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THE IDEA

In order to construct a (small) resolution, we start from the (big)
Bar resolution and reduce it to a decent size (sometimes minimal)
by smashing triangles.

In other words, this is another point of view on homotopy
reduction!



A CHAIN COMPLEX

We start from a commutative ring R and
C. = (C,-,8,- : C,' — C,'_l)

a chain complex of R-modules.
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A CHAIN COMPLEX

We start from a commutative ring R and
C. = (C,-,8,- : C,' — C,'_l)

a chain complex of R-modules.

We write

with X; a fixed basis of C;.

Define a weighted DAG G(C,) with vertices X = U;j>0X; and edges

!
X,'BCMCIEX,',l

whenever [c: ¢'] #0.



ACYCLIC MATCHINGS

A set M C E of G(G,) = (X, E) is an acyclic matching when

o,
1. For each ¢ M c’in M, [c: '] in the center, invertible

2. Each vertex lies in a most one edge of M
3. The graph Gy = (X, Exrq) has no directed cycle with

En = (E\M)u{ ch%c'eM}
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A set M C E of G(G,) = (X, E) is an acyclic matching when

o,
1. For each ¢ M c’in M, [c: '] in the center, invertible

2. Each vertex lies in a most one edge of M
3. The graph Gy = (X, Exrq) has no directed cycle with

Envi = (E\M)u{ Mc|c—>C/EM}

z

N

——X<—"H

/11

=3 <0

N

~ =><=<—0



ACYCLIC MATCHINGS

A set M C E of G(G,) = (X, E) is an acyclic matching when
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A set M C E of G(G,) = (X, E) is an acyclic matching when

o,
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ACYCLIC MATCHINGS

A set M C E of G(G,) = (X, E) is an acyclic matching when

o,
1. For each ¢ [C—C> c’in M, [c: '] in the center, invertible

2. Each vertex lies in a most one edge of M
3. The graph G = (X, Exrq) has no directed cycle with

Envi = (E\M)u{ Mc|c—>C/EM}
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ACYCLIC MATCHINGS

Consider G(C,) together with an acyclic matching M.

» When e — f € M, e is collapsible and f is redundant.
> A vertex ¢ € X is critical when it lies in no edge of M.
» We write XM C X; for the critical vertices.
» The weight of a path is

r—1

w(ico—ao—...>¢) = H w(ci — Cit1)
i=1

with w(c 4 c)="¢.

» We write

ed) = 3 wip)

pEpath(c,c’)

6

42



THE MORSE COMPLEX

The Morse complex CM = (CM,9M) is defined by CM = RXM
and oM : CM — CM by

oM) = Z M(c,c')c

M
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THE MORSE COMPLEX

The Morse complex CM = (CM,9M) is defined by CM = RXM
and oM : CM — CM by

oM) = Z M(c,c')c

M
ceXMy

Theorem

The complex CM of free R-modules is homotopy equivalent to C,.

The maps f : Co — CM and g : CM — C, give a chain homotopy
(and thus a quasi-iso) between C, and CM:

fi(c) = Z M(c, ) gi(c) = Z M(c,c')c
c’eXM c'eX;

~
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THE MORSE COMPLEX

The Morse complex CM = (CM,9M) is defined by CM = RXM
and oM : CM — CM by

8,-M(c) = Z M(c,c')c

M
ceXMy

Proposition

If M is a set of edges with different source and targets, then
CM = C, iff M is an acyclic matching.

~
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GAUB ELIMINATION

» Fix a free chain complex
0— RXk & RXx_1 — 0 (1)
with X, = {x1,...,xm} and Xek—1 = {y1,-- ., ¥n}
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GAUB ELIMINATION

Fix a free chain complex
0— RXk & RXx_1 — 0 (1)

with X, = {x1,...,xm} and Xek—1 = {y1,-- ., ¥n}
We define a matrix A € R™™ with

aji = [0x;:y]

and suppose that a;; is invertible for some i,j € n x m.
By GauB elimination A is similar to

1 (10
NTAM = (0 W
with A € R(n=1)x(m=1),
Then (1) has the same homology as
0— RX, 25 RX,_, =0

with X} = X, \ {x;} and X|_; = Xi_1\ {y;}.
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GAUB ELIMINATION

For instance i
0-2257%-0

3 2 -1
SN
Taking a> > as pivoting element,

10 0
A”<03—9>

The homology is the same as

59

072~ 570

with



GAUB ELIMINATION

By GauB elimination A is similar to

1 0
NTAM =
with a;; as pivoting element where
a'71 A a'7
M = (x,-\xl—JX,-...|0|...|xm— me,-)
aj,i aj,i

N = (Axi|y|---|%]--1|yn)



By GauB elimination A is similar to
NTTAM =

with a;; as pivoting element where

M = X,"Xl—ﬂx,"...
aj7i
N = (Axi |y |

This is why we change

[e:c],
c—=c¢ to

GAUB ELIMINATION

Yl yn)

o “Ylee),
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GAUB ELIMINATION

This is why we change

[l r —1/[e:c’]
c—=c¢ to ¢ ——>c
For instance
X1 X2 -1 X3
2
3 4
y1 y2

We have

10 0
A”<o3—9>

and the flow from x3 to y; is =144 x (—1) x 2 = -9, etc.



Let’s use those ideas
to reduce bar



ALGEBRAS

We consider the quotient (non-commutative) algebra A= S/a
with S = K(x1,...,xp) and a an ideal of S.

From now on, we suppose fixed an order x; < xo < ... < X, on
letters and extend it by deglex on monomials in S.

We also suppose that a = (f1,...,f) such that {f,...,f} is a
minimal reduced Groébner basis of S.

13 /42
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The initial term in a polynomial f is its biggest monomial in<(f).
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GROBNER BASIS

The initial term in a polynomial f is its biggest monomial in<(f).

The initial ideal of an ideal I is

ing(f) = (in(f)|fel

A monomial is standard if it is not in in<(/).

A finite G C [ is a Grobner basis when

ing(/) = (inx(g)|ge€q)
MinGen(in<(/)): a minimal (wrt <) generating system of in<(/).

G is reduced when
1. for each g € G the coefficient of in<(g) in g is 1
2. the set {inx(g) | g € G} minimally generates inL(/)
3. no trailing term of any g € G lies in in<(/)

14 /42



A PBW BASIS

The set G of standard monomials of degree > 1 is such that that
G U {1} is a basis of the K-vector space A: every w € A has a
unique representation

w = al—i—Zavv

And it satisfies a, = 0 when |v| > |w|.

15 /42



THE NORMALIZED BAR RESOLUTION

The normalized Bar resolution NBZ = (B;, ;) is

B, = @ A[W1|...|W,']
wi,...,W;€EG
with differential
Oi([wa] ... lw]) = Wl_[Ml/z] - wi
+2 1Y Yveg aplwml - - [wj—a|v|wjiz| - . wi]
+(=1) ] ... [wj—a|v|wjsal .. . [wi]

with Wiwjy1 = aj1 + Eveg ajyVv.



ANICK’S RESOLUTION

We define

> Co={1}

» G ={(1,x1),...,(1,xn)}

» Cjy1 contains (ut, t') such that (u,t) € G, t' € G and tt’ has
exactly one occurrence of a MinGen(in<(a)), which is a suffix
of tt'.

Anick’s resolution is then C ® A with suitable 0.



ANICK’S RESOLUTION

We define

> Co={1}

» G ={(1,x1),...,(1,xn)}

» Cjy1 contains (ut, t') such that (u,t) € G, t' € G and tt’ has
exactly one occurrence of a MinGen(in<(a)), which is a suffix
of tt'.

Anick’s resolution is then C ® A with suitable 0.

An element of F; is of the form

[X1|t2|t3’ ... ‘t/]
with
> ti = viw;
> w;tit1 € MinGen(in<(a))
» for each prefix u of tiy1, tiue g



ANICK’S RESOLUTION

An element of F; is of the form
[x1|vawn|vaws] ... |vyw]
We define 0, : GGRQA—-> C_1®Aand 1;: CG_1 A — CG®Aby
A([x]) = lIx u({lxv) = [x]u
and given 0; and ¢; such that

8,'_18i =0 aiLi = idKera,;l

we define
Oira(falta| .. [tisa]) = Palte] . [tiltiss — wi0i([alte| - .- [ti]tiv1)
tivi([xilta] .- ]t +..) = tar1([xalte| - - - |G]E]E) + ..
—— ——

maximal degree

with t = t't” and t’' smallest prefix of t admitting a reducible suffix.

18 /42



AN ACYCLIC MATCHING ON NB

We define matchings M; of the normalized Bar resolution
inductively wrt the “j-th coordinate”.

[xilwi|wa| ... [w]

My = { 1 € G(NBf‘) | wq X;W{}

[wa|wa|. .. |w]



AN ACYCLIC MATCHING ON NB

We define matchings M; of the normalized Bar resolution
inductively wrt the “j-th coordinate”.

[xilwi|wa| . .. [wi]
M = 1 € GINBY) | wy = x;w}

[wa|wa|. .. |w]

Critical cells B,Ml in homological degree / > 1 are
> B ={x]|1<i<n}

> for [ > 1, [xi|wa|...|w] € B,Ml when x;ws is reducible

19 /42



AN ACYCLIC MATCHING ON NB

Suppose that M;_1 is defined. We write
» BMi-1 for the set of critical cells wrt M7 U...U M1
» & edges of G(NB,') connecting critical cells in BMi-1



AN ACYCLIC MATCHING ON NB

Suppose that M;_1 is defined. We write
» BMi-1 for the set of critical cells wrt M7 U...U M1
» & edges of G(NB,') connecting critical cells in BMi-1

We define M; as the set of edges
[xi |l wal . . [wjafun|w2|wjia] - Jwi] = [xi [wel - - wja | wjlwjga] - [w]

in & (so wj = uup) such that
L [xi|wal...|wj—1|ur|ua|wjy1] ... |w] € BMi-1

2. [xilwal. . [wja|vilvalwjia] .. [wi] & BMi=
for every prefix vi of uy, vivo = w;.

20 /42



AN ACYCLIC MATCHING ON NB

The critical cells B,Mj are
> BV = {[x] | 1< i< n)
> [xilwo] € Béwj when x;w, € MinGen(in<(a))
> for > 2, [xi|wa| ... [w;|...|w] € BV when
» for each prefix u of w; we have

M,
blwal .. Wy ulwia] . [w] & B
» and w;jwj,1 is reducible.



AN ACYCLIC MATCHING ON NB

Lemma
M = Uj>1M; is an acyclic matching.

We write BM for the set of critical cells wrt M.



FULLY ATTACHED CELLS

Definition
Let mj,..., m;_, € MinGen(inx(a)) be monomials such that for
every j, m; = u;viw; with u;; = w; and |u;| = 1. Then

[ui [viywiy [Viswig| - |viwi ]

is fully attached if for all j and each prefix u of v;, w;, the
monomial Vi, Wi u isin G.

We write B; for the set of fully attached j-uples.



FULLY ATTACHED CELLS

Definition
Let mj,..., m;_, € MinGen(inx(a)) be monomials such that for
every j, m; = u;viw; with u;; = w; and |u;| = 1. Then

[ui [viywiy [Viswig| - |viwi ]

is fully attached if for all j and each prefix u of v;, w;, the
monomial Vi, Wi u isin G.

We write B; for the set of fully attached j-uples.

Remark
Critical cells are exactly the fully attached ones: BJM = B;.



ANOTHER DESCRIPTION

The height of a cell [wy]...|wy] is the maximal h such that
[Wl‘ . |Wh] is f.a.



ANOTHER DESCRIPTION

The height of a cell [wy]...|wy] is the maximal h such that
[W1| . |Wh] is f.a.

We want f.a. to be critical, so
e=[wi|...|wy] = f

with
> f=[wi|...|WhWht1]...|wp] if collapsible of height h
> = [x1|wj|wa|...|wp] if redundant of height h =10
with wy = wywy
> = [wi]...|wp|up|vh|Whio| ... |wp] if redundant
of height 0 < h < n with up minimal such that upvy = wy
and wyuy, reducible



BIBLIOGRAPHICAL REMARKS

» The first proof of this kind is: K. S. Brown. The geometry of
rewriting systems: a proof of the Anick-Groves- Squier
theorem. In Algorithms and classification in combinatorial
group theory (Berkeley, CA, 1989), volume 23 of Math. Sci.
Res. Inst. Publ., pages 137-163. Springer, New York, 1992,

» It was topological and algebraized in: D. E. Cohen. String
rewriting and homology of monoids. Math. Structures
Comput. Sci., 7(3):207-240, 1997.

(which simplifies an article of 1993)



Let’s describe
the Morse differential



REDUCTION RULES

We write R for the reduction rules associated to the Grobner basis.
These are of the form

ViVvo a—W> w
with
> v, »n EQ,
> viva £ G,

> ViV = a9+ Zweg ayWw.



TYPES OF REDUCTIONS

Suppose given a tuple of standard monomials
€1 = [W1‘...|W/]

We define the following three types of reductions from e; to es:

I e =2 e
» ¢ fully attached
> e = [W1| - |W,',1|V,'|V,'+1|W,'+2‘ - |W/]
» [wi]...|wi_1|v] fully attached
> Vvivip1 €6
> WiWi 2 vivir1 € R with a#0
(-=1)a
[l e — €2
> e =[wy|...|wi—i|v|wita|. .. |w] fully attached

> W,'W,'+1i>VERWith 3750
w1
[l €1 —> €2
> e = [Xp|wh|wsl ... (W]
> Wy = X, W)



TYPES OF REDUCTIONS

Given e = [wy|...|w] and f = [v1]...|v/_1] fully attached,

e S f

whenever either
le=e —He —2 e —2 ... = e = [ulf]
with reductions of type | and Ill,
and ¢ = ((—1)" [ ai)u

—a —a —a —a —1Yb
2. e=¢g —H e — ey — . 'er() f

with reductions of type | and Ill, excepting the last of type Il,
and ¢ = (—=1)MbI]_; ai

There may be multiple paths from e to f with different
coefficients, in this case the coefficient [e : f] is the sum over paths
(and 0O if there is no path).



THE MORSE RESOLUTION
The Morse complex F, is then

Fj:@Ae

eEBj

and 8,- . F,' — F,'_l by
Oie) = D [e:fIf

feEBi_1
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THE MORSE RESOLUTION

The Morse complex F, is then
Fi = @ Ae
eEBj

and 8,- . F,' — F,'_l by

Oie) = D [e:fIf

feEBi_1

Remark
This is Anick’s resolution!

30/42



THE MORSE RESOLUTION
The Morse complex F, is then

Fj:@Ae

eEBj

and 8,- . F,' — F,'_l by

Oie) = D [e:fIf

feEBi_1

Remark
This is Anick’s resolution!

Theorem
Fe is an A-free resolution of the field K. It is minimal iff no type Il
reduction is possible.
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MINIMAL RESOLUTIONS

Theorem
Fe is an A-free resolution of the field K. It is minimal iff no type Il
reduction is possible.

Proof.
Fully attached tuples are exactly the critical cells (BJM = B;).
Reduction rules describe the Morse differential:

-1
IM([w|...|w]) = wa[wa]. .. ]W/]+Z(—1)i[wl| o wiwiga] . w]
i=1

If e =[wa|...|w] & B, we have e = 9([x;,|w5|ws| ... |w]) which is
described by type Il reductions.
For [wi|...|wjwit1]...|w], we distinguish three cases. .. O

31/42



MINIMAL RESOLUTIONS

Proof.
For [wi|...|wiwit1]...|w], we distinguish three cases:
1. [wa|...|vj|...|w] is critical. wj_1vj; and vjjwji2 reducible,

wi—1ur € G and vjjup € G for every prefix uy of vjj and uo of
Wiyo. Situation described by reductions of type Il.

2. [wi]...|vij|...|w] is matched by a higher-degree cell. w;_1u;
reducible for vjj = uiup, and Wi_1u" € G for prefixes v’ of uy.
Then [wa|...|vgl...|w] = (=1)F[wa|...|u1|ua]...|w]
which is a reduction of type I.

3. [wa]...|vi|...|w] is matched by a lower-degree cell. We
have [wi]...|vj|...|w] =0.

The Morse differential is thus obtained by the e = f reductions:
[/111 reductions, ended by either a reduction of type Il or
[vi]...|vi] 2 [val...|v]. O



COROLLARY

Proposition
The following are equivalent:
1. (Fe,0) is not minimal
2. There is a reduction of type Il
3. There exist standard monomials wy,...,ws € G and
my, mp, m3 € MinGen(in<(a)) such that
> WiWwp = Ui
> WoW3 = Uxmyp
> wiwy = ujms
with
> uy, uy suffixes of wy
> U suffix of wo
> wowz — Wy €ER

33 /42



AN EXAMPLE OF NON-MINIMAL ANICK

Consider the convergent rewriting system

(a,b,c,d,e | abb A ee, abdd 5, eec, bc <, dd)
The words

wi = aa wr = bb w3 = ¢ wy = bdd
satisfy the hypothesis of previous proposition:

wiw, = alabb wows = b|bc
wiws = alabdd wows = bbc — bdd = ws € R

34 /42



AN EXAMPLE OF NON-MINIMAL ANICK

Consider the convergent rewriting system
(a,b,c,d,e | abb A ee, abdd 5, eec, bc <, dd)
The words
wi = aa wr = bb w3 = ¢ wy = bdd
satisfy the hypothesis of previous proposition:
wiw, = alabb wows = b|bc
wiws = alabdd wow3 = bbc — bdd = wy € R
We have
> Fl = {[a]u [b]7 [C]7 [d]7 [e]}
> F2 = {[a|bb], [a|bd], [b|c]}
> F3 ={[a|bb|c]}
> Fis3 =10
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AN EXAMPLE OF NON-MINIMAL ANICK

Consider the convergent rewriting system

(a,b,c,d,e | abb A ee, abdd 5, eec, bc <, dd)
The words

wi = aa wr = bb w3 = ¢ wy = bdd
satisfy the hypothesis of previous proposition:

wiw, = alabb wows = b|bc
wiws = alabdd wows = bbc — bdd = ws € R

abbc

&

The critical pair: Ac abdd

/
eec

Therefore B is not necessary!

34 /42



AN EXAMPLE OF NON-MINIMAL ANICK

The critical pair

induces in the matching graph

a[bb|c]

E

[albb]c]

~

P 1
[a|bdd] — a[bdd]

[eec]

ee[c] < [ee]c]

35/42



COROLLARY

Proposition
The resolution Fo is minimal in the following cases
1. a admits a monomial Grébner basis

2. The Grébner basis of a consists of homogeneous polynomials
all of the same degree

Proof.

1. Obvious.

2. We write / for the degree of the Grobner basis. We have
wiws = ujmj; with wi, ws € G and m;; € MinGen(in<(a)),
therefore |wy| < I. However, wows — wy € R implies
|wa| = 1. Contradiction. O

36
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COROLLARY

Proposition
The resolution Fo is minimal in the following cases
1. a admits a monomial Grébner basis

2. The Grébner basis of a consists of homogeneous polynomials
all of the same degree

Proof.

1. Obvious.

2. We write / for the degree of the Grobner basis. We have
wiws = ujmj; with wi, ws € G and m;; € MinGen(in<(a)),
therefore |wy| < I. However, wows — wy € R implies
|wa| = 1. Contradiction. O

Remark
In the case of a quadratic algebra, we recover the Koszul complex!

36
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MINIMAL VS KOSZUL (?)

The following example shows that even in the case where the Grébner basis is
not finite one can apply our theory:

Example 4.12. Consider the two-side ideal a = (22 — zy). By [19] there does
not exist a finite Grébner basis with respect to degree-lex for a. One can show that
a= (zy"x—xy"t | n € N) and that {zy"z —2y"*' | n € N} is an infinite Grobner
basis with respect to degree-lex.

If one applies our matching from Lemma 4.2, it is easy to see that the critical
cells are given by tuples of the form

[zly™ zy"*|@|. .. |z]y™|2] and [z[y™ 2|y |2]. . . [z|y"™]

with ny,...,n € N.
A degree argument implies that the Morse complex is even a minimal resolution.
Therefore, we get a minimal resolution Fy of k over A = k{xq,...x,)/a.

In this case, this proves that k& does not admit a linear resolution and hence A
is not Koszul.
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MINIMAL VS KOSZUL (?)

We start from Ry : xx — xy with x > y.

If we have R, : xy"x — xy"™1, we have by Knuth-Bendix

xy"xx
Rnx xy" Ry
xy"1x xy" xy
. Ruy
Rost o l !
Xyn+2

So we have all the R, : xy"x — xy"*! for n € N.
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MINIMAL VS KOSZUL (?)

More generally, the form for critical pairs is

xy" xy™x
V W
Xyn+m+1X Xyanm—H
m LR%

Xyn+m+2
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MINIMAL VS KOSZUL (?)

More generally, the form for critical pairs is

xy" xy™x
W W
Xyn+m+1X Xyanm—H
m Ray™tt
Xyn+m+2

By Morse reduction, this cell is collapsible with R,y mn+1 redundant.
Moreover Rnym+1 can be expressed in terms of R; with
i < n-+ m+1; so we can remove any (every?) R, with n > 0.
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More generally, the form for critical pairs is

xy" xy™x
W W
Xyn+m+1X Xyanm—H
m Ray™tt
Xyn+m+2

By Morse reduction, this cell is collapsible with R,y mn+1 redundant.
Moreover Rnym+1 can be expressed in terms of R; with
i < n-+ m+1; so we can remove any (every?) R, with n > 0.

Actually, Knuth-Bendix always produces collapsible cells...
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MINIMAL VS KOSZUL (?)

If we choose x < y, we have
Xy — XX

There is no critical pair and the Anick resolution is

> Fu=A{x], I}
> R ={[xlyl}
> F3 :@

Which is obviously minimal. ..
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ANOTHER PROBLEM

(certainly not fundamental but. . .)

If we consider A= (x,y | x = y), the Anick resolution is not
minimal:

> Fr=A{lx]. I}

> F2 = @

L

and A= (x| ).
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EXTENSIONS

This can be extended to
» commutative algebras
» Hochschild resolution of A as an A ® A°P-module

> ..
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