
Monoids (and more) as bridges

Samuel Mimram

1

Presentations

Algebraic structures are presented by generators and relations.

The presentation is usually not unique, which is a good thing:
by varying the presentation, we can reach ones with nice properties.

Every element of the algebraic structure can be obtained as a composite of
generators. A natural question is:

when do two composite represent the same element?

We will see this is answered effectively (= we can implement it) by

rewriting theory

2

Presentations

Algebraic structures are presented by generators and relations.

The presentation is usually not unique, which is a good thing:
by varying the presentation, we can reach ones with nice properties.

Every element of the algebraic structure can be obtained as a composite of
generators. A natural question is:

when do two composite represent the same element?

We will see this is answered effectively (= we can implement it) by

rewriting theory

2

Presentations

Algebraic structures are presented by generators and relations.

The presentation is usually not unique, which is a good thing:
by varying the presentation, we can reach ones with nice properties.

Every element of the algebraic structure can be obtained as a composite of
generators. A natural question is:

when do two composite represent the same element?

We will see this is answered effectively (= we can implement it) by

rewriting theory

2

Presentations

Algebraic structures are presented by generators and relations.

The presentation is usually not unique, which is a good thing:
by varying the presentation, we can reach ones with nice properties.

Every element of the algebraic structure can be obtained as a composite of
generators. A natural question is:

when do two composite represent the same element?

We will see this is answered effectively (= we can implement it) by

rewriting theory

2

Presentations

Sh(C, J) ≃ Sh(D,K)

(C, J) (D,K)

3

Presentations

G∗/R ≃ H∗/S

⟨G | R⟩ ⟨H | S⟩

3

Part I

Abstract rewriting systems

4

Abstract rewriting systems

An abstract rewriting system consists of a set G
together with a rewriting relation R ⊆ G× G.

a b c d e

We write
[−] : G→ G/R

and think of a,b ∈ G such that [a] = [b] as two possible descriptions of the
corresponding element of G/R.

We can decide whether two elements are in the same equivalence class when

• we have a canonical representative in each equivalence class,
• can compute the canonical representative of an element.

5

Abstract rewriting systems

An abstract rewriting system consists of a set G
together with a rewriting relation R ⊆ G× G.

a b c d e

We write
[−] : G→ G/R

and think of a,b ∈ G such that [a] = [b] as two possible descriptions of the
corresponding element of G/R.

We can decide whether two elements are in the same equivalence class when

• we have a canonical representative in each equivalence class,
• can compute the canonical representative of an element.

5

Abstract rewriting systems

An abstract rewriting system consists of a set G
together with a rewriting relation R ⊆ G× G.

a b c d e

We write
[−] : G→ G/R

and think of a,b ∈ G such that [a] = [b] as two possible descriptions of the
corresponding element of G/R.

We can decide whether two elements are in the same equivalence class when

• we have a canonical representative in each equivalence class,
• can compute the canonical representative of an element.

5

Normal forms

If we think that a b means b is “more canonical” than a then canonical
representatives should be given by normal forms: elements which are not the
source of any reduction.

a b c d e

An equivalence class can however have

• more than one normal form:

a b c

• no normal form:

a b a0 a1 a2 . . .

6

Normal forms

If we think that a b means b is “more canonical” than a then canonical
representatives should be given by normal forms: elements which are not the
source of any reduction.

a b c d e

An equivalence class can however have

• more than one normal form:

a b c

• no normal form:

a b a0 a1 a2 . . .

6

Normal forms

If we think that a b means b is “more canonical” than a then canonical
representatives should be given by normal forms: elements which are not the
source of any reduction.

a b c d e

An equivalence class can however have

• more than one normal form:

a b c

• no normal form:

a b a0 a1 a2 . . .

6

Termination

An ARS is terminating if there is no infinite path

a0 a1 a2 . . .

Proposition
In a terminating ARS, every equivalence class contains a normal form.

Proof.
Given a, consider a maximal path

a = a0 a1 a2 . . . an

7

Termination

An ARS is terminating if there is no infinite path

a0 a1 a2 . . .

Proposition
In a terminating ARS, every equivalence class contains a normal form.

Proof.
Given a, consider a maximal path

a = a0 a1 a2 . . . an

7

Confluence

An ARS is confluent when

a

b1 b2

c

∀
∗ ∗

∃ ∗ ∗

.

8

Confluence

An ARS is confluent when

a

b1 b2

c

∀
∗ ∗

∃ ∗ ∗

.

Proposition (Church-Rosser’36)
In a confluent ARS, two equivalent terms rewrite to a common element.

Proof.
Suppose a ∗↔ a′. This means that

b1 b2 . . .

a = a0 a1 a2 an = a′

c1 c2 cn

∗ ∗ ∗
∗

∗ ∗

∗ ∗ ∗ ∗
∗ ∗

8

Confluence

An ARS is confluent when

a

b1 b2

c

∀
∗ ∗

∃ ∗ ∗

.

Proposition (Church-Rosser’36)
In a confluent ARS, two equivalent terms rewrite to a common element.

Proof.
Suppose a ∗↔ a′. This means that

b1 b2 . . .

a = a0 a1 a2 an = a′

c1

c2 cn

∗ ∗ ∗
∗

∗ ∗

∗ ∗ ∗ ∗
∗ ∗

8

Confluence

An ARS is confluent when

a

b1 b2

c

∀
∗ ∗

∃ ∗ ∗

.

Proposition (Church-Rosser’36)
In a confluent ARS, two equivalent terms rewrite to a common element.

Proof.
Suppose a ∗↔ a′. This means that

b1 b2 . . .

a = a0 a1 a2 an = a′

c1 c2

cn

∗ ∗ ∗
∗

∗ ∗

∗ ∗ ∗ ∗
∗ ∗

8

Confluence

An ARS is confluent when

a

b1 b2

c

∀
∗ ∗

∃ ∗ ∗

.

Proposition (Church-Rosser’36)
In a confluent ARS, two equivalent terms rewrite to a common element.

Proof.
Suppose a ∗↔ a′. This means that

b1 b2 . . .

a = a0 a1 a2 an = a′

c1 c2 cn

∗ ∗ ∗
∗

∗ ∗

∗ ∗ ∗ ∗
∗ ∗

8

Confluence

An ARS is confluent when

a

b1 b2

c

∀
∗ ∗

∃ ∗ ∗

.

Proposition
In a confluent ARS, every equivalence class contains at most one normal form.

Proof.
Suppose that a and a′ are equivalent normal forms.

By previous theorem we have,

a a′

c

∗

∗ ∗

since a and a′ are normal forms.

8

Confluence

An ARS is confluent when

a

b1 b2

c

∀
∗ ∗

∃ ∗ ∗

.

Proposition
In a confluent ARS, every equivalence class contains at most one normal form.

Proof.
Suppose that a and a′ are equivalent normal forms. By previous theorem we have,

a a′

c

∗

∗ ∗

since a and a′ are normal forms.

8

Confluence

An ARS is confluent when

a

b1 b2

c

∀
∗ ∗

∃ ∗ ∗

.

Proposition
In a confluent ARS, every equivalence class contains at most one normal form.

Proof.
Suppose that a and a′ are equivalent normal forms. By previous theorem we have,

a a′

c

∗

since a and a′ are normal forms.
8

Local confluence

An ARS is

locally

confluent when

a

b1 b2

c

∀
∗ ∗

∃ ∗ ∗

.

Proposition (Newman’42)
A terminating ARS is confluent if and only if it is locally confluent.

Proof.
By well-founded induction, locally confluent implies confluent:

a

a1 a2

b1 b3

∗
∗ ∗

∗

∗ ∗
∗

∗

9

Local confluence

An ARS is locally confluent when

a

b1 b2

c

∀

∃ ∗ ∗

.

Proposition (Newman’42)
A terminating ARS is confluent if and only if it is locally confluent.

Proof.
By well-founded induction, locally confluent implies confluent:

a

a1 a2

b1 b3

∗
∗ ∗

∗

∗ ∗
∗

∗

9

Local confluence

An ARS is locally confluent when

a

b1 b2

c

∀

∃ ∗ ∗

.

Proposition (Newman’42)
A terminating ARS is confluent if and only if it is locally confluent.

Proof.
By well-founded induction, locally confluent implies confluent:

a

a1 a2

b1 b3

∗
∗ ∗

∗

∗ ∗
∗

∗

9

Local confluence

An ARS is locally confluent when

a

b1 b2

c

∀

∃ ∗ ∗

.

Proposition (Newman’42)
A terminating ARS is confluent if and only if it is locally confluent.

Proof.
By well-founded induction, locally confluent implies confluent:

a

a1 a2

b1 b3

∗
∗ ∗

∗

∗ ∗
∗

∗

9

Local confluence

An ARS is locally confluent when

a

b1 b2

c

∀

∃ ∗ ∗

.

Proposition (Newman’42)
A terminating ARS is confluent if and only if it is locally confluent.

Proof.
By well-founded induction, locally confluent implies confluent:

a

a1 a2

b1 b3

∗
∗ ∗

∗

∗ ∗
∗

∗

9

Local confluence

An ARS is locally confluent when

a

b1 b2

c

∀

∃ ∗ ∗

.

Proposition (Newman’42)
A terminating ARS is confluent if and only if it is locally confluent.

Proof.
By well-founded induction, locally confluent implies confluent:

a

a1 a2

b1 b3

∗
∗ ∗

∗

∗ ∗
∗

∗

9

Local confluence

An ARS is locally confluent when

a

b1 b2

c

∀

∃ ∗ ∗

.

Remark (Huet’80)
Without termination, this does not hold

a b c d

10

Deciding equality

An ARS (G,R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition
In a convergent ARS, every equivalence class contains a unique normal form.

For a,b ∈ G, we can decide whether [a] = [b] holds as follows:

a b

â b̂

∗

∗

∗

?

11

Deciding equality

An ARS (G,R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition
In a convergent ARS, every equivalence class contains a unique normal form.

For a,b ∈ G, we can decide whether [a] = [b] holds as follows:

a b

â b̂

∗

∗

∗

?

11

Deciding equality

An ARS (G,R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition
In a convergent ARS, every equivalence class contains a unique normal form.

For a,b ∈ G, we can decide whether [a] = [b] holds as follows:

a b

â b̂

∗

∗

∗

?

11

Deciding equality

An ARS (G,R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition
In a convergent ARS, every equivalence class contains a unique normal form.

For a,b ∈ G, we can decide whether [a] = [b] holds as follows:

a b

â

b̂

∗

∗

∗

?

11

Deciding equality

An ARS (G,R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition
In a convergent ARS, every equivalence class contains a unique normal form.

For a,b ∈ G, we can decide whether [a] = [b] holds as follows:

a b

â b̂

∗

∗

∗

?

11

Deciding equality

An ARS (G,R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition
In a convergent ARS, every equivalence class contains a unique normal form.

For a,b ∈ G, we can decide whether [a] = [b] holds as follows:

a b

â b̂

∗

∗

∗

?

11

Part II

String rewriting systems

12

This is the core of rewriting theory.

Let’s apply this to presentations of monoids.

13

Presentations of monoids

A monoid presentation / string rewriting system is a pair ⟨G | R⟩ consisting of

• a set G of generators,
• a set R ⊆ G∗ × G∗ of relations,

where G∗ is the free monoid on G. It presents the monoid

G∗/R

where we quotient by the congruence generated by R.

Example

• N ≃ ⟨a |⟩

• N/2N ≃ ⟨a | aa = 1⟩
• N× N/2N ≃ ⟨a,b | ba = ab,bb = 1⟩
• Sn ≃ ⟨a0, . . . ,an−1 | aiai = 1,aiai+1ai = ai+1aiai+1,aiaj = ajai⟩

14

Presentations of monoids

A monoid presentation / string rewriting system is a pair ⟨G | R⟩ consisting of

• a set G of generators,
• a set R ⊆ G∗ × G∗ of relations,

where G∗ is the free monoid on G. It presents the monoid

G∗/R

where we quotient by the congruence generated by R.

Example

• N ≃ ⟨a |⟩
• N/2N ≃ ⟨a | aa = 1⟩

• N× N/2N ≃ ⟨a,b | ba = ab,bb = 1⟩
• Sn ≃ ⟨a0, . . . ,an−1 | aiai = 1,aiai+1ai = ai+1aiai+1,aiaj = ajai⟩

14

Presentations of monoids

A monoid presentation / string rewriting system is a pair ⟨G | R⟩ consisting of

• a set G of generators,
• a set R ⊆ G∗ × G∗ of relations,

where G∗ is the free monoid on G. It presents the monoid

G∗/R

where we quotient by the congruence generated by R.

Example

• N ≃ ⟨a |⟩
• N/2N ≃ ⟨a | aa = 1⟩
• N× N/2N ≃ ⟨a,b | ba = ab,bb = 1⟩

• Sn ≃ ⟨a0, . . . ,an−1 | aiai = 1,aiai+1ai = ai+1aiai+1,aiaj = ajai⟩

14

Presentations of monoids

A monoid presentation / string rewriting system is a pair ⟨G | R⟩ consisting of

• a set G of generators,
• a set R ⊆ G∗ × G∗ of relations,

where G∗ is the free monoid on G. It presents the monoid

G∗/R

where we quotient by the congruence generated by R.

Example

• N ≃ ⟨a |⟩
• N/2N ≃ ⟨a | aa = 1⟩
• N× N/2N ≃ ⟨a,b | ba = ab,bb = 1⟩
• Sn ≃ ⟨a0, . . . ,an−1 | aiai = 1,aiai+1ai = ai+1aiai+1,aiaj = ajai⟩ 14

Presenting of S3

A presentation of S3 is

⟨a,b | aa = 1,bb = 1,aba = bab⟩

where

a = b =

and the relations are

= = =

aa = 1 bb = 1 aba = bab

Note: it is clear that the relations are valid, but not that they are complete...
(rewriting can help here)

15

Presenting of S3

A presentation of S3 is

⟨a,b | aa = 1,bb = 1,aba = bab⟩

where

a = b =

and the relations are

= = =

aa = 1 bb = 1 aba = bab

Note: it is clear that the relations are valid, but not that they are complete...
(rewriting can help here)

15

Presenting of S3

A presentation of S3 is

⟨a,b | aa = 1,bb = 1,aba = bab⟩

where

a = b =

and the relations are

= = =

aa = 1 bb = 1 aba = bab

Note: it is clear that the relations are valid, but not that they are complete...
(rewriting can help here) 15

String rewriting systems

Given a presentation ⟨G | R⟩, a rewriting step is

uvw→ uv′w

for some u, v, v′,w ∈ G∗ and (v, v′) ∈ R.

For instance with S3 ≃ ⟨a,b | aa→ 1,aba→ bab,bb→ 1⟩, we have

bbabaab→ bbbabab

16

String rewriting systems

Given a presentation ⟨G | R⟩, a rewriting step is

uvw→ uv′w

for some u, v, v′,w ∈ G∗ and (v, v′) ∈ R.

For instance with S3 ≃ ⟨a,b | aa→ 1,aba→ bab,bb→ 1⟩, we have

bbabaab→ bbbabab

The presentation induces an ARS with
• elements of G∗ as vertices,
• rewriting steps as edges,

thus allowing to re-use previous notions.

16

String rewriting systems

Given a presentation ⟨G | R⟩, a rewriting step is

uvw→ uv′w

for some u, v, v′,w ∈ G∗ and (v, v′) ∈ R.

For instance with S3 ≃ ⟨a,b | aa→ 1,aba→ bab,bb→ 1⟩, we have

bbabaab→ bbbabab

Note that the following are equivalent:
• u ∗↔ v
• u and v are related by the congruence generated by R
• [u] = [v] in G∗/R.

16

Deciding equality in presentations

Given a presentation ⟨G | R⟩ and words u, v ∈ G∗, we want to decide equality,
i.e. answer

do we have [u] = [v]?

Proposition
When the presentation is terminating and (locally) confluent, [u] = [v] holds if and
only if u and v have the same normal form:

u v

û v̂

∗ ∗

?

17

Deciding equality in presentations

Given a presentation ⟨G | R⟩ and words u, v ∈ G∗, we want to decide equality,
i.e. answer

do we have [u] = [v]?

Proposition
When the presentation is terminating and (locally) confluent, [u] = [v] holds if and
only if u and v have the same normal form:

u v

û v̂

∗ ∗

?

17

Given a presentation ⟨G | R⟩, how do we show

• that it is terminating?
• that it is confluent?

18

Showing termination

Termination can usually be shown by showing that rules (and thus rewriting
steps) make something decrease in a well-founded order.

For instance, with
⟨a,b | aa→ 1,bb→ 1,aba→ bab⟩

we have that

• the rules make the length of words decrease (strictly for the first two),
• the third rule make the number of a’s strictly decrease.

They are thus strictly decreasing under

>len ×lex >a

which is well-founded.
19

Showing (local) confluence

Since we are interested in terminating rewriting systems, it is enough to show that
a presentation is locally confluent:

u

v1 v2

w
∗ ∗

i.e. that every branching can be closed.

Problem: we have to check for all possible triples (v1,u, v2)...

We should remove “obviously commuting” diagrams from our search.

20

Showing (local) confluence

Since we are interested in terminating rewriting systems, it is enough to show that
a presentation is locally confluent:

u

v1 v2

w
∗ ∗

i.e. that every branching can be closed.

Problem: we have to check for all possible triples (v1,u, v2)...

We should remove “obviously commuting” diagrams from our search.
20

Independent branchings

Suppose that we have a branching rewriting two “independent” parts:

aaababbababb

aababbbababb aaababbbabbb

aababbbbabbb

It can always be closed!

We can thus restrict to situation where the changed parts are overlapping.

21

Independent branchings

Suppose that we have a branching rewriting two “independent” parts:

aaababbababb

aababbbababb aaababbbabbb

aababbbbabbb

It can always be closed!

We can thus restrict to situation where the changed parts are overlapping.

21

Critical branchings

Suppose that we have a branching

which can be closed

v

v1 v2

v′

∗ ∗

then the branching
uvw

uv1w uv2w

uv′w

∗ ∗

can also be closed.

We can thus restrict to situations where the context is minimal.

22

Critical branchings

Suppose that we have a branching which can be closed
v

v1 v2

v′
∗ ∗

then the branching
uvw

uv1w uv2w

uv′w

∗ ∗

can also be closed.

We can thus restrict to situations where the context is minimal.

22

Critical branchings

Suppose that we have a branching which can be closed
v

v1 v2

v′
∗ ∗

then the branching
uvw

uv1w uv2w

uv′w

∗ ∗

can also be closed.

We can thus restrict to situations where the context is minimal. 22

Critical branchings

Suppose that we have a branching which can be closed
v

v1 v2

v′
∗ ∗

then the branching
uvw

uv1w uv2w

uv′w
∗ ∗

can also be closed.

We can thus restrict to situations where the context is minimal. 22

Critical branchings

A critical branching is a situation
u

v1 v2

which not “independent” and with minimal context.

For instance, the critical branchings generated by

aa→ 1 and aba→ bab

are
ba aaba abab baba abaa ab

but not

baba aababa aabbab ababab aabaab aabb

23

Critical branchings

A critical branching is a situation
u

v1 v2

which not “independent” and with minimal context.

For instance, the critical branchings generated by

aa→ 1 and aba→ bab

are
ba aaba abab baba abaa ab

but not

baba aababa aabbab ababab aabaab aabb

23

Critical branchings

A critical branching is a situation
u

v1 v2

which not “independent” and with minimal context.

For instance, the critical branchings generated by

aa→ 1 and aba→ bab

are
ba aaba abab baba abaa ab

but not

baba aababa aabbab ababab aabaab aabb 23

Critical branchings

Proposition
A rewriting system with a finite number of rules has a finite number of critical
branchings (and we can compute them).

Proof.
Try to make the left side of all pairs of rules overlap in a non-trivial way.

Proposition
If all the critical branchings are confluent then the system is locally confluent.

Proof.
By definition of critical branchings.

24

Critical branchings

Proposition
A rewriting system with a finite number of rules has a finite number of critical
branchings (and we can compute them).

Proof.
Try to make the left side of all pairs of rules overlap in a non-trivial way.

Proposition
If all the critical branchings are confluent then the system is locally confluent.

Proof.
By definition of critical branchings.

24

Example

With our favorite presentation

⟨a,b | aa→ 1,bb→ 1,aba→ bab⟩

we can check that the critical branchings are confluent:

aaa

a a

a

bbb

b b

b

aaba

ba abab

babb

ba

abaa

baba ab

bbab

ab

25

Example

With our favorite presentation

⟨a,b | aa→ 1,bb→ 1,aba→ bab⟩

we can thus test equality by comparing normal forms:

• aabaabb

→ baabb→ bbb→ b

• ababa

→ babba→ baa→ b

• bbab

→ ab

26

Example

With our favorite presentation

⟨a,b | aa→ 1,bb→ 1,aba→ bab⟩

we can thus test equality by comparing normal forms:

• aabaabb→ baabb→ bbb→ b
• ababa

→ babba→ baa→ b

• bbab

→ ab

26

Example

With our favorite presentation

⟨a,b | aa→ 1,bb→ 1,aba→ bab⟩

we can thus test equality by comparing normal forms:

• aabaabb→ baabb→ bbb→ b
• ababa→ babba→ baa→ b
• bbab

→ ab

26

Example

With our favorite presentation

⟨a,b | aa→ 1,bb→ 1,aba→ bab⟩

we can thus test equality by comparing normal forms:

• aabaabb→ baabb→ bbb→ b
• ababa→ babba→ baa→ b
• bbab→ ab

26

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb

,ba→ ab

⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba ab

bba

ba bab

abb

ab

What do we do from there?

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)
[+ simplify rules using newly added ones].

27

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb

,ba→ ab

⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba ab

bba

ba bab

abb

ab

What do we do from there?

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)
[+ simplify rules using newly added ones].

27

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb

,ba→ ab

⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba ab

bba

ba bab

abb

ab

What do we do from there?

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)
[+ simplify rules using newly added ones].

27

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb

,ba→ ab

⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba ab

bba

ba bab

abb

ab

What do we do from there?

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)
[+ simplify rules using newly added ones].

27

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb

,ba→ ab

⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba

ab

bba

ba bab

abb

ab

What do we do from there?

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)
[+ simplify rules using newly added ones].

27

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb

,ba→ ab

⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba ab

bba

ba bab

abb

ab

What do we do from there?

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)
[+ simplify rules using newly added ones].

27

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb

,ba→ ab

⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba ab

bba

ba bab

abb

ab

What do we do from there?

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)
[+ simplify rules using newly added ones].

27

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb,ba→ ab⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba ab

bba

ba bab

abb

ab

What do we do from there?

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)

[+ simplify rules using newly added ones].

27

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb,ba→ ab⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba ab

bba

ba bab

abb

ab

(and another from baa)

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)

[+ simplify rules using newly added ones].

27

Non-confluent presentations

Of course, presentations are not always confluent:

⟨a,b | bb→ b,aa→ bb,ba→ ab⟩

has critical branchings

bbb

bb bb

aaa

bba abb

ba ab

bba

ba bab

abb

ab

(and another from baa)

Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms
when they are not confluent (the orientation is chosen according to a fixed order)
[+ simplify rules using newly added ones].

27

Knuth-Bendix completion procedure

Note that the Knuth-Bendix is not guaranteed to end after a finite amount of time
(this is not an algorithm).

For instance,
⟨a,b, c,d | ab→ a,da→ ac⟩

might get completed to

⟨a,b, c,d | acnb→ acn,da→ ac⟩

The inductive limit is always locally confluent.

28

Knuth-Bendix completion procedure

Note that the Knuth-Bendix is not guaranteed to end after a finite amount of time
(this is not an algorithm).

For instance,
⟨a,b, c,d | ab→ a,da→ ac⟩

might get completed to

⟨a,b, c,d | acnb→ acn,da→ ac⟩

Remark
The presentation

⟨a,b, c,d | ab→ a,da← ac⟩

has not critical branching and is thus locally confluent!
28

Tietze equivalence

Two presentations ⟨G | R⟩ and ⟨G′ | R′⟩ are equivalent when they present the same
monoid:

G/R ≃ G′/R′

Can we come up with some elementary characterization of this equivalence?

29

Tietze transformations

Given a presentation ⟨G | R⟩ the Tietze transformations are

1. add a definable generator:

⟨G | R⟩ ⇝ ⟨G,a | R,a = u⟩

for some a ̸∈ G and u ∈ G∗,

2. add a definable relation:

⟨G | R⟩ ⇝ ⟨G | R,u = v⟩

for u, v ∈ G∗ which are related by the congruence generated by R.

Lemma
Tietze transformations preserve the presented monoid.

Note that KB algorithm only uses transformations of the second kind.

30

Tietze transformations

Given a presentation ⟨G | R⟩ the Tietze transformations are

1. add a definable generator:

⟨G | R⟩ ⇝ ⟨G,a | R,a = u⟩

for some a ̸∈ G and u ∈ G∗,
2. add a definable relation:

⟨G | R⟩ ⇝ ⟨G | R,u = v⟩

for u, v ∈ G∗ which are related by the congruence generated by R.

Lemma
Tietze transformations preserve the presented monoid.

Note that KB algorithm only uses transformations of the second kind.

30

Tietze transformations

Given a presentation ⟨G | R⟩ the Tietze transformations are

1. add a definable generator:

⟨G | R⟩ ⇝ ⟨G,a | R,a = u⟩

for some a ̸∈ G and u ∈ G∗,
2. add a definable relation:

⟨G | R⟩ ⇝ ⟨G | R,u = v⟩

for u, v ∈ G∗ which are related by the congruence generated by R.

Lemma
Tietze transformations preserve the presented monoid.

Note that KB algorithm only uses transformations of the second kind.

30

Tietze transformations

Given a presentation ⟨G | R⟩ the Tietze transformations are

1. add a definable generator:

⟨G | R⟩ ⇝ ⟨G,a | R,a = u⟩

for some a ̸∈ G and u ∈ G∗,
2. add a definable relation:

⟨G | R⟩ ⇝ ⟨G | R,u = v⟩

for u, v ∈ G∗ which are related by the congruence generated by R.

Lemma
Tietze transformations preserve the presented monoid.

Note that KB algorithm only uses transformations of the second kind.
30

Tietze transformations

Proposition
Two finite presentations ⟨G | R⟩ and ⟨G′ | R′⟩ present the same monoid if and only
if they are related by a finite series of Tietze transformations:

⟨G | R⟩ = ⟨G0 | R0⟩↭ ⟨G1 | R1⟩↭ . . .↭ ⟨Gn | Rn⟩ = ⟨G′ | R′⟩

Proof.
Writing G = {a1, . . . ,an} and G′ = {b1, . . . ,bm}, we define

⟨G′′ | R′′⟩ = ⟨G,G′ | R,R′,ai = u′i,bi = ui⟩

where and u′i ∈ G
′∗ such that [u′i] = ai and v′i ∈ G

∗ such that [ui] = bj.

This can be suitably generalized to infinite presentations.

31

Tietze transformations

Proposition
Two finite presentations ⟨G | R⟩ and ⟨G′ | R′⟩ present the same monoid if and only
if they are related by a finite series of Tietze transformations:

⟨G | R⟩ ∗
⇝ ⟨G′′ | R′′⟩ ∗

⇝⟨G′ | R′⟩

Proof.
Writing G = {a1, . . . ,an} and G′ = {b1, . . . ,bm}, we define

⟨G′′ | R′′⟩ = ⟨G,G′ | R,R′,ai = u′i,bi = ui⟩

where and u′i ∈ G
′∗ such that [u′i] = ai and v′i ∈ G

∗ such that [ui] = bj.

This can be suitably generalized to infinite presentations.

31

Tietze transformations

Proposition
Two finite presentations ⟨G | R⟩ and ⟨G′ | R′⟩ present the same monoid if and only
if they are related by a finite series of Tietze transformations:

⟨G | R⟩ ∗
⇝ ⟨G′′ | R′′⟩ ∗

⇝⟨G′ | R′⟩

Proof.
Writing G = {a1, . . . ,an} and G′ = {b1, . . . ,bm}, we define

⟨G′′ | R′′⟩ = ⟨G,G′ | R,R′,ai = u′i,bi = ui⟩

where and u′i ∈ G
′∗ such that [u′i] = ai and v′i ∈ G

∗ such that [ui] = bj.

This can be suitably generalized to infinite presentations.

31

Tietze transformations

Proposition
Two finite presentations ⟨G | R⟩ and ⟨G′ | R′⟩ present the same monoid if and only
if they are related by a finite series of Tietze transformations:

⟨G | R⟩ ∗
⇝ ⟨G′′ | R′′⟩ ∗

⇝⟨G′ | R′⟩

Proof.
Writing G = {a1, . . . ,an} and G′ = {b1, . . . ,bm}, we define

⟨G′′ | R′′⟩ = ⟨G,G′ | R,R′,ai = u′i,bi = ui⟩

where and u′i ∈ G
′∗ such that [u′i] = ai and v′i ∈ G

∗ such that [ui] = bj.

This can be suitably generalized to infinite presentations.

31

Universality of rewriting

We have seen that for a monoid with a finite terminating and confluent
presentation we can decide equality.

Conversely, we wonder

is rewriting is universal?

which means

given a finitely presented monoid with decidable equality,
does it always admit a finite convergent presentation?

32

Universality of rewriting

We have seen that for a monoid with a finite terminating and confluent
presentation we can decide equality.

Conversely, we wonder

is rewriting is universal?

which means

given a finitely presented monoid with decidable equality,
does it always admit a finite convergent presentation?

32

Universality of rewriting

The braid monoid admits the presentation

B+3 = ⟨a,b | aba = bab⟩

Lemma
The monoid has decidable equality.

Proof.
Since the only relation preserves length, equivalence classes are finite.

Proposition (Kapur-Narendran’85)
There is no convergent presentation of B+3 on the same generators.

This does not entirely solve the question since we are using only the second type
of Tietze transformation (but it does for KB algorithm).

33

Universality of rewriting

The braid monoid admits the presentation

B+3 = ⟨a,b | aba = bab⟩

Lemma
The monoid has decidable equality.

Proof.
Since the only relation preserves length, equivalence classes are finite.

Proposition (Kapur-Narendran’85)
There is no convergent presentation of B+3 on the same generators.

This does not entirely solve the question since we are using only the second type
of Tietze transformation (but it does for KB algorithm).

33

Universality of rewriting

The braid monoid admits the presentation

B+3 = ⟨a,b | aba = bab⟩

Lemma
The monoid has decidable equality.

Proof.
Since the only relation preserves length, equivalence classes are finite.

Proposition (Kapur-Narendran’85)
There is no convergent presentation of B+3 on the same generators.

This does not entirely solve the question since we are using only the second type
of Tietze transformation (but it does for KB algorithm).

33

Universality of rewriting

The braid monoid admits the presentation

B+3 = ⟨a,b | aba = bab⟩

Lemma
The monoid has decidable equality.

Proof.
Since the only relation preserves length, equivalence classes are finite.

Proposition (Kapur-Narendran’85)
There is no convergent presentation of B+3 on the same generators.

This does not entirely solve the question since we are using only the second type
of Tietze transformation (but it does for KB algorithm).

33

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

• B+3 = ⟨a,b | aba→ bab⟩

• B+3 = ⟨a,b, c | aba→ bab,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc,bcc→ cca⟩

34

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

• B+3 = ⟨a,b | aba→ bab⟩
• B+3 = ⟨a,b, c | aba→ bab,ba→ c⟩

• B+3 = ⟨a,b, c | ac→ cb,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc,bcc→ cca⟩

34

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

• B+3 = ⟨a,b | aba→ bab⟩
• B+3 = ⟨a,b, c | aba→ bab,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c⟩

• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc,bcc→ cca⟩

aba bab

ac cb

34

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

• B+3 = ⟨a,b | aba→ bab⟩
• B+3 = ⟨a,b, c | aba→ bab,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc⟩

• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc,bcc→ cca⟩

bac

cc bcb

34

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

• B+3 = ⟨a,b | aba→ bab⟩
• B+3 = ⟨a,b, c | aba→ bab,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc,bcc→ cca⟩

bcba

cca bcc

34

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

• B+3 = ⟨a,b | aba→ bab⟩
• B+3 = ⟨a,b, c | aba→ bab,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc⟩
• B+3 = ⟨a,b, c | ac→ cb,ba→ c,bcb→ cc,bcc→ cca⟩

This is a convergent presentation!

34

Universality of rewriting

We are going to show that there is a monoid which admits no finite convergent
presentation.

The strategy is that we are going to compute from a presentation of the monoid, a
property which depends only on the monoid.

Moreover this property will be such that not finite convergent presentation can
lead to it.

35

Monoids as geometric objects

The intuition is that a monoid can be considered as some form of geometric
object with

• one point ⋆,
• the elements a of the monoid as 1-cells a : ⋆→ ⋆,
• equalities between products of elements of the monoid as 2-cells α : u⇒ v,

⋆

⋆

⋆

a b

ab

• trivial higher-dimensional information.

36

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as
follows.

1. Construct a resolution of the trivial ZM-module Z by projective ZM modules:

· · · C3 C2 C1 C0 Z 0d4 d3 d2 d1 ε

2. Tensor it by Z over ZM:

· · · C3 ⊗ Z C2 ⊗ Z C1 ⊗ Z C0 ⊗ Z
∂4 ∂3 ∂2 ∂1

3. Compute
Hi(M) = ker ∂i/ im ∂i+1

Lemma
Between any two projective resolutions there is a morphism, which is unique up to
homotopy.

The homology thus does not depend on the choice of the resolution.

37

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as
follows.

1. Construct a resolution of the trivial ZM-module Z by projective ZM modules:

· · · C3 C2 C1 C0 Z 0d4 d3 d2 d1 ε

2. Tensor it by Z over ZM:

· · · C3 ⊗ Z C2 ⊗ Z C1 ⊗ Z C0 ⊗ Z
∂4 ∂3 ∂2 ∂1

3. Compute
Hi(M) = ker ∂i/ im ∂i+1

Lemma
Between any two projective resolutions there is a morphism, which is unique up to
homotopy.

The homology thus does not depend on the choice of the resolution.

37

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as
follows.

1. Construct a resolution of the trivial ZM-module Z by projective ZM modules:

· · · C3 C2 C1 C0 Z 0d4 d3 d2 d1 ε

2. Tensor it by Z over ZM:

· · · C3 ⊗ Z C2 ⊗ Z C1 ⊗ Z C0 ⊗ Z
∂4 ∂3 ∂2 ∂1

3. Compute
Hi(M) = ker ∂i/ im ∂i+1

Lemma
Between any two projective resolutions there is a morphism, which is unique up to
homotopy.

The homology thus does not depend on the choice of the resolution.

37

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as
follows.

1. Construct a resolution of the trivial ZM-module Z by projective ZM modules:

· · · C3 C2 C1 C0 Z 0d4 d3 d2 d1 ε

2. Tensor it by Z over ZM:

· · · C3 ⊗ Z C2 ⊗ Z C1 ⊗ Z C0 ⊗ Z
∂4 ∂3 ∂2 ∂1

3. Compute
Hi(M) = ker ∂i/ im ∂i+1

Lemma
Between any two projective resolutions there is a morphism, which is unique up to
homotopy.

The homology thus does not depend on the choice of the resolution.

37

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as
follows.

1. Construct a resolution of the trivial ZM-module Z by projective ZM modules:

· · · C3 C2 C1 C0 Z 0d4 d3 d2 d1 ε

2. Tensor it by Z over ZM:

· · · C3 ⊗ Z C2 ⊗ Z C1 ⊗ Z C0 ⊗ Z
∂4 ∂3 ∂2 ∂1

3. Compute
Hi(M) = ker ∂i/ im ∂i+1

Lemma
Between any two projective resolutions there is a morphism, which is unique up to
homotopy. The homology thus does not depend on the choice of the resolution. 37

Constructing a tractable resolution

We can always construct a projective resolution of the trivial ZM-module Z:

· · · ZM[ker d1] ZM[ker ε] ZM

Z 0d3 d2 d1 ε

However we cannot compute much from this, we need a smaller resolution!

38

Constructing a tractable resolution

We can always construct a projective resolution of the trivial ZM-module Z:

· · · ZM[ker d1] ZM[ker ε]

ZM Z 0d3 d2 d1 ε

However we cannot compute much from this, we need a smaller resolution!

38

Constructing a tractable resolution

We can always construct a projective resolution of the trivial ZM-module Z:

· · · ZM[ker d1]

ZM[ker ε] ZM Z 0d3 d2 d1 ε

However we cannot compute much from this, we need a smaller resolution!

38

Constructing a tractable resolution

We can always construct a projective resolution of the trivial ZM-module Z:

· · ·

ZM[ker d1] ZM[ker ε] ZM Z 0d3 d2 d1 ε

However we cannot compute much from this, we need a smaller resolution!

38

Constructing a tractable resolution

We can always construct a projective resolution of the trivial ZM-module Z:

· · · ZM[ker d1] ZM[ker ε] ZM Z 0d3 d2 d1 ε

However we cannot compute much from this, we need a smaller resolution!

38

Constructing a tractable resolution

We can always construct a projective resolution of the trivial ZM-module Z:

· · · ZM[ker d1] ZM[ker ε] ZM Z 0d3 d2 d1 ε

However we cannot compute much from this, we need a smaller resolution!

38

Squier’s theorem

Suppose given a monoid M with a finite convergent presentation ⟨G | R⟩.

Theorem (Squier’87)
One can construct a (partial) resolution

ZM[T] ZM[P] ZM[R] ZM[G] ZM

Z 0d4 d3 d2 d1 ε

where

• P is the set of critical branchings,
• T is the set of critical triples.

Corollary
H3(M) = ker ∂3/ im ∂4 is finitely generated.

Corollary
If M is such that H3(M) is not finitely generated then M admits no finite
convergent presentation.

39

Squier’s theorem

Suppose given a monoid M with a finite convergent presentation ⟨G | R⟩.

Theorem (Squier’87)
One can construct a (partial) resolution

ZM[T] ZM[P] ZM[R] ZM[G]

ZM Z 0d4 d3 d2 d1 ε

where

• P is the set of critical branchings,
• T is the set of critical triples.

Corollary
H3(M) = ker ∂3/ im ∂4 is finitely generated.

Corollary
If M is such that H3(M) is not finitely generated then M admits no finite
convergent presentation.

39

Squier’s theorem

Suppose given a monoid M with a finite convergent presentation ⟨G | R⟩.

Theorem (Squier’87)
One can construct a (partial) resolution

ZM[T] ZM[P] ZM[R]

ZM[G] ZM Z 0d4 d3 d2 d1 ε

where

• P is the set of critical branchings,
• T is the set of critical triples.

Corollary
H3(M) = ker ∂3/ im ∂4 is finitely generated.

Corollary
If M is such that H3(M) is not finitely generated then M admits no finite
convergent presentation.

39

Squier’s theorem

Suppose given a monoid M with a finite convergent presentation ⟨G | R⟩.

Theorem (Squier’87)
One can construct a (partial) resolution

ZM[T] ZM[P]

ZM[R] ZM[G] ZM Z 0d4 d3 d2 d1 ε

where

• P is the set of critical branchings,
• T is the set of critical triples.

Corollary
H3(M) = ker ∂3/ im ∂4 is finitely generated.

Corollary
If M is such that H3(M) is not finitely generated then M admits no finite
convergent presentation.

39

Squier’s theorem

Suppose given a monoid M with a finite convergent presentation ⟨G | R⟩.

Theorem (Squier’87)
One can construct a (partial) resolution

ZM[T]

ZM[P] ZM[R] ZM[G] ZM Z 0d4 d3 d2 d1 ε

where

• P is the set of critical branchings,

• T is the set of critical triples.

Corollary
H3(M) = ker ∂3/ im ∂4 is finitely generated.

Corollary
If M is such that H3(M) is not finitely generated then M admits no finite
convergent presentation.

39

Squier’s theorem

Suppose given a monoid M with a finite convergent presentation ⟨G | R⟩.

Theorem (Squier’87)
One can construct a (partial) resolution

ZM[T] ZM[P] ZM[R] ZM[G] ZM Z 0d4 d3 d2 d1 ε

where

• P is the set of critical branchings,
• T is the set of critical triples.

Corollary
H3(M) = ker ∂3/ im ∂4 is finitely generated.

Corollary
If M is such that H3(M) is not finitely generated then M admits no finite
convergent presentation.

39

Squier’s theorem

Suppose given a monoid M with a finite convergent presentation ⟨G | R⟩.

Theorem (Squier’87)
One can construct a (partial) resolution

ZM[T] ZM[P] ZM[R] ZM[G] ZM Z 0d4 d3 d2 d1 ε

Proof.
Construct a contracting homotopy

ZM[T] ZM[P] ZM[R] ZM[G] ZM Z
d4

s3

d3

s2

d2

s1

d1

s0

ε

η

where the si are Z-linear maps such that ∂i+1si + si−1∂i = 0.

Corollary
H3(M) = ker ∂3/ im ∂4 is finitely generated.

Corollary
If M is such that H3(M) is not finitely generated then M admits no finite
convergent presentation.

39

Squier’s theorem

Suppose given a monoid M with a finite convergent presentation ⟨G | R⟩.

Theorem (Squier’87)
One can construct a (partial) resolution

ZM[T] ZM[P] ZM[R] ZM[G] ZM Z 0d4 d3 d2 d1 ε

Corollary
H3(M) = ker ∂3/ im ∂4 is finitely generated.

Corollary
If M is such that H3(M) is not finitely generated then M admits no finite
convergent presentation.

39

Squier’s theorem

Suppose given a monoid M with a finite convergent presentation ⟨G | R⟩.

Theorem (Squier’87)
One can construct a (partial) resolution

ZM[T] ZM[P] ZM[R] ZM[G] ZM Z 0d4 d3 d2 d1 ε

Corollary
H3(M) = ker ∂3/ im ∂4 is finitely generated.

Corollary
If M is such that H3(M) is not finitely generated then M admits no finite
convergent presentation.

39

A counter-example [Squier’87,Lafont-Prouté’91]

Consider the monoid M presented by

⟨a,b, c,d,d′ | ab→ a,da→ ac,d′a→ ac⟩

by Knuth-Bendix, it can be completed into the infinite convergent presentation

⟨a,b, c,d,d′ | An : acnb→ acn,B : da→ ac,B′ : d′a→ ac⟩

there are two families of critical branchings

dacnb

acn+1b αn⇒ dacn

acn+1

Bcnb dAn

An+1 Bcn

d′acnb

acn+1b α′
n⇒ d′acn

acn+1

B′cnb d′An

An+1 B′cn

and no critical triple.

40

A counter-example [Squier’87,Lafont-Prouté’91]

Consider the monoid M presented by

⟨a,b, c,d,d′ | ab→ a,da→ ac,d′a→ ac⟩

by Knuth-Bendix, it can be completed into the infinite convergent presentation

⟨a,b, c,d,d′ | An : acnb→ acn,B : da→ ac,B′ : d′a→ ac⟩

there are two families of critical branchings

dacnb

acn+1b αn⇒ dacn

acn+1

Bcnb dAn

An+1 Bcn

d′acnb

acn+1b α′
n⇒ d′acn

acn+1

B′cnb d′An

An+1 B′cn

and no critical triple.

40

A counter-example [Squier’87,Lafont-Prouté’91]

Consider the monoid M presented by

⟨a,b, c,d,d′ | ab→ a,da→ ac,d′a→ ac⟩

by Knuth-Bendix, it can be completed into the infinite convergent presentation

⟨a,b, c,d,d′ | An : acnb→ acn,B : da→ ac,B′ : d′a→ ac⟩

there are two families of critical branchings

dacnb

acn+1b αn⇒ dacn

acn+1

Bcnb dAn

An+1 Bcn

d′acnb

acn+1b α′
n⇒ d′acn

acn+1

B′cnb d′An

An+1 B′cn

and no critical triple.

40

A counter-example [Squier’87,Lafont-Prouté’91]

Consider the monoid M presented by

⟨a,b, c,d,d′ | ab→ a,da→ ac,d′a→ ac⟩

by Knuth-Bendix, it can be completed into the infinite convergent presentation

⟨a,b, c,d,d′ | An : acnb→ acn,B : da→ ac,B′ : d′a→ ac⟩

there are two families of critical branchings

dacnb

acn+1b αn⇒ dacn

acn+1

Bcnb dAn

An+1 Bcn

d′acnb

acn+1b α′
n⇒ d′acn

acn+1

B′cnb d′An

An+1 B′cn

and no critical triple.
40

A counter-example [Squier’87,Lafont-Prouté’91]

The homology of M is thus the homology of

0 Z[αn, α′
n] Z[An,B,B′] Z[a,b, c,d,d′] Z

∂4 ∂3 ∂2 ∂1

Corollary
The monoid M cannot be presented by a finite convergent presentation.

41

A counter-example [Squier’87,Lafont-Prouté’91]

The homology of M is thus the homology of

0 Z[αn, α′
n] Z[An,B,B′] Z[a,b, c,d,d′] Z

∂4 ∂3 ∂2 ∂1

with, since An : acnb→ acn,

∂2(An) = [a] + n[c]− ([a] + n[c] + [b]) = [b]

Corollary
The monoid M cannot be presented by a finite convergent presentation.

41

A counter-example [Squier’87,Lafont-Prouté’91]

The homology of M is thus the homology of

0 Z[αn, α′
n] Z[An,B,B′] Z[a,b, c,d,d′] Z

∂4 ∂3 ∂2 ∂1

with, since
dacnb

acn+1b αn⇒ dacn

acn+1

Bcnb dAn

An+1 Bcn

we have
∂3(αn) = [An] + [B]− ([B]− [An+1]) = [An]− [An+1]

and similarly
∂(α′

n) = [An]− [An+1]

Corollary
The monoid M cannot be presented by a finite convergent presentation.

41

A counter-example [Squier’87,Lafont-Prouté’91]

The homology of M is thus the homology of

0 Z[αn, α′
n] Z[An,B,B′] Z[a,b, c,d,d′] Z

∂4 ∂3 ∂2 ∂1

where ker ∂3 is infinitely generated by

[α′
n]− [αn]

and thus
H3(M)

is not finitely generated!

Corollary
The monoid M cannot be presented by a finite convergent presentation.

41

A counter-example [Squier’87,Lafont-Prouté’91]

The homology of M is thus the homology of

0 Z[αn, α′
n] Z[An,B,B′] Z[a,b, c,d,d′] Z

∂4 ∂3 ∂2 ∂1

where ker ∂3 is infinitely generated by

[α′
n]− [αn]

and thus
H3(M)

is not finitely generated!

Corollary
The monoid M cannot be presented by a finite convergent presentation.

41

An analogy with topos theory

monoid topos
presentation ⟨G | R⟩ site (C, J)

presented monoid G∗/R sheaves Sh(C, J)
Tietze equivalence Morita equivalence

Tietze transformation ∼ comparison lemma
convergent presentation ?

...
...

42

It seems that Tietze transformations are “deformations” of presentations.

Can we make this formal?

43

A model structure on presentations

Theorem (Henry-M.)
There is a (cofibrantly generated) model structure on the category of (reflexive)
presentations of monoids where weak equivalences are morphisms
f : ⟨G | R⟩ → ⟨G′ | R′⟩ inducing isomorphism of presented monoids,
i.e. G∗/R ≃ G′∗/R′.

44

A model structure on presentations

The generating cofibrations are

• ⟨|⟩ ↪→ ⟨a |⟩
• ⟨a1, . . . ,an,b1, . . . ,bm |⟩ ↪→ ⟨a1, . . . ,an,b1, . . . ,bm | a1 . . .an = b1 . . .bm⟩

Proposition
Every object is cofibrant and cofibrations are precisely monomorphisms.

45

A model structure on presentations

We expect that the generating trivial cofibrations are

• ⟨a1, . . . ,an |⟩ ↪→ ⟨a1, . . . ,an,b | a1 . . .an = b⟩,
• ⟨a1, . . . ,an |⟩ ↪→ ⟨a1, . . . ,an | a1 . . .an = a1 . . .an⟩,
• + transitivity, symmetry and congruence

so that generated trivial cofibrations are precisely (retracts of) Tietze
transformations.

This is “almost” the case, in the sense that those generate trivial cofibrations
when the target is fibrant, and we can recover abstractly Tietze theorem.

46

Part III

Generalization to higher categories

47

Generalizations

The technology of rewriting extends to many other settings:

• universal algebra / Lawvere theories / clones (term rewriting systems)
• operads
• commutative (or not) rings (Gröbner basis)
• etc.

Can we come up with a general definition of higher-dimensional rewriting system?

higher-dimensional rewriting
=

rewriting between rewriting paths between rewriting paths between ...

48

Generalizations

The technology of rewriting extends to many other settings:

• universal algebra / Lawvere theories / clones (term rewriting systems)
• operads
• commutative (or not) rings (Gröbner basis)
• etc.

Can we come up with a general definition of higher-dimensional rewriting system?

higher-dimensional rewriting
=

rewriting between rewriting paths between rewriting paths between ...

48

0-dimensional rewriting systems

Recall that an abstract rewriting system is a graph

⟨G | R⟩

with R ⊆ G× G.

We write P∗1 for the set of rewriting paths:

P1

P0 P∗1

s0

t0
i1

s∗0

t∗0

49

0-dimensional rewriting systems

Recall that an abstract rewriting system is a graph

⟨P0 | P1⟩

with P1 ⊆ P0 × P0.

We write P∗1 for the set of rewriting paths:

P1

P0 P∗1

s0

t0
i1

s∗0

t∗0

49

0-dimensional rewriting systems

Recall that an abstract rewriting system is a graph

P0 P1
s0

t0

We write P∗1 for the set of rewriting paths:

P1

P0 P∗1

s0

t0
i1

s∗0

t∗0

49

0-dimensional rewriting systems

Recall that an abstract rewriting system is a graph

P0 P1
s0

t0

We write P∗1 for the set of rewriting paths:

P1

P0 P∗1

s0

t0
i1

s∗0

t∗0

49

1-dimensional rewriting systems

An string rewriting system is

P1 P2

P0 P∗1

s0

t0
i1
s1

t1s∗0

t∗0

such that s∗0s1 = s∗0t1 and t∗0s1 = t∗0t1.

An element of P2 is seen as

· · ·

· ·

· · · ·

a2 · · · an−1

ana1

b1

⇓

b2
· · ·

bm
bm

50

1-dimensional rewriting systems

An string rewriting system is

P1 P2

P0 P∗1

s0

t0
i1
s1

t1s∗0

t∗0

such that s∗0s1 = s∗0t1 and t∗0s1 = t∗0t1.

For instance,

{⋆} {a,b}∗
s∗0

t∗0

· ·

· ·

· ·

b
aa

b

⇓

a
b

50

2-dimensional rewriting systems

A 1-dimensional rewriting system is

P1 P2

P0 P∗1

s0

t0
i1
s1

t1s∗0

t∗0

It presents the category
P∗1/P2

...but it can also be seen as a generating system for a 2-category!

51

2-dimensional rewriting systems

A 1-dimensional rewriting system is

P1 P2

P0 P∗1 P∗2

s0

t0
i1
s1

t1
i2

s∗0

t∗0

s∗1

t∗1

where P∗2 is the set of rewriting paths / 2-cells.

51

2-dimensional rewriting systems

A 2-dimensional rewriting system is

P1 P2 P3

P0 P∗1 P∗2

s0

t0
i1
s1

t1
i2
s2

t2s∗0

t∗0

s∗1

t∗1

together with the structure of 2-category on the diagram on the bottom line.

(aka polygraph or computad)

It presents a 2-category.

51

Monoids

For instance, we can take

P1 P2 P3

P0 P∗1 P∗2

s0

t0
i1
s1

t1
i2
s2

t2s∗0

t∗0

s∗1

t∗1

with

• P0 = {⋆}

• P1 = {1}
• P2 = {m : 2→ 1, e : 0→ 1}
• P3 = {α : (m ∗ 1) ∗m⇒ (1 ∗m) ∗m, λ : (e ∗ 1) ∗m⇒ 1, ρ : (1 ∗ e) ∗m⇒ 1}

A functor P→ Cat is a strict monoidal category.

52

Monoids

For instance, we can take

P1 P2 P3

P0 P∗1 P∗2

s0

t0
i1
s1

t1
i2
s2

t2s∗0

t∗0

s∗1

t∗1

with

• P0 = {⋆}
• P1 = {1}

• P2 = {m : 2→ 1, e : 0→ 1}
• P3 = {α : (m ∗ 1) ∗m⇒ (1 ∗m) ∗m, λ : (e ∗ 1) ∗m⇒ 1, ρ : (1 ∗ e) ∗m⇒ 1}

A functor P→ Cat is a strict monoidal category.

52

Monoids

For instance, we can take

P1 P2 P3

P0 P∗1 P∗2

s0

t0
i1
s1

t1
i2
s2

t2s∗0

t∗0

s∗1

t∗1

with

• P0 = {⋆}
• P1 = {1}
• P2 = {m : 2→ 1, e : 0→ 1}

• P3 = {α : (m ∗ 1) ∗m⇒ (1 ∗m) ∗m, λ : (e ∗ 1) ∗m⇒ 1, ρ : (1 ∗ e) ∗m⇒ 1}

A functor P→ Cat is a strict monoidal category.

52

Monoids

For instance, we can take

P1 P2 P3

P0 P∗1 P∗2

s0

t0
i1
s1

t1
i2
s2

t2s∗0

t∗0

s∗1

t∗1

with

• P0 = {⋆}
• P1 = {1}
• P2 = {m : 2→ 1, e : 0→ 1}
• P3 = {α : (m ∗ 1) ∗m⇒ (1 ∗m) ∗m, λ : (e ∗ 1) ∗m⇒ 1, ρ : (1 ∗ e) ∗m⇒ 1}

A functor P→ Cat is a strict monoidal category.

52

Monoids

For instance, we can take

P1 P2 P3

P0 P∗1 P∗2

s0

t0
i1
s1

t1
i2
s2

t2s∗0

t∗0

s∗1

t∗1

with

• P0 = {⋆}
• P1 = {1}
• P2 = {m : 2→ 1, e : 0→ 1}
• P3 = {α : (m ∗ 1) ∗m⇒ (1 ∗m) ∗m, λ : (e ∗ 1) ∗m⇒ 1, ρ : (1 ∗ e) ∗m⇒ 1}

A functor P→ Cat is a strict monoidal category.
52

Monoids

The rules are

⇛ ⇛ ⇛

and there are 5 critical branchings:

53

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.

Example (Guiraud-Malbos’09)
Consider

• P0 = {⋆}

• P1 = {1}
• P2 = {n : 0→ 2,u : 0→ 1,o : 1→ 1}

= { , , }

• P3 = { ⇛ , ⇛ }

We have an infinite family of critical branchings:

. . .

54

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.

Example (Guiraud-Malbos’09)
Consider

• P0 = {⋆}
• P1 = {1}

• P2 = {n : 0→ 2,u : 0→ 1,o : 1→ 1}

= { , , }

• P3 = { ⇛ , ⇛ }

We have an infinite family of critical branchings:

. . .

54

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.

Example (Guiraud-Malbos’09)
Consider

• P0 = {⋆}
• P1 = {1}
• P2 = {n : 0→ 2,u : 0→ 1,o : 1→ 1}

= { , , }

• P3 = { ⇛ , ⇛ }

We have an infinite family of critical branchings:

. . .

54

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.

Example (Guiraud-Malbos’09)
Consider

• P0 = {⋆}
• P1 = {1}
• P2 = {n : 0→ 2,u : 0→ 1,o : 1→ 1} = { , , }

• P3 = { ⇛ , ⇛ }

We have an infinite family of critical branchings:

. . .

54

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.

Example (Guiraud-Malbos’09)
Consider

• P0 = {⋆}
• P1 = {1}
• P2 = {n : 0→ 2,u : 0→ 1,o : 1→ 1} = { , , }

• P3 = { ⇛ , ⇛ }

We have an infinite family of critical branchings:

. . .

54

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.

Example (Guiraud-Malbos’09)
Consider

• P0 = {⋆}
• P1 = {1}
• P2 = {n : 0→ 2,u : 0→ 1,o : 1→ 1} = { , , }

• P3 = { ⇛ , ⇛ }

We have an infinite family of critical branchings:

. . .
54

Coherent 1-dimensional rewriting systems

An 2-dimensional rewriting system is

P1 P2 P3

P0 P∗1 P∗2

s0

t0
i1
s1

t1
i2
s2

t2s∗0

t∗0

s∗1

t∗1

Theorem (Squier)
If we take P3 generated by critical branchings then the extended rs is coherent:
there is an invertible 3-cell in P⊤3 between any parallel pair of 2-cells in P∗2 .
Thus, P has finite derivation type.

55

Coherent 1-dimensional rewriting systems

An extended 1-dimensional rewriting system is

P1 P2 P3

P0 P∗1 P∗2

s0

t0
i1
s1

t1
i2
s2

t2s∗0

t∗0

s∗1

t∗1

Theorem (Squier)
If we take P3 generated by critical branchings then the extended rs is coherent:
there is an invertible 3-cell in P⊤3 between any parallel pair of 2-cells in P∗2 .
Thus, P has finite derivation type.

55

Coherent 1-dimensional rewriting systems

An extended 1-dimensional rewriting system is

P1 P2 P3

P0 P∗1 P⊤2 P⊤3

s0

t0
i1
s1

t1
i2

s2

t2
i3

s∗0

t∗0

s∗1

t∗1

s∗2

t∗2

Theorem (Squier)
If we take P3 generated by critical branchings then the extended rs is coherent:
there is an invertible 3-cell in P⊤3 between any parallel pair of 2-cells in P∗2 .
Thus, P has finite derivation type.

55

Coherent 2-dimensional rewriting systems

Similarly, an extended 2-dimensional rewriting system

P1 P2 P3 P4

P0 P∗1 P∗2 P⊤3

s0

t0
i1
s1

t1
i2
s2

t2
i3
s3

t3s∗0

t∗0

s∗1

t∗1

s∗2

t∗2

where P4 is generated by critical branchings is coherent.

Applying this to the rs of monoids, we can recover MacLane’s coherence theorem:

• P0 = {⋆}
• P1 = {1}
• P2 = {m : 2→ 1, e : 0→ 1}
• P3 = {α : (m ∗ 1) ∗m⇒ (1 ∗m) ∗m, λ : (e ∗ 1) ∗m⇒ 1, ρ : (1 ∗ e) ∗m⇒ 1}
• P4 = {5 elements}

56

Coherent 2-dimensional rewriting systems

Similarly, an extended 2-dimensional rewriting system

P1 P2 P3 P4

P0 P∗1 P∗2 P⊤3

s0

t0
i1
s1

t1
i2
s2

t2
i3
s3

t3s∗0

t∗0

s∗1

t∗1

s∗2

t∗2

where P4 is generated by critical branchings is coherent.

Applying this to the rs of monoids, we can recover MacLane’s coherence theorem:

• P0 = {⋆}
• P1 = {1}
• P2 = {m : 2→ 1, e : 0→ 1}
• P3 = {α : (m ∗ 1) ∗m⇒ (1 ∗m) ∗m, λ : (e ∗ 1) ∗m⇒ 1, ρ : (1 ∗ e) ∗m⇒ 1}
• P4 = {2 elements}

56

A model structure on ω-categories

Theorem (Lafont-Métayer-Worytkiewicz’10)
There is a model structure on ω-Cat where

• equivalences are categorical equivalences,
• every object is fibrant,
• cofibrant objects are categories generated by polygraphs.

57

	Abstract rewriting systems
	String rewriting systems
	Generalization to higher categories

