CONVERGENT
PRESENTATIONS
OF MONOIDAL

CATEGORIES

Samuel Mimram

9th International School on Rewriting
July 6, 2017

Presentation

Here, the goal is to build presentations of algebraic “objects”
(such as monoids):

» these provide small descriptions of the objects:
they can be finite even though the object is not

» computations can be performed directly on those:
homology, generating series, etc.

» rewriting theory can help!

In this course
1. we detail presentations of monoids,
2. generalize to presentations of monoidal categories,
n. this is the starting point of a general pattern.

Some references

1993: Albert Burroni
Higher-dimensional word problems
with applications to equational logic

20083: Yves Lafont
Towards an algebraic theory of Boolean circuits

2014: Samuel Mimram
Towards 3-dimensional rewriting theory

2016: Yves Guiraud, Philippe Malbos
Polygraphs of finite derivation type

PRESENTATIONS
OF
MONOIDS

A monoid (M, -, 1) consists of
» asetM,
» a multiplication - : M x M — M,
» aunitl e M,
such that
» multiplication is associative

(@-b)-c =
» unit is a neutral element

l-a = a

Monoids

Monoids

Examples

» (N,+,0)
(N, x,1)
matrices of sizen x n

every group is a monoid:

> (Z7 +7 O)l (Z/nZ7 +7 0)1 <Q7 +7 O)v (Qa X7 1):
» S,: group of permutations of n elements
> etc.

v

v

v

» etc.

Morphisms of monoids

A morphism
f : M - N

between monoids (M, x, 1) and (N, xp;, 1) is a function
f : M —= N

which
» preserves product: for u,v € M,

fluxyv) = fu) xyf(v),

> preserves unit:
f(ly) = 1n.

The free monoid
Given a set G, the free monoid (G*, -, 1) has
» the set G* of words over G as elements,
» the concatenation - as multiplication,
» the empty word 1 as unit.

8/77

The free monoid
Given a set G, the free monoid (G*, -, 1) has
» the set G* of words over G as elements,
» the concatenation - as multiplication,
» the empty word 1 as unit.

Proposition
Given a monoid (M, x, 1) any function

f . G —- M
extends uniquely as a morphism of monoids

. G = M.

8/77

The free monoid

Given a set G, the free monoid (G*, -, 1) has
» the set G* of words over G as elements,
» the concatenation - as multiplication,
» the empty word 1 as unit.

Proposition
Given a monoid (M, x, 1) any function

f : G — M
extends uniquely as a morphism of monoids
o G = M.

Proof.
Given aword a;y ...a, € G*, we had to define

fflay...an) = fF(a)x...xf(ap) = fla)x..

.xf(ap) .00

8/77

Isomorphisms of monoids

A morphism of monoids
f @ M = N

is an isomorphism when there exists a morphism
g : N —» M

such that

gof=idy and fog=idy.

This means that M and N are the same monoid up to renaming
elements.

Isomorphisms of monoids

Example
The function

f : N — {a}f
n — a

is a morphism

Isomorphisms of monoids

Example
The function

f : N — {a}f
n — a

is a morphism
f(m) +f(n)=a"-a" =a™*" =f(m +n)

f0)=a’=1

which is an isomorphism whose inverse is

10/77

Isomorphisms of monoids

Lemma
A morphism of monoids

f @ M = N

which is invertible as a function is an isomorphism.

11/77

Isomorphisms of monoids

Lemma
A morphism of monoids

f @ M = N

which is invertible as a function is an isomorphism.

Proof.
We show that the inverse function

g : N —» M
is a morphism of monoids:

g(u-v)

11/77

Isomorphisms of monoids

Lemma
A morphism of monoids

f @ M = N

which is invertible as a function is an isomorphism.

Proof.
We show that the inverse function

g : N —» M
is a morphism of monoids:

g(u-v) =g(flg(u)) - flg(v)))

11/77

Isomorphisms of monoids

Lemma
A morphism of monoids

f @ M = N

which is invertible as a function is an isomorphism.

Proof.
We show that the inverse function

g : N —» M
is a morphism of monoids:

g(u-v)=g(f(g()) - fg(v))) = g(flg(u) - g(v)))

11/77

Isomorphisms of monoids

Lemma
A morphism of monoids

f @ M = N

which is invertible as a function is an isomorphism.

Proof.
We show that the inverse function

g : N —» M
is a morphism of monoids:
g(u-v)=g(f(g))-f(g(v)) =9(f(g(u) -g(v)) =9()-9(v)

and

Congruence on a monoid
A congruence ~ on a monoid (M, -, 1) is an equivalence relation
on M such that

vV implies u-v-w=u-v - -w.

Congruence on a monoid

A congruence =~ on a monoid (M, -, 1) is an equivalence relation
on M such that

vV implies u-v-w=u-v - -w.

We recall that an equivalence relation is

> reflexive:
u=u
> symmetric:
u=v implies vaUu
» transitive:

Uu~v and v=aw implies u~w

Congruence on a monoid

A congruence ~ on a monoid (M, -, 1) is an equivalence relation
on M such that

vV implies u-v-w=u-v - -w.
In this case, one can define a quotient monoid
M /=

where

» an element [u] is the equivalence class of some u € M,
» multiplication is given by

wl-v = u-vl,

» unitis [1].

Congruence on a monoid

Example

Consider the monoid M = {a}" and the smallest congruence ~
such that aaa ~ 1.

Congruence on a monoid

Example
Consider the monoid M = {a}" and the smallest congruence ~
such that aaa ~ 1.

The equivalence classes of M/~ are
[1] _ {a3n} [a] — {a3n+1} [aa] _ {33n+2}

and multiplication table is

| 0] [a] [ea]
[1 fal el
@l | & [aa] [1]

Congruence on a monoid

Example
Consider the monoid M = {a}" and the smallest congruence ~
such that aaa ~ 1.

The equivalence classes of M/~ are
[1] _ {a3n} [a] — {a3n+1} [aa] _ {33n+2}

and multiplication table is

| 1] [a] [ag]
[1 fal el
@l | & [aa] [1]

Notice that this monoid is isomorphic to N/3N.

In order to manipulate a monoid
one would like to come up
with a small description of it.

Presentations of monoids

A presentation of a monoid M is a pair
(G[R)

where
» G is a set of generators
» R C G* x G* is a set of relations
such that
M = GHaR
where ~f is the smallest congruence such that

(u,v)eR implies uxfv.

Presentations of monoids
Example

» N (additive) is presented by
@l)

Presentations of monoids
Example

» N (additive) is presented by
@l)
» N/3N (additive) is presented by

(a|aaa=1)

Presentations of monoids
Example

» N (additive) is presented by
@l)
» N/3N (additive) is presented by
(a|aaa=1)
» N x N (additive) is presented by

(a,b | ba = ab)

Presentations of monoids
Example

» N (additive) is presented by
@l)
» N/3N (additive) is presented by
(a|aaa=1)
» N x N (additive) is presented by
(a,b | ba = ab)
» Ss3is presented by

(a,b | bab = aba,aa = 1,bb = 1)

Presentations of monoids
To sum up, when a monoid M admits a presentation

GIR)

this means that

» we have an interpretation of elements of G as elements of M

17/77

Presentations of monoids
To sum up, when a monoid M admits a presentation

(G |R)
this means that

» we have an interpretation of elements of G as elements of M

» the elements of G generate the monoid M: every element
of M can be written as a product of (images of) elements of G

17/77

Presentations of monoids
To sum up, when a monoid M admits a presentation

GIR)

this means that

» we have an interpretation of elements of G as elements of M

» the elements of G generate the monoid M: every element
of M can be written as a product of (images of) elements of G

» if two products of elements of G
ai...am and bi...bn

denote the same element of M then they are related by (the
congruence generated by) R

17/77

How do we show
that we actually have
a presentation?

18/77

Constructing presentations of monoids

For instance,
NxN = {ab}"/~

where = is the congruence generated by ba ~ ab.

19/77

Constructing presentations of monoids

For instance,
NxN = {ab}"/~

where = is the congruence generated by ba ~ ab.

In each equivalence class (wrt =) there is a unique word of the
form
arp”’

with (m,n) € N x N, called a canonical form, thus the bijection!

For instance,

abaa =~ aaba =~ aaab.

19/77

The word problem

Given a presentation (G | R) the word problem is
» input: u,v € G*
» output: do we have u =~ v?

The word problem

Given a presentation (G | R) the word problem is
» input: u,v € G*
» output: do we have u =~ v?

In general, this is undecidable!

The word problem

Given a presentation (G | R) the word problem is
» input: u,v € G*
» output: do we have u =~ v?

In general, this is undecidable!

For instance (Tseitin):

ac = ca,ad = da,bc = cb,bd = db,

a,c,b,d,e
<7)y My My ‘ eca:ce7edb:dejccaezcca

)

How do we come up
with canonical forms?

Normal forms!

String rewriting systems
A presentation
(GIR)
is another name for a string rewriting system where
» G is the alphabet,
» the rules are the elements (v,V') € R.

String rewriting systems
A presentation
(GIR)
is another name for a string rewriting system where

» G is the alphabet,
» the rules are the elements (v,V') € R.

When (v,V') € Rand u,w € G*, we have a rewriting step

uw = w'w.

String rewriting systems
A presentation
(GIR)
is another name for a string rewriting system where

» G is the alphabet,
» the rules are the elements (v,V') € R.

When (v,V') € Rand u,w € G*, we have a rewriting step
uw = ww.

A rewriting path

u = Vv

is a sequence of rewriting steps.

String rewriting systems
A presentation
(GIR)
is another name for a string rewriting system where

» G is the alphabet,
» the rules are the elements (v,V') € R.

When (v,V') € Rand u,w € G*, we have a rewriting step
uw = ww.

A rewriting path

u = Vv

is a sequence of rewriting steps. A rewriting equivalence

*

u < v

is a sequence of forward (=) or backward (<) rewriting steps.

By definition, we have

String rewriting systems

String rewriting systems

By definition, we have

Lemma (Church-Rosser)
When the rewriting system is convergent,

usv iff 0=v.

This means that every equivalence class [u] contains exactly one
normal form, which is .

Constructing presentations
Given (G | R) and a monoid M, to show

G*/;uR ~ M

one can use the following method:

Constructing presentations
Given (G | R) and a monoid M, to show

G /xf = M
one can use the following method:

1. construct a function f:G—-M

Constructing presentations
Given (G | R) and a monoid M, to show

G /xf = M
one can use the following method:

1. construct a function f:G—-M

2. extend it as a morphism of monoids f:G*—>M

Constructing presentations
Given (G | R) and a monoid M, to show

G /xf = M
one can use the following method:
1. construct a function f:G—-M
2. extend it as a morphism of monoids f:G*—>M

3. check that for every relation (u,v) € Rwe have f(u) = f(v)

Constructing presentations

Given (G | R) and a monoid M, to show

1.

G/ = M
one can use the following method:
construct a function f:G—>M
. extend it as a morphism of monoids f:G*—>M

2
3.
4

check that for every relation (u,v) € Rwe have f(u) =f(v)

. deduce that we have a well-defined f:G* /)~ M

Constructing presentations

Given (G | R) and a monoid M, to show

1.

G/ = M
one can use the following method:
construct a function f:G—>M
. extend it as a morphism of monoids f:G*—>M

2
3.
4
5

check that for every relation (u,v) € Rwe have f(u) =f(v)

. deduce that we have a well-defined f:G* /)~ M

. check that the rewriting system is convergent

Constructing presentations

Given (G | R) and a monoid M, to show

G/ = M

one can use the following method:

1.

© o A~ WD

construct a function f:G—-M
extend it as a morphism of monoids f:G*—>M
check that for every relation (u,v) € Rwe have f(u) =f(v)
deduce that we have a well-defined f:G* /)~ M
check that the rewriting system is convergent

deduce that elements of G*/ ~ are represented by normal forms

Constructing presentations

Given (G | R) and a monoid M, to show

1.

G/ = M
one can use the following method:
construct a function f:G—>M
extend it as a morphism of monoids f:G*—>M

N o~ D

check that for every relation (u,v) € Rwe have f(u) =f(v)
deduce that we have a well-defined f:G* /)~ M
check that the rewriting system is convergent

deduce that elements of G*/ ~ are represented by normal forms

show that f induces a bijection between normal forms
and elements of M

Constructing presentations

Given (G | R) and a monoid M, to show

1.

G/ = M
one can use the following method:
construct a function f:G—>M
extend it as a morphism of monoids f:G*—>M

N o~ D

check that for every relation (u,v) € Rwe have f(u) =f(v)
deduce that we have a well-defined f:G* /)~ M
check that the rewriting system is convergent

deduce that elements of G*/ ~ are represented by normal forms

show that f induces a bijection between normal forms
and elements of M

deduce that f : G*/~F — M is an isomorphism.

Exercises

1. Show that S3 admits the presentation
(a,b|aa =1,bb =1,bab = aba)

2. Propose a presentation for Sy.
3. Propose a presentation for Sp,.

Correction
We want to show that S3 is presented by

(a,b |aa=1,bb = 1,bab = aba)

Correction
We want to show that S3 is presented by

(a,b |aa =1,bb = 1,bab = aba)

1. we definef: {a,b} — S3 by

= X | =] X

Correction
We want to show that S3 is presented by

(a,b |aa =1,bb = 1,bab = aba)

1. we definef: {a,b} — S3
3. we check that the relations are satisfied

Correction
We want to show that S3 is presented by

(a,b |aa =1,bb = 1,bab = aba)

1. we definef: {a,b} — S3
3. we check that the relations are satisfied

Correction
We want to show that S3 is presented by

(a,b |aa=1,bb = 1,bab = aba)

—

. we definef: {a,b} — Ss
3. we check that the relations are satisfied
5. we check that the rewriting system

aa=1 bb =1 bab = aba

is convergent.

Correction
We want to show that S3 is presented by

(a,b |aa =1,bb = 1,bab = aba)

—

. we definef: {a,b} — Ss
we check that the relations are satisfied
we check that the rewriting system

oW

aa=1 bb =1 bab = aba

is convergent. Termination: the rules decrease the length, or
preserve it an decrease the number of b.

Correction
We want to show that S3 is presented by

(a,b |aa =1,bb = 1,bab = aba)

—

. we definef: {a,b} — Ss
we check that the relations are satisfied
we check that the rewriting system

oW

aa=1 bb =1 bab = aba

is convergent. Confluence: the critical branchings are

aaa bbb

SN, N

Correction
We want to show that S3 is presented by

(a,b |aa =1,bb = 1,bab = aba)

—

. we definef: {a,b} — Ss
we check that the relations are satisfied
we check that the rewriting system

oW

aa=1 bb =1 bab = aba

is convergent. Confluence: the critical branchings are

aaa bbb

S

{"'a i

Correction
We want to show that S3 is presented by

(a,b |aa =1,bb = 1,bab = aba)

—

. we definef: {a,b} — Ss
we check that the relations are satisfied
we check that the rewriting system

oW

aa=1 bb =1 bab = aba

is convergent. Confluence: the critical branchings are
bbab babb

ab baba abab

ba

Correction
We want to show that S3 is presented by

(a,b |aa =1,bb = 1,bab = aba)

—

. we definef: {a,b} — Ss
we check that the relations are satisfied
we check that the rewriting system

oW

aa=1 bb =1 bab = aba

is convergent. Confluence: the critical branchings are

bbab babb
ab baba abab

abaa aaba

Cap” “pa

ba

Correction
We want to show that S3 is presented by

(a,b|aa=1,bb =1,bab = aba)

1. we definef: {a,b} — S3
3. we check that the relations are satisfied
5. we check that the rewriting system

aa=1 bb =1 bab = aba

is convergent.
7. normal forms are

1 a ab aba b ba
i '><' ; >\< >< ; '><' >/<

their images are different and there are 6 = 3! of them.

Correction

A presentation for Sy is

(a,b,c|aa=1,bb=1,cc =1,bab = aba,cbc = bcb,ca = ac)

Correction

A presentation for Sy is

(a,b,c|aa=1,bb=1,cc =1,bab = aba,cbc = bcb,ca = ac)

The interpretation of the generators is

a b o)

><\\ X o X

Correction

A presentation for Sy is

(a,b,c|aa=1,bb=1,cc =1,bab = aba,cbc = bcb,ca = ac)

aa = 1 corresponds to

Correction

A presentation for Sy is

(a,b,c|aa=1,bb=1,cc =1,bab = aba,cbc = bcb,ca = ac)

bab = aba corresponds to

Correction

A presentation for Sy is

(a,b,c|aa=1,bb=1,cc =1,bab = aba,cbc = bcb,ca = ac)

ca = ac corresponds to

Correction

A presentation for Sy is

(a,b,c|aa=1,bb=1,cc =1,bab = aba,cbc = bcb,ca = ac)

A presentation for S, has
» generators: ai,...,an—1
» relations: forl <i<i+1<n,

8i+188j+1 = &,8j+18;
and, forl1 <i<i+1<j<n,

aja,- = 8,‘81‘

PRESENTATIONS
OF
MONOIDAL
CATEGORIES

Higher-dimensional rewriting

The idea of higher-dimensional rewriting is that we have the
following hierarchy of rewriting systems:

0. words

Higher-dimensional rewriting

The idea of higher-dimensional rewriting is that we have the
following hierarchy of rewriting systems:

0. words

1. string rewriting systems

Higher-dimensional rewriting

The idea of higher-dimensional rewriting is that we have the
following hierarchy of rewriting systems:

0. words
1. string rewriting systems
U=——=v

2. 2-dimensional rewriting systems

Higher-dimensional rewriting

The idea of higher-dimensional rewriting is that we have the
following hierarchy of rewriting systems:

0. words
1. string rewriting systems
U=——=v

2. 2-dimensional rewriting systems

Plan

We focus here on 2-dimensional rewriting systems.

1. What do they present?
Monoidal categories

2. How do we extend classical rewriting techniques?
Termination, confluence, ...

3. Some examples of presented monoidal categories.

30/77

Rewriting systems
Up to now a rewriting system was (G | R) with R C G* x G*.

We slightly modify the definition and notations.

31/77

Rewriting systems

Up to now a rewriting system was (G | R) with R C G* x G*.

We slightly modify the definition and notations.

A 1-dimensional rewriting system consists of
> letters: a set Gy
» rules: a set R together with two functions

s,t :+ R — G

31/77

Rewriting systems
Up to now a rewriting system was (G | R) with R C G* x G*.

We slightly modify the definition and notations.

A 1-dimensional rewriting system consists of
» object generators: a set Gy
» morphism generators: a set Gy together with two functions

s,$t 0 G — G

31/77

Rewriting systems
Up to now a rewriting system was (G | R) with R C G* x G*.

We slightly modify the definition and notations.

A 1-dimensional rewriting system consists of
» object generators: a set Gy
» morphism generators: a set Gy together with two functions

s,$t 0 G — G

what we write
(G1 | G)

For instance
(@,b |~ :ba=ab)

31/77

Rewriting paths

We can now give names to rewriting steps: given a rule in Go

a v =V

and u,w € G7, we have a rewriting step

uaw : uww = ww

which is the rule « “in the context (u,w)”.

/u\ . m
N

_’//

! w'w

Rewriting paths

We can now give names to rewriting steps: given a rule in Go

a v =V
and u,w € G7, we have a rewriting step
/

uaw . uvw = uvw

which is the rule « “in the context (u,w)”.

v Vv
N4 N4
v/ v/

Rewriting paths

We can now give names to rewriting steps: given a rule in Go
a v =V
and u,w € G7, we have a rewriting step
/

uaw . uvw = uvw

which is the rule « “in the context (u,w)”.

A rewriting path is thus of the form
Uioiwq - UgaoWso - ... - UnQnWhn

where “.” denotes concatenation.

Rewriting paths

Suppose given a word of the form
U1VUsWU3
and two rules
a:v=V Bw=w

We can use « and g independently, and we will not distinguish
between the order in which they are applied.

v w

Rewriting paths

In the following, we will quotient it and identify paths of the
following form:

Uralswus - UuV'usBus = uvusBuz - UiaswW'us
Graphically,
uivuoWwus
UV uawus UpvuswW'us
Um %Us
uivuoWwus

Order does not matter when rewriting at independent positions.

The category of rewriting paths
Given a rewriting system G of the form
(G1 | Ga)

we can form a category G* where
» an object is a word in G}
» a morphism is a rewriting path

o U = v
» composition is given by concatenation
u = v = W

» identities are empty paths

Categories
A category C consists of

such that

Categories
A category C consists of
» aset Ob(C) of objects,

such that

Categories
A category C consists of
» aset Ob(C) of objects,
» for every objects x,y € C, a set C(x, y) of morphisms,
we write f: x = y for f € C(x,y),

such that

Categories
A category C consists of

» aset Ob(C) of objects,
» for every objects x,y € C, a set C(x, y) of morphisms,

we write f: x = y for f € C(x,y),
> a composition operation: given

f:x=y and g:y=2z
we have
f-g : x = =z

such that

Categories
A category C consists of

» aset Ob(C) of objects,
» for every objects x,y € C, a set C(x, y) of morphisms,

we write f: x = y for f € C(x,y),
> a composition operation: given

f:x=y and g:y=2z
we have
f-g : x = =z

» an identity morphism for every object x € C

Iy : x = x
such that

Categories
A category C consists of

» aset Ob(C) of objects,
» for every objects x,y € C, a set C(x, y) of morphisms,

we write f: x = y for f € C(x,y),
> a composition operation: given

f:x=y and g:y=2z
we have
f-g : x = =z

» an identity morphism for every object x € C

Iy : x = x
such that

» composition is associative: forf: x=vy,9:v=2z,h:z=w,
(f-g)-h = f-(g-h)

Categories
A category C consists of
» aset Ob(C) of objects,
» for every objects x,y € C, a set C(x, y) of morphisms,
we write f: x = y for f € C(x,y),
> a composition operation: given

f:x=y and g:y=2z

we have
f-g : x = =z
» an identity morphism for every object x € C

Iy : x = x
such that
» composition is associative: forf: x=vy,9:v=2z,h:z=w,
(f-g)-h = f-(g-h)

» identities are neutral elements: for f: x =y,
1X N f = f = f ly .

Categories
In a category, we have typed morphisms

f

Categories
In a category, we have typed morphisms

f

that we can compose

Categories
In a category, we have typed morphisms

f

Xe——— 7
-9

that we can compose

Categories
In a category, we have typed morphisms

X :f> y
that we can compose
y
VA
b E—————— 4
f-g
in an associative way
g

Categories
In a category, we have typed morphisms

X :f> y

that we can compose

y

VA
b E—————— 4

f-g

in an associative way
g g
y z y ==z

Categories
In a category, we have typed morphisms

X :f> y
that we can compose
y
VA
b E—————— 4
f-g
in an associative way
g g
y z y =z
f h f h
f-g
X w X w

Categories
In a category, we have typed morphisms

X :f> y
that we can compose
y
VA
b E—————— 4
f-g
in an associative way
g g
y z y=—z
f h f h
f-g g-h
X w X w

Categories
In a category, we have typed morphisms

X :f> y
that we can compose
y
VA
b E—————— 4
f-g
in an associative way
g g
y z y=—z
f h f h
f-g g-h
X w X w

Categories
In a category, we have typed morphisms

X :f> y
that we can compose
y
VA
b E—————— 4
f-g
in an associative way
g g
y z y=—z
f h f h
f-g gh
X w X
(fg)-h f-(g-h)

. . 1
and we have identities x == x .

Categories

Examples

v

Set: sets as objects / functions as morphisms

v

Top: topological spaces / continuous functions

v

Mon: monoids / morphisms of monoids

v

Gph: graphs / morphisms of graphs

v

Cat: categories / functors
> etc.

The category of rewriting paths

The category G* of rewriting paths has more structure:
» given two objects u, v, we can concatenate them

uLxyv = uv

graphically,

39/77

The category of rewriting paths

The category G* of rewriting paths has more structure:
» given two objects u, v, we can concatenate them

uLxyv = uv

graphically,

39/77

The category of rewriting paths

The category G* of rewriting paths has more structure:
» given two objects u, v, we can concatenate them

uVv = w
graphically,

u®Vv u v

39/77

The category of rewriting paths

The category G* of rewriting paths has more structure:
» given two objects u, v, we can concatenate them

uVv = w
graphically,

u®Vv u v

» there is an empty word 1,

39/77

The category of rewriting paths
The category G* of rewriting paths has more structure:
» given a rewriting step uaw and objects v’, w’/, we can put the
step “in context™

U uaw)ow = (Uu)a(ww')

The category of rewriting paths
The category G* of rewriting paths has more structure:
» given a rewriting step uaw and objects v’, w’/, we can put the
step “in context™

U uaw)ow = (Uu)a(ww')

The category of rewriting paths
The category G* of rewriting paths has more structure:
» given a rewriting step uaw and objects v’, w’/, we can put the
step “in context™

U uaw)ow = (Uu)a(ww')

The category of rewriting paths
The category G* of rewriting paths has more structure:
» given a rewriting step uaw and objects v’, w’/, we can put the

step “in context™
U@ Uuaw) ow =
which extends to rewriting paths

¢ =urawy -

/

o' = ([up)ag(wiw') - ... -

v

/N

2
NS

V/

(Vu)a(ww')

© UnanWhp

(U'up)an(wpw)

The category of rewriting paths
The category G* of rewriting paths has more structure:
» given a rewriting step uaw and objects v’, w’/, we can put the
step “in context™

U@ uaw)oaw = (Uu)a(ww)
which extends to rewriting paths

¢ =UuUiaiW1 - ... - UpapWp

oW = ([up)ag(wiw') - ... - (Uup)an(waw)

The category of rewriting paths
The category G* of rewriting paths has more structure:
» given a rewriting step uaw and objects v’, w’/, we can put the
step “in context™

U@ uaw)oaw = (Uu)a(ww)
which extends to rewriting paths

¢ =UuUiaiW1 - ... - UpapWp

oW = ([up)ag(wiw') - ... - (Uup)an(waw)

/\

4>¢U

The category of rewriting paths

The category G* of rewriting paths has more structure:
» the operation ® is “associative”:

Ueuesw)ow = Ueueewew)

graphically,

The category of rewriting paths

The category G* of rewriting paths has more structure:
» the operation ® is “associative”:

Ueuesw)ow = Ueueewew)

graphically,

The category of rewriting paths

The category G* of rewriting paths has more structure:
» the operation ® is “associative”:

Ueuesw)ow = Ueueewew)

graphically,

The category of rewriting paths

The category G* of rewriting paths has more structure:
» the operation ® is “associative”:

Ueuesw)ow = Ueueewew)

graphically,

The category of rewriting paths

The category G* of rewriting paths has more structure:
» the operation ® is “associative”:

Ueuesw)ow = Ueueewew)

graphically,

The category of rewriting paths

The category G* of rewriting paths has more structure:
» the operation ® is “associative”:

Ueuesw)ow = Ueueewew)

graphically,

The category of rewriting paths

The category G* of rewriting paths has more structure:
» the operation ® is “associative”:

Ueuesw)ow = Ueueewew)

graphically,

» and the empty word is a neutral element.

The category of rewriting paths
This operation ® satisfies the exchange law:
Gav) - Wey) = UeY) - (9aV)
Graphically,
uevVv

&
U v ux\V
@V

u' @y
u/

The category of rewriting paths

This operation ® satisfies the exchange law:

(V) - Uey) = UeY) - (V)
Graphically,

UV
PRV Uy
U ev ux\V
u'@ %
u eV

We can thus define “rewriting by ¢ and ¢ in parallel”:

PRy = (p®V) - (Uep)

u v u
u
/¢u\/w\‘ _ /N v

N

’ v 42/77

The category of rewriting paths

This operation ® satisfies the exchange law:

(V) - Uey) = UeY) - (V)
Graphically,

UV
PRV Uy
U ev ux\V
u'@ %
u eV

We can thus define “rewriting by ¢ and ¢ in parallel”:

PRy = (p®V) - (Uep)

u v v
FONOON D e Ay
NP

The category of rewriting paths

This operation ® satisfies the exchange law:

(pev) - (Wey) = @Uey) - (paV)

Graphically,
uev
PRV Uy
U ev ueV
u'@ %
uev

We can thus define “rewriting by ¢ and ¢ in parallel”:

PRy = (p®V) - (Uep)

and we can recover “context extension” from this operation:

The category of rewriting paths

To sum up, G* is a monoidal category.

Monoidal categories
A (strict) monoidal category (C, ®,1) is
» a category C
» (C,®,1) is amonoid
» given morphisms

fix—X g:y—y
we have a morphism
ferg : xoxX — yey
and this operation is associative and admits id; as unit:
(feg)eh=fx(g®h) i @f=Ff=f®id;
this operation is compatible with composition
(fHe@-9) = (fog)-(fad)

and units.

The simplicial category
The simplicial category A whose
» objects are natural numbers n € N,

» a morphism
f + m — n

is an increasing function
f: {0,....m—-1} — {0,...,n—1}

» composition and identities are the usual ones.

The simplicial category
The simplicial category A whose
» objects are natural numbers n € N,

» a morphism
f + m — n

is an increasing function
f: {0,....m—-1} — {0,...,n—1}

» composition and identities are the usual ones.

Exercise
Show that this category is monoidal with ® defined on objects by

mn = m+n

The simplicial category

Correction

Given

!/

f:m—m g:n—n

we define the function
fog: {0,....m+n-1} — {0,...,m'+n'-1}

/ (i) ifo<i<m
m' + (g(i—m)) ifm<i<m-+n

46/77

String diagrams
The morphisms of G* admit a representation as string diagrams.

The idea is that a morphism generator

can be pictured as a “gate”

ayag --- Am

by by -+ by,

String diagrams

Composition is vertical juxtaposition and linking:

a1 ag .- Am

cLcy -+ Cp

String diagrams

Tensor product is horizontal juxtaposition:
aiag --- ambl b2 bn
a®p =

) / AN /
ayay ---a, b by, - b,

String diagrams

|dentities are wires:
fll 112 “e an

|d81®82®...®8n

ayag --- Qp

String diagrams

Theorem (Joyal-Street’91)
Diagrams up to deformations correspond precisely to morphisms.

String diagrams

Theorem (Joyal-Street’91)
Diagrams up to deformations correspond precisely to morphisms.

A deformation is for instance

al...ambl...bn al...ambl...bn

! / ! /
d)-a b, -l b,

51/77

String diagrams

Theorem (Joyal-Street’91)
Diagrams up to deformations correspond precisely to morphisms.

The interpretation of diagrams is unambiguous:

ai---Gmby-- by,

C
&)
ay--al by,

(@-d)e (@B 5) = (a@p) (dap)

51/77

Monoidal categories

Proposition
The monoidal category G* is the free monoidal category
containing

» the elements of G; as objects,
» the elements of Gy as morphisms.

Presentations of monoidal categories
A presentation P of a monoidal category is

GIR)

where
» generators: G = (G; | Ga) is a presentation of a monoid,
» relations: R C G* x G* consists of pairs of morphisms with
same source and same target.

Presentations of monoidal categories
A presentation P of a monoidal category is

GIR)

where
» generators: G = (G; | Ga) is a presentation of a monoid,
» relations: R C G* x G* consists of pairs of morphisms with
same source and same target.

The monoidal category presented by P is
G*/%R

where ~ is the congruence generated by R.

Presentations of monoidal categories
A presentation P of a monoidal category is

GIR)

where
» generators: G = (G; | Ga) is a presentation of a monoid,

» relations: R C G* x G* consists of pairs of morphisms with
same source and same target.

The monoidal category presented by P is
G*/%R

where ~ is the congruence generated by R.

A monoidal category C is presented by P when

cC = G/~

A presentation for A
Consider the presentation (G | R) where
> G ={a}

A presentation for A
Consider the presentation (G | R) where
> G = {a}
» Go={p:aa=a,n:1=a}

a a

o P

a ¢

A presentation for A
Consider the presentation (G | R) where
> G = {a}
» Go={p:aa=a,n:1=a}

N T

A presentation for A
Consider the presentation (G | R) where
» Gy = {a}
» Go={p:aa=a,n:1=a}

» relations are

(h®a) p=@au) -p Ma)-p=idy (@®n) p= ida

RPNV IV

A presentation for A
Consider the presentation (G | R) where
» Gy = {a}
» Go={p:aa=a,n:1=a}

» relations are

(h®a) p=@au) -p Ma)-p=idy (@®n) p= ida

RPNV IV

Claim: this is a presentation of A.

A presentation for A

The idea to show that this is a presentation for A is a before:

1. show that this presentation is confluent:
terminating + confluent critical branchings

2. show that normal forms are in bijection with morphisms of A.

Let’s study critical branchings

(graphically, from now on)

Rewriting steps

A rewriting step is a rewriting rule “in context”:

Branchings

A branching is a pair of rewriting steps from the same diagram:

58/77

Critical branchings

A branching is non-critical when

» it consists in two independent applications of rules
(rules do not share 1-generators)

Critical branchings

A branching is non-critical when

» is it not minimal
(can be obtained by putting another branching in context)

ﬁ) - w . W
can be obtained from

Y -

=

Critical branchings

A branching is critical when it is not non-critical:
» branches are not independent: left members of rules overlap
» it is minimal: all the 1-generators are used

YN e

Critical pairs lemmma

Lemma
A 2-dimensional rewriting system is locally confluent iff all critical
branchings are confluent.

61/77

Critical pairs lemmma

Lemma
A 2-dimensional rewriting system is locally confluent iff all critical
branchings are confluent.

In particular, a terminating 2-dimensional rewriting system with
confluent critical branchings is confluent.

61/77

Exercise

Consider the previous rewriting system

N e s

We assume that it is terminating.

Mo~

Show that it is confluent.

What do the normal forms look like?
Define an interpretation of generators in A.
Show that normal forms

o : a = &
are in bijection with functions
f - {0,....m—-1} — {0,...,n—1}
Deduce that we have a presentation of A.

Correction

1. The critical pairs are confluent:

NNy

Correction

1. The critical pairs are confluent:

NNy

2. The right comb k, : @" — ais

T -]
KO K1 N Rn+4+1

Normal forms are tensor products of right combs.

Correction

3. The interpretation of generators into A is given as follows.

» We interpret
a as 1

thus a" is interpreted as n.

Correction

3. The interpretation of generators into A is given as follows.

» We interpret
a as 1

thus a" is interpreted as n.

» We interpret
0
D
0

Correction

3. The interpretation of generators into A is given as follows.

» We interpret
a as 1

thus a" is interpreted as n.

» We interpret
0
D
0

» We interpret

T as

Correction

4. The interpretation of the normal form
Enp @ Kpy @ ... Q@ Kp,
is a function
f @ m+n+...+n — Kk
such that for 0 <j < k,

oL =

Correction

4. The interpretation of the normal form
Enp @ Kpy @ ... Q@ Kp,
is a function
f @ m+n+...+n — Kk
such that for 0 <j < k,
=

Every increasing function can be obtained in this way, and
the sequence (n;)1<j<x determines uniquely the function.

Correction

4. The interpretation of the normal form
Enp @ Kpy @ ... Q@ Kp,
is a function
f @ m+n+...+n — Kk
such that for 0 <j < k,
=

Every increasing function can be obtained in this way, and
the sequence (n;)1<j<x determines uniquely the function.

5. We thus have a presentation of A.

The category B

The category B has
» objects: N
» a morphism

is a bijection
f {0,....m-1} — {0,...,n—1}

» compositions and identities are as usual,
» tensor product is as in the case of A.

Exercise

Propose some generators for this category.

Propose some relations for this category.

What are the critical pairs?

Show local confluence.

Assuming termination, show that this is a presentation of B.

o~

Question

Does a finite rewriting system necessarily has a finite number of
critical pairs?

An example of termination.

68/77

Showing termination

A poset is well-founded if every decreasing sequence is
eventually stationary (e.g. N).

Showing termination

A poset is well-founded if every decreasing sequence is
eventually stationary (e.g. N).

In order to show that a rewriting system is terminating, we can
interpret all the diagrams in a well-founded poset, in such a way
that all rules are strictly decreasing.

Showing termination

A poset is well-founded if every decreasing sequence is
eventually stationary (e.g. N).

In order to show that a rewriting system is terminating, we can
interpret all the diagrams in a well-founded poset, in such a way
that all rules are strictly decreasing.

Note that this interpretation should be compatible with the
axioms of monoidal categories:

(114“(1,mb1“.bn {L]A“a,mbl,“b”

’ !/ / / ’ !/ / /
ay--ay, b b, ay--ay, b,

69/77

Counting generators

For instance, we consider (N, <) and associate to each diagram
the number of generators occurring in it.

Sl s

are strictly decreasing.

The rules

Counting generators

For instance, we consider (N, <) and associate to each diagram
the number of generators occurring in it.

Sl s

are strictly decreasing.

e

The rules

But not the rule

Multiple well-founded posets

Rewriting preserves typing:
(f-m—=n) = (g:m—=n)

We can therefore have a different well-founded poset for each
pair of objects!

Multiple well-founded posets

Rewriting preserves typing:
(f-m—=n) = (g:m—=n)

We can therefore have a different well-founded poset for each
pair of objects!

Lafont had the idea of interpreting morphisms
f:m-—=n

as functions in
N — N?

equipped with a particular well-founded order.

Multiple well-founded posets

Given n € N, we consider
N
*

(where N, = N'\ {0}) equipped with the product order:
(X1, %) < (X],...,Xx))

iff forevery 1 <i<n
Xi < X,’

Multiple well-founded posets

Given n € N, we consider
N
*

(where N, = N'\ {0}) equipped with the product order:
(X1, %) < (X],...,Xx))

iff forevery 1 </ <n
Xi < X,’

Lemma
This is a well-founded poset.

Multiple well-founded posets

Given objects m,n we consider strictly increasing functions

N7 — N/
ordered by

f < f
whenever for every (X1, ...,Xm)

fx1,..., %) < F(X1,...,%).

Multiple well-founded posets

Given objects m,n we consider strictly increasing functions

N7 — N/
ordered by
f < f
whenever for every (X1, ...,Xm)
fx1,..., %) < F(X1,...,%).
Lemma

This is a well-founded poset.

Multiple well-founded posets

We have a monoidal category where
» an objects is an integer

» a morphism
f + m — n

is a strictly increasing function
f : N — N

and moreover the relations < are compatible with composition
and tensor.

Multiple well-founded posets

In order to provide an interpretation of every diagram
m-—n

it is sufficient to interpret generators (and extend it in a way
compatible with composition and tensor).

Applications

Exercise
Show that the rewriting system

Yo e e

is terminating.

Applications

Exercise
Show that the presentation of B is terminating.

77177

