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THE IDEA

In order to construct a (small) resolution, we start from the (big)
Bar resolution and reduce it to a decent size (sometimes minimal)
by smashing triangles.

In other words, this is another point of view on homotopy
reduction!
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A CHAIN COMPLEX
We start from a commutative ring R and

C• = (Ci , ∂i : Ci → Ci−1)

a chain complex of R-modules.

We write
∂i (c) =

∑
c′∈Xi−1

[c : c ′]c ′

with Xi a fixed basis of Ci .

Define a weighted dag G(C•) with vertices X = ∪i≥0Xi and edges

Xi 3 c [c:c′]−−−→ c ′ ∈ Xi−1

whenever [c : c ′] 6= 0.
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ACYCLIC MATCHINGS
A setM⊆ E of G(C•) = (X ,E ) is an acyclic matching when

1. For each c [c:c′]−−−→ c ′ inM, [c : c ′] in the center, invertible
2. Each vertex lies in a most one edge ofM
3. The graph GM = (X ,EM) has no directed cycle with

EM = (E \M) ∪
{
c ′ −1/[c:c′]−−−−−→ c | c → c ′ ∈M

}
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ACYCLIC MATCHINGS

Consider G(C•) together with an acyclic matchingM.
I When e → f ∈M, e is collapsible and f is redundant.
I A vertex c ∈ X is critical when it lies in no edge ofM.
I We write XMi ⊆ Xi for the critical vertices.
I The weight of a path is

w(c1 → c2 → . . .→ cr ) =
r−1∏
i=1

w(ci → ci+1)

with w(c `−→ c ′) = `.
I We write

Γ(c, c ′) =
∑

p∈path(c,c′)
w(p)
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THE MORSE COMPLEX

The Morse complex CM• = (CMi , ∂Mi ) is defined by CMi = RXMi
and ∂Mi : CMi → CMi−1 by

∂Mi (c) =
∑

c′∈XMi−1

Γ(c, c ′)c ′
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Theorem
The complex CM• of free R-modules is homotopy equivalent to C•.
The maps f : C• → CM• and g : CM• → C• give a chain homotopy
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c′∈XMi
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THE MORSE COMPLEX

The Morse complex CM• = (CMi , ∂Mi ) is defined by CMi = RXMi
and ∂Mi : CMi → CMi−1 by

∂Mi (c) =
∑

c′∈XMi−1

Γ(c, c ′)c ′

Proposition
IfM is a set of edges with different source and targets, then
CM• ∼= C• iffM is an acyclic matching.
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SOME MORE DETAILS CAN BE FOUND IN
Factorable Monoids:

Resolutions and Homology

via Discrete Morse Theory
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GAUß ELIMINATION
I Fix a free chain complex

0→ RXk
∂−→ RXk−1 → 0 (1)

with Xk = {x1, . . . , xm} and Xk−1 = {y1, . . . , yn}.

I We define a matrix A ∈ Rn×m with
aj,i = [∂xi : yj ]

and suppose that aj,i is invertible for some i , j ∈ n ×m.
I By Gauß elimination A is similar to

N−1AM =

(
1 0
0 A′

)
with A ∈ R(n−1)×(m−1).

I Then (1) has the same homology as

0→ RX ′k
A′−→ RX ′k−1 → 0

with X ′k = Xk \ {xi} and X ′k−1 = Xk−1 \ {yj}.
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GAUß ELIMINATION

For instance
0→ Z3 A−→ Z2 → 0

with
A =

(
3 2 −1
0 1 4

)
Taking a2,2 as pivoting element,

A =

(
3 2 −1
0 1 4

)

The homology is the same as

0→ Z2

(
3 −9

)
−−−−−−−→ Z→ 0
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GAUß ELIMINATION
By Gauß elimination A is similar to

N−1AM =

(
1 0
0 A′

)
with aj,i as pivoting element where

M =

(
xi | x1 −

aj,1
aj,i

xi | . . . | 0̂ | . . . | xm −
aj,m
aj,i

xi

)
N = (Axi | y1 | . . . | ŷj | . . . | yn)

This is why we change

c [c:c′]−−−→ c ′ to c ′ −1/[c:c′]−−−−−→ c
For instance

We have
A ≈

(
1 0 0
0 3 −9

)
and the flow from x3 to y1 is −1 + 4× (−1)× 2 = −9, etc.
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Let’s use those ideas
to reduce bar
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ALGEBRAS

We consider the quotient (non-commutative) algebra A = S/a
with S = K〈x1, . . . , xn〉 and a an ideal of S.

From now on, we suppose fixed an order x1 ≺ x2 ≺ . . . ≺ xn on
letters and extend it by deglex on monomials in S.

We also suppose that a = 〈f1, . . . , fs〉 such that {f1, . . . , fs} is a
minimal reduced Gröbner basis of S.
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GRÖBNER BASIS
The initial term in a polynomial f is its biggest monomial in≺(f ).

The initial ideal of an ideal I is

in≺(I) = 〈in≺(f ) | f ∈ I〉

A monomial is standard if it is not in in≺(I).

A finite G ⊆ I is a Gröbner basis when

in≺(I) = 〈in≺(g) | g ∈ G〉

MinGen(in≺(I)): a minimal (wrt ≺) generating system of in≺(I).

G is reduced when
1. for each g ∈ G the coefficient of in≺(g) in g is 1
2. the set {in≺(g) | g ∈ G} minimally generates in≺(I)
3. no trailing term of any g ∈ G lies in in≺(I)
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A PBW BASIS

The set G of standard monomials of degree ≥ 1 is such that that
G ∪ {1} is a basis of the K-vector space A: every w ∈ A has a
unique representation

w = a1 +
∑
v∈G

avv

And it satisfies av = 0 when |v | > |w |.

15 / 42



THE NORMALIZED BAR RESOLUTION

The normalized Bar resolution NBA
• = (Bi , ∂i ) is

Bi =
⊕

w1,...,wi∈G
A[w1| . . . |wi ]

with differential

∂i ([w1| . . . |wi ]) = w1[w2| . . . |wi ]

+
∑i−1

j=1(−1)j ∑
v∈G ajv [w1| . . . |wj−1|v |wj+2| . . . |wi ]

+(−1)i [w1| . . . |wj−1|v |wj+2| . . . |wi−1]

with wjwj+1 = aj1 +
∑

v∈G ajvv .
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ANICK’S RESOLUTION
We define

I C0 = {1}
I C1 = {(1, x1), . . . , (1, xn)}
I Ci+1 contains (ut, t ′) such that (u, t) ∈ Ci , t ′ ∈ G and tt ′ has

exactly one occurrence of a MinGen(in≺(a)), which is a suffix
of tt ′.

Anick’s resolution is then C ⊗ A with suitable ∂.

An element of Fl is of the form

[x1|t2|t3| . . . |tl ]

with
I ti = viwi
I wi ti+1 ∈ MinGen(in≺(a))
I for each prefix u of ti+1, tiu ∈ G
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ANICK’S RESOLUTION
An element of Fl is of the form

[x1|v2w2|v3w3| . . . |vlwl ]

We define ∂i : Ci ⊗ A→ Ci−1 ⊗ A and ιi : Ci−1 ⊗ A→ Ci ⊗ A by

∂1([x ]) = []x ι1([]x̂u) = [x ]û

and given ∂i and ιi such that

∂i−1∂i = 0 ∂i ιi = idKer ∂i−1

we define

∂i+1([x1|t2| . . . |ti+1]) = [x1|t2| . . . |ti ]ti+1 − ιi∂i ([x1|t2| . . . |ti ]ti+1)
ιi+1([x1|t2| . . . |ti ]t︸ ︷︷ ︸

maximal degree

+ . . .) = ιn+1([x1|t2| . . . |ti |t ′]t ′′) + . . .′

with t = t ′t ′′ and t ′ smallest prefix of t admitting a reducible suffix.
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AN ACYCLIC MATCHING ON NB

We define matchingsMj of the normalized Bar resolution
inductively wrt the “j-th coordinate”.

M1 =


[xi |w ′1|w2| . . . |wl ]

↓
[w1|w2| . . . |wl ]

∈ G(NBA
• ) | w1 = xiw ′1



Critical cells BM1
l in homological degree l ≥ 1 are

I BM1
1 = {[xi ] | 1 ≤ i ≤ n}

I for l > 1, [xi |w2| . . . |wl ] ∈ BM1
l when xiw2 is reducible
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AN ACYCLIC MATCHING ON NB

Suppose thatMj−1 is defined. We write
I BMj−1 for the set of critical cells wrtM1 ∪ . . . ∪Mj−1
I Ej : edges of G(NBA

• ) connecting critical cells in BMj−1

We defineMj as the set of edges

[xi1 |w2| . . . |wj−1|u1|u2|wj+1| . . . |wl ]→ [xi1 |w2| . . . |wj−1|wj |wj+1| . . . |wl ]

in Ej (so wj = u1u2) such that
1. [xi1 |w2| . . . |wj−1|u1|u2|wj+1| . . . |wl ] ∈ BMj−1

2. [xi1 |w2| . . . |wj−1|v1|v2|wj+1| . . . |wl ] 6∈ BMj−1

for every prefix v1 of u1, v1v2 = wj .
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AN ACYCLIC MATCHING ON NB

The critical cells BMj
l are

I BMj
1 = {[xi ] | 1 ≤ i ≤ n}

I [xi |w2] ∈ BMj
2 when xiw2 ∈ MinGen(in≺(a))

I for l > 2, [xi |w2| . . . |wj | . . . |wl ] ∈ B
Mj−1
l when

I for each prefix u of wj we have
[xi |w2| . . . |wj−1|u|wj+1| . . . |wl ] 6∈ B

Mj−1
l

I and wjwj+1 is reducible.
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AN ACYCLIC MATCHING ON NB

Lemma
M = ∪j≥1Mj is an acyclic matching.

We write BM for the set of critical cells wrtM.
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FULLY ATTACHED CELLS

Definition
Let mi1 , . . . ,mil−1 ∈ MinGen(in≺(a)) be monomials such that for
every j , mij = uijvijwij with uij+1 = wij and |ui1 | = 1. Then

[ui1 |vi2wi2 |vi3wi3 | . . . |vilwil ]

is fully attached if for all j and each prefix u of vij+1wij+1 the
monomial vijwiju is in G.

We write Bj for the set of fully attached j-uples.

Remark
Critical cells are exactly the fully attached ones: BMj = Bj .
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ANOTHER DESCRIPTION

The height of a cell [w1| . . . |wn] is the maximal h such that
[w1| . . . |wh] is f.a.

We want f.a. to be critical, so

e = [w1| . . . |wn]→ f

with
I f = [w1| . . . |whwh+1| . . . |wn] if collapsible of height h
I f = [x1|w ′1|w2| . . . |wn] if redundant of height h = 0

with w1 = w1w ′1
I f = [w1| . . . |wh|uh|vh|wh+2| . . . |wn] if redundant

of height 0 < h < n with uh minimal such that uhvh = wh
and whuh reducible
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BIBLIOGRAPHICAL REMARKS

I The first proof of this kind is: K. S. Brown. The geometry of
rewriting systems: a proof of the Anick-Groves- Squier
theorem. In Algorithms and classification in combinatorial
group theory (Berkeley, CA, 1989), volume 23 of Math. Sci.
Res. Inst. Publ., pages 137–163. Springer, New York, 1992.

I It was topological and algebraized in: D. E. Cohen. String
rewriting and homology of monoids. Math. Structures
Comput. Sci., 7(3):207–240, 1997.
(which simplifies an article of 1993)
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Let’s describe
the Morse differential
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REDUCTION RULES

We write R for the reduction rules associated to the Gröbner basis.
These are of the form

v1v2
aw−→ w

with
I v1, v2 ∈ G,
I v1v2 6∈ G,
I v1 · v2 = a0 +

∑
w∈G aww .
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TYPES OF REDUCTIONS
Suppose given a tuple of standard monomials

e1 = [w1| . . . |wl ]

We define the following three types of reductions from e1 to e2:
I. e1

−a−−→I e2
I e1 fully attached
I e2 = [w1| . . . |wi−1|vi |vi+1|wi+2| . . . |wl ]
I [w1| . . . |wi−1|vi ] fully attached
I vivi+1 ∈ G
I wiwi+1

a−→ vivi+1 ∈ R with a 6= 0

II. e1
(−1)i a−−−−→II e2

I e2 = [w1| . . . |wi−1|v |wi+2| . . . |wl ] fully attached
I wiwi+1

a−→ v ∈ R with a 6= 0
III. e1

w1−→III e2
I e2 = [xi2 |w ′2|w3| . . . |wl ]
I w2 = xi2w ′2
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TYPES OF REDUCTIONS
Given e = [w1| . . . |wl ] and f = [v1| . . . |vl−1] fully attached,

e c−→ f

whenever either
1. e = e0

−a1−−→ e1
−a2−−→ e2

−a3−−→ . . .
−ar−−→ er = [u|f ]

with reductions of type I and III,
and c = ((−1)r ∏r

i=1 ai )u

2. e = e0
−a1−−→ e1

−a2−−→ e2
−a3−−→ . . .

−ar−−→ er
(−1)j b−−−−→ f

with reductions of type I and III, excepting the last of type II,
and c = (−1)r+jb

∏r
i=1 ai

There may be multiple paths from e to f with different
coefficients, in this case the coefficient [e : f ] is the sum over paths
(and 0 if there is no path).
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THE MORSE RESOLUTION
The Morse complex F• is then

Fj =
⊕
e∈Bj

Ae

and ∂i : Fi → Fi−1 by

∂i (e) =
∑

f ∈Bi−1

[e : f ]f

Remark
This is Anick’s resolution!

Theorem
F• is an A-free resolution of the field K. It is minimal iff no type II
reduction is possible.
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MINIMAL RESOLUTIONS

Theorem
F• is an A-free resolution of the field K. It is minimal iff no type II
reduction is possible.

Proof.
Fully attached tuples are exactly the critical cells (BMj = Bj).
Reduction rules describe the Morse differential:

∂M([w1| . . . |wl ]) = w1[w2| . . . |wl ]+
l−1∑
i=1

(−1)i [w1| . . . |wiwi+1| . . . |wl ]

If e = [w2| . . . |wl ] 6∈ B, we have e = ∂([xi2 |w ′2|w3| . . . |wl ]) which is
described by type III reductions.
For [w1| . . . |wiwi+1| . . . |wl ], we distinguish three cases. . .
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MINIMAL RESOLUTIONS

Proof.
For [w1| . . . |wiwi+1| . . . |wl ], we distinguish three cases:
1. [w1| . . . |vij | . . . |wl ] is critical. wi−1vij and vijwi+2 reducible,

wi−1u1 ∈ G and viju2 ∈ G for every prefix u1 of vij and u2 of
wi+2. Situation described by reductions of type II.

2. [w1| . . . |vij | . . . |wl ] is matched by a higher-degree cell. wi−1u1
reducible for vij = u1u2, and Wi−1u′ ∈ G for prefixes u′ of u1.
Then [w1| . . . |vij | . . . |wl ] = (−1)i+1[w1| . . . |u1|u2| . . . |wl ]
which is a reduction of type I.

3. [w1| . . . |vij | . . . |wl ] is matched by a lower-degree cell. We
have [w1| . . . |vij | . . . |wl ] = 0.

The Morse differential is thus obtained by the e c−→ f reductions:
I/III reductions, ended by either a reduction of type II or
[v1| . . . |vl ]

v1−→ [v2| . . . |vl ].
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COROLLARY

Proposition
The following are equivalent:
1. (F•, ∂) is not minimal
2. There is a reduction of type II
3. There exist standard monomials w1, . . . ,w4 ∈ G and

m1,m2,m3 ∈ MinGen(in≺(a)) such that
I w1w2 = u1m1
I w2w3 = u2m2
I w1w4 = u′1m3

with
I u1, u′1 suffixes of w1
I u2 suffix of w2
I w2w3 → w4 ∈ R
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AN EXAMPLE OF NON-MINIMAL ANICK
Consider the convergent rewriting system

〈a, b, c, d , e | abb A−→ ee, abdd B−→ eec, bc C−→ dd〉
The words

w1 = aa w2 = bb w3 = c w4 = bdd
satisfy the hypothesis of previous proposition:

w1w2 = a|abb w2w3 = b|bc
w1w4 = a|abdd w2w3 = bbc → bdd = w4 ∈ R
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w1w2 = a|abb w2w3 = b|bc
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We have
I F1 = {[a], [b], [c], [d ], [e]}
I F2 = {[a|bb], [a|bd ], [b|c]}
I F3 = {[a|bb|c]}
I Fi>3 = ∅
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AN EXAMPLE OF NON-MINIMAL ANICK
Consider the convergent rewriting system

〈a, b, c, d , e | abb A−→ ee, abdd B−→ eec, bc C−→ dd〉
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w1 = aa w2 = bb w3 = c w4 = bdd
satisfy the hypothesis of previous proposition:

w1w2 = a|abb w2w3 = b|bc
w1w4 = a|abdd w2w3 = bbc → bdd = w4 ∈ R

The critical pair:

abbc

Ac

!)

abC

 (
abdd

Bv~
eec

Therefore B is not necessary!
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AN EXAMPLE OF NON-MINIMAL ANICK
The critical pair

abbc
Ac

&.

abC
%-
abdd

Bpxeec
induces in the matching graph

a[bb|c]

1

zz

−1

%%

[a|bb|c]

−1

zz

1

%%

1

OO

ee[c] [ee|c]1
oo

−1 $$

[a|bdd ]

−1yy

1 // a[bdd ]

[eec]
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COROLLARY
Proposition
The resolution F• is minimal in the following cases
1. a admits a monomial Gröbner basis
2. The Gröbner basis of a consists of homogeneous polynomials

all of the same degree

Proof.
1. Obvious.
2. We write l for the degree of the Gröbner basis. We have

w1w4 = u′1mi3 with w1,w4 ∈ G and mi3 ∈ MinGen(in≺(a)),
therefore |w4| < l . However, w2w3 → w4 ∈ R implies
|w4| = l . Contradiction.

Remark
In the case of a quadratic algebra, we recover the Koszul complex!
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MINIMAL VS KOSZUL (?)

24 4. RESOLUTION OF THE RESIDUE FIELD

e
(l1)
i1

. . . e
(lr)
ir

→
r∑

t=1

xit e
(l1)
i1

. . . e
(lt−1)
it

. . . e
(lr)
ir

defines a minimal resolution of k as A-module, called the Cartan complex.

Proof. For the exterior algebra A = k(x1, . . . , xn)/〈xixj + xjxi〉 the resolution F•
is by Corollary 4.6 minimal. The set of reduction rules is given by R := {x2

i →
0, xixj

−1−→ xjxi for i < j}. Then the fully attached tuples are exactly the words

(xi1 , . . . , xi1 , xi2 , . . . , xi2 , . . . , xir , . . . , xir ) with 1 ≤ i1 < . . . < ir ≤ n.

Since xixj is reduced to −xjxi, if i �= j, and each reduction has factor (−1), we
get for each reduction the coefficient (−1)(−1) = 1. Since xixi is reduced to 0, the
differential follows. �

The following example shows that even in the case where the Gröbner basis is
not finite one can apply our theory:

Example 4.12. Consider the two-side ideal a = 〈x2 − xy〉. By [19] there does
not exist a finite Gröbner basis with respect to degree-lex for a. One can show that
a = 〈xynx−xyn+1 | n ∈ N〉 and that {xynx−xyn+1 | n ∈ N} is an infinite Gröbner
basis with respect to degree-lex.

If one applies our matching from Lemma 4.2, it is easy to see that the critical
cells are given by tuples of the form

[x|yn1 |x|yn2 |x| . . . |x|ynl |x] and [x|yn1 |x|yn2 |x| . . . |x|ynl ]

with n1, . . . , nl ∈ N.
A degree argument implies that the Morse complex is even a minimal resolution.
Therefore, we get a minimal resolution F• of k over A = k〈x1, . . . xn〉/a.

In this case, this proves that k does not admit a linear resolution and hence A
is not Koszul.
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MINIMAL VS KOSZUL (?)

We start from R0 : xx → xy with x > y .

If we have Rn : xynx → xyn+1, we have by Knuth-Bendix

xynxx
Rnx

zz

xynR0

$$
xyn+1x

Rn+1 ))

xynxy

Rny
��

xyn+2

So we have all the Rn : xynx → xyn+1 for n ∈ N.
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MINIMAL VS KOSZUL (?)

More generally, the form for critical pairs is

xynxymx
Rnymx

xx

xynRm

&&
xyn+m+1x

Rn+m+1 &&

xynxym+1

Rnym+1xx
xyn+m+2

By Morse reduction, this cell is collapsible with Rn+m+1 redundant.
Moreover Rn+m+1 can be expressed in terms of Ri with
i < n + m + 1; so we can remove any (every?) Rn with n > 0.

Actually, Knuth-Bendix always produces collapsible cells...
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MINIMAL VS KOSZUL (?)

If we choose x < y , we have

xy → xx

There is no critical pair and the Anick resolution is
I F1 = {[x ], [y ]}
I F2 = {[x |y ]}
I F3 = ∅
I . . .

Which is obviously minimal. . .
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ANOTHER PROBLEM

(certainly not fundamental but. . . )

If we consider A = 〈x , y | x → y〉, the Anick resolution is not
minimal:

I F1 = {[x ], [y ]}
I F2 = ∅
I . . .

and A = 〈x | 〉.
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EXTENSIONS

This can be extended to
I commutative algebras
I Hochschild resolution of A as an A⊗ Aop-module
I . . .
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