A NON-STANDARD SEMANTICS FOR KAHN NETWORKS IN CONTINUOUS TIME

SAMUEL MIMRAM & ROMAIN BEAUXIS

SÉMINAIRE PPS

15 NOVEMBER 2011

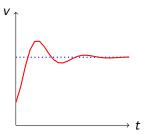
A model for systems operating in **continuous time** $t \in \mathbb{R}^+$.

A controller to **cruise control** a car:

$$I(t) = K_p e(t)$$

• error:
$$e(t) = v_{\text{desired}} - v_{\text{actual}}$$

- ► intensity of the engine: *I*
- parameters of the control: K_p



V

A model for systems operating in **continuous time** $t \in \mathbb{R}^+$.

A PID-controller to cruise control a car:

$$I(t) = K_{p}e(t) + K_{i}\int_{0}^{t}e(t)dt + K_{d}\frac{de}{dt}$$

• error:
$$e(t) = v_{\text{desired}} - v_{\text{actual}}$$

- ▶ intensity of the engine: *I*
- parameters of the control: K_p , K_i , K_d

t

V

A model for systems operating in **continuous time** $t \in \mathbb{R}^+$.

A PID-controller to cruise control a car:

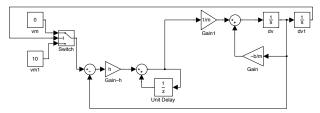
$$I(t) = K_{p}e(t) + K_{i}\int_{0}^{t}e(t)dt + K_{d}\frac{de}{dt}$$

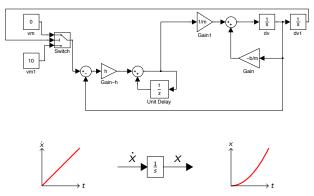
• error:
$$e(t) = v_{\text{desired}} - v_{\text{actual}}$$

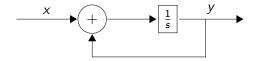
- intensity of the engine: I
- parameters of the control: K_p , K_i , K_d

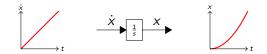
We also want to have discontinuities!

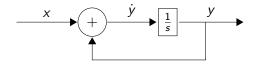
t

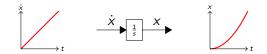


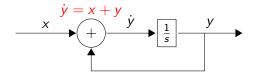


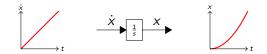


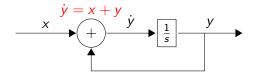


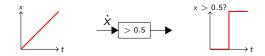




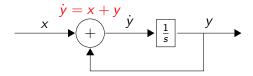








A model for systems operating in **continuous time** $t \in \mathbb{R}^+$.



How can we define a semantics for those systems?

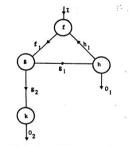
The streams $f : \mathbb{R}^+ \to \mathbb{R}$ on the wires could

- be integrable / derivable
- have discontinuities (zero-crossings)
- exhibit complex behaviors such as Zeno
- be approximated...

Let's take inspiration from discrete time semantics.

KAHN PROCESS NETWORKS

A semantics for *distributed asynchronous* computations: processes exchanging *sequences of data* on channels.



G. Kahn. The semantics of a simple language for parallel programming. Information processing, 74:471-475, 1974.

$$1, 2, 3, \ldots \longrightarrow 2, 4, 6, \ldots$$

KAHN NETWORKS IN CONTINUOUS TIME

It is difficult to define a semantics for hybrid systems. Can we adapt the works on Kahn networks?

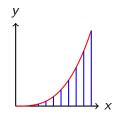
KAHN NETWORKS IN CONTINUOUS TIME

It is difficult to define a semantics for hybrid systems. Can we adapt the works on Kahn networks?

The sampling principle

We can to consider a continuous stream $t \mapsto x_t$ (with $t \in \mathbb{R}^+$) as a discrete stream x_i (with $i \in \mathbb{N}$)

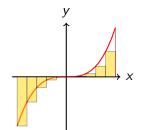
where the data x_i occurs at time $i\varepsilon$, with ε infinitesimal.



A continuous stream sampled at every ε seconds.

NON-STANDARD ANALYSIS

In the 60s, Robinson introduced an extension $*\mathbb{R}$ of \mathbb{R} (the *hyperreals*) in which one can formally consider **infinitesimals**.



$$f'(x) = \frac{f(x + \varepsilon) - f(x)}{\varepsilon} \qquad \qquad \int_{t=0}^{T} f(t) dt = \sum_{0 \le i \le T/\varepsilon} f(i)\varepsilon$$

with ε infinitesimal

THE PLAN

1. Define Kahn networks and their semantics

- formalization of Kahn networks
- Kahn networks form a free fixpoint category

2. A non-standard semantics for Kahn networks

non-standard semantics using internal cpo

THE PLAN

1. Define Kahn networks and their semantics

- formalization of Kahn networks
- Kahn networks form a free fixpoint category
- related works:
 - Kahn
 - categorical structure of the models: Hildebrandt, Panangaden, Winskel, Stark, ...

2. A non-standard semantics for Kahn networks

- non-standard semantics using internal cpo
- related works:
 - Bliudze, Krob
 - Benveniste, Caillaud, Pouzet

Prepend a 0:

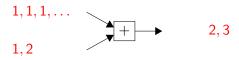
Prepend a 0:

Add two discrete streams:

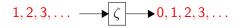


Prepend a 0:

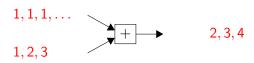
Add two discrete streams:



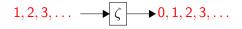
Prepend a 0:



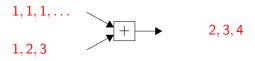
Add two discrete streams:

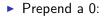


Prepend a 0:

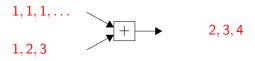


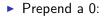
Add two discrete streams:



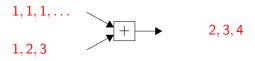


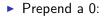
Add two discrete streams:



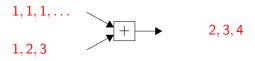


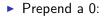
Add two discrete streams:



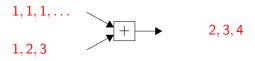


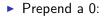
Add two discrete streams:



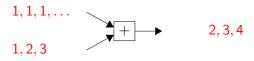


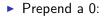
Add two discrete streams:

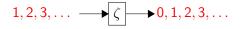




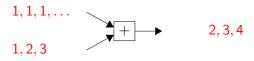
Add two discrete streams:

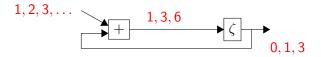


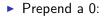




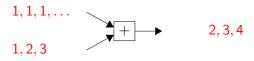
Add two discrete streams:







Add two discrete streams:



SEMANTICS OF KAHN NETWORKS

Definition

The **Kahn domain** (K, \sqsubseteq) is the complete partial order whose elements are a the finite or infinite lists of elements in \mathbb{R} , ordered by prefix.

SEMANTICS OF KAHN NETWORKS

Definition

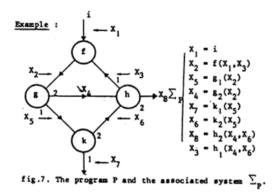
The **Kahn domain** (K, \sqsubseteq) is the complete partial order whose elements are a the finite or infinite lists of elements in \mathbb{R} , ordered by prefix.

To each generator $\alpha : \mathbf{m} \rightarrow \mathbf{n}$

we associate a *Scott-continuous function* $K^m \to K^n$.

SEMANTICS OF KAHN NETWORKS

The semantics of a composed net is given by associating a set of equations to the network



and taking the unique *minimal solution* (which exists).

A semantics of what?

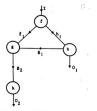


Fig.3. A parallel program schema.

A semantics of what?

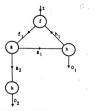
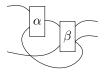
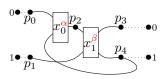


Fig.3. A parallel program schema.



is formalized by



SIGNATURES

The "basic building blocks" of Kahn networks are the elements of a signature:

Definition

A signature $\Sigma = \{\alpha_i : m_i \to n_i\}$ consists of a set Σ of symbols (or generators) α_i with arity m_i and coarity n_i .

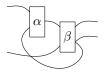
Example

For instance,

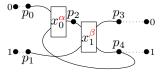
is formalized by the signature

$$\Sigma = \{\zeta: 1 \rightarrow 1, +: 2 \rightarrow 1\}$$

A FORMAL DEFINITION OF NETS



is formalized by



Definition (Net)

A net $N = (P, O, \lambda, s, t)$ with m inputs and n outputs consists of

- P: a finite set of ports,
- O: a finite set of operators,
- $\lambda: O \to \Sigma$: a labeling function ,

►
$$s: S_N \to P$$
 and $t: T_N \to P$: source and inj. target functions
 $S_N = \{(x, i) \mid x \in O, i \in \{0 \dots \sigma \circ \lambda(x) - 1\}\} \uplus \{0 \dots n - 1\}$
 $T_N = \{(x, i) \mid x \in O, i \in \{0 \dots \tau \circ \lambda(x) - 1\}\} \uplus \{0 \dots m - 1\}$

$\alpha\text{-}\mathsf{CONVERSION}$ OF NETS

Definition

Two nets $N = (P, O, \lambda, s, t)$ and $N' = (P', O', \lambda', s', t')$ are α -convertible when there exists a pair of bijective functions

$$\varphi_P: P \to P'$$
 and $\varphi_O: O \to O'$

such that

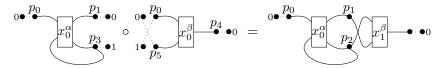
►
$$\forall x \in O$$
, $\lambda'(\varphi_O(x)) = \lambda(x)$
► $\forall (x,i) \in S_N$, $\varphi_P(s(x,i)) = s'(\varphi(x),i)$

We form a category $\boldsymbol{Net}_{\boldsymbol{\Sigma}}$ whose

- objects are natural integers $n \in \mathbb{N}$
- morphisms $N: m \rightarrow n$ are nets with *m* inputs and *n* outputs

Categorical structure:

Composition: juxtaposing and "linking the wires"



(up to α -conversion, otherwise we get a bicategory)

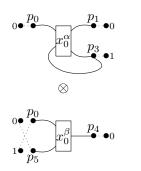
Identities:

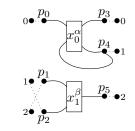
We form a monoidal category $\boldsymbol{Net}_{\Sigma}$ whose

- objects are natural integers $n \in \mathbb{N}$
- morphisms $N: m \rightarrow n$ are nets with m inputs and n outputs

Categorical structure:

▶ **Tensor product**: from $N : m \to n$ and $N' : m' \to n'$ we can define $N \otimes N' : (m + m') \to (n + n')$



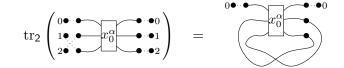


We form a traced monoidal category $\boldsymbol{Net}_{\Sigma}$ whose

- objects are natural integers $n \in \mathbb{N}$
- morphisms $N: m \rightarrow n$ are nets with *m* inputs and *n* outputs

Categorical structure:

▶ **Trace**: from $N : (m+k) \rightarrow (n+k)$ we can define $tr_k(N) : m \rightarrow n$ satisfying suitable axioms

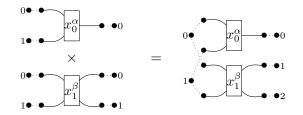


We form a traced cartesian(?) category Net_{Σ} whose

- objects are natural integers $n \in \mathbb{N}$
- morphisms $N: m \rightarrow n$ are nets with m inputs and n outputs

Categorical structure:

▶ The tensor is <u>almost</u> a cartesian product: from $N_1 : m \to n_1$ and $N_2 : m \to n_2$ we can define $N_1 \times N_2 : m \to (n_1 + n_2)$

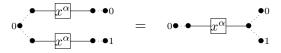


CARTESIAN PRODUCT OF NETS

The "cartesian product" we defined is not one: given $N: m \rightarrow n$

it does not satisfy

• sharing: $N \times N = (\mathrm{id}_n \times \mathrm{id}_n) \circ N$



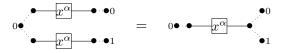
• erasure:
$$\pi_0 \circ N = \pi_0$$

CARTESIAN PRODUCT OF NETS

The "cartesian product" we defined is not one: given N:m
ightarrow n

it does not satisfy

• sharing: $N \times N = (\mathrm{id}_n \times \mathrm{id}_n) \circ N$



• erasure:
$$\pi_0 \circ N = \pi_0$$

$$0 \bullet \bullet - x^{\alpha} - \bullet = 0 \bullet \bullet - \bullet$$

We consider nets up to the equivalence relation generated by the above equations!

Σ -OBJECTS

Suppose given a signature (Σ, σ, τ) .

Definition

A $\Sigma\text{-}\text{object}$ in a monoidal category $\mathcal C$ consists of

- an object A
- for every symbol $\alpha \in \Sigma$, a morphism

$$\alpha \quad : \quad A^{\otimes \sigma(\alpha)} \to A^{\otimes \tau(\alpha)}$$

where

$$A^{\otimes k} = \underbrace{A \otimes A \otimes \ldots \otimes A}_{k \text{ times}}$$

Σ -OBJECTS

Suppose given a signature (Σ, σ, τ) .

Definition

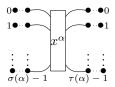
A $\Sigma\text{-}\textbf{object}$ in a monoidal category $\mathcal C$ consists of

- an object A
- for every symbol $\alpha \in \Sigma$, a morphism

$$\alpha \quad : \quad A^{\otimes \sigma(\alpha)} \to A^{\otimes \tau(\alpha)}$$

Remark

In the category Net_{Σ} , 1 is a Σ object, where to every symbol $\alpha \in \Sigma$ is associated the morphism



Definition

A fixpoint category is a category with

- cartesian products
- a trace.

Definition

A fixpoint category is a category with

- cartesian products
- a trace.

Theorem

The category Net_{Σ} is the free fixpoint category containing a Σ -object (i.e. an interpretation of the generators).

Definition

A fixpoint category is a category with

- cartesian products
- a trace.

Theorem

The category Net_{Σ} is the free fixpoint category containing a Σ -object (i.e. an interpretation of the generators).

Any interpretation of the generators in a fixpoint category canonically induces an interpretation of all Kahn nets.

Definition

A fixpoint category is a category with

- cartesian products
- a trace.

Theorem

The category Net_{Σ} is the free fixpoint category containing a Σ -object (i.e. an interpretation of the generators).

Any interpretation of the generators in a fixpoint category canonically induces an interpretation of all Kahn nets.

▶ We can give semantics of KN in other fixpoint categories.

Avoids some technical details (solving systems of equations).

The Kahn model

► The elements of the Kahn cpo are discrete streams, i.e. lists ℓ of reals.

The Kahn model

- ► The elements of the Kahn cpo are discrete streams, i.e. lists ℓ of reals.
- ► They can be seen as partial functions l : N → R whose domain of definition is an initial segment of N:

 $\mathbb{R}^{\leq \mathbb{N}}$

The Kahn model

- ► The elements of the Kahn cpo are discrete streams, i.e. lists ℓ of reals.
- ► They can be seen as partial functions l : N → R whose domain of definition is an initial segment of N:

$\mathbb{R}^{\leq \mathbb{N}}$

The intuitive continuous-time model

We want to model hybrid systems where streams are now partial functions *f* : ℝ⁺ → ℝ:

$$\mathbb{R}^{\leq \mathbb{R}^+}$$

The Kahn model

- ► The elements of the Kahn cpo are discrete streams, i.e. lists ℓ of reals.
- ► They can be seen as partial functions l : N → R whose domain of definition is an initial segment of N:

The intuitive continuous-time model

We want to model hybrid systems where streams are now partial functions *f* : ℝ⁺ → ℝ:

$$\mathbb{R}^{\leq\mathbb{R}^{-}}$$

 $\mathbb{R}^{\leq \mathbb{N}}$

 We want to be able to derivate those streams: we restrict to piecewise smooth functions (with a *finite number of discontinuities* in a finite time)

The Kahn model

- ► The elements of the Kahn cpo are discrete streams, i.e. lists ℓ of reals.
- ► They can be seen as partial functions l : N → R whose domain of definition is an initial segment of N:

The intuitive continuous-time model

We want to model hybrid systems where streams are now partial functions *f* : ℝ⁺ → ℝ:

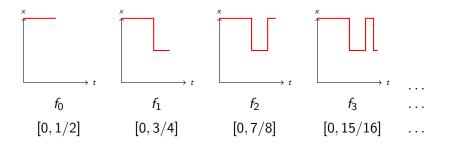
$$\mathbb{R}^{\leq \mathbb{R}^{-}}$$

 $\mathbb{R}^{\leq \mathbb{N}}$

 We want to be able to derivate those streams: we restrict to piecewise smooth functions (with a *finite number of discontinuities* in a finite time)

These do not form a cpo!

 We want to be able to derivate those streams: we restrict to piecewise smooth functions (with a finite number of discontinuities)



... because of the Zeno effect.

NON-STANDARD A CRASH COURSE

NON-STANDARD ANALYSIS

In order to give a meaning to the infinitesimals, we replace reals by **hyperreals** which are sequences $(x_i)_{i \in \mathbb{N}}$ of reals.

- ► A real x is seen as the constant sequence (x).
- An infinitesimal number is a sequence converging towards 0.
- An "infinite" number is a sequence converging towards $\pm \infty$.
- ► The usual operations are extended pointwise on sequences:
 (x_i) × (y_i) = (x_i × y_i)

NON-STANDARD ANALYSIS

In order to give a meaning to the infinitesimals, we replace reals by **hyperreals** which are sequences $(x_i)_{i \in \mathbb{N}}$ of reals.

- ► A real x is seen as the constant sequence (x).
- An infinitesimal number is a sequence converging towards 0.
- An "infinite" number is a sequence converging towards $\pm \infty$.
- ► The usual operations are extended pointwise on sequences:
 (x_i) × (y_i) = (x_i × y_i)
- ▶ What is the inverse of (0, 1, 0, 1, 0, 1, ...)?
- In order to recover usual properties one has to consider equivalence classes of sequences.

We will define a collection ${\cal F}$ of subsets (called large) of $\mathbb N$ and consider the equivalence relation such that

$$(x_i) \equiv (y_i)$$
 whenever $\{i \in \mathbb{N} \mid x_i = y_i\} \in \mathcal{F}$

We will define a collection ${\cal F}$ of subsets (called large) of $\mathbb N$ and consider the equivalence relation such that

$$(x_i) \equiv (y_i)$$
 whenever $\{i \in \mathbb{N} \mid x_i = y_i\} \in \mathcal{F}$

The set \mathcal{F} should satisfy properties:

- two sequences equal at every index excepting a finite number should be equal: *F* should contain all cofinite sets
- ▶ two sequences are either equal (equivalent) or different:

$$\forall U \subseteq \mathbb{N}, \qquad U \in \mathcal{F} \quad \text{or} \quad \mathbb{N} \setminus U \in \mathcal{F}$$

▶ ...

We will define a collection ${\cal F}$ of subsets (called large) of $\mathbb N$ and consider the equivalence relation such that

$$(x_i) \equiv (y_i)$$
 whenever $\{i \in \mathbb{N} \mid x_i = y_i\} \in \mathcal{F}$

The set \mathcal{F} should be a *non-principal ultrafilter* on \mathbb{N} .

Definition

An **ultrafilter** $\mathcal F$ on $\mathbb N$ is a collection of subsets of $\mathbb N$ such that

- 1. intersection: $\forall U, V \in \mathcal{F}, \qquad U \cap V \in \mathcal{F}$
- 2. supersets: $\forall U \in \mathcal{F}, \forall V \subseteq \mathbb{N}, \qquad U \subseteq V \Rightarrow V \in \mathcal{F}$
- 3. proper: $\emptyset \notin \mathcal{F}$
- 4. complement: $\forall U \subseteq \mathbb{N}$, $U \in \mathcal{F}$ or $\mathbb{N} \setminus U \in \mathcal{F}$

(with AC such an \mathcal{F} exists).

We will define a collection ${\cal F}$ of subsets (called large) of $\mathbb N$ and consider the equivalence relation such that

$$(x_i) \equiv (y_i)$$
 whenever $\{i \in \mathbb{N} \mid x_i = y_i\} \in \mathcal{F}$

We write $\langle x_i \rangle$ for the equivalence class of (x_i) .

We will define a collection ${\cal F}$ of subsets (called large) of $\mathbb N$ and consider the equivalence relation such that

$$(x_i) \equiv (y_i)$$
 whenever $\{i \in \mathbb{N} \mid x_i = y_i\} \in \mathcal{F}$

Definition

- The field of **hyperreals** \mathbb{R} is $\mathbb{R}^{\mathbb{N}} / \equiv$.
- The ring of hyperintegers \mathbb{N} is $\mathbb{N}^{\mathbb{N}} / \equiv$.

INFINITESIMAL AND UNLIMITED

Definition

An hyperreal $x \in {}^*\mathbb{R}$ is

- infinitesimal: if $x \neq 0$ and $\forall r \in \mathbb{R}, |x| < r$
- unlimited: if $\forall r \in \mathbb{R}, |x| > r$

Example

- infinitesimal: $x = \langle \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rangle$
- unlimited: $x = \langle 1, 2, 3, 4, \ldots \rangle$

INFINITESIMAL AND UNLIMITED

Definition

An hyperreal $x \in {}^*\mathbb{R}$ is

- infinitesimal: if $x \neq 0$ and $\forall r \in \mathbb{R}, |x| < r$
- unlimited: if $\forall r \in \mathbb{R}, |x| > r$

Example

- infinitesimal: $x = \langle \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rangle$
- unlimited: $x = \langle 1, 2, 3, 4, \ldots \rangle$

Intuition

- \mathbb{R} is \mathbb{R} completed with infinitesimals and unlimited.
- $*\mathbb{N}$ is \mathbb{N} completed with unlimited

NON-STANDARD ANALYSIS

Continuity, derivation, integration, etc. have the "expected" formulations in this framework.

THE STANDARD PART

Notation

Given $x, y \in *\mathbb{R}$, we write $x \approx y$ whenever x - y is infinitesimal.

Lemma

Given a limited $x \in {}^*\mathbb{R}$, there exists a unique real $\operatorname{st}(x)$, the standard part of x, such that $x \approx \operatorname{st}(x)$.

NON-STANDARD ANALYSIS – CONTINUITY

Proposition

A function $f : \mathbb{R} \to \mathbb{R}$ is **continuous** at $x \in \mathbb{R}$ iff

$$\forall y \in {}^*\mathbb{R}, \quad y \approx x \quad \Rightarrow \quad f(y) \approx f(x)$$

or equivalently, for every infinitesimal ε there exists an infinitesimal δ such that

$$f(x+\varepsilon) = f(x) + \delta$$

NON-STANDARD ANALYSIS – DERIVATIVE

Proposition

A function $f : \mathbb{R} \to \mathbb{R}$ admits $y \in \mathbb{R}$ as **derivative** at $x \in \mathbb{R}$ iff for every infinitesimal ε ,

$$rac{f(x+arepsilon)-f(x)}{arepsilon}~pprox$$
 y

In this case, for any ε infinitesimal,

$$f'(x) = \operatorname{st}\left(\frac{f(x+\varepsilon)-f(x)}{\varepsilon}\right)$$

NON-STANDARD ANALYSIS – DERIVATIVE

Proposition

A function $f : \mathbb{R} \to \mathbb{R}$ admits $y \in \mathbb{R}$ as **derivative** at $x \in \mathbb{R}$ iff for every infinitesimal ε ,

$$\frac{f(x+\varepsilon)-f(x)}{\varepsilon} \quad \approx \quad y$$

In this case, for any ε infinitesimal,

$$f'(x) = \operatorname{st}\left(\frac{f(x+\varepsilon)-f(x)}{\varepsilon}\right)$$

Proposition

Integrals can be reformulated similarly as Riemann sums...

NON-STANDARD SEMANTICS OF KAHN NETWORKS

The elements of the Kahn cpo are the streams:

 $\mathbb{R}^{\leq \mathbb{N}}$

The elements of the Kahn cpo are the streams:

 $\mathbb{R}^{\leq \mathbb{N}}$

 $\mathbb{R}^{\leq \mathbb{R}^+}$

► The "continuous time semantics" failed:

The elements of the Kahn cpo are the streams:

 $\mathbb{R}^{\leq \mathbb{N}}$

 $\mathbb{R}^{\leq \mathbb{R}^+}$

► The "continuous time semantics" failed:

We will see those functions as sequences

 $f(0), f(\varepsilon), f(2\varepsilon), f(3\varepsilon), \ldots$

for some infinitesimal $\boldsymbol{\varepsilon}$

$$\mathbb{R}^{\leq \mathbb{N}}$$

The elements of the Kahn cpo are the streams:

 $\mathbb{R}^{\leq \mathbb{N}}$

 $\mathbb{R}^{\leq \mathbb{R}^+}$

► The "continuous time semantics" failed:

We will see those functions as sequences

 $f(0), f(\varepsilon), f(2\varepsilon), f(3\varepsilon), \ldots$

for some infinitesimal $\boldsymbol{\varepsilon}$

$$\mathbb{R}^{\leq \mathbb{N}}$$

We have to take in account infinitesimal variations!

The elements of the Kahn cpo are the streams:

 $\mathbb{R}^{\leq \mathbb{N}}$

 $\mathbb{R}^{\leq \mathbb{R}^+}$

► The "continuous time semantics" failed:

We will see those functions as sequences

 $f(0), f(\varepsilon), f(2\varepsilon), f(3\varepsilon), \ldots$

for some infinitesimal $\boldsymbol{\varepsilon}$

$$*\mathbb{R}^{\leq\mathbb{N}}$$

The elements of the Kahn cpo are the streams:

 $\mathbb{R}^{\leq \mathbb{N}}$

 $\mathbb{R}^{\leq \mathbb{R}^+}$

► The "continuous time semantics" failed:

We will see those functions as sequences

 $f(\mathbf{0}), f(\varepsilon), f(2\varepsilon), f(3\varepsilon), \ldots$

for some infinitesimal $\boldsymbol{\varepsilon}$

$$*\mathbb{R}^{\leq\mathbb{N}}$$

But for every $n \in \mathbb{N}$, $n\varepsilon$ is an infinitesimal!

The elements of the Kahn cpo are the streams:

 $\mathbb{R}^{\leq \mathbb{N}}$

 $\mathbb{R}^{\leq \mathbb{R}^+}$

► The "continuous time semantics" failed:

We will see those functions as sequences

 $f(0), f(\varepsilon), f(2\varepsilon), f(3\varepsilon), \ldots$

for some infinitesimal $\boldsymbol{\varepsilon}$

$$*\mathbb{R}^{\leq^*\mathbb{N}}$$

We consider hypersequences of hyperreals.

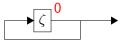
The semantics of the following net should be the constant stream f such that $\forall n \in *\mathbb{N}, f(n\varepsilon) = 0$:

However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n\varepsilon) = 0$$

The value $f(n\varepsilon)$ is not defined for unlimited hyperintegers $n \in \mathbb{N}!$

The semantics of the following net should be the constant stream f such that $\forall n \in *\mathbb{N}, f(n\varepsilon) = 0$:

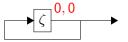


However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n\varepsilon) = 0$$

The value $f(n\varepsilon)$ is not defined for unlimited hyperintegers $n \in \mathbb{N}!$

The semantics of the following net should be the constant stream f such that $\forall n \in *\mathbb{N}, f(n\varepsilon) = 0$:



However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n\varepsilon) = 0$$

The value $f(n\varepsilon)$ is not defined for unlimited hyperintegers $n \in *\mathbb{N}!$

The semantics of the following net should be the constant stream f such that $\forall n \in *\mathbb{N}, f(n\varepsilon) = 0$:

However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n\varepsilon) = 0$$

The value $f(n\varepsilon)$ is not defined for unlimited hyperintegers $n \in *\mathbb{N}!$

The semantics of the following net should be the constant stream f such that $\forall n \in *\mathbb{N}, f(n\varepsilon) = 0$:

However, if we compute its semantics using the fixpoint construction we get the stream f such that

$$\forall n \in \mathbb{N}, f(n\varepsilon) = 0$$

The value $f(n\varepsilon)$ is not defined for unlimited hyperintegers $n \in *\mathbb{N}!$

From $(D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}$ we can define a subset $D \subseteq {}^*\mathbb{R}$:

•
$$D_0 = \{x_0, y_0, z_0, ...\}$$

• $D_1 = \{x_1, y_1, z_1, ...\}$
• $D_2 = \{x_2, y_2, z_2, ...\}$

From $(D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}$ we can define a subset $D \subseteq {}^*\mathbb{R}$:

•
$$D_0 = \{x_0, y_0, z_0, ...\}$$

• $D_1 = \{x_1, y_1, z_1, ...\}$
• $D_2 = \{x_2, y_2, z_2, ...\}$
• ...

 $D = \{\langle z_0, x_1, y_2, \ldots \rangle, \ldots\}$

From $(D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}$ we can define a subset $D \subseteq {}^*\mathbb{R}$:

$$D_0 = \{x_0, y_0, z_0, ...\}$$

$$D_1 = \{x_1, y_1, z_1, ...\}$$

$$D_2 = \{x_2, y_2, z_2, ...\}$$

$$...$$

 $D = \{\langle z_0, x_1, y_2, \ldots \rangle, \ldots\}$

Definition

An **internal set** $D \subseteq {}^*\mathbb{R}$ is a set such that there exists a family $(D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}$ for which

$$D = \langle D_i \rangle = \{ \langle x_i \rangle \mid \forall i \in \mathbb{N}, x_i \in D_i \}$$

From $(D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}$ we can define a subset $D \subseteq {}^*\mathbb{R}$:

$$D_0 = \{x_0, y_0, z_0, ...\}$$

$$D_1 = \{x_1, y_1, z_1, ...\}$$

$$D_2 = \{x_2, y_2, z_2, ...\}$$

$$\dots$$

$$D = \{\langle z_0, x_1, y_2, ... \rangle, ...\}$$

Definition

An **internal set** $D \subseteq {}^*\mathbb{R}$ is a set such that there exists a family $(D_i \subseteq \mathbb{R})_{i \in \mathbb{N}}$ for which

$$D = \langle D_i \rangle = \{ \langle x_i \rangle \mid \forall i \in \mathbb{N}, x_i \in D_i \}$$

Internal functions $f = \langle f_i \rangle$, internal relations, etc. are defined similarly.

THE TRANSFER PRINCIPLE

Proposition **The transfer principle**: a first-order formula is satisfied for \mathbb{R} iff it is satisfied for $*\mathbb{R}$, if we suppose that all the sets, etc in the formula to be <u>internal</u>

THE TRANSFER PRINCIPLE

Proposition The transfer principle: a first-order formula is satisfied for \mathbb{R} iff it is satisfied for $*\mathbb{R}$, if we suppose that all the sets, etc in the formula to be internal

Lemma

Internal induction principle: if D is an internal subset of $*\mathbb{N}$ s.t.

- ▶ 0 ∈ D
- ▶ $\forall n \in D, n+1 \in D$

then $D = *\mathbb{N}$.

NON-STANDARD FIXPOINTS

This suggests that

we should consider internal cpo!

NON-STANDARD FIXPOINTS

This suggests that

we should consider internal cpo!

Proposition

An <u>internal</u> Scott-continuous function f between two <u>internal</u> cpo admits a least (internal) fixpoint

$$\operatorname{fix}(f) = \bigvee \{ f^n(\bot) \mid n \in {}^*\mathbb{N} \}$$

NON-STANDARD FIXPOINTS

This suggests that

we should consider internal cpo!

Proposition

An <u>internal</u> Scott-continuous function f between two <u>internal</u> cpo admits a least (internal) fixpoint

$$\operatorname{fix}(f) = \bigvee \{ f^n(\bot) \mid n \in {}^*\mathbb{N} \}$$

Remark

An internal cpo (D, \leq) is not necessarily a cpo!

THE INFINITESIMAL-TIME DOMAIN

Definition

- The category ICPO: internal cpo and internal Scott-continuous functions
- ► The infinitesimal-time domain *IT* ∈ ICPO: the internal cpo of internal functions in *ℝ^{≤*ℕ}

THE INFINITESIMAL-TIME DOMAIN

Definition

- The category ICPO: internal cpo and internal Scott-continuous functions
- ► The infinitesimal-time domain *IT* ∈ ICPO: the internal cpo of internal functions in *ℝ^{≤*ℕ}

Proposition The category **ICPO** is a fixpoint category.

A $\Sigma\text{-object}$ in this category canonically induces a semantics of Kahn networks

EXAMPLE – THE CONSTANT STREAM

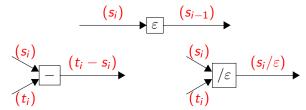
If we interpret

then the net

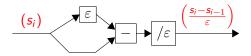
is interpreted as the constant stream $s:{}^*\mathbb{R}^{*\mathbb{N}}$ such that

 $\forall i \in \mathbb{N}, \quad s_i = 0$

If we interpret



(with ε infinitesimal) then the net



is interpreted as the function

$$egin{array}{rcl} D & :& {}^*\mathbb{R}^{*\mathbb{N}} & o & {}^*\mathbb{R}^{*\mathbb{N}} \ & & (s_i) & \mapsto & \left(rac{s_i-s_{i-1}}{arepsilon}
ight) \end{array}$$

The function
$$\begin{array}{rcl} D & : & {}^*\mathbb{R}^{*\mathbb{N}} & \to & {}^*\mathbb{R}^{*\mathbb{N}} \\ & & (s_i) & \mapsto & \left(\frac{s_i - s_{i-1}}{\varepsilon}\right) \end{array} \text{ acts as a derivation} \\ \text{operator for streams.} \end{array}$$

The function
$$\begin{array}{ccc} D & : & {}^*\mathbb{R}^{*\mathbb{N}} & \to & {}^*\mathbb{R}^{*\mathbb{N}} \\ & (s_i) & \mapsto & \left(\frac{s_i - s_{i-1}}{\varepsilon}\right) \end{array} \text{ acts as a derivation}$$

operator for streams.

Definition

In order to compare

- $CT = \mathbb{R}^{\leq \mathbb{R}^+}$: the continuous time model
- $IT = {}^*\mathbb{R}^{\leq {}^*\mathbb{N}}$: the infinitesimal time model

we introduce

sampling	standardisation
S : $CT \rightarrow IT$	T : $IT \rightarrow CT$
$s \;\mapsto\; (s(iarepsilon))_{i\in^*\mathbb{N}}$	$(s_i)_{i\in^*\mathbb{N}} \hspace{0.2cm}\mapsto \hspace{0.2cm} t\mapsto \mathrm{st}(s_{\lfloor t/arepsilon floor})$

The function
$$\begin{array}{ccc} D & : & {}^*\mathbb{R}^{*\mathbb{N}} & \to & {}^*\mathbb{R}^{*\mathbb{N}} \\ & (s_i) & \mapsto & \left(\frac{s_i - s_{i-1}}{\varepsilon}\right) \end{array} \text{ acts as a derivation}$$

operator for streams.

Definition

In order to compare

- $CT = \mathbb{R}^{\leq \mathbb{R}^+}$: the continuous time model
- ▶ $IT = {}^*\mathbb{R}^{\leq {}^*\mathbb{N}}$: the infinitesimal time model

we introduce

sampling	standardisation
S : $CT \rightarrow IT$	T : $IT \rightarrow CT$
$s \mapsto (s(iarepsilon))_{i\in^*\mathbb{N}}$	$(s_i)_{i\in^*\mathbb{N}} \hspace{0.2cm}\mapsto \hspace{0.2cm} t\mapsto \mathrm{st}(s_{\lfloor t/arepsilon floor})$

Proposition

For any continuously differentiable $s \in CT$, T(D(S(s))) = s'.

- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- ▶ we relate it to the "continuous time model" through S and T

- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- ▶ we relate it to the "continuous time model" through S and T
- A fist step to study hybrid systems:
 - we have a well-defined semantics

- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- ▶ we relate it to the "continuous time model" through S and T
- A fist step to study hybrid systems:
 - we have a well-defined semantics
 - we can study when solutions exist

- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- ▶ we relate it to the "continuous time model" through S and T
- A fist step to study hybrid systems:
 - we have a well-defined semantics
 - we can study when solutions exist
 - we can study when solutions s are reasonable:
 - we should have $T \circ S(s) = s$
 - ▶ definitions should be independent of the infinitesimal ε (in particular, Zeno effects are "non-reasonable")

- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- ▶ we relate it to the "continuous time model" through S and T
- A fist step to study hybrid systems:
 - we have a well-defined semantics
 - we can study when solutions exist
 - we can study when solutions s are reasonable:
 - we should have $T \circ S(s) = s$
 - ▶ definitions should be independent of the infinitesimal ε (in particular, Zeno effects are "non-reasonable")
 - we have a built-in notion of approximation

- we can interpret all the common building blocks (derivation, integration, zero-crossing, etc.)
- ▶ we relate it to the "continuous time model" through S and T
- A fist step to study hybrid systems:
 - we have a well-defined semantics
 - we can study when solutions exist
 - we can study when solutions s are reasonable:
 - we should have $T \circ S(s) = s$
 - ▶ definitions should be independent of the infinitesimal ε (in particular, Zeno effects are "non-reasonable")
 - we have a built-in notion of approximation
 - NSA enables us to use discrete techniques for continuous: continuous-time bisiumlations, game semantics, etc.?

THANKS!

Questions?