Monoids (and more) as bridges

Samuel Mimram

Presentations

Algebraic structures are presented by generators and relations.

Presentations

Algebraic structures are presented by generators and relations.
The presentation is usually not unique, which is a good thing: by varying the presentation, we can reach ones with nice properties.

Presentations

Algebraic structures are presented by generators and relations.

The presentation is usually not unique, which is a good thing: by varying the presentation, we can reach ones with nice properties.

Every element of the algebraic structure can be obtained as a composite of generators. A natural question is:
when do two composite represent the same element?

Presentations

Algebraic structures are presented by generators and relations.

The presentation is usually not unique, which is a good thing: by varying the presentation, we can reach ones with nice properties.

Every element of the algebraic structure can be obtained as a composite of generators. A natural question is:
when do two composite represent the same element?

We will see this is answered effectively (= we can implement it) by
rewriting theory

Presentations

Presentations

Part I

Abstract rewriting systems

Abstract rewriting systems

An abstract rewriting system consists of a set G together with a rewriting relation $R \subseteq G \times G$.

Abstract rewriting systems

An abstract rewriting system consists of a set G together with a rewriting relation $R \subseteq G \times G$.

We write

$$
[-]: G \rightarrow G / R
$$

and think of $a, b \in G$ such that $[a]=[b]$ as two possible descriptions of the corresponding element of G / R.

Abstract rewriting systems

An abstract rewriting system consists of a set G together with a rewriting relation $R \subseteq G \times G$.

We write

$$
[-]: G \rightarrow G / R
$$

and think of $a, b \in G$ such that $[a]=[b]$ as two possible descriptions of the corresponding element of G / R.

We can decide whether two elements are in the same equivalence class when

- we have a canonical representative in each equivalence class,
- can compute the canonical representative of an element.

Normal forms

If we think that $a \longrightarrow b$ means b is "more canonical" than a then canonical representatives should be given by normal forms: elements which are not the source of any reduction.

$$
d \longrightarrow e
$$

An equivalence class can however have

Normal forms

If we think that $a \longrightarrow b$ means b is "more canonical" than a then canonical representatives should be given by normal forms: elements which are not the source of any reduction.

An equivalence class can however have

- more than one normal form:

$$
a \longleftarrow b \longrightarrow c
$$

Normal forms

If we think that $a \longrightarrow b$ means b is "more canonical" than a then canonical representatives should be given by normal forms: elements which are not the source of any reduction.

An equivalence class can however have

- more than one normal form:

$$
a \longleftarrow b \longrightarrow c
$$

- no normal form:

$$
a_{0} \longrightarrow a_{1} \longrightarrow a_{2} \longrightarrow \ldots
$$

Termination

An ARS is terminating if there is no infinite path

$$
a_{0} \longrightarrow a_{1} \longrightarrow a_{2} \longrightarrow \ldots
$$

Termination

An ARS is terminating if there is no infinite path

$$
a_{0} \longrightarrow a_{1} \longrightarrow a_{2} \longrightarrow \ldots
$$

Proposition

In a terminating ARS, every equivalence class contains a normal form.
Proof.
Given a, consider a maximal path

$$
a=a_{0} \longrightarrow a_{1} \longrightarrow a_{2} \longrightarrow \ldots \longrightarrow a_{n}
$$

Confluence

Confluence

Proposition (Church-Rosser'36)
In a confluent ARS, two equivalent terms rewrite to a common element.

Proof.

Suppose $a \stackrel{*}{\leftrightarrow} a^{\prime}$. This means that

Confluence

Proposition (Church-Rosser'36)
In a confluent ARS, two equivalent terms rewrite to a common element.

Proof.

Suppose $a \stackrel{*}{\leftrightarrow} a^{\prime}$. This means that

Confluence

Proposition (Church-Rosser'36)
In a confluent ARS, two equivalent terms rewrite to a common element.

Proof.

Suppose $a \stackrel{*}{\leftrightarrow} a^{\prime}$. This means that

Confluence

Proposition (Church-Rosser'36)

In a confluent ARS, two equivalent terms rewrite to a common element.

Proof.

Suppose $a \stackrel{*}{\leftrightarrow} a^{\prime}$. This means that

Confluence

Proposition

In a confluent ARS, every equivalence class contains at most one normal form.

Proof.

Suppose that a and a^{\prime} are equivalent normal forms.

Confluence

Proposition

In a confluent ARS, every equivalence class contains at most one normal form.

Proof.

Suppose that a and a^{\prime} are equivalent normal forms. By previous theorem we have,

Confluence

Proposition

In a confluent ARS, every equivalence class contains at most one normal form.

Proof.

Suppose that a and a^{\prime} are equivalent normal forms. By previous theorem we have,

Local confluence

Local confluence

Local confluence

An ARS is locally confluent when

Proposition (Newman'42)
\exists
A terminating ARS is confluent if and only if it is locally confluent.
Proof.
By well-founded induction, locally confluent implies confluent:

Local confluence

An ARS is locally confluent when

Proposition (Newman'42)
A terminating ARS is confluent if and only if it is locally confluent.
Proof.
By well-founded induction, locally confluent implies confluent:

Local confluence

An ARS is locally confluent when

Proposition (Newman'42)
A terminating ARS is confluent if and only if it is locally confluent.
Proof.
By well-founded induction, locally confluent implies confluent:

Local confluence

An ARS is locally confluent when

Proposition (Newman'42)
A terminating ARS is confluent if and only if it is locally confluent.
Proof.
By well-founded induction, locally confluent implies confluent:

Local confluence

Remark (Huet'8o)
Without termination, this does not hold

Deciding equality

An ARS (G, R) is convergent when both terminating an (locally) confluent.

Deciding equality

An ARS (G, R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition

In a convergent ARS, every equivalence class contains a unique normal form.

Deciding equality

An ARS (G, R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition

In a convergent ARS, every equivalence class contains a unique normal form.

For $a, b \in G$, we can decide whether $[a]=[b]$ holds as follows:

$$
a\left\langle{ }^{*}\right\rangle b
$$

Deciding equality

An ARS (G, R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition

In a convergent ARS, every equivalence class contains a unique normal form.

For $a, b \in G$, we can decide whether $[a]=[b]$ holds as follows:

Deciding equality

An ARS (G, R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition

In a convergent ARS, every equivalence class contains a unique normal form.

For $a, b \in G$, we can decide whether $[a]=[b]$ holds as follows:

Deciding equality

An ARS (G, R) is convergent when both terminating an (locally) confluent.

By previous propositions,

Proposition

In a convergent ARS, every equivalence class contains a unique normal form.

For $a, b \in G$, we can decide whether $[a]=[b]$ holds as follows:

Part II

String rewriting systems

This is the core of rewriting theory.

Let's apply this to presentations of monoids.

Presentations of monoids

A monoid presentation / string rewriting system is a pair $\langle G \mid R\rangle$ consisting of

- a set G of generators,
- a set $R \subseteq G^{*} \times G^{*}$ of relations,
where G^{*} is the free monoid on G. It presents the monoid

$$
G^{*} / R
$$

where we quotient by the congruence generated by R.

Example

- $\mathbb{N} \simeq\langle a \mid\rangle$

Presentations of monoids

A monoid presentation / string rewriting system is a pair $\langle G \mid R\rangle$ consisting of

- a set G of generators,
- a set $R \subseteq G^{*} \times G^{*}$ of relations,
where G^{*} is the free monoid on G. It presents the monoid

$$
G^{*} / R
$$

where we quotient by the congruence generated by R.

Example

- $\mathbb{N} \simeq\langle a \mid\rangle$
- $\mathbb{N} / 2 \mathbb{N} \simeq\langle a \mid a a=1\rangle$

Presentations of monoids

A monoid presentation / string rewriting system is a pair $\langle G \mid R\rangle$ consisting of

- a set G of generators,
- a set $R \subseteq G^{*} \times G^{*}$ of relations,
where G^{*} is the free monoid on G. It presents the monoid

$$
G^{*} / R
$$

where we quotient by the congruence generated by R.

Example

- $\mathbb{N} \simeq\langle a \mid\rangle$
- $\mathbb{N} / 2 \mathbb{N} \simeq\langle a \mid a a=1\rangle$
- $\mathbb{N} \times \mathbb{N} / 2 \mathbb{N} \simeq\langle a, b \mid b a=a b, b b=1\rangle$

Presentations of monoids

A monoid presentation / string rewriting system is a pair $\langle G \mid R\rangle$ consisting of

- a set G of generators,
- a set $R \subseteq G^{*} \times G^{*}$ of relations,
where G^{*} is the free monoid on G. It presents the monoid

$$
G^{*} / R
$$

where we quotient by the congruence generated by R.

Example

- $\mathbb{N} \simeq\langle a \mid\rangle$
- $\mathbb{N} / 2 \mathbb{N} \simeq\langle a \mid a a=1\rangle$
- $\mathbb{N} \times \mathbb{N} / 2 \mathbb{N} \simeq\langle a, b \mid b a=a b, b b=1\rangle$
$\cdot S_{n} \simeq\left\langle a_{0}, \ldots, a_{n-1} \mid a_{i} a_{i}=1, a_{i} a_{i+1} a_{i}=a_{i+1} a_{i} a_{i+1}, a_{i} a_{j}=a_{j} a_{i}\right\rangle$

Presenting of S_{3}

A presentation of S_{3} is

$$
\langle a, b \mid a a=1, b b=1, a b a=b a b\rangle
$$

where

$$
b=1
$$

Presenting of S_{3}

A presentation of S_{3} is

$$
\langle a, b \mid a a=1, b b=1, a b a=b a b\rangle
$$

where

$$
a=\zeta
$$

$$
b=1
$$

and the relations are

$a a=1$

$b b=1$

$a b a=b a b$

Presenting of S_{3}

A presentation of S_{3} is

$$
\langle a, b \mid a a=1, b b=1, a b a=b a b\rangle
$$

where

$$
a=\zeta
$$

$$
b=1
$$

and the relations are

Note: it is clear that the relations are valid, but not that they are complete... (rewriting can help here)

String rewriting systems

Given a presentation $\langle G \mid R\rangle$, a rewriting step is

$$
u v w \rightarrow u v^{\prime} w
$$

for some $u, v, v^{\prime}, w \in G^{*}$ and $\left(v, v^{\prime}\right) \in R$.

For instance with $S_{3} \simeq\langle a, b \mid a a \rightarrow 1, a b a \rightarrow b a b, b b \rightarrow 1\rangle$, we have bbabaab \rightarrow bbbabab

String rewriting systems

Given a presentation $\langle\boldsymbol{G} \mid R\rangle$, a rewriting step is

$$
u v w \rightarrow u v^{\prime} w
$$

for some $u, v, v^{\prime}, w \in G^{*}$ and $\left(v, v^{\prime}\right) \in R$.
For instance with $S_{3} \simeq\langle a, b \mid a a \rightarrow 1, a b a \rightarrow b a b, b b \rightarrow 1\rangle$, we have bbabaab \rightarrow bbbabab

The presentation induces an ARS with

- elements of G^{*} as vertices,
- rewriting steps as edges,
thus allowing to re-use previous notions.

String rewriting systems

Given a presentation $\langle G \mid R\rangle$, a rewriting step is

$$
u v w \rightarrow u v^{\prime} w
$$

for some $u, v, v^{\prime}, w \in G^{*}$ and $\left(v, v^{\prime}\right) \in R$.
For instance with $S_{3} \simeq\langle a, b \mid a a \rightarrow 1, a b a \rightarrow b a b, b b \rightarrow 1\rangle$, we have $b b a b a a b \rightarrow b b b a b a b$

Note that the following are equivalent:

- $u \stackrel{*}{\leftrightarrow} v$
- u and v are related by the congruence generated by R
- $[u]=[v]$ in G^{*} / R.

Deciding equality in presentations

Given a presentation $\langle\boldsymbol{G} \mid R\rangle$ and words $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{G}^{*}$, we want to decide equality, i.e. answer

$$
\text { do we have }[u]=[v] \text { ? }
$$

Deciding equality in presentations

Given a presentation $\langle\boldsymbol{G} \mid R\rangle$ and words $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{G}^{*}$, we want to decide equality, i.e. answer

$$
\text { do we have }[u]=[v] \text { ? }
$$

Proposition

When the presentation is terminating and (locally) confluent, $[u]=[v]$ holds if and only if u and v have the same normal form:

Given a presentation $\langle G \mid R\rangle$, how do we show

- that it is terminating?
- that it is confluent?

Showing termination

Termination can usually be shown by showing that rules (and thus rewriting steps) make something decrease in a well-founded order.

For instance, with

$$
\langle a, b \mid a a \rightarrow 1, b b \rightarrow 1, a b a \rightarrow b a b\rangle
$$

we have that

- the rules make the length of words decrease (strictly for the first two),
- the third rule make the number of a's strictly decrease.

They are thus strictly decreasing under

$$
>_{\text {len }} \times_{\text {lex }}>a
$$

which is well-founded.

Showing (local) confluence

Since we are interested in terminating rewriting systems, it is enough to show that a presentation is locally confluent:

i.e. that every branching can be closed.

Showing (local) confluence

Since we are interested in terminating rewriting systems, it is enough to show that a presentation is locally confluent:

i.e. that every branching can be closed.

Problem: we have to check for all possible triples $\left(\boldsymbol{v}_{\mathbf{1}}, u, \boldsymbol{v}_{2}\right) \ldots$
We should remove "obviously commuting" diagrams from our search.

Independent branchings

Suppose that we have a branching rewriting two "independent" parts:

Independent branchings

Suppose that we have a branching rewriting two "independent" parts:

It can always be closed!

We can thus restrict to situation where the changed parts are overlapping.

Critical branchings

Suppose that we have a branching

Critical branchings

Suppose that we have a branching which can be closed

Critical branchings

Suppose that we have a branching which can be closed

then the branching

We can thus restrict to situations where the context is minimal.

Critical branchings

Suppose that we have a branching which can be closed

then the branching

can also be closed.
We can thus restrict to situations where the context is minimal.

Critical branchings

A critical branching is a situation

which not "independent" and with minimal context.

Critical branchings

A critical branching is a situation

which not "independent" and with minimal context.

For instance, the critical branchings generated by

$$
a a \rightarrow 1 \quad \text { and } \quad a b a \rightarrow b a b
$$

are

$$
b a \leftarrow a a b a \longrightarrow a b a b \quad b a b a \leftarrow a b a a \longrightarrow a b
$$

Critical branchings

A critical branching is a situation

which not "independent" and with minimal context.

For instance, the critical branchings generated by

$$
a a \rightarrow 1 \quad \text { and } \quad a b a \rightarrow b a b
$$

are

$$
b a \leftarrow a a b a \longrightarrow a b a b \quad b a b a \leftarrow a b a a \longrightarrow a b
$$

but not

$$
b a b a \leftarrow a a b a b a \rightarrow a a b b a b \quad a b a b a b \leftarrow a a b a a b \rightarrow a a b b
$$

Critical branchings

Proposition

A rewriting system with a finite number of rules has a finite number of critical branchings (and we can compute them).

Proof.

Try to make the left side of all pairs of rules overlap in a non-trivial way.

Critical branchings

Proposition

A rewriting system with a finite number of rules has a finite number of critical branchings (and we can compute them).

Proof.

Try to make the left side of all pairs of rules overlap in a non-trivial way.

Proposition

If all the critical branchings are confluent then the system is locally confluent.
Proof.
By definition of critical branchings.

Example

With our favorite presentation

$$
\langle a, b \mid a a \rightarrow 1, b b \rightarrow 1, a b a \rightarrow b a b\rangle
$$

we can check that the critical branchings are confluent:

Example

With our favorite presentation

$$
\langle a, b \mid a a \rightarrow 1, b b \rightarrow 1, a b a \rightarrow b a b\rangle
$$

we can thus test equality by comparing normal forms:

- aabaabb
- ababa
- bbab

Example

With our favorite presentation

$$
\langle a, b \mid a a \rightarrow 1, b b \rightarrow 1, a b a \rightarrow b a b\rangle
$$

we can thus test equality by comparing normal forms:

- $a a b a a b b \rightarrow b a a b b \rightarrow b b b \rightarrow b$
- ababa
- bbab

Example

With our favorite presentation

$$
\langle a, b \mid a a \rightarrow 1, b b \rightarrow 1, a b a \rightarrow b a b\rangle
$$

we can thus test equality by comparing normal forms:

- $a a b a a b b \rightarrow b a a b b \rightarrow b b b \rightarrow b$
- $a b a b a \rightarrow b a b b a \rightarrow b a a \rightarrow b$
- bbab

Example

With our favorite presentation

$$
\langle a, b \mid a a \rightarrow 1, b b \rightarrow 1, a b a \rightarrow b a b\rangle
$$

we can thus test equality by comparing normal forms:

- $a a b a a b b \rightarrow b a a b b \rightarrow b b b \rightarrow b$
- $a b a b a \rightarrow b a b b a \rightarrow b a a \rightarrow b$
- $b b a b \rightarrow a b$

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b| b b \rightarrow b, a a \rightarrow b b
$$

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b| b b \rightarrow b, a a \rightarrow b b
$$

has critical branchings

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b| b b \rightarrow b, a a \rightarrow b b
$$

has critical branchings

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b| b b \rightarrow b, a a \rightarrow b b
$$

has critical branchings

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b| b b \rightarrow b, a a \rightarrow b b
$$

has critical branchings

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b| b b \rightarrow b, a a \rightarrow b b
$$

has critical branchings

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b| b b \rightarrow b, a a \rightarrow b b
$$

has critical branchings

What do we do from there?

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b \mid b b \rightarrow b, a a \rightarrow b b, b a \rightarrow a b\rangle
$$

has critical branchings

What do we do from there?

Knuth-Bendix completion procedure

Iteratively compute critical branchings and add new rules between normal forms when they are not confluent (the orientation is chosen according to a fixed order)

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b \mid b b \rightarrow b, a a \rightarrow b b, b a \rightarrow a b\rangle
$$

has critical branchings

(and another from baa)
Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms when they are not confluent (the orientation is chosen according to a fixed order)

Non-confluent presentations

Of course, presentations are not always confluent:

$$
\langle a, b \mid b b \rightarrow b, a a \rightarrow b b, b a \rightarrow a b\rangle
$$

has critical branchings

(and another from baa)
Knuth-Bendix completion procedure
Iteratively compute critical branchings and add new rules between normal forms when they are not confluent (the orientation is chosen according to a fixed order)
[+ simplify rules using newly added ones].

Knuth-Bendix completion procedure

Note that the Knuth-Bendix is not guaranteed to end after a finite amount of time (this is not an algorithm).

For instance,

$$
\langle a, b, c, d \mid a b \rightarrow a, d a \rightarrow a c\rangle
$$

might get completed to

$$
\left\langle a, b, c, d \mid a c^{n} b \rightarrow a c^{n}, d a \rightarrow a c\right\rangle
$$

The inductive limit is always locally confluent.

Knuth-Bendix completion procedure

Note that the Knuth-Bendix is not guaranteed to end after a finite amount of time (this is not an algorithm).

For instance,

$$
\langle a, b, c, d \mid a b \rightarrow a, d a \rightarrow a c\rangle
$$

might get completed to

$$
\left\langle a, b, c, d \mid a c^{n} b \rightarrow a c^{n}, d a \rightarrow a c\right\rangle
$$

Remark

The presentation

$$
\langle a, b, c, d \mid a b \rightarrow a, d a \leftarrow a c\rangle
$$

has not critical branching and is thus locally confluent!

Tietze equivalence

Two presentations $\langle\boldsymbol{G} \mid R\rangle$ and $\left\langle\mathcal{G}^{\prime} \mid R^{\prime}\right\rangle$ are equivalent when they present the same monoid:

$$
G / R \simeq G^{\prime} / R^{\prime}
$$

Can we come up with some elementary characterization of this equivalence?

Tietze transformations

Given a presentation $\langle\boldsymbol{G} \mid R\rangle$ the Tietze transformations are

1. add a definable generator:

$$
\langle G \mid R\rangle \quad \rightsquigarrow \quad\langle G, a \mid R, a=u\rangle
$$

for some $a \notin G$ and $u \in G^{*}$,

Tietze transformations

Given a presentation $\langle G \mid R\rangle$ the Tietze transformations are

1. add a definable generator:

$$
\langle G \mid R\rangle \quad \rightsquigarrow \quad\langle G, a \mid R, a=u\rangle
$$

for some $a \notin G$ and $u \in G^{*}$,
2. add a definable relation:

$$
\langle G \mid R\rangle \quad \rightsquigarrow \quad\langle G \mid R, u=v\rangle
$$

for $u, v \in G^{*}$ which are related by the congruence generated by R.

Tietze transformations

Given a presentation $\langle G \mid R\rangle$ the Tietze transformations are

1. add a definable generator:

$$
\langle G \mid R\rangle \quad \rightsquigarrow \quad\langle G, a \mid R, a=u\rangle
$$

for some $a \notin G$ and $u \in G^{*}$,
2. add a definable relation:

$$
\langle G \mid R\rangle \quad \rightsquigarrow \quad\langle G \mid R, u=v\rangle
$$

for $u, v \in G^{*}$ which are related by the congruence generated by R.

Lemma

Tietze transformations preserve the presented monoid.

Tietze transformations

Given a presentation $\langle G \mid R\rangle$ the Tietze transformations are

1. add a definable generator:

$$
\langle G \mid R\rangle \quad \rightsquigarrow \quad\langle G, a \mid R, a=u\rangle
$$

for some $a \notin G$ and $u \in G^{*}$,
2. add a definable relation:

$$
\langle G \mid R\rangle \quad \rightsquigarrow \quad\langle G \mid R, u=v\rangle
$$

for $\boldsymbol{u}, \boldsymbol{v} \in \mathbf{G}^{*}$ which are related by the congruence generated by R.

Lemma

Tietze transformations preserve the presented monoid.

Note that KB algorithm only uses transformations of the second kind.

Tietze transformations

Proposition

Two finite presentations $\langle G \mid R\rangle$ and $\left\langle G^{\prime} \mid R^{\prime}\right\rangle$ present the same monoid if and only if they are related by a finite series of Tietze transformations:

$$
\langle G \mid R\rangle=\left\langle G_{0} \mid R_{0}\right\rangle \leadsto\left\langle G_{1} \mid R_{1}\right\rangle \nLeftarrow \not \ldots \rightsquigarrow\left\langle G_{n} \mid R_{n}\right\rangle=\left\langle G^{\prime} \mid R^{\prime}\right\rangle
$$

Tietze transformations

Proposition

Two finite presentations $\langle G \mid R\rangle$ and $\left\langle G^{\prime} \mid R^{\prime}\right\rangle$ present the same monoid if and only if they are related by a finite series of Tietze transformations:

$$
\langle G \mid R\rangle \stackrel{*}{\rightsquigarrow}\left\langle G^{\prime \prime} \mid R^{\prime \prime}\right\rangle \stackrel{*}{\sim}\left\langle G^{\prime} \mid R^{\prime}\right\rangle
$$

Tietze transformations

Proposition

Two finite presentations $\langle G \mid R\rangle$ and $\left\langle G^{\prime} \mid R^{\prime}\right\rangle$ present the same monoid if and only if they are related by a finite series of Tietze transformations:

$$
\langle G \mid R\rangle \stackrel{*}{\rightsquigarrow}\left\langle G^{\prime \prime} \mid R^{\prime \prime}\right\rangle \stackrel{*}{\leftrightarrow}\left\langle G^{\prime} \mid R^{\prime}\right\rangle
$$

Proof.

Writing $G=\left\{a_{1}, \ldots, a_{n}\right\}$ and $G^{\prime}=\left\{b_{1}, \ldots, b_{m}\right\}$, we define

$$
\left\langle G^{\prime \prime} \mid R^{\prime \prime}\right\rangle=\left\langle G, G^{\prime} \mid R, R^{\prime}, a_{i}=u_{i}^{\prime}, b_{i}=u_{i}\right\rangle
$$

where and $u_{i}^{\prime} \in G^{\prime *}$ such that $\left[u_{i}^{\prime}\right]=a_{i}$ and $v_{i}^{\prime} \in G^{*}$ such that $\left[u_{i}\right]=b_{j}$.

Tietze transformations

Proposition

Two finite presentations $\langle G \mid R\rangle$ and $\left\langle G^{\prime} \mid R^{\prime}\right\rangle$ present the same monoid if and only if they are related by a finite series of Tietze transformations:

$$
\langle G \mid R\rangle \stackrel{*}{\rightsquigarrow}\left\langle G^{\prime \prime} \mid R^{\prime \prime}\right\rangle \stackrel{*}{\sim}\left\langle G^{\prime} \mid R^{\prime}\right\rangle
$$

Proof.

Writing $G=\left\{a_{1}, \ldots, a_{n}\right\}$ and $G^{\prime}=\left\{b_{1}, \ldots, b_{m}\right\}$, we define

$$
\left\langle G^{\prime \prime} \mid R^{\prime \prime}\right\rangle=\left\langle G, G^{\prime} \mid R, R^{\prime}, a_{i}=u_{i}^{\prime}, b_{i}=u_{i}\right\rangle
$$

where and $u_{i}^{\prime} \in G^{\prime *}$ such that $\left[u_{i}^{\prime}\right]=a_{i}$ and $v_{i}^{\prime} \in G^{*}$ such that $\left[u_{i}\right]=b_{j}$.

This can be suitably generalized to infinite presentations.

Universality of rewriting

We have seen that for a monoid with a finite terminating and confluent presentation we can decide equality.

Universality of rewriting

We have seen that for a monoid with a finite terminating and confluent presentation we can decide equality.

Conversely, we wonder
is rewriting is universal?
which means
given a finitely presented monoid with decidable equality, does it always admit a finite convergent presentation?

Universality of rewriting

The braid monoid admits the presentation

$$
B_{3}^{+}=\langle a, b \mid a b a=b a b\rangle
$$

Universality of rewriting

The braid monoid admits the presentation

$$
B_{3}^{+}=\langle a, b \mid a b a=b a b\rangle
$$

Lemma

The monoid has decidable equality.

Proof.

Since the only relation preserves length, equivalence classes are finite.

Universality of rewriting

The braid monoid admits the presentation

$$
B_{3}^{+}=\langle a, b \mid a b a=b a b\rangle
$$

Lemma

The monoid has decidable equality.

Proof.

Since the only relation preserves length, equivalence classes are finite.

Proposition (Kapur-Narendran'85)

There is no convergent presentation of B_{3}^{+}on the same generators.

Universality of rewriting

The braid monoid admits the presentation

$$
B_{3}^{+}=\langle a, b \mid a b a=b a b\rangle
$$

Lemma

The monoid has decidable equality.

Proof.

Since the only relation preserves length, equivalence classes are finite.

Proposition (Kapur-Narendran'85)

There is no convergent presentation of B_{3}^{+}on the same generators.

This does not entirely solve the question since we are using only the second type of Tietze transformation (but it does for KB algorithm).

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

- $\mathrm{B}_{3}^{+}=\langle a, b \mid a b a \rightarrow b a b\rangle$

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

- $B_{3}^{+}=\langle a, b \mid a b a \rightarrow b a b\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a b a \rightarrow b a b, b a \rightarrow c\rangle$

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

- $B_{3}^{+}=\langle a, b \mid a b a \rightarrow b a b\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a b a \rightarrow b a b, b a \rightarrow c\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a c \rightarrow c b, b a \rightarrow c\rangle$

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

- $B_{3}^{+}=\langle a, b \mid a b a \rightarrow b a b\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a b a \rightarrow b a b, b a \rightarrow c\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a c \rightarrow c b, b a \rightarrow c\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a c \rightarrow c b, b a \rightarrow c, b c b \rightarrow c c\rangle$

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

- $B_{3}^{+}=\langle a, b \mid a b a \rightarrow b a b\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a b a \rightarrow b a b, b a \rightarrow c\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a c \rightarrow c b, b a \rightarrow c\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a c \rightarrow c b, b a \rightarrow c, b c b \rightarrow c c\rangle$
- $\mathrm{B}_{3}^{+}=\langle a, b, c \mid a c \rightarrow c b, b a \rightarrow c, b c b \rightarrow c c, b c c \rightarrow c c a\rangle$

Universality of rewriting

However, we did not exploit Tietze transformations of first kind:

- $B_{3}^{+}=\langle a, b \mid a b a \rightarrow b a b\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a b a \rightarrow b a b, b a \rightarrow c\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a c \rightarrow c b, b a \rightarrow c\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a c \rightarrow c b, b a \rightarrow c, b c b \rightarrow c c\rangle$
- $B_{3}^{+}=\langle a, b, c \mid a c \rightarrow c b, b a \rightarrow c, b c b \rightarrow c c, b c c \rightarrow c c a\rangle$

This is a convergent presentation!

Universality of rewriting

We are going to show that there is a monoid which admits no finite convergent presentation.

The strategy is that we are going to compute from a presentation of the monoid, a property which depends only on the monoid.

Moreover this property will be such that not finite convergent presentation can lead to it.

Monoids as geometric objects

The intuition is that a monoid can be considered as some form of geometric object with

- one point \star,
- the elements a of the monoid as 1-cells $a: \star \rightarrow \star$,
- equalities between products of elements of the monoid as 2-cells $\alpha: u \Rightarrow v$,

- trivial higher-dimensional information.

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as follows.

1. Construct a resolution of the trivial $\mathbb{Z M}$-module \mathbb{Z} by projective $\mathbb{Z M}$ modules:

$$
\cdots \xrightarrow{d_{4}} C_{3} \xrightarrow{d_{3}} C_{2} \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as follows.

1. Construct a resolution of the trivial $\mathbb{Z} M$-module \mathbb{Z} by projective $\mathbb{Z M}$ modules:

$$
\cdots \xrightarrow{d_{4}} C_{3} \xrightarrow{d_{3}} C_{2} \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

2. Tensor it by \mathbb{Z} over \mathbb{Z} :

$$
\cdots \xrightarrow{\partial_{4}} C_{3} \otimes \mathbb{Z} \xrightarrow{\partial_{3}} C_{2} \otimes \mathbb{Z} \xrightarrow{\partial_{2}} C_{1} \otimes \mathbb{Z} \xrightarrow{\partial_{1}} C_{0} \otimes \mathbb{Z}
$$

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as follows.

1. Construct a resolution of the trivial $\mathbb{Z} M$-module \mathbb{Z} by projective $\mathbb{Z M}$ modules:

$$
\cdots \xrightarrow{d_{4}} C_{3} \xrightarrow{d_{3}} C_{2} \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

2. Tensor it by \mathbb{Z} over $\mathbb{Z} M$:

$$
\cdots \xrightarrow{\partial_{4}} C_{3} \otimes \mathbb{Z} \xrightarrow{\partial_{3}} C_{2} \otimes \mathbb{Z} \xrightarrow{\partial_{2}} C_{1} \otimes \mathbb{Z} \xrightarrow{\partial_{1}} C_{0} \otimes \mathbb{Z}
$$

3. Compute

$$
H_{i}(M)=\operatorname{ker} \partial_{i} / \operatorname{im} \partial_{i+1}
$$

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as follows.

1. Construct a resolution of the trivial $\mathbb{Z} M$-module \mathbb{Z} by projective $\mathbb{Z M}$ modules:

$$
\cdots \xrightarrow{d_{4}} C_{3} \xrightarrow{d_{3}} C_{2} \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

2. Tensor it by \mathbb{Z} over \mathbb{Z} :

$$
\cdots \xrightarrow{\partial_{4}} C_{3} \otimes \mathbb{Z} \xrightarrow{\partial_{3}} C_{2} \otimes \mathbb{Z} \xrightarrow{\partial_{2}} C_{1} \otimes \mathbb{Z} \xrightarrow{\partial_{1}} C_{0} \otimes \mathbb{Z}
$$

3. Compute

$$
H_{i}(M)=\operatorname{ker} \partial_{i} / \operatorname{im} \partial_{i+1}
$$

Lemma

Between any two projective resolutions there is a morphism, which is unique up to homotopy.

Monoids as geometric objects

With this point of view, it is natural to define the homology of a monoid M as follows.

1. Construct a resolution of the trivial $\mathbb{Z} M$-module \mathbb{Z} by projective $\mathbb{Z M}$ modules:

$$
\cdots \xrightarrow{d_{4}} C_{3} \xrightarrow{d_{3}} C_{2} \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

2. Tensor it by \mathbb{Z} over \mathbb{Z} :

$$
\cdots \xrightarrow{\partial_{4}} C_{3} \otimes \mathbb{Z} \xrightarrow{\partial_{3}} C_{2} \otimes \mathbb{Z} \xrightarrow{\partial_{2}} C_{1} \otimes \mathbb{Z} \xrightarrow{\partial_{1}} C_{0} \otimes \mathbb{Z}
$$

3. Compute

$$
H_{i}(M)=\operatorname{ker} \partial_{i} / \operatorname{im} \partial_{i+1}
$$

Lemma

Between any two projective resolutions there is a morphism, which is unique up to homotopy. The homology thus does not depend on the choice of the resolution.

Constructing a tractable resolution

We can always construct a projective resolution of the trivial $\mathbb{Z M}$-module \mathbb{Z} :
$\mathbb{Z} \longrightarrow \mathrm{O}$

Constructing a tractable resolution

We can always construct a projective resolution of the trivial $\mathbb{Z M}$-module \mathbb{Z} :

$$
\mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

Constructing a tractable resolution

We can always construct a projective resolution of the trivial $\mathbb{Z M}$-module \mathbb{Z} :

$$
\mathbb{Z} M[\operatorname{ker} \varepsilon] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

Constructing a tractable resolution

We can always construct a projective resolution of the trivial $\mathbb{Z M}$-module \mathbb{Z} :

$$
\mathbb{Z} M\left[\operatorname{ker} d_{1}\right] \xrightarrow{d_{2}} \mathbb{Z} M[\operatorname{ker} \varepsilon] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

Constructing a tractable resolution

We can always construct a projective resolution of the trivial $\mathbb{Z M}$-module \mathbb{Z} :

$$
\cdots \xrightarrow{d_{3}} \mathbb{Z} M\left[\operatorname{ker} d_{1}\right] \xrightarrow{d_{2}} \mathbb{Z} M[\operatorname{ker} \varepsilon] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

Constructing a tractable resolution

We can always construct a projective resolution of the trivial $\mathbb{Z M}$-module \mathbb{Z} :

$$
\cdots \xrightarrow{d_{3}} \mathbb{Z} M\left[\operatorname{ker} d_{1}\right] \xrightarrow{d_{2}} \mathbb{Z} M[\operatorname{ker} \varepsilon] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

However we cannot compute much from this, we need a smaller resolution!

Squier's theorem

Suppose given a monoid M with a finite convergent presentation $\langle G \mid R\rangle$.
Theorem (Squier'87)
One can construct a (partial) resolution

where

Squier's theorem

Suppose given a monoid M with a finite convergent presentation $\langle G \mid R\rangle$.
Theorem (Squier'87)
One can construct a (partial) resolution

$$
\mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

where

Squier's theorem

Suppose given a monoid M with a finite convergent presentation $\langle G \mid R\rangle$.
Theorem (Squier'87)
One can construct a (partial) resolution

$$
\mathbb{Z} M[G] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

where

Squier's theorem

Suppose given a monoid M with a finite convergent presentation $\langle G \mid R\rangle$.
Theorem (Squier'87)
One can construct a (partial) resolution

$$
\mathbb{Z} M[R] \xrightarrow{d_{2}} \mathbb{Z} M[G] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

where

Squier's theorem

Suppose given a monoid M with a finite convergent presentation $\langle G \mid R\rangle$.
Theorem (Squier'87)
One can construct a (partial) resolution

$$
\mathbb{Z} M[P] \xrightarrow{d_{3}} \mathbb{Z} M[R] \xrightarrow{d_{2}} \mathbb{Z} M[G] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

where

- P is the set of critical branchings,

Squier's theorem

Suppose given a monoid M with a finite convergent presentation $\langle G \mid R\rangle$.
Theorem (Squier'87)
One can construct a (partial) resolution

$$
\mathbb{Z} M[T] \xrightarrow{d_{4}} \mathbb{Z} M[P] \xrightarrow{d_{3}} \mathbb{Z} M[R] \xrightarrow{d_{2}} \mathbb{Z} M[G] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

where

- P is the set of critical branchings,
- T is the set of critical triples.

Squier's theorem

Suppose given a monoid M with a finite convergent presentation $\langle G \mid R\rangle$.
Theorem (Squier'87)
One can construct a (partial) resolution

$$
\mathbb{Z} M[T] \xrightarrow{d_{4}} \mathbb{Z} M[P] \xrightarrow{d_{3}} \mathbb{Z} M[R] \xrightarrow{d_{2}} \mathbb{Z} M[G] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

Proof.

Construct a contracting homotopy

$$
\mathbb{Z} M[T] \underset{s_{3}}{\stackrel{d_{4}}{\rightleftarrows}} \mathbb{Z} M[P] \underset{s_{2}}{\stackrel{d_{3}}{\rightleftarrows}} \mathbb{Z} M[R] \underset{s_{1}}{\stackrel{d_{2}}{\rightleftarrows}} \mathbb{Z} M[G] \underset{s_{0}}{\stackrel{d_{1}}{\rightleftarrows}} \mathbb{Z} M \underset{\eta}{\stackrel{\varepsilon}{\rightleftarrows}} \mathbb{Z}
$$

where the s_{i} are \mathbb{Z}-linear maps such that $\partial_{i+1} s_{i}+s_{i-1} \partial_{i}=0$.

Squier's theorem

Suppose given a monoid M with a finite convergent presentation $\langle G \mid R\rangle$.
Theorem (Squier'87)
One can construct a (partial) resolution

$$
\mathbb{Z} M[T] \xrightarrow{d_{4}} \mathbb{Z} M[P] \xrightarrow{d_{3}} \mathbb{Z} M[R] \xrightarrow{d_{2}} \mathbb{Z} M[G] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow
$$

Corollary

$H_{3}(M)=\operatorname{ker} \partial_{3} / \operatorname{im} \partial_{4}$ is finitely generated.

Squier's theorem

Suppose given a monoid M with a finite convergent presentation $\langle G \mid R\rangle$.
Theorem (Squier'87)
One can construct a (partial) resolution

$$
\mathbb{Z} M[T] \xrightarrow{d_{4}} \mathbb{Z} M[P] \xrightarrow{d_{3}} \mathbb{Z} M[R] \xrightarrow{d_{2}} \mathbb{Z} M[G] \xrightarrow{d_{1}} \mathbb{Z} M \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

Corollary

$H_{3}(M)=\operatorname{ker} \partial_{3} / \operatorname{im} \partial_{4}$ is finitely generated.

Corollary

If M is such that $H_{3}(M)$ is not finitely generated then M admits no finite convergent presentation.

A counter-example [Squier'87,Lafont-Prouté'91]

Consider the monoid M presented by

$$
\left\langle a, b, c, d, d^{\prime} \mid a b \rightarrow a, d a \rightarrow a c, d^{\prime} a \rightarrow a c\right\rangle
$$

A counter-example [Squier'87,Lafont-Prouté'91]

Consider the monoid M presented by

$$
\left\langle a, b, c, d, d^{\prime} \mid a b \rightarrow a, d a \rightarrow a c, d^{\prime} a \rightarrow a c\right\rangle
$$

by Knuth-Bendix, it can be completed into the infinite convergent presentation

$$
\left\langle a, b, c, d, d^{\prime} \mid A_{n}: a c^{n} b \rightarrow a c^{n}, B: d a \rightarrow a c, B^{\prime}: d^{\prime} a \rightarrow a c\right\rangle
$$

A counter-example [Squier'87,Lafont-Prouté'91]

Consider the monoid M presented by

$$
\left\langle a, b, c, d, d^{\prime} \mid a b \rightarrow a, d a \rightarrow a c, d^{\prime} a \rightarrow a c\right\rangle
$$

by Knuth-Bendix, it can be completed into the infinite convergent presentation

$$
\left\langle a, b, c, d, d^{\prime} \mid A_{n}: a c^{n} b \rightarrow a c^{n}, B: d a \rightarrow a c, B^{\prime}: d^{\prime} a \rightarrow a c\right\rangle
$$

there are two families of critical branchings

A counter-example [Squier'87,Lafont-Prouté'91]

Consider the monoid M presented by

$$
\left\langle a, b, c, d, d^{\prime} \mid a b \rightarrow a, d a \rightarrow a c, d^{\prime} a \rightarrow a c\right\rangle
$$

by Knuth-Bendix, it can be completed into the infinite convergent presentation

$$
\left\langle a, b, c, d, d^{\prime} \mid A_{n}: a c^{n} b \rightarrow a c^{n}, B: d a \rightarrow a c, B^{\prime}: d^{\prime} a \rightarrow a c\right\rangle
$$

there are two families of critical branchings

and no critical triple.

A counter-example [Squier'87,Lafont-Prouté'91]

The homology of M is thus the homology of

$$
\mathbf{O} \xrightarrow{\partial_{4}} \mathbb{Z}\left[\alpha_{n}, \alpha_{n}^{\prime}\right] \xrightarrow{\partial_{3}} \mathbb{Z}\left[A_{n}, B, B^{\prime}\right] \xrightarrow{\partial_{2}} \mathbb{Z}\left[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{d}^{\prime}\right] \xrightarrow{\partial_{1}} \mathbb{Z}
$$

A counter-example [Squier'87,Lafont-Prouté'91]

The homology of M is thus the homology of

$$
\mathrm{O} \xrightarrow{\partial_{4}} \mathbb{Z}\left[\alpha_{n}, \alpha_{n}^{\prime}\right] \xrightarrow{\partial_{3}} \mathbb{Z}\left[A_{n}, B, B^{\prime}\right] \xrightarrow{\partial_{2}} \mathbb{Z}\left[a, b, c, \boldsymbol{d}, \boldsymbol{d}^{\prime}\right] \xrightarrow{\partial_{1}} \mathbb{Z}
$$

with, since $A_{n}: a c^{n} b \rightarrow a c^{n}$,

$$
\partial_{2}\left(A_{n}\right)=[a]+n[c]-([a]+n[c]+[b])=[b]
$$

A counter-example [Squier'87,Lafont-Prouté'91]

The homology of M is thus the homology of

$$
\mathrm{O} \xrightarrow{\partial_{4}} \mathbb{Z}\left[\alpha_{n}, \alpha_{n}^{\prime}\right] \xrightarrow{\partial_{3}} \mathbb{Z}\left[A_{n}, B, B^{\prime}\right] \xrightarrow{\partial_{2}} \mathbb{Z}\left[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{d}^{\prime}\right] \xrightarrow{\partial_{1}} \mathbb{Z}
$$

with, since

we have

$$
\partial_{3}\left(\alpha_{n}\right)=\left[A_{n}\right]+[B]-\left([B]-\left[A_{n+1}\right]\right)=\left[A_{n}\right]-\left[A_{n+1}\right]
$$

and similarly

$$
\partial\left(\alpha_{n}^{\prime}\right)=\left[A_{n}\right]-\left[A_{n+1}\right]
$$

A counter-example [Squier'87,Lafont-Prouté'91]

The homology of M is thus the homology of

$$
\mathrm{O} \xrightarrow{\partial_{4}} \mathbb{Z}\left[\alpha_{n}, \alpha_{n}^{\prime}\right] \xrightarrow{\partial_{3}} \mathbb{Z}\left[A_{n}, B, B^{\prime}\right] \xrightarrow{\partial_{2}} \mathbb{Z}\left[a, b, c, \boldsymbol{d}, \boldsymbol{d}^{\prime}\right] \xrightarrow{\partial_{1}} \mathbb{Z}
$$

where $\operatorname{ker} \partial_{3}$ is infinitely generated by

$$
\left[\alpha_{n}^{\prime}\right]-\left[\alpha_{n}\right]
$$

and thus

$$
H_{3}(M)
$$

is not finitely generated!

A counter-example [Squier'87,Lafont-Prouté'91]

The homology of M is thus the homology of

$$
\mathrm{O} \xrightarrow{\partial_{4}} \mathbb{Z}\left[\alpha_{n}, \alpha_{n}^{\prime}\right] \xrightarrow{\partial_{3}} \mathbb{Z}\left[A_{n}, B, B^{\prime}\right] \xrightarrow{\partial_{2}} \mathbb{Z}\left[a, b, c, \boldsymbol{d}, \boldsymbol{d}^{\prime}\right] \xrightarrow{\partial_{1}} \mathbb{Z}
$$

where $\operatorname{ker} \partial_{3}$ is infinitely generated by

$$
\left[\alpha_{n}^{\prime}\right]-\left[\alpha_{n}\right]
$$

and thus

$$
H_{3}(M)
$$

is not finitely generated!

Corollary

The monoid M cannot be presented by a finite convergent presentation.

An analogy with topos theory

monoid	topos
presentation $\langle G \mid R\rangle$	site (\mathcal{C}, J)
presented monoid G^{*} / R	sheaves $\mathbf{S h}(\mathcal{C}, J)$
Tietze equivalence	Morita equivalence
Tietze transformation	\sim comparison lemma
convergent presentation	$?$
\vdots	\vdots

It seems that Tietze transformations are "deformations" of presentations.

Can we make this formal?

A model structure on presentations

Theorem (Henry-M.)

There is a (cofibrantly generated) model structure on the category of (reflexive) presentations of monoids where weak equivalences are morphisms $f:\langle G \mid R\rangle \rightarrow\left\langle G^{\prime} \mid R^{\prime}\right\rangle$ inducing isomorphism of presented monoids, i.e. $G^{*} / R \simeq G^{\prime *} / R^{\prime}$.

A model structure on presentations

The generating cofibrations are
$\cdot\langle\mid\rangle \hookrightarrow\langle a \mid\rangle$
$\cdot\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \mid\right\rangle \hookrightarrow\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \mid a_{1} \ldots a_{n}=b_{1} \ldots b_{m}\right\rangle$

Proposition

Every object is cofibrant and cofibrations are precisely monomorphisms.

A model structure on presentations

We expect that the generating trivial cofibrations are
$\cdot\left\langle a_{1}, \ldots, a_{n} \mid\right\rangle \hookrightarrow\left\langle a_{1}, \ldots, a_{n}, b \mid a_{1} \ldots a_{n}=b\right\rangle$,
$\cdot\left\langle a_{1}, \ldots, a_{n} \mid\right\rangle \hookrightarrow\left\langle a_{1}, \ldots, a_{n} \mid a_{1} \ldots a_{n}=a_{1} \ldots a_{n}\right\rangle$,

- + transitivity, symmetry and congruence
so that generated trivial cofibrations are precisely (retracts of) Tietze transformations.

This is "almost" the case, in the sense that those generate trivial cofibrations when the target is fibrant, and we can recover abstractly Tietze theorem.

Part III

Generalization to higher categories

Generalizations

The technology of rewriting extends to many other settings:

- universal algebra / Lawvere theories / clones (term rewriting systems)
- operads
- commutative (or not) rings (Gröbner basis)
- etc.

Can we come up with a general definition of higher-dimensional rewriting system?

Generalizations

The technology of rewriting extends to many other settings:

- universal algebra / Lawvere theories / clones (term rewriting systems)
- operads
- commutative (or not) rings (Gröbner basis)
- etc.

Can we come up with a general definition of higher-dimensional rewriting system?
higher-dimensional rewriting
$=$
rewriting between rewriting paths between rewriting paths between ...

o-dimensional rewriting systems

Recall that an abstract rewriting system is a graph

$$
\langle G \mid R\rangle
$$

with $R \subseteq G \times G$.

o-dimensional rewriting systems

Recall that an abstract rewriting system is a graph

$$
\left\langle P_{\mathrm{o}} \mid P_{1}\right\rangle
$$

with $P_{1} \subseteq P_{\mathrm{O}} \times \mathrm{P}_{\mathrm{o}}$.

o-dimensional rewriting systems

Recall that an abstract rewriting system is a graph

$$
P_{\mathrm{o}} \underset{t_{0}}{\stackrel{s_{0}}{\overleftarrow{ }} P_{1}}
$$

o-dimensional rewriting systems

Recall that an abstract rewriting system is a graph

$$
P_{\mathrm{o}} \underset{t_{0}}{\overleftarrow{s_{0}}} P_{1}
$$

We write P_{1}^{*} for the set of rewriting paths:

1-dimensional rewriting systems

An string rewriting system is

such that $s_{0}^{*} s_{1}=s_{0}^{*} t_{1}$ and $t_{0}^{*} s_{1}=t_{0}^{*} t_{1}$.
An element of P_{2} is seen as

1-dimensional rewriting systems

An string rewriting system is

such that $s_{0}^{*} s_{1}=s_{0}^{*} t_{1}$ and $t_{0}^{*} s_{1}=t_{0}^{*} t_{1}$.
For instance,

$$
\begin{aligned}
& \{\star\} \underset{t_{0}^{*}}{\overleftarrow{s_{0}^{*}}}\{a, b\}^{*}
\end{aligned}
$$

2-dimensional rewriting systems

A 1-dimensional rewriting system is

It presents the category

$$
P_{1}^{*} / P_{2}
$$

...but it can also be seen as a generating system for a 2-category!

2-dimensional rewriting systems

A 1-dimensional rewriting system is

where P_{2}^{*} is the set of rewriting paths / 2-cells.

2-dimensional rewriting systems

A 2-dimensional rewriting system is

together with the structure of 2-category on the diagram on the bottom line.
(aka polygraph or computad)
It presents a 2-category.

Monoids

For instance, we can take

with

- $P_{\mathrm{o}}=\{\star\}$

Monoids

For instance, we can take

with

- $P_{\mathrm{o}}=\{\star\}$
- $P_{1}=\{1\}$

Monoids

For instance, we can take

with

- $P_{\mathrm{O}}=\{\star\}$
- $P_{1}=\{1\}$
- $P_{2}=\{m: 2 \rightarrow 1, e: 0 \rightarrow 1\}$

Monoids

For instance, we can take

with

- $P_{\mathrm{O}}=\{\star\}$
- $P_{1}=\{1\}$
- $P_{2}=\{m: 2 \rightarrow 1, e: 0 \rightarrow 1\}$
- $P_{3}=\{\alpha:(m * 1) * m \Rightarrow(1 * m) * m, \lambda:(e * 1) * m \Rightarrow 1, \rho:(1 * e) * m \Rightarrow 1\}$

Monoids

For instance, we can take

with

- $P_{\mathrm{O}}=\{\star\}$
- $P_{1}=\{1\}$
- $P_{2}=\{m: 2 \rightarrow 1, e: 0 \rightarrow 1\}$
- $P_{3}=\{\alpha:(m * 1) * m \Rightarrow(1 * m) * m, \lambda:(e * 1) * m \Rightarrow 1, \rho:(1 * e) * m \Rightarrow 1\}$

A functor $\bar{P} \rightarrow$ Cat is a strict monoidal category.

Monoids

The rules are

$$
\eta \Rightarrow
$$

$$
\forall \Rightarrow \mid
$$

and there are 5 critical branchings:

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.
Example (Guiraud-Malbos'09)
Consider

- $P_{\mathrm{O}}=\{\star\}$

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.
Example (Guiraud-Malbos'09)
Consider

- $P_{\mathrm{o}}=\{\star\}$
- $P_{1}=\{1\}$

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.
Example (Guiraud-Malbos'09)
Consider

- $P_{\mathrm{O}}=\{\star\}$
- $P_{1}=\{1\}$
- $P_{2}=\{n: 0 \rightarrow 2, u: 0 \rightarrow 1, o: 1 \rightarrow 1\}$

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.
Example (Guiraud-Malbos'09)
Consider

- $P_{\mathrm{o}}=\{\star\}$
- $P_{1}=\{1\}$
- $P_{2}=\{n: 0 \rightarrow 2, u: 0 \rightarrow \mathbf{1}, \mathbf{0}: \mathbf{1} \rightarrow \mathbf{1}\}=\{\cap, \cup, \emptyset\}$

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.
Example (Guiraud-Malbos'09)
Consider

- $P_{\mathrm{o}}=\{\star\}$
- $P_{1}=\{1\}$
- $P_{2}=\{n: 0 \rightarrow 2, u: 0 \rightarrow 1,0: 1 \rightarrow 1\}=\{\cap, \cup, \emptyset\}$
$\cdot P_{3}=\{\bigcap \Rightarrow \bigcap \bullet \bullet \Rightarrow \bigcup\}$

2-dimensional rewriting systems

A finite rewriting system can lead to an infinite number of critical branchings.

Example (Guiraud-Malbos'09)

Consider

- $P_{\mathrm{O}}=\{\star\}$
- $P_{1}=\{1\}$
- $P_{2}=\{n: 0 \rightarrow 2, u: 0 \rightarrow 1,0: 1 \rightarrow 1\}=\{\cap, \cup, \emptyset\}$
- $P_{3}=\{\bigcap \Rightarrow \bigcap, \bullet 引 \Rightarrow\}$

We have an infinite family of critical branchings:

Coherent 1-dimensional rewriting systems

An 2-dimensional rewriting system is

Coherent 1-dimensional rewriting systems

An extended 1-dimensional rewriting system is

Coherent 1-dimensional rewriting systems

An extended 1-dimensional rewriting system is

Theorem (Squier)

If we take P_{3} generated by critical branchings then the extended rs is coherent: there is an invertible 3-cell in P_{3}^{\top} between any parallel pair of 2-cells in P_{2}^{*}.
Thus, P has finite derivation type.

Coherent 2-dimensional rewriting systems

Similarly, an extended 2-dimensional rewriting system

where P_{4} is generated by critical branchings is coherent.

Applying this to the rs of monoids, we can recover MacLane's coherence theorem:

- $P_{\mathrm{o}}=\{\star\}$
- $P_{1}=\{1\}$
- $P_{2}=\{m: 2 \rightarrow 1, e: 0 \rightarrow 1\}$
- $P_{3}=\{\alpha:(m * 1) * m \Rightarrow(1 * m) * m, \lambda:(e * 1) * m \Rightarrow 1, \rho:(1 * e) * m \Rightarrow 1\}$
- $P_{4}=\{5$ elements $\}$

Coherent 2-dimensional rewriting systems

Similarly, an extended 2-dimensional rewriting system

where P_{4} is generated by critical branchings is coherent.

Applying this to the rs of monoids, we can recover MacLane's coherence theorem:

- $P_{\mathrm{o}}=\{\star\}$
- $P_{1}=\{1\}$
- $P_{2}=\{m: 2 \rightarrow 1, e: 0 \rightarrow 1\}$
- $P_{3}=\{\alpha:(m * 1) * m \Rightarrow(1 * m) * m, \lambda:(e * 1) * m \Rightarrow 1, \rho:(1 * e) * m \Rightarrow 1\}$
- $P_{4}=\{2$ elements $\}$

A model structure on ω-categories

Theorem (Lafont-Métayer-Worytkiewicz'10)
There is a model structure on ω-Cat where

- equivalences are categorical equivalences,
- every object is fibrant,
- cofibrant objects are categories generated by polygraphs.

