a−1]

�� [a:= a
2] ** 1

[a:=a−1]
jj

[a:= a
2]

��

and thus the set of equations{
A0 = I ∪ (A0 − 1) ∪ (A1 − 1)

A1 = I ∪ A1
2 ∪

A0
2

which admits a least fixed point

A∞0 = A∞1 =]−∞, 1]

45 / 48

An application to static analysis
The program

p∗ =
(
Pa.a := a − 1.Va

)∗∣∣∣(Pa.
(
a :=

a
2
)
.Va
)∗

induces the automaton

0

[a:=a−1]

�� [a:= a
2] ** 1

[a:=a−1]
jj

[a:= a
2]

��

and thus the set of equations{
A0 = I ∪ (A0 − 1) ∪ (A1 − 1)

A1 = I ∪ A1
2 ∪

A0
2

which admits a least fixed point

A∞0 = A∞1 =]−∞, 1]

45 / 48

An example: the two-phase protocol
We consider n programs locking l resources:

pn,l = q|q| . . . |q with q = Pa1Pal .Va1Val

For instance, p2,2 = q|q is

t0

t1

We get the following results compared to spin:
n l s t s ′ t ′ s ′′ t ′′ sSPIN tSPIN
2 1 3 8 3 10 1 1 58 65
2 2 3 8 3 10 1 1 112 129
2 3 3 8 3 10 1 1 180 209
3 1 19 90 4 24 1 1 171 218
3 2 19 90 4 24 1 1 441 602
3 3 19 90 4 24 1 1 817 1128

46 / 48

An example: the two-phase protocol
We consider n programs locking l resources:

pn,l = q|q| . . . |q with q = Pa1Pal .Va1Val

For instance, p2,2 = q|q is

t0

t1

We get the following results compared to spin:
n l s t s ′ t ′ s ′′ t ′′ sSPIN tSPIN
2 1 3 8 3 10 1 1 58 65
2 2 3 8 3 10 1 1 112 129
2 3 3 8 3 10 1 1 180 209
3 1 19 90 4 24 1 1 171 218
3 2 19 90 4 24 1 1 441 602
3 3 19 90 4 24 1 1 817 1128

46 / 48

An example: the two-phase protocol
We consider n programs locking l resources:

pn,l = q|q| . . . |q with q = Pa1Pal .Va1Val

For instance, p2,2 = q|q is

t0

t1

We get the following results compared to spin:
n l s t s ′ t ′ s ′′ t ′′ sSPIN tSPIN
2 1 3 8 3 10 1 1 58 65
2 2 3 8 3 10 1 1 112 129
2 3 3 8 3 10 1 1 180 209
3 1 19 90 4 24 1 1 171 218
3 2 19 90 4 24 1 1 441 602
3 3 19 90 4 24 1 1 817 1128 46 / 48

About geometric models

Was the use of the geometric model necessary?

⇒ No: we could have formulated it directly on the trace space

Was the geometric model useful?

⇒ Yes: it would have been very hard to think of the algorithm
without “seeing” the spaces

⇒ Yes: computers are much better at manipulating booleans
than complex algebraic structures

47 / 48

About geometric models

Was the use of the geometric model necessary?
⇒ No: we could have formulated it directly on the trace space

Was the geometric model useful?

⇒ Yes: it would have been very hard to think of the algorithm
without “seeing” the spaces

⇒ Yes: computers are much better at manipulating booleans
than complex algebraic structures

47 / 48

About geometric models

Was the use of the geometric model necessary?
⇒ No: we could have formulated it directly on the trace space

Was the geometric model useful?

⇒ Yes: it would have been very hard to think of the algorithm
without “seeing” the spaces

⇒ Yes: computers are much better at manipulating booleans
than complex algebraic structures

47 / 48

About geometric models

Was the use of the geometric model necessary?
⇒ No: we could have formulated it directly on the trace space

Was the geometric model useful?
⇒ Yes: it would have been very hard to think of the algorithm

without “seeing” the spaces

⇒ Yes: computers are much better at manipulating booleans
than complex algebraic structures

47 / 48

About geometric models

Was the use of the geometric model necessary?
⇒ No: we could have formulated it directly on the trace space

Was the geometric model useful?
⇒ Yes: it would have been very hard to think of the algorithm

without “seeing” the spaces
⇒ Yes: computers are much better at manipulating booleans

than complex algebraic structures

47 / 48

Future works

We compute one execution trace in each homotopy class.

What remains to do:
• use these trace to do static analysis
(e.g. abstract interpretation)

• speed improvements
• implementation improvements (e.g. GPU)
• lots of work remain to be done on the theoretical side

48 / 48

Future works

We compute one execution trace in each homotopy class.

What remains to do:
• use these trace to do static analysis
(e.g. abstract interpretation)

• speed improvements
• implementation improvements (e.g. GPU)
• lots of work remain to be done on the theoretical side

48 / 48

