
CONVERGENT
PRESENTATIONS
OF MONOIDAL
CATEGORIES

Samuel Mimram
École Polytechnique

9th International School on Rewriting

July 6, 2017

Presentation

Here, the goal is to build presentations of algebraic “objects”
(such as monoids):
▶ these provide small descriptions of the objects:
they can be finite even though the object is not

▶ computations can be performed directly on those:
homology, generating series, etc.

▶ rewriting theory can help!

In this course

1. we detail presentations of monoids,

2. generalize to presentations of monoidal categories,

n. this is the starting point of a general pattern.

2 / 77

Some references

▶ 1993: Albert Burroni
Higher-dimensional word problems
with applications to equational logic

▶ 2003: Yves Lafont
Towards an algebraic theory of Boolean circuits

▶ 2014: Samuel Mimram
Towards 3-dimensional rewriting theory

▶ 2016: Yves Guiraud, Philippe Malbos
Polygraphs of finite derivation type

3 / 77

PRESENTATIONS
OF

MONOIDS

4 / 77

Monoids

A monoid (M, ·, 1) consists of
▶ a set M,
▶ a multiplication · : M×M→ M,
▶ a unit 1 ∈ M,

such that
▶ multiplication is associative

(a · b) · c = a · (b · c) ,

▶ unit is a neutral element

1 · a = a = a · 1 .

5 / 77

Monoids

Examples

▶ (N,+, 0)
▶ (N,×, 1)
▶ matrices of size n× n
▶ every group is a monoid:

▶ (Z,+, 0), (Z/nZ,+, 0), (Q,+, 0), (Q,×, 1), …
▶ Sn: group of permutations of n elements
▶ etc.

▶ etc.

6 / 77

Morphisms of monoids

A morphism
f : M → N

between monoids (M,×M, 1M) and (N,×N, 1N) is a function

f : M → N

which
▶ preserves product: for u, v ∈ M,

f(u×M v) = f(u)×N f(v) ,

▶ preserves unit:
f(1M) = 1N .

7 / 77

The free monoid
Given a set G, the free monoid (G∗, ·, 1) has
▶ the set G∗ of words over G as elements,
▶ the concatenation · as multiplication,
▶ the empty word 1 as unit.

Proposition
Given a monoid (M,×, 1) any function

f : G → M

extends uniquely as a morphism of monoids

f∗ : G∗ → M .
Proof.
Given a word a1 . . . an ∈ G∗, we had to define

f∗(a1 . . . an) = f∗(a1)×. . .×f∗(an) = f(a1)×. . .×f(an) .

8 / 77

The free monoid
Given a set G, the free monoid (G∗, ·, 1) has
▶ the set G∗ of words over G as elements,
▶ the concatenation · as multiplication,
▶ the empty word 1 as unit.

Proposition
Given a monoid (M,×, 1) any function

f : G → M

extends uniquely as a morphism of monoids

f∗ : G∗ → M .

Proof.
Given a word a1 . . . an ∈ G∗, we had to define

f∗(a1 . . . an) = f∗(a1)×. . .×f∗(an) = f(a1)×. . .×f(an) .

8 / 77

The free monoid
Given a set G, the free monoid (G∗, ·, 1) has
▶ the set G∗ of words over G as elements,
▶ the concatenation · as multiplication,
▶ the empty word 1 as unit.

Proposition
Given a monoid (M,×, 1) any function

f : G → M

extends uniquely as a morphism of monoids

f∗ : G∗ → M .
Proof.
Given a word a1 . . . an ∈ G∗, we had to define

f∗(a1 . . . an) = f∗(a1)×. . .×f∗(an) = f(a1)×. . .×f(an) .
8 / 77

Isomorphisms of monoids

A morphism of monoids

f : M → N

is an isomorphism when there exists a morphism

g : N → M

such that
g ◦ f = idM and f ◦ g = idN .

This means that M and N are the same monoid up to renaming
elements.

9 / 77

Isomorphisms of monoids

Example
The function

f : N → {a}∗

n 7→ an

is a morphism

f(m) + f(n) = am · an = am+n = f(m+ n)

f(0) = a0 = 1

which is an isomorphism whose inverse is

g : {a}∗ → N
an 7→ n .

10 / 77

Isomorphisms of monoids

Example
The function

f : N → {a}∗

n 7→ an

is a morphism

f(m) + f(n) = am · an = am+n = f(m+ n)

f(0) = a0 = 1

which is an isomorphism whose inverse is

g : {a}∗ → N
an 7→ n .

10 / 77

Isomorphisms of monoids
Lemma
A morphism of monoids

f : M → N

which is invertible as a function is an isomorphism.

Proof.
We show that the inverse function

g : N → M

is a morphism of monoids:

g(u · v)

= g(f(g(u)) · f(g(v))) = g(f(g(u) · g(v)))

= g(u) · g(v)

and
g(1N) = g(f(1M)) = 1M .

11 / 77

Isomorphisms of monoids
Lemma
A morphism of monoids

f : M → N

which is invertible as a function is an isomorphism.

Proof.
We show that the inverse function

g : N → M

is a morphism of monoids:

g(u · v)

= g(f(g(u)) · f(g(v))) = g(f(g(u) · g(v)))

= g(u) · g(v)

and
g(1N) = g(f(1M)) = 1M .

11 / 77

Isomorphisms of monoids
Lemma
A morphism of monoids

f : M → N

which is invertible as a function is an isomorphism.

Proof.
We show that the inverse function

g : N → M

is a morphism of monoids:

g(u · v) = g(f(g(u)) · f(g(v)))

= g(f(g(u) · g(v)))

= g(u) · g(v)

and
g(1N) = g(f(1M)) = 1M .

11 / 77

Isomorphisms of monoids
Lemma
A morphism of monoids

f : M → N

which is invertible as a function is an isomorphism.

Proof.
We show that the inverse function

g : N → M

is a morphism of monoids:

g(u · v) = g(f(g(u)) · f(g(v))) = g(f(g(u) · g(v))) = g(u) · g(v)

and
g(1N) = g(f(1M)) = 1M .

11 / 77

Isomorphisms of monoids
Lemma
A morphism of monoids

f : M → N

which is invertible as a function is an isomorphism.

Proof.
We show that the inverse function

g : N → M

is a morphism of monoids:

g(u · v) = g(f(g(u)) · f(g(v))) = g(f(g(u) · g(v))) = g(u) · g(v)

and
g(1N) = g(f(1M)) = 1M .

11 / 77

Congruence on a monoid
A congruence ≈ on a monoid (M, ·, 1) is an equivalence relation
on M such that

v ≈ v′ implies u · v ·w ≈ u · v′ ·w .

12 / 77

Congruence on a monoid
A congruence ≈ on a monoid (M, ·, 1) is an equivalence relation
on M such that

v ≈ v′ implies u · v ·w ≈ u · v′ ·w .

We recall that an equivalence relation is
▶ reflexive:

u ≈ u

▶ symmetric:
u ≈ v implies v ≈ u

▶ transitive:

u ≈ v and v ≈ w implies u ≈ w

12 / 77

Congruence on a monoid
A congruence ≈ on a monoid (M, ·, 1) is an equivalence relation
on M such that

v ≈ v′ implies u · v ·w ≈ u · v′ ·w .

In this case, one can define a quotient monoid

M/≈

where
▶ an element [u] is the equivalence class of some u ∈ M,
▶ multiplication is given by

[u] · [v] = [u · v] ,

▶ unit is [1].
12 / 77

Congruence on a monoid
Example
Consider the monoid M = {a}∗ and the smallest congruence ≈
such that aaa ≈ 1.

The equivalence classes of M/≈ are

[1] =
{
a3n

}
[a] =

{
a3n+1

}
[aa] =

{
a3n+2

}
and multiplication table is

· [1] [a] [aa]
[1] [1] [a] [aa]
[a] [a] [aa] [1]
[aa] [aa] [1] [a]

Notice that this monoid is isomorphic to N/3N.

13 / 77

Congruence on a monoid
Example
Consider the monoid M = {a}∗ and the smallest congruence ≈
such that aaa ≈ 1.

The equivalence classes of M/≈ are

[1] =
{
a3n

}
[a] =

{
a3n+1

}
[aa] =

{
a3n+2

}
and multiplication table is

· [1] [a] [aa]
[1] [1] [a] [aa]
[a] [a] [aa] [1]
[aa] [aa] [1] [a]

Notice that this monoid is isomorphic to N/3N.

13 / 77

Congruence on a monoid
Example
Consider the monoid M = {a}∗ and the smallest congruence ≈
such that aaa ≈ 1.

The equivalence classes of M/≈ are

[1] =
{
a3n

}
[a] =

{
a3n+1

}
[aa] =

{
a3n+2

}
and multiplication table is

· [1] [a] [aa]
[1] [1] [a] [aa]
[a] [a] [aa] [1]
[aa] [aa] [1] [a]

Notice that this monoid is isomorphic to N/3N.
13 / 77

In order to manipulate a monoid
one would like to come up

with a small description of it.

14 / 77

Presentations of monoids

A presentation of a monoid M is a pair

⟨G | R⟩

where
▶ G is a set of generators
▶ R ⊆ G∗ ×G∗ is a set of relations

such that
M ∼= G∗/≈R

where ≈R is the smallest congruence such that

(u, v) ∈ R implies u ≈R v .

15 / 77

Presentations of monoids
Example

▶ N (additive) is presented by

⟨a | ⟩

▶ N/3N (additive) is presented by

⟨a | aaa = 1⟩

▶ N× N (additive) is presented by

⟨a,b | ba = ab⟩

▶ S3 is presented by

⟨a,b | bab = aba, aa = 1,bb = 1⟩

16 / 77

Presentations of monoids
Example

▶ N (additive) is presented by

⟨a | ⟩

▶ N/3N (additive) is presented by

⟨a | aaa = 1⟩

▶ N× N (additive) is presented by

⟨a,b | ba = ab⟩

▶ S3 is presented by

⟨a,b | bab = aba, aa = 1,bb = 1⟩

16 / 77

Presentations of monoids
Example

▶ N (additive) is presented by

⟨a | ⟩

▶ N/3N (additive) is presented by

⟨a | aaa = 1⟩

▶ N× N (additive) is presented by

⟨a,b | ba = ab⟩

▶ S3 is presented by

⟨a,b | bab = aba, aa = 1,bb = 1⟩

16 / 77

Presentations of monoids
Example

▶ N (additive) is presented by

⟨a | ⟩

▶ N/3N (additive) is presented by

⟨a | aaa = 1⟩

▶ N× N (additive) is presented by

⟨a,b | ba = ab⟩

▶ S3 is presented by

⟨a,b | bab = aba, aa = 1,bb = 1⟩

16 / 77

Presentations of monoids
To sum up, when a monoid M admits a presentation

⟨G | R⟩

this means that

▶ we have an interpretation of elements of G as elements of M

▶ the elements of G generate the monoid M: every element
ofM can be written as a product of (images of) elements of G

▶ if two products of elements of G

a1 . . . am and b1 . . .bn

denote the same element of M then they are related by (the
congruence generated by) R

17 / 77

Presentations of monoids
To sum up, when a monoid M admits a presentation

⟨G | R⟩

this means that

▶ we have an interpretation of elements of G as elements of M

▶ the elements of G generate the monoid M: every element
ofM can be written as a product of (images of) elements of G

▶ if two products of elements of G

a1 . . . am and b1 . . .bn

denote the same element of M then they are related by (the
congruence generated by) R

17 / 77

Presentations of monoids
To sum up, when a monoid M admits a presentation

⟨G | R⟩

this means that

▶ we have an interpretation of elements of G as elements of M

▶ the elements of G generate the monoid M: every element
ofM can be written as a product of (images of) elements of G

▶ if two products of elements of G

a1 . . . am and b1 . . .bn

denote the same element of M then they are related by (the
congruence generated by) R

17 / 77

How do we show
that we actually have

a presentation?

18 / 77

Constructing presentations of monoids

For instance,
N× N ∼= {a,b}∗ /≈

where ≈ is the congruence generated by ba ≈ ab.

In each equivalence class (wrt ≈) there is a unique word of the
form

ambn

with (m, n) ∈ N× N, called a canonical form, thus the bijection!

For instance,

abaa ≈ aaba ≈ aaab .

19 / 77

Constructing presentations of monoids

For instance,
N× N ∼= {a,b}∗ /≈

where ≈ is the congruence generated by ba ≈ ab.

In each equivalence class (wrt ≈) there is a unique word of the
form

ambn

with (m, n) ∈ N× N, called a canonical form, thus the bijection!

For instance,

abaa ≈ aaba ≈ aaab .

19 / 77

The word problem

Given a presentation ⟨G | R⟩ the word problem is
▶ input: u, v ∈ G∗

▶ output: do we have u ≈ v?

In general, this is undecidable!

For instance (Tseitin):

⟨a, c,b,d, e | ac = ca, ad = da,bc = cb,bd = db,
eca = ce, edb = de, ccae = cca

⟩

20 / 77

The word problem

Given a presentation ⟨G | R⟩ the word problem is
▶ input: u, v ∈ G∗

▶ output: do we have u ≈ v?

In general, this is undecidable!

For instance (Tseitin):

⟨a, c,b,d, e | ac = ca, ad = da,bc = cb,bd = db,
eca = ce, edb = de, ccae = cca

⟩

20 / 77

The word problem

Given a presentation ⟨G | R⟩ the word problem is
▶ input: u, v ∈ G∗

▶ output: do we have u ≈ v?

In general, this is undecidable!

For instance (Tseitin):

⟨a, c,b,d, e | ac = ca, ad = da,bc = cb,bd = db,
eca = ce, edb = de, ccae = cca

⟩

20 / 77

How do we come up
with canonical forms?

Normal forms!

21 / 77

String rewriting systems
A presentation

⟨G | R⟩

is another name for a string rewriting system where
▶ G is the alphabet,
▶ the rules are the elements (v, v′) ∈ R.

When (v, v′) ∈ R and u,w ∈ G∗, we have a rewriting step

uvw ⇒ uv′w .

A rewriting path
u ∗⇒ v

is a sequence of rewriting steps. A rewriting equivalence

u ∗⇔ v

is a sequence of forward (⇒) or backward (⇐) rewriting steps.

22 / 77

String rewriting systems
A presentation

⟨G | R⟩

is another name for a string rewriting system where
▶ G is the alphabet,
▶ the rules are the elements (v, v′) ∈ R.

When (v, v′) ∈ R and u,w ∈ G∗, we have a rewriting step

uvw ⇒ uv′w .

A rewriting path
u ∗⇒ v

is a sequence of rewriting steps. A rewriting equivalence

u ∗⇔ v

is a sequence of forward (⇒) or backward (⇐) rewriting steps.

22 / 77

String rewriting systems
A presentation

⟨G | R⟩

is another name for a string rewriting system where
▶ G is the alphabet,
▶ the rules are the elements (v, v′) ∈ R.

When (v, v′) ∈ R and u,w ∈ G∗, we have a rewriting step

uvw ⇒ uv′w .

A rewriting path
u ∗⇒ v

is a sequence of rewriting steps.

A rewriting equivalence

u ∗⇔ v

is a sequence of forward (⇒) or backward (⇐) rewriting steps.

22 / 77

String rewriting systems
A presentation

⟨G | R⟩

is another name for a string rewriting system where
▶ G is the alphabet,
▶ the rules are the elements (v, v′) ∈ R.

When (v, v′) ∈ R and u,w ∈ G∗, we have a rewriting step

uvw ⇒ uv′w .

A rewriting path
u ∗⇒ v

is a sequence of rewriting steps. A rewriting equivalence

u ∗⇔ v

is a sequence of forward (⇒) or backward (⇐) rewriting steps.
22 / 77

String rewriting systems

By definition, we have

u ≈R v iff u ∗⇔ v .

Lemma (Church-Rosser)
When the rewriting system is convergent,

u ∗⇔ v iff û = v̂ .

This means that every equivalence class [u] contains exactly one
normal form, which is û.

23 / 77

String rewriting systems

By definition, we have

u ≈R v iff u ∗⇔ v .

Lemma (Church-Rosser)
When the rewriting system is convergent,

u ∗⇔ v iff û = v̂ .

This means that every equivalence class [u] contains exactly one
normal form, which is û.

23 / 77

Constructing presentations
Given ⟨G | R⟩ and a monoid M, to show

G∗/≈R ∼= M

one can use the following method:

1. construct a function f : G→ M

2. extend it as a morphism of monoids f : G∗ → M

3. check that for every relation (u, v) ∈ R we have f(u) = f(v)

4. deduce that we have a well-defined f : G∗/≈R → M

5. check that the rewriting system is convergent

6. deduce that elements of G∗/≈R are represented by normal forms

7. show that f induces a bijection between normal forms
and elements of M

8. deduce that f : G∗/≈R → M is an isomorphism.

24 / 77

Constructing presentations
Given ⟨G | R⟩ and a monoid M, to show

G∗/≈R ∼= M

one can use the following method:

1. construct a function f : G→ M

2. extend it as a morphism of monoids f : G∗ → M

3. check that for every relation (u, v) ∈ R we have f(u) = f(v)

4. deduce that we have a well-defined f : G∗/≈R → M

5. check that the rewriting system is convergent

6. deduce that elements of G∗/≈R are represented by normal forms

7. show that f induces a bijection between normal forms
and elements of M

8. deduce that f : G∗/≈R → M is an isomorphism.

24 / 77

Constructing presentations
Given ⟨G | R⟩ and a monoid M, to show

G∗/≈R ∼= M

one can use the following method:

1. construct a function f : G→ M

2. extend it as a morphism of monoids f : G∗ → M

3. check that for every relation (u, v) ∈ R we have f(u) = f(v)

4. deduce that we have a well-defined f : G∗/≈R → M

5. check that the rewriting system is convergent

6. deduce that elements of G∗/≈R are represented by normal forms

7. show that f induces a bijection between normal forms
and elements of M

8. deduce that f : G∗/≈R → M is an isomorphism.

24 / 77

Constructing presentations
Given ⟨G | R⟩ and a monoid M, to show

G∗/≈R ∼= M

one can use the following method:

1. construct a function f : G→ M

2. extend it as a morphism of monoids f : G∗ → M

3. check that for every relation (u, v) ∈ R we have f(u) = f(v)

4. deduce that we have a well-defined f : G∗/≈R → M

5. check that the rewriting system is convergent

6. deduce that elements of G∗/≈R are represented by normal forms

7. show that f induces a bijection between normal forms
and elements of M

8. deduce that f : G∗/≈R → M is an isomorphism.

24 / 77

Constructing presentations
Given ⟨G | R⟩ and a monoid M, to show

G∗/≈R ∼= M

one can use the following method:

1. construct a function f : G→ M

2. extend it as a morphism of monoids f : G∗ → M

3. check that for every relation (u, v) ∈ R we have f(u) = f(v)

4. deduce that we have a well-defined f : G∗/≈R → M

5. check that the rewriting system is convergent

6. deduce that elements of G∗/≈R are represented by normal forms

7. show that f induces a bijection between normal forms
and elements of M

8. deduce that f : G∗/≈R → M is an isomorphism.

24 / 77

Constructing presentations
Given ⟨G | R⟩ and a monoid M, to show

G∗/≈R ∼= M

one can use the following method:

1. construct a function f : G→ M

2. extend it as a morphism of monoids f : G∗ → M

3. check that for every relation (u, v) ∈ R we have f(u) = f(v)

4. deduce that we have a well-defined f : G∗/≈R → M

5. check that the rewriting system is convergent

6. deduce that elements of G∗/≈R are represented by normal forms

7. show that f induces a bijection between normal forms
and elements of M

8. deduce that f : G∗/≈R → M is an isomorphism.

24 / 77

Constructing presentations
Given ⟨G | R⟩ and a monoid M, to show

G∗/≈R ∼= M

one can use the following method:

1. construct a function f : G→ M

2. extend it as a morphism of monoids f : G∗ → M

3. check that for every relation (u, v) ∈ R we have f(u) = f(v)

4. deduce that we have a well-defined f : G∗/≈R → M

5. check that the rewriting system is convergent

6. deduce that elements of G∗/≈R are represented by normal forms

7. show that f induces a bijection between normal forms
and elements of M

8. deduce that f : G∗/≈R → M is an isomorphism.

24 / 77

Constructing presentations
Given ⟨G | R⟩ and a monoid M, to show

G∗/≈R ∼= M

one can use the following method:

1. construct a function f : G→ M

2. extend it as a morphism of monoids f : G∗ → M

3. check that for every relation (u, v) ∈ R we have f(u) = f(v)

4. deduce that we have a well-defined f : G∗/≈R → M

5. check that the rewriting system is convergent

6. deduce that elements of G∗/≈R are represented by normal forms

7. show that f induces a bijection between normal forms
and elements of M

8. deduce that f : G∗/≈R → M is an isomorphism.

24 / 77

Constructing presentations
Given ⟨G | R⟩ and a monoid M, to show

G∗/≈R ∼= M

one can use the following method:

1. construct a function f : G→ M

2. extend it as a morphism of monoids f : G∗ → M

3. check that for every relation (u, v) ∈ R we have f(u) = f(v)

4. deduce that we have a well-defined f : G∗/≈R → M

5. check that the rewriting system is convergent

6. deduce that elements of G∗/≈R are represented by normal forms

7. show that f induces a bijection between normal forms
and elements of M

8. deduce that f : G∗/≈R → M is an isomorphism.
24 / 77

Exercises

1. Show that S3 admits the presentation

⟨a,b | aa = 1,bb = 1,bab = aba⟩

2. Propose a presentation for S4.

3. Propose a presentation for Sn.

25 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3 by
3. we check that the relations are satisfied
5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent.

Termination: the rules decrease the length, or
preserve it an decrease the number of b.

7. normal forms are

1 a ab aba b ba
· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3 by

f(a) =
·

==
==

= ·

��
��
�

·

· · ·
f(b) =

· ·
==

==
= ·

��
��
�

· · ·

3. we check that the relations are satisfied
5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent.

Termination: the rules decrease the length, or
preserve it an decrease the number of b.

7. normal forms are
1 a ab aba b ba

· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3

by

3. we check that the relations are satisfied

f(aa) =

·
==

==
= ·

��
��
�

·

·
==

==
= ·

��
��
�

·

· · ·

=

· · ·

·

· · ·

= f(1)

5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent.

Termination: the rules decrease the length, or
preserve it an decrease the number of b.

7. normal forms are
1 a ab aba b ba

· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3

by

3. we check that the relations are satisfied

f(bab) =

· ·
==

==
= ·

��
��
�

·
==

==
= ·

��
��
�

·

· ·
==

==
= ·

��
��
�

· · ·

=

·
==

==
= ·

��
��
�

·

· ·
==

==
= ·

��
��
�

·
==

==
= ·

��
��
�

·

· · ·

= f(aba)

5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent.

Termination: the rules decrease the length, or
preserve it an decrease the number of b.

7. normal forms are
1 a ab aba b ba

· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3

by

3. we check that the relations are satisfied
5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent.

Termination: the rules decrease the length, or
preserve it an decrease the number of b.

7. normal forms are

1 a ab aba b ba
· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3

by

3. we check that the relations are satisfied
5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent. Termination: the rules decrease the length, or
preserve it an decrease the number of b.

7. normal forms are
1 a ab aba b ba

· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3

by

3. we check that the relations are satisfied
5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent. Confluence: the critical branchings are

aaa

y� {{
{{
{{
{{

{{
{{
{{
{{

�%
CC

CC
CC

CC

CC
CC

CC
CC

a a

a

bbb

y� ||
||
||
||

||
||
||
||

�%
BB

BB
BB

BB

BB
BB

BB
BB

b b

b

7. normal forms are
1 a ab aba b ba

· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3

by

3. we check that the relations are satisfied
5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent. Confluence: the critical branchings are

aaa

y� {{
{{
{{
{{

{{
{{
{{
{{

�%
CC

CC
CC

CC

CC
CC

CC
CC

a a

a

bbb

y� ||
||
||
||

||
||
||
||

�%
BB

BB
BB

BB

BB
BB

BB
BB

b b

b

7. normal forms are
1 a ab aba b ba

· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3

by

3. we check that the relations are satisfied
5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent. Confluence: the critical branchings are
bbab

w� ww
ww
ww

ww
ww
ww

!)J
JJJ

JJ

JJJ
JJJ

ab baba

abaa

ab

babb

u} tt
ttt

t
ttt

ttt

�'G
GG

GG
G

GG
GG

GG

abab ba

aaba

ba
7. normal forms are

1 a ab aba b ba
· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3

by

3. we check that the relations are satisfied
5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent. Confluence: the critical branchings are
bbab

w� ww
ww
ww

ww
ww
ww

!)J
JJJ

JJ

JJJ
JJJ

ab baba

��
abaa

u}
ab

babb

u} tt
ttt

t
ttt

ttt

�'G
GG

GG
G

GG
GG

GG

abab

��

ba

aaba

!)
ba

7. normal forms are
1 a ab aba b ba

· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·
their images are different and there are 6 = 3! of them.

26 / 77

Correction
We want to show that S3 is presented by

⟨a,b | aa = 1,bb = 1,bab = aba⟩

1. we define f : {a,b} → S3

by

3. we check that the relations are satisfied
5. we check that the rewriting system

aa⇒ 1 bb⇒ 1 bab⇒ aba

is convergent.

Confluence: the critical branchings are

7. normal forms are

1 a ab aba b ba
· · ·
· · ·

· ;; ·
��

·
· · ·

·
MMM

MM ·
��

·
��

· · ·
·

MMM
MM · ·
qqq

qq

· · ·
· · ;; ·

��
· · ·

· ;; · ;; ·
qqq

qq

· · ·

their images are different and there are 6 = 3! of them.
26 / 77

Correction

A presentation for S4 is

⟨a,b, c | aa = 1,bb = 1, cc = 1,bab = aba, cbc = bcb, ca = ac⟩

27 / 77

Correction

A presentation for S4 is

⟨a,b, c | aa = 1,bb = 1, cc = 1,bab = aba, cbc = bcb, ca = ac⟩

The interpretation of the generators is

a b c
· ;; ·
��

· ·
· · · ·

· · ;; ·
��

·
· · · ·

· · · ;; ·
��

· · · ·

27 / 77

Correction

A presentation for S4 is

⟨a,b, c | aa = 1,bb = 1, cc = 1,bab = aba, cbc = bcb, ca = ac⟩

aa = 1 corresponds to

·
==

==
= ·

��
��
�

· ·

·
==

==
= ·

��
��
�

· ·

· · · ·

=

· · · ·

·

· · · ·

27 / 77

Correction

A presentation for S4 is

⟨a,b, c | aa = 1,bb = 1, cc = 1,bab = aba, cbc = bcb, ca = ac⟩

bab = aba corresponds to

· ·
==

==
= ·

��
��
�

·

·
==

==
= ·

��
��
�

· ·

· ·
==

==
= ·

��
��
�

·

· · · ·

=

·
==

==
= ·

��
��
�

· ·

· ·
==

==
= ·

��
��
�

·

·
==

==
= ·

��
��
�

· ·

· · · ·

27 / 77

Correction

A presentation for S4 is

⟨a,b, c | aa = 1,bb = 1, cc = 1,bab = aba, cbc = bcb, ca = ac⟩

ca = ac corresponds to

· · ·
==

==
= ·

��
��
�

·
==

==
= ·

��
��
�

· ·

· · · ·

=

·
==

==
= ·

��
��
�

· ·

· · ·
==

==
= ·

��
��
�

· · · ·

27 / 77

Correction

A presentation for S4 is

⟨a,b, c | aa = 1,bb = 1, cc = 1,bab = aba, cbc = bcb, ca = ac⟩

A presentation for Sn has
▶ generators: a1, . . . , an−1

▶ relations: for 1 ≤ i < i+ 1 < n,

ai+1aiai+1 = aiai+1ai

and, for 1 ≤ i < i+ 1 < j < n,

ajai = aiaj

27 / 77

PRESENTATIONS
OF

MONOIDAL
CATEGORIES

28 / 77

Higher-dimensional rewriting

The idea of higher-dimensional rewriting is that we have the
following hierarchy of rewriting systems:

0. words
u

1. string rewriting systems

u +3 v

2. 2-dimensional rewriting systems

u

∗

�#

∗

:B

⇛

v

n. …

29 / 77

Higher-dimensional rewriting

The idea of higher-dimensional rewriting is that we have the
following hierarchy of rewriting systems:

0. words
u

1. string rewriting systems

u +3 v

2. 2-dimensional rewriting systems

u

∗

�#

∗

:B

⇛

v

n. …

29 / 77

Higher-dimensional rewriting

The idea of higher-dimensional rewriting is that we have the
following hierarchy of rewriting systems:

0. words
u

1. string rewriting systems

u +3 v

2. 2-dimensional rewriting systems

u

∗

�#

∗

:B

⇛

v

n. …

29 / 77

Higher-dimensional rewriting

The idea of higher-dimensional rewriting is that we have the
following hierarchy of rewriting systems:

0. words
u

1. string rewriting systems

u +3 v

2. 2-dimensional rewriting systems

u

∗

�#

∗

:B

⇛

v

n. …

29 / 77

Plan

We focus here on 2-dimensional rewriting systems.

1. What do they present?
Monoidal categories

2. How do we extend classical rewriting techniques?
Termination, confluence, …

3. Some examples of presented monoidal categories.

30 / 77

Rewriting systems
Up to now a rewriting system was ⟨G | R⟩ with R ⊆ G∗ ×G∗.

We slightly modify the definition and notations.

A 1-dimensional rewriting system consists of
▶ letters: a set G1

▶ rules: a set R together with two functions

s, t : R → G∗
1

what we write
⟨G1 | G2⟩

For instance
⟨a,b | γ : ba⇒ ab⟩

31 / 77

Rewriting systems
Up to now a rewriting system was ⟨G | R⟩ with R ⊆ G∗ ×G∗.

We slightly modify the definition and notations.

A 1-dimensional rewriting system consists of
▶ letters: a set G1

▶ rules: a set R together with two functions

s, t : R → G∗
1

what we write
⟨G1 | G2⟩

For instance
⟨a,b | γ : ba⇒ ab⟩

31 / 77

Rewriting systems
Up to now a rewriting system was ⟨G | R⟩ with R ⊆ G∗ ×G∗.

We slightly modify the definition and notations.

A 1-dimensional rewriting system consists of
▶ object generators: a set G1

▶ morphism generators: a set G2 together with two functions

s, t : G2 → G∗
1

what we write
⟨G1 | G2⟩

For instance
⟨a,b | γ : ba⇒ ab⟩

31 / 77

Rewriting systems
Up to now a rewriting system was ⟨G | R⟩ with R ⊆ G∗ ×G∗.

We slightly modify the definition and notations.

A 1-dimensional rewriting system consists of
▶ object generators: a set G1

▶ morphism generators: a set G2 together with two functions

s, t : G2 → G∗
1

what we write
⟨G1 | G2⟩

For instance
⟨a,b | γ : ba⇒ ab⟩

31 / 77

Rewriting paths

We can now give names to rewriting steps: given a rule in G2

α : v ⇒ v′

and u,w ∈ G∗
1, we have a rewriting step

uαw : uvw ⇒ uv′w

which is the rule α “in the context (u,w)”.

v

��

v′

DDα⇓ ⇝

uvw

&&uαw

=⇒

uv′w

88

32 / 77

Rewriting paths

We can now give names to rewriting steps: given a rule in G2

α : v ⇒ v′

and u,w ∈ G∗
1, we have a rewriting step

uαw : uvw ⇒ uv′w

which is the rule α “in the context (u,w)”.

v

��

v′

DDα⇓ ⇝ u //

v

��

v′

DDα⇓ w //

32 / 77

Rewriting paths

We can now give names to rewriting steps: given a rule in G2

α : v ⇒ v′

and u,w ∈ G∗
1, we have a rewriting step

uαw : uvw ⇒ uv′w

which is the rule α “in the context (u,w)”.

A rewriting path is thus of the form

u1α1w1 · u2α2w2 · . . . · unαnwn

where “·” denotes concatenation.

32 / 77

Rewriting paths
Suppose given a word of the form

u1vu2wu3

and two rules

α : v⇒ v′ β : w⇒ w′

We can use α and β independently, and we will not distinguish
between the order in which they are applied.

u1 //

v

��α⇓

v′

DD
u2 //

w

��β⇓

w′

DD
u3 //

33 / 77

Rewriting paths
In the following, we will quotient it and identify paths of the
following form:

u1αu2wu3 · u1v′u2βu3 = u1vu2βu3 · u1αu2w′u3

Graphically,

u1vu2wu3
u1αu2wu3

s{ ooo
ooo

ooo
o

ooo
ooo

ooo
o

u1vu2βu3

#+O
OOO

OOO
OOO

OOO
OOO

OOO
O

u1v′u2wu3

u1v′u2βu3 #+O
OOO

OOO
OOO

O

OOO
OOO

OOO
OO

u1vu2w′u3

u1αu2w′u3s{ ooo
ooo

ooo
oo

ooo
ooo

ooo
oo

u1vu2wu3

Order does not matter when rewriting at independent positions.

34 / 77

The category of rewriting paths

Given a rewriting system G of the form

⟨G1 | G2⟩

we can form a category G∗ where
▶ an object is a word in G∗

1

▶ a morphism is a rewriting path

ϕ : u ∗⇒ v

▶ composition is given by concatenation

u
ϕ⇒ v

ψ⇒ w

▶ identities are empty paths

35 / 77

Categories
A category C consists of

▶ a set Ob(C) of objects,
▶ for every objects x, y ∈ C, a set C(x, y) of morphisms,
we write f : x⇒ y for f ∈ C(x, y),

▶ a composition operation: given

f : x⇒ y and g : y⇒ z

we have
f · g : x ⇒ z

▶ an identity morphism for every object x ∈ C

1x : x ⇒ x

such that

▶ composition is associative: for f : x⇒ y, g : y⇒ z, h : z⇒ w,

(f · g) · h = f · (g · h)
▶ identities are neutral elements: for f : x⇒ y,

1x · f = f = f · 1y .

36 / 77

Categories
A category C consists of
▶ a set Ob(C) of objects,

▶ for every objects x, y ∈ C, a set C(x, y) of morphisms,
we write f : x⇒ y for f ∈ C(x, y),

▶ a composition operation: given

f : x⇒ y and g : y⇒ z

we have
f · g : x ⇒ z

▶ an identity morphism for every object x ∈ C

1x : x ⇒ x

such that

▶ composition is associative: for f : x⇒ y, g : y⇒ z, h : z⇒ w,

(f · g) · h = f · (g · h)
▶ identities are neutral elements: for f : x⇒ y,

1x · f = f = f · 1y .

36 / 77

Categories
A category C consists of
▶ a set Ob(C) of objects,
▶ for every objects x, y ∈ C, a set C(x, y) of morphisms,
we write f : x⇒ y for f ∈ C(x, y),

▶ a composition operation: given

f : x⇒ y and g : y⇒ z

we have
f · g : x ⇒ z

▶ an identity morphism for every object x ∈ C

1x : x ⇒ x

such that

▶ composition is associative: for f : x⇒ y, g : y⇒ z, h : z⇒ w,

(f · g) · h = f · (g · h)
▶ identities are neutral elements: for f : x⇒ y,

1x · f = f = f · 1y .

36 / 77

Categories
A category C consists of
▶ a set Ob(C) of objects,
▶ for every objects x, y ∈ C, a set C(x, y) of morphisms,
we write f : x⇒ y for f ∈ C(x, y),

▶ a composition operation: given

f : x⇒ y and g : y⇒ z

we have
f · g : x ⇒ z

▶ an identity morphism for every object x ∈ C

1x : x ⇒ x

such that

▶ composition is associative: for f : x⇒ y, g : y⇒ z, h : z⇒ w,

(f · g) · h = f · (g · h)
▶ identities are neutral elements: for f : x⇒ y,

1x · f = f = f · 1y .

36 / 77

Categories
A category C consists of
▶ a set Ob(C) of objects,
▶ for every objects x, y ∈ C, a set C(x, y) of morphisms,
we write f : x⇒ y for f ∈ C(x, y),

▶ a composition operation: given

f : x⇒ y and g : y⇒ z

we have
f · g : x ⇒ z

▶ an identity morphism for every object x ∈ C

1x : x ⇒ x
such that

▶ composition is associative: for f : x⇒ y, g : y⇒ z, h : z⇒ w,

(f · g) · h = f · (g · h)
▶ identities are neutral elements: for f : x⇒ y,

1x · f = f = f · 1y .

36 / 77

Categories
A category C consists of
▶ a set Ob(C) of objects,
▶ for every objects x, y ∈ C, a set C(x, y) of morphisms,
we write f : x⇒ y for f ∈ C(x, y),

▶ a composition operation: given

f : x⇒ y and g : y⇒ z

we have
f · g : x ⇒ z

▶ an identity morphism for every object x ∈ C

1x : x ⇒ x
such that
▶ composition is associative: for f : x⇒ y, g : y⇒ z, h : z⇒ w,

(f · g) · h = f · (g · h)

▶ identities are neutral elements: for f : x⇒ y,

1x · f = f = f · 1y .

36 / 77

Categories
A category C consists of
▶ a set Ob(C) of objects,
▶ for every objects x, y ∈ C, a set C(x, y) of morphisms,
we write f : x⇒ y for f ∈ C(x, y),

▶ a composition operation: given

f : x⇒ y and g : y⇒ z

we have
f · g : x ⇒ z

▶ an identity morphism for every object x ∈ C

1x : x ⇒ x
such that
▶ composition is associative: for f : x⇒ y, g : y⇒ z, h : z⇒ w,

(f · g) · h = f · (g · h)
▶ identities are neutral elements: for f : x⇒ y,

1x · f = f = f · 1y .
36 / 77

Categories
In a category, we have typed morphisms

x f +3 y

that we can compose

y
g

�"
==

==
==

=

==
==

==
=

x

f
<D�������

�������
z

in an associative way

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

and we have identities x
1x +3 x .

37 / 77

Categories
In a category, we have typed morphisms

x f +3 y

that we can compose

y
g

�"
==

==
==

=

==
==

==
=

x

f
<D�������

�������
z

in an associative way

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

and we have identities x
1x +3 x .

37 / 77

Categories
In a category, we have typed morphisms

x f +3 y

that we can compose

y
g

�"
==

==
==

=

==
==

==
=

x

f
<D�������

�������

f·g
+3 z

in an associative way

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

and we have identities x
1x +3 x .

37 / 77

Categories
In a category, we have typed morphisms

x f +3 y

that we can compose

y
g

�"
==

==
==

=

==
==

==
=

x

f
<D�������

�������

f·g
+3 z

in an associative way

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

and we have identities x
1x +3 x .

37 / 77

Categories
In a category, we have typed morphisms

x f +3 y

that we can compose

y
g

�"
==

==
==

=

==
==

==
=

x

f
<D�������

�������

f·g
+3 z

in an associative way

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

������� f·g

3;ppppppppppppp

ppppppppppppp w

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

and we have identities x
1x +3 x .

37 / 77

Categories
In a category, we have typed morphisms

x f +3 y

that we can compose

y
g

�"
==

==
==

=

==
==

==
=

x

f
<D�������

�������

f·g
+3 z

in an associative way

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

������� f·g

3;ppppppppppppp

ppppppppppppp
(f·g)·h

+3 w

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

and we have identities x
1x +3 x .

37 / 77

Categories
In a category, we have typed morphisms

x f +3 y

that we can compose

y
g

�"
==

==
==

=

==
==

==
=

x

f
<D�������

�������

f·g
+3 z

in an associative way

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

������� f·g

3;ppppppppppppp

ppppppppppppp
(f·g)·h

+3 w

y
g +3

g·h
#+O

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

O z
h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������
w

and we have identities x
1x +3 x .

37 / 77

Categories
In a category, we have typed morphisms

x f +3 y

that we can compose

y
g

�"
==

==
==

=

==
==

==
=

x

f
<D�������

�������

f·g
+3 z

in an associative way

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

������� f·g

3;ppppppppppppp

ppppppppppppp
(f·g)·h

+3 w

y
g +3

g·h
#+O

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

O z
h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������

f·(g·h)
+3 w

and we have identities x
1x +3 x .

37 / 77

Categories
In a category, we have typed morphisms

x f +3 y

that we can compose

y
g

�"
==

==
==

=

==
==

==
=

x

f
<D�������

�������

f·g
+3 z

in an associative way

y
g +3 z

h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

������� f·g

3;ppppppppppppp

ppppppppppppp
(f·g)·h

+3 w

y
g +3

g·h
#+O

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

O z
h

�#
??

??
??

?

??
??

??
?

x

f
<D�������

�������

f·(g·h)
+3 w

and we have identities x
1x +3 x .

37 / 77

Categories

Examples

▶ Set: sets as objects / functions as morphisms
▶ Top: topological spaces / continuous functions
▶ Mon: monoids / morphisms of monoids
▶ Gph: graphs / morphisms of graphs
▶ Cat: categories / functors
▶ etc.

38 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ given two objects u, v, we can concatenate them

u⊗ v = uv

graphically,

u⊗v // =

u // v //

▶ there is an empty word 1,

39 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ given two objects u, v, we can concatenate them

u⊗ v = uv

graphically,

u⊗v // =

u // v //

▶ there is an empty word 1,

39 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ given two objects u, v, we can concatenate them

u⊗ v = uv

graphically,

u⊗v // =
u // v //

▶ there is an empty word 1,

39 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ given two objects u, v, we can concatenate them

u⊗ v = uv

graphically,

u⊗v // =
u // v //

▶ there is an empty word 1,

39 / 77

The category of rewriting paths
The category G∗ of rewriting paths has more structure:
▶ given a rewriting step uαw and objects u′,w′, we can put the
step “in context”:

u′ ⊗ (uαw)⊗w′ = (u′u)α(ww′)

which extends to rewriting paths

ϕ = u1α1w1 · . . . · unαnwn

by

u′ϕw′ = (u′u1)α1(w1w′) · . . . · (u′un)αn(wnw′)

u //

v

� �α⇓

v′

FF
w //

40 / 77

The category of rewriting paths
The category G∗ of rewriting paths has more structure:
▶ given a rewriting step uαw and objects u′,w′, we can put the
step “in context”:

u′ ⊗ (uαw)⊗w′ = (u′u)α(ww′)

which extends to rewriting paths

ϕ = u1α1w1 · . . . · unαnwn

by

u′ϕw′ = (u′u1)α1(w1w′) · . . . · (u′un)αn(wnw′)

u′ // u //

v

� �α⇓

v′

FF
w // w′

//

40 / 77

The category of rewriting paths
The category G∗ of rewriting paths has more structure:
▶ given a rewriting step uαw and objects u′,w′, we can put the
step “in context”:

u′ ⊗ (uαw)⊗w′ = (u′u)α(ww′)

which extends to rewriting paths

ϕ = u1α1w1 · . . . · unαnwn

by

u′ϕw′ = (u′u1)α1(w1w′) · . . . · (u′un)αn(wnw′)

u′ // u //

v

� �α⇓

v′

FF
w // w′

//

40 / 77

The category of rewriting paths
The category G∗ of rewriting paths has more structure:
▶ given a rewriting step uαw and objects u′,w′, we can put the
step “in context”:

u′ ⊗ (uαw)⊗w′ = (u′u)α(ww′)

which extends to rewriting paths

ϕ = u1α1w1 · . . . · unαnwn

by

u′ϕw′ = (u′u1)α1(w1w′) · . . . · (u′un)αn(wnw′)

v

� �ϕ⇓

v′

FF

40 / 77

The category of rewriting paths
The category G∗ of rewriting paths has more structure:
▶ given a rewriting step uαw and objects u′,w′, we can put the
step “in context”:

u′ ⊗ (uαw)⊗w′ = (u′u)α(ww′)

which extends to rewriting paths

ϕ = u1α1w1 · . . . · unαnwn

by

u′ϕw′ = (u′u1)α1(w1w′) · . . . · (u′un)αn(wnw′)

u′ //

v

� �ϕ⇓

v′

FF
w′

//

40 / 77

The category of rewriting paths
The category G∗ of rewriting paths has more structure:
▶ given a rewriting step uαw and objects u′,w′, we can put the
step “in context”:

u′ ⊗ (uαw)⊗w′ = (u′u)α(ww′)

which extends to rewriting paths

ϕ = u1α1w1 · . . . · unαnwn

by

u′ϕw′ = (u′u1)α1(w1w′) · . . . · (u′un)αn(wnw′)

u′ //

v

� �ϕ⇓

v′

FF
w′

//

40 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ the operation ⊗ is “associative”:

u′ ⊗ (u⊗ ϕ⊗w)⊗w′ = (u′ ⊗ u)⊗ ϕ⊗ (w⊗w′)

graphically,

u′ // u //

v

��ϕ⇓

v′

FF
w // w′

//

▶ and the empty word is a neutral element.

41 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ the operation ⊗ is “associative”:

u′ ⊗ (u⊗ ϕ⊗w)⊗w′ = (u′ ⊗ u)⊗ ϕ⊗ (w⊗w′)

graphically,

u′ // u //

v

��ϕ⇓

v′

FF
w // w′

//

▶ and the empty word is a neutral element.

41 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ the operation ⊗ is “associative”:

u′ ⊗ (u⊗ ϕ⊗w)⊗w′ = (u′ ⊗ u)⊗ ϕ⊗ (w⊗w′)

graphically,

u′ // u //

v

��ϕ⇓

v′

FF
w // w′

//

▶ and the empty word is a neutral element.

41 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ the operation ⊗ is “associative”:

u′ ⊗ (u⊗ ϕ⊗w)⊗w′ = (u′ ⊗ u)⊗ ϕ⊗ (w⊗w′)

graphically,

u′ // u //

v

��ϕ⇓

v′

FF
w // w′

//

▶ and the empty word is a neutral element.

41 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ the operation ⊗ is “associative”:

u′ ⊗ (u⊗ ϕ⊗w)⊗w′ = (u′ ⊗ u)⊗ ϕ⊗ (w⊗w′)

graphically,

u′ // u //

v

��ϕ⇓

v′

FF
w // w′

//

▶ and the empty word is a neutral element.

41 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ the operation ⊗ is “associative”:

u′ ⊗ (u⊗ ϕ⊗w)⊗w′ = (u′ ⊗ u)⊗ ϕ⊗ (w⊗w′)

graphically,

u′ // u //

v

��ϕ⇓

v′

FF
w // w′

//

▶ and the empty word is a neutral element.

41 / 77

The category of rewriting paths

The category G∗ of rewriting paths has more structure:
▶ the operation ⊗ is “associative”:

u′ ⊗ (u⊗ ϕ⊗w)⊗w′ = (u′ ⊗ u)⊗ ϕ⊗ (w⊗w′)

graphically,

u′ // u //

v

��ϕ⇓

v′

FF
w // w′

//

▶ and the empty word is a neutral element.

41 / 77

The category of rewriting paths
This operation ⊗ satisfies the exchange law:

(ϕ⊗ v) · (u′ ⊗ ψ) = (u⊗ ψ) · (ϕ⊗ v′)

Graphically,
u⊗ v

ϕ⊗v

u} tt
tt
tt
tt

tt
tt
tt
tt u⊗ψ

!)J
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

u′ ⊗ v

u′⊗ψ (J
JJJ

JJJ
JJ

JJJ
JJJ

JJJ
u⊗ v′

ϕ⊗u′v~ uu
uuu

uuu
u

uuu
uuu

uuu

u′ ⊗ v′

We can thus define “rewriting by ϕ and ψ in parallel”:

ϕ⊗ ψ = (ϕ⊗ v) · (u′ ⊗ ψ)

42 / 77

The category of rewriting paths
This operation ⊗ satisfies the exchange law:

(ϕ⊗ v) · (u′ ⊗ ψ) = (u⊗ ψ) · (ϕ⊗ v′)

Graphically,
u⊗ v

ϕ⊗v

u} tt
tt
tt
tt

tt
tt
tt
tt u⊗ψ

!)J
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

u′ ⊗ v

u′⊗ψ (J
JJJ

JJJ
JJ

JJJ
JJJ

JJJ
u⊗ v′

ϕ⊗u′v~ uu
uuu

uuu
u

uuu
uuu

uuu

u′ ⊗ v′

We can thus define “rewriting by ϕ and ψ in parallel”:

ϕ⊗ ψ = (ϕ⊗ v) · (u′ ⊗ ψ)

u

��ϕ⇓

u′

FF

v

��ψ⇓

v′

FF =

u

��ϕ⇓

u′
// v //

ψ⇓

v′

FF

42 / 77

The category of rewriting paths
This operation ⊗ satisfies the exchange law:

(ϕ⊗ v) · (u′ ⊗ ψ) = (u⊗ ψ) · (ϕ⊗ v′)

Graphically,
u⊗ v

ϕ⊗v

u} tt
tt
tt
tt

tt
tt
tt
tt u⊗ψ

!)J
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

u′ ⊗ v

u′⊗ψ (J
JJJ

JJJ
JJ

JJJ
JJJ

JJJ
u⊗ v′

ϕ⊗u′v~ uu
uuu

uuu
u

uuu
uuu

uuu

u′ ⊗ v′

We can thus define “rewriting by ϕ and ψ in parallel”:

ϕ⊗ ψ = (ϕ⊗ v) · (u′ ⊗ ψ)

u

��ϕ⇓

u′

FF

v

��ψ⇓

v′

FF =
u //
ϕ⇓

u′

FF

v

��ψ⇓

v′
//

42 / 77

The category of rewriting paths
This operation ⊗ satisfies the exchange law:

(ϕ⊗ v) · (u′ ⊗ ψ) = (u⊗ ψ) · (ϕ⊗ v′)

Graphically,
u⊗ v

ϕ⊗v

u} tt
tt
tt
tt

tt
tt
tt
tt u⊗ψ

!)J
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

u′ ⊗ v

u′⊗ψ (J
JJJ

JJJ
JJ

JJJ
JJJ

JJJ
u⊗ v′

ϕ⊗u′v~ uu
uuu

uuu
u

uuu
uuu

uuu

u′ ⊗ v′

We can thus define “rewriting by ϕ and ψ in parallel”:

ϕ⊗ ψ = (ϕ⊗ v) · (u′ ⊗ ψ)

and we can recover “context extension” from this operation:

u⊗ ϕ⊗ v = idu ⊗ ϕ⊗ idv

42 / 77

The category of rewriting paths

To sum up, G∗ is a monoidal category.

43 / 77

Monoidal categories
A (strict) monoidal category (C,⊗, 1) is
▶ a category C
▶ (C,⊗, 1) is a monoid
▶ given morphisms

f : x→ x′ g : y→ y′

we have a morphism

f⊗ g : x⊗ x′ → y⊗ y′

and this operation is associative and admits id1 as unit:

(f⊗ g)⊗ h = f⊗ (g⊗ h) id1 ⊗ f = f = f⊗ id1

this operation is compatible with composition

(f · f′)⊗ (g · g′) = (f⊗ g) · (f′ ⊗ g′)

and units.
44 / 77

The simplicial category
The simplicial category △ whose
▶ objects are natural numbers n ∈ N,
▶ a morphism

f : m → n

is an increasing function

f : {0, . . . ,m− 1} → {0, . . . , n− 1}

▶ composition and identities are the usual ones.

Exercise
Show that this category is monoidal with ⊗ defined on objects by

m⊗ n = m+ n

45 / 77

The simplicial category
The simplicial category △ whose
▶ objects are natural numbers n ∈ N,
▶ a morphism

f : m → n

is an increasing function

f : {0, . . . ,m− 1} → {0, . . . , n− 1}

▶ composition and identities are the usual ones.

Exercise
Show that this category is monoidal with ⊗ defined on objects by

m⊗ n = m+ n

45 / 77

The simplicial category

Correction
Given

f : m→ m′ g : n→ n′

we define the function

f⊗ g : {0, . . . ,m+n−1} →
{
0, . . . ,m′+n′−1

}
i 7→

{
f(i) if 0 ≤ i < m

m′ + (g(i−m)) if m ≤ i < m+ n

46 / 77

String diagrams

The morphisms of G∗ admit a representation as string diagrams.

The idea is that a morphism generator

α : a1 . . . am ⇒ b1 . . .bn

can be pictured as a “gate”

a1 a2 . . . am

α

b1 b2 . . . bn

47 / 77

String diagrams

Composition is vertical juxtaposition and linking:

α · β =

a1 a2 . . . am

α

. . .

β

c1 c2 . . . cn

48 / 77

String diagrams

Tensor product is horizontal juxtaposition:

α⊗ β =

a1 a2 . . . amb1 b2 . . . bn

α β

a′1 a
′
2
. . . a′m′b′1 b

′
2
. . . b′n′

49 / 77

String diagrams

Identities are wires:

ida1⊗a2⊗...⊗an =

a1 a2 . . . an

a1 a2 . . . an

50 / 77

String diagrams

Theorem (Joyal-Street’91)
Diagrams up to deformations correspond precisely to morphisms.

51 / 77

String diagrams

Theorem (Joyal-Street’91)
Diagrams up to deformations correspond precisely to morphisms.

A deformation is for instance

a1 . . .amb1 . . .bn

α

β

a′1 . . .a
′
m′b′1 . . .b

′
n′

=

a1 . . .amb1 . . .bn

β

α

a′1 . . .a
′
m′b′1 . . .b

′
n′

51 / 77

String diagrams

Theorem (Joyal-Street’91)
Diagrams up to deformations correspond precisely to morphisms.

The interpretation of diagrams is unambiguous:

a1 . . .amb1 . . .bn

α β

α′ β′

a′1 . . .a
′
m′b′1 . . .b

′
n′

(α · α′)⊗ (β · β′) = (α⊗ β) · (α′ ⊗ β′)

51 / 77

Monoidal categories

Proposition
The monoidal category G∗ is the free monoidal category
containing
▶ the elements of G1 as objects,
▶ the elements of G2 as morphisms.

52 / 77

Presentations of monoidal categories
A presentation P of a monoidal category is

⟨G | R⟩

where
▶ generators: G = ⟨G1 | G2⟩ is a presentation of a monoid,
▶ relations: R ⊆ G∗ ×G∗ consists of pairs of morphisms with
same source and same target.

The monoidal category presented by P is

G∗/≈R

where ≈R is the congruence generated by R.

A monoidal category C is presented by P when

C ∼= G∗/≈R .

53 / 77

Presentations of monoidal categories
A presentation P of a monoidal category is

⟨G | R⟩

where
▶ generators: G = ⟨G1 | G2⟩ is a presentation of a monoid,
▶ relations: R ⊆ G∗ ×G∗ consists of pairs of morphisms with
same source and same target.

The monoidal category presented by P is

G∗/≈R

where ≈R is the congruence generated by R.

A monoidal category C is presented by P when

C ∼= G∗/≈R .

53 / 77

Presentations of monoidal categories
A presentation P of a monoidal category is

⟨G | R⟩

where
▶ generators: G = ⟨G1 | G2⟩ is a presentation of a monoid,
▶ relations: R ⊆ G∗ ×G∗ consists of pairs of morphisms with
same source and same target.

The monoidal category presented by P is

G∗/≈R

where ≈R is the congruence generated by R.

A monoidal category C is presented by P when

C ∼= G∗/≈R .

53 / 77

A presentation for △
Consider the presentation ⟨G | R⟩ where
▶ G1 = {a}

▶ G2 = {µ : aa⇒ a, η : 1 ⇒ a}

▶ relations are

(µ⊗ a) · µ⇛ (a⊗ µ) · µ (η ⊗ a) · µ⇛ ida (a⊗ η) · µ⇛ ida

⇛ ⇛ ⇛

Claim: this is a presentation of △.

54 / 77

A presentation for △
Consider the presentation ⟨G | R⟩ where
▶ G1 = {a}
▶ G2 = {µ : aa⇒ a, η : 1 ⇒ a}

a a

µ

a

η

a

▶ relations are

(µ⊗ a) · µ⇛ (a⊗ µ) · µ (η ⊗ a) · µ⇛ ida (a⊗ η) · µ⇛ ida

⇛ ⇛ ⇛

Claim: this is a presentation of △.

54 / 77

A presentation for △
Consider the presentation ⟨G | R⟩ where
▶ G1 = {a}
▶ G2 = {µ : aa⇒ a, η : 1 ⇒ a}

▶ relations are

(µ⊗ a) · µ⇛ (a⊗ µ) · µ (η ⊗ a) · µ⇛ ida (a⊗ η) · µ⇛ ida

⇛ ⇛ ⇛

Claim: this is a presentation of △.

54 / 77

A presentation for △
Consider the presentation ⟨G | R⟩ where
▶ G1 = {a}
▶ G2 = {µ : aa⇒ a, η : 1 ⇒ a}

▶ relations are

(µ⊗ a) · µ⇛ (a⊗ µ) · µ (η ⊗ a) · µ⇛ ida (a⊗ η) · µ⇛ ida

⇛ ⇛ ⇛

Claim: this is a presentation of △.

54 / 77

A presentation for △
Consider the presentation ⟨G | R⟩ where
▶ G1 = {a}
▶ G2 = {µ : aa⇒ a, η : 1 ⇒ a}

▶ relations are

(µ⊗ a) · µ⇛ (a⊗ µ) · µ (η ⊗ a) · µ⇛ ida (a⊗ η) · µ⇛ ida

⇛ ⇛ ⇛

Claim: this is a presentation of △.
54 / 77

A presentation for △

The idea to show that this is a presentation for △ is a before:

1. show that this presentation is confluent:
terminating + confluent critical branchings

2. show that normal forms are in bijection with morphisms of△.

55 / 77

Let’s study critical branchings

(graphically, from now on)

56 / 77

Rewriting steps

A rewriting step is a rewriting rule “in context”:

⇛

57 / 77

Branchings

A branching is a pair of rewriting steps from the same diagram:

⇚ ⇛

58 / 77

Critical branchings

A branching is non-critical when

▶ it consists in two independent applications of rules
(rules do not share 1-generators)

⇚ ⇛

59 / 77

Critical branchings

A branching is non-critical when

▶ is it not minimal
(can be obtained by putting another branching in context)

⇚ ⇛

can be obtained from

⇚ ⇛

59 / 77

Critical branchings

A branching is critical when it is not non-critical:
▶ branches are not independent: left members of rules overlap
▶ it is minimal: all the 1-generators are used

⇚ ⇛

60 / 77

Critical pairs lemma
Lemma
A 2-dimensional rewriting system is locally confluent iff all critical
branchings are confluent.

ϕ

�x� ��
��
��
�

��
��
��
�

��
��
��
�

>�&
>>

>>
>>

>

>>
>>

>>
>

>>
>>

>>
>

ψ

∗ >�&

ψ′

∗
�w�

χ

In particular, a terminating 2-dimensional rewriting system with
confluent critical branchings is confluent.

61 / 77

Critical pairs lemma
Lemma
A 2-dimensional rewriting system is locally confluent iff all critical
branchings are confluent.

ϕ

�x� ��
��
��
�

��
��
��
�

��
��
��
�

>�&
>>

>>
>>

>

>>
>>

>>
>

>>
>>

>>
>

ψ

∗ >�&

ψ′

∗
�w�

χ

In particular, a terminating 2-dimensional rewriting system with
confluent critical branchings is confluent.

61 / 77

Exercise
Consider the previous rewriting system

⇛ ⇛ ⇛

We assume that it is terminating.

1. Show that it is confluent.
2. What do the normal forms look like?
3. Define an interpretation of generators in △.
4. Show that normal forms

ϕ : am → an

are in bijection with functions

f : {0, . . . ,m− 1} → {0, . . . , n− 1}

5. Deduce that we have a presentation of △.
62 / 77

Correction

1. The critical pairs are confluent:

2. The right comb κn : an → a is

. . .

κn

κ0 κ1 . . . κn+1

Normal forms are tensor products of right combs.

63 / 77

Correction

1. The critical pairs are confluent:

2. The right comb κn : an → a is

. . .

κn

κ0 κ1 . . . κn+1

Normal forms are tensor products of right combs.

63 / 77

Correction

3. The interpretation of generators into △ is given as follows.
▶ We interpret

a as 1

thus an is interpreted as n.

▶ We interpret

as
0 1

��
��
�

0

▶ We interpret

as
0

64 / 77

Correction

3. The interpretation of generators into △ is given as follows.
▶ We interpret

a as 1

thus an is interpreted as n.
▶ We interpret

as
0 1

��
��
�

0

▶ We interpret

as
0

64 / 77

Correction

3. The interpretation of generators into △ is given as follows.
▶ We interpret

a as 1

thus an is interpreted as n.
▶ We interpret

as
0 1

��
��
�

0

▶ We interpret

as
0

64 / 77

Correction

4. The interpretation of the normal form

κn1 ⊗ κn2 ⊗ . . .⊗ κnk

is a function

f : n1 + n2 + . . .+ nk → k

such that for 0 ≤ i < k,

|f−1(i)| = ni

Every increasing function can be obtained in this way, and
the sequence (ni)1≤i≤k determines uniquely the function.

5. We thus have a presentation of △.

65 / 77

Correction

4. The interpretation of the normal form

κn1 ⊗ κn2 ⊗ . . .⊗ κnk

is a function

f : n1 + n2 + . . .+ nk → k

such that for 0 ≤ i < k,

|f−1(i)| = ni

Every increasing function can be obtained in this way, and
the sequence (ni)1≤i≤k determines uniquely the function.

5. We thus have a presentation of △.

65 / 77

Correction

4. The interpretation of the normal form

κn1 ⊗ κn2 ⊗ . . .⊗ κnk

is a function

f : n1 + n2 + . . .+ nk → k

such that for 0 ≤ i < k,

|f−1(i)| = ni

Every increasing function can be obtained in this way, and
the sequence (ni)1≤i≤k determines uniquely the function.

5. We thus have a presentation of △.

65 / 77

The category B

The category B has
▶ objects: N
▶ a morphism

f : m → n

is a bijection

f : {0, . . . ,m−1} → {0, . . . , n−1}

▶ compositions and identities are as usual,
▶ tensor product is as in the case of △.

66 / 77

Exercise

1. Propose some generators for this category.

2. Propose some relations for this category.

3. What are the critical pairs?

4. Show local confluence.

5. Assuming termination, show that this is a presentation of B.

Question
Does a finite rewriting system necessarily has a finite number of
critical pairs?

67 / 77

An example of termination.

68 / 77

Showing termination
A poset is well-founded if every decreasing sequence is
eventually stationary (e.g. N).

In order to show that a rewriting system is terminating, we can
interpret all the diagrams in a well-founded poset, in such a way
that all rules are strictly decreasing.

Note that this interpretation should be compatible with the
axioms of monoidal categories:

a1 . . .amb1 . . .bn

α

β

a′1 . . .a
′
m′b′1 . . .b

′
n′

=

a1 . . .amb1 . . .bn

β

α

a′1 . . .a
′
m′b′1 . . .b

′
n′

69 / 77

Showing termination
A poset is well-founded if every decreasing sequence is
eventually stationary (e.g. N).

In order to show that a rewriting system is terminating, we can
interpret all the diagrams in a well-founded poset, in such a way
that all rules are strictly decreasing.

Note that this interpretation should be compatible with the
axioms of monoidal categories:

a1 . . .amb1 . . .bn

α

β

a′1 . . .a
′
m′b′1 . . .b

′
n′

=

a1 . . .amb1 . . .bn

β

α

a′1 . . .a
′
m′b′1 . . .b

′
n′

69 / 77

Showing termination
A poset is well-founded if every decreasing sequence is
eventually stationary (e.g. N).

In order to show that a rewriting system is terminating, we can
interpret all the diagrams in a well-founded poset, in such a way
that all rules are strictly decreasing.

Note that this interpretation should be compatible with the
axioms of monoidal categories:

a1 . . .amb1 . . .bn

α

β

a′1 . . .a
′
m′b′1 . . .b

′
n′

=

a1 . . .amb1 . . .bn

β

α

a′1 . . .a
′
m′b′1 . . .b

′
n′

69 / 77

Counting generators

For instance, we consider (N,≤) and associate to each diagram
the number of generators occurring in it.

The rules

⇛ ⇛

are strictly decreasing.

But not the rule

⇛

70 / 77

Counting generators

For instance, we consider (N,≤) and associate to each diagram
the number of generators occurring in it.

The rules

⇛ ⇛

are strictly decreasing.

But not the rule

⇛

70 / 77

Multiple well-founded posets

Rewriting preserves typing:

(f : m→ n) ⇛ (g : m→ n)

We can therefore have a different well-founded poset for each
pair of objects!

Lafont had the idea of interpreting morphisms

f : m→ n

as functions in
Nm
∗ → Nn

∗

equipped with a particular well-founded order.

71 / 77

Multiple well-founded posets

Rewriting preserves typing:

(f : m→ n) ⇛ (g : m→ n)

We can therefore have a different well-founded poset for each
pair of objects!

Lafont had the idea of interpreting morphisms

f : m→ n

as functions in
Nm
∗ → Nn

∗

equipped with a particular well-founded order.

71 / 77

Multiple well-founded posets

Given n ∈ N, we consider
Nn
∗

(where N∗ = N \ {0}) equipped with the product order:

(x1, . . . , xn) ≤ (x′1, . . . , x
′
n)

iff for every 1 ≤ i ≤ n
xi ≤ x′i .

Lemma
This is a well-founded poset.

72 / 77

Multiple well-founded posets

Given n ∈ N, we consider
Nn
∗

(where N∗ = N \ {0}) equipped with the product order:

(x1, . . . , xn) ≤ (x′1, . . . , x
′
n)

iff for every 1 ≤ i ≤ n
xi ≤ x′i .

Lemma
This is a well-founded poset.

72 / 77

Multiple well-founded posets

Given objects m, n we consider strictly increasing functions

Nm
∗ → Nn

∗

ordered by
f < f′

whenever for every (x1, . . . , xm)

f(x1, . . . , xn) < f′(x1, . . . , xn) .

Lemma
This is a well-founded poset.

73 / 77

Multiple well-founded posets

Given objects m, n we consider strictly increasing functions

Nm
∗ → Nn

∗

ordered by
f < f′

whenever for every (x1, . . . , xm)

f(x1, . . . , xn) < f′(x1, . . . , xn) .

Lemma
This is a well-founded poset.

73 / 77

Multiple well-founded posets

We have a monoidal category where
▶ an objects is an integer
▶ a morphism

f : m → n

is a strictly increasing function

f : Nm
∗ → Nn

∗

and moreover the relations < are compatible with composition
and tensor.

74 / 77

Multiple well-founded posets

In order to provide an interpretation of every diagram

m→ n

it is sufficient to interpret generators (and extend it in a way
compatible with composition and tensor).

75 / 77

Applications

Exercise
Show that the rewriting system

⇛ ⇛ ⇛

is terminating.

76 / 77

Applications

Exercise
Show that the presentation of B is terminating.

77 / 77

