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IN THIS TALK

I Uses of higher-dimensional rewriting techniques to study
models of logics and computation.

I Techniques to study rewriting in monoidal categories (PROs).

I We don’t necessarily need termination to have normal forms.
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GAME
SEMANTICS
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SEMANTICS

From a typed programming language, one can build a category L:

I objects are types

I morphisms are programs of type A→ B, up to reduction

A denotational semantics is a functor J−K : L → C, thus
providing invariants of computations over time.

For instance, one can try to interpret the language in Set:

JintK = N JA ∗ BK = JAK× JBK

J+:int * int -> intK = + : N× N→ N
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TOWARDS GAME SEMANTICS

This naive interpretation in Set will fail in general.

I Most programming languages require more structure than we
have in Set:

x = 0; while (x < 5) { x = x + 1 }; return x

should be interpreted using a smallest fixpoint construction

I We want to be able to characterize the image of the semantic
functor (this is closely related to the full abstraction problem).

We have to interpret our programming language in categories C
which are “richer” than Set. Here, I will be interested in
C = Games whose objects are games and morphisms are strategies.
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GAME SEMANTICS
A game G = (M,≤, λ) is

I a set M of moves

I a partial order ≤ on M called causality

I a polarization function λ : M → {O,P}

For instance, the game B corresponding to booleans is

q

�������

???????

T F

A strategy on a game is a set of sequences of moves (plays)
respecting the order of the game and closed under prefix.

For instance, the strategy corresponding to true on B is {ε, q, qT}.
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STRATEGIES

The general idea is to see a program as a black-box and see how it
reacts to its environment:

and q

So, the strategy corresponding to and will contain

qqLTLqRFRF

qqLTLqRTRT
. . .
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A CATEGORY OF GAMES

It was discovered by Joyal that Conway games can be made into a
category: given a game G = (M,≤, λ) we define

I G ∗ as G with polarities (λ) inverted

I G1‖G2 = (M1 + M2,≤1 + ≤2, λ1 + λ2)
i.e. G1 and G2 in “parallel”

B =

q

�������

???????

T F

One can build a category whose objects are games, morphisms
A→ B are (alternating) strategies on A∗‖B.

For instance, JandK is a strategy on B∗‖B∗‖B.
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PRESENTING
A GAME SEMANTICS

FOR FIRST-ORDER LOGIC

I A lot can be done in this framework, in particular definable
strategies (in the image of the semantics) can be
characterized as innocent strategies.

I By the Curry-Howard correspondence, a program is “the same
thing” as a proof, so it makes sense to study game semantics
for proofs.

I More specifically, I will be interested here in the causality
induced by fist-order connectives in logic.

I I will characterize definable strategies by giving a
presentation of the monoidal category of games for this logic.
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UNIFYING POINTS OF VIEW

Logics
invariants

of computationOO
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Game Semantics
dynamics

of computation
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structure

of computation

((

hhQQQQQQQQQQQQQQ

10 / 52



CAUSALITY
IN FIRST ORDER

LOGIC

11 / 52



FIRST-ORDER LOGIC
I Formulas:

A ::= ∃x .A | ∀x .A | A ∧ A | A ∨ A | P

where P are given propositions depending on variables,
e.g. P(x , y) = (x = y).

I Rules:

Γ ` P,∆

Γ ` ∀x .P,∆
(∀)

Γ ` P[t/x ],∆

Γ ` ∃x .P,∆
(∃)

(with x 6∈ FV(Γ,∆))

Γ ` A,∆ Γ ` B,∆

Γ ` A ∧ B,∆
(∧)

Γ ` A,B,∆

Γ ` A ∨ B,∆
(∨)

...
+ consistent axioms depending on the propositions
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CAUSALITY IN PROOFS

π

Γ ` A,B,∆

Γ ` A, ∀y .B,∆
(∀)

Γ ` ∀x .A, ∀y .B,∆
(∀)

 

π

Γ ` A,B,∆

Γ ` ∀x .A,B,∆
(∀)

Γ ` ∀x .A,∀y .B,∆
(∀)

If x 6∈ FV(t)!

13 / 52



CAUSALITY IN PROOFS

π

Γ ` A,B,∆

Γ ` A, ∀y .B,∆
(∀)

Γ ` ∀x .A, ∀y .B,∆
(∀)  

π

Γ ` A,B,∆

Γ ` ∀x .A,B,∆
(∀)

Γ ` ∀x .A, ∀y .B,∆
(∀)

If x 6∈ FV(t)!

13 / 52



CAUSALITY IN PROOFS

π

Γ ` A[t/x ],B[t ′/y ],∆

Γ ` A[t/x ], ∃y .B,∆
(∃)

Γ ` ∃x .A,∃y .B,∆
(∃)  

π

Γ ` A[t/x ],B[t ′/y ],∆

Γ ` ∃x .A,B[t ′/y ],∆
(∃)

Γ ` ∃x .A, ∃y .B,∆
(∃)

If x 6∈ FV(t)!

13 / 52



CAUSALITY IN PROOFS

π

Γ ` A[t/x ],B,∆

Γ ` A[t/x ], ∀y .B,∆
(∀)

Γ ` ∃x .A,∀y .B,∆
(∃)  

π

Γ ` A[t/x ],B,∆

Γ ` ∃x .A,B,∆
(∃)

Γ ` ∃x .A, ∀y .B,∆
(∀)

If x 6∈ FV(t)!

13 / 52



CAUSALITY IN PROOFS

π

Γ ` A,B[t/y ],∆

Γ ` A, ∃y .B,∆
(∃)

Γ ` ∀x .A, ∃y .B,∆
(∀)  

π

Γ ` A,B[t/y ],∆

Γ ` ∀x .A,B[t/y ],∆
(∀)

Γ ` ∀x .A,∃y .B,∆
(∃)

If x 6∈ FV(t)!

13 / 52



CAUSALITY IN PROOFS

π

Γ ` A,B[t/y ],∆

Γ ` A, ∃y .B,∆
(∃)

Γ ` ∀x .A, ∃y .B,∆
(∀)  

π

Γ ` A,B[t/y ],∆

Γ ` ∀x .A,B[t/y ],∆
(∀)

Γ ` ∀x .A,∃y .B,∆
(∃)

If x 6∈ FV(t)!

13 / 52



Remark:
Γ ` ∀x .A,∆

is the same as
Γ, ∃x .A∗ ` ∆
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CAUSALITY IN PROOFS

For instance, we can permute

N(x) ` 0 = 0

N(x) ` ∃y .(y = 0)

∃x .N(x) ` ∃y .(y = 0)
 

N(x) ` 0 = 0

∃x .N(x) ` 0 = 0

∃x .N(x) ` ∃y .(y = 0)

but not

N(x) ` (x − x) = 0

N(x) ` ∃y .(y = 0)

∃x .N(x) ` ∃y .(y = 0)

15 / 52



CAUSALITY IN PROOFS

For instance, we can permute

N(x) ` 0 = 0

N(x) ` ∃y .(y = 0)

∃x .N(x) ` ∃y .(y = 0)
 

N(x) ` 0 = 0

∃x .N(x) ` 0 = 0

∃x .N(x) ` ∃y .(y = 0)

but not

N(x) ` (x − x) = 0

N(x) ` ∃y .(y = 0)

∃x .N(x) ` ∃y .(y = 0)

15 / 52



CAUSALITY IN PROOFS

Dependencies induced by proofs are of the form

∀x
++ ∃y

where the witness t given for y has x as free variable.

This models the causality in information.
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DIALOGUE GAMES
∀x ∃y P(x , y)

∀belard and ∃loise
17 / 52



GAMES

Formulas

A = ∃x .A | ∀x .A | A ∧ A | A ∨ A | . . .

will be interpreted as games (M, λ,≤):

I a set M of moves,

I a partial order ≤ on M called causality,

I a function λ : M → {∀, ∃} indicating polarity
(∀: Opponent, ∃: Player)

18 / 52



GAMES

Formulas

A = ∃x .A | ∀x .A | A ∧ A | A ∨ A | . . .

∀x .∀y .(∀z .P ∨ ∃z ′.Q)

 

∀ ∃

∀

^^ @@

∀

OO
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STRATEGIES

strategy = dependency relation on the moves of the game

` P,Q[t/z ′]

` P,∃z ′.Q
(∃)

` ∀z .P,∃z ′.Q
(∀)

` ∀y .(∀z .P ∨ ∃z ′.Q)
(∀)

` ∀x .∀y .(∀z .P ∨ ∃z ′.Q)

(∀)

 

∀ ∃

∀

^^ @@

∀

OO
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Free variables of t: {x , z}
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STRATEGIES

game A = partial order on the moves
strategy σ = relation on the moves

A strategy σ : A should moreover satisfy the following properties

1. Polarity: if m σ n then m opponent and n player move

2. Acyclicity: the relation ≤A ∪ σ is acyclic

Forbids:

(similar to the correctness criterion of LL)
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STRATEGIES

In this context, a strategy σ is a partial order relation on the moves
of the game. However, we could easily reformulate σ as the set of
plays (= sequences of moves) which respect the partial order σ.
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A FIRST STEP
We handle the case where connectives in formulas occur in leaves:

∀x1.∀x2.∃x3.∀x4.∀x5. ... P(xi1 , . . . , xik )

so games will be filiform (= total orders)

...

∀

OO

∀

OO

∃

OO

∀

OO

∀

OO
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INTERPRETING PROOFS
A formula

A

is interpreted by a game
JAK

Example

The formula
∀x .∀y .P

is interpreted by the game
∀

∀

OO
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INTERPRETING PROOFS
A sequent

A ` B

is interpreted by a game

JAK∗‖JBK

Example

The sequent
∀x .∀y .P ` ∀z .P

is interpreted by the game

∃

∃

OO

∀
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INTERPRETING PROOFS
A proof

...

A ` B

is interpreted by a strategy σ on the game

JAK∗‖JBK
Example

The proof is interpreted by the strategy

z = z ` z = z

∀y .z = y ` z = z

∀x .∀y .x = y ` z = z

∀x .∀y .x = y ` ∀z .z = z

∃

∃

OO

∀oo

^^>>>>>>>
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A MONOIDAL CATEGORY OF GAMES
We thus build a category Games:

I Objects A are filiform games

I Morphisms σ : A→ B are strategies on A∗‖B

I This category is monoidal:

∃

∃

OO

∀oo

^^>>>>>>>
⊗

∃

∀

@@�������
∀

UUOO

=

∀ // ∃

∃

OO

∀

UUOO

∃

OO

∀oo

^^>>>>>>>

OO

I Strategies σ : A→ B are particular relations on A× B,
composition is defined as in Rel.

I It is not obvious that the acyclicity condition of strategies is
preserved by composition!
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SO WHAT?

This semantics is nice but

I Why do strategies compose?

I We claim that all the strategies are definable
(i.e. are interpretation of proofs).
How do we show this?

I What does it tell us about the structure of dependencies?

In order to answer these questions, we build a presentation the
monoidal category Games.
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PRESENTING
THE CATEGORY
OF GAMES
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ROADMAP

We will progressively introduce presentations of the following
monoidal categories.

I MatN whose objects are integers and morphisms M : m→ n
are m × n matrices with coefficients in N, with the direct sum
as tensor product.

I Rel whose objects are integers and morphisms R : m→ n are
relations on [m]× [n].

I Games.
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PRESENTING CATEGORIES

The usual notion of presentation of a monoid has been generalized
by Burroni into the notion of n-polygraph which allows to present
(n − 1)-categories.

In particular, a (strict) monoidal category is the same as a
2-category with one 0-cell, so it can be presented by a 3-polygraph.
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Polygraphs are

a higher-dimensional generalization

of rewriting systems
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POLYGRAPHS
A 0-signature

Σ0

��

Σ1 Σ2 Σ3

Σ0 Σ∗1 Σ∗2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example

signature

rules

x y

x a // y

b

��

The presented 2-category: Σ∗/Σ3.
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POLYGRAPHS
A 1-signature generates a category

Σ0

��

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1

��

Σ2 Σ3

Σ0 Σ∗1
s∗0oo
t∗0

oo Σ∗2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example
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rules
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x
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22
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POLYGRAPHS
A 2-polygraph

Σ0

��

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1

��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}
Σ3

Σ0 Σ∗1
s∗0oo
t∗0

oo Σ∗2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example
signature terms rules

x a // y

b
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b

��>>>>>>>

x
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a

22

r⇓

y
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POLYGRAPHS
A 2-signature = a 2-polygraph

Σ0

��

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1

��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}
Σ3

Σ0 Σ∗1
s∗0oo
t∗0

oo Σ∗2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example
signature

rules

y b // y

b

��>>>>>>>

x

a
??��������

a

22

r⇓ ⇓s

y

y b // y

b

��>>>>>>>

x

a
??��������

a

22

r⇓
α
V ⇓s

y

The presented 2-category: Σ∗/Σ3.
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POLYGRAPHS
A 2-signature generates a 2-category

Σ0

��

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1

��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}
i2

��

Σ3

Σ0 Σ∗1
s∗0oo
t∗0

oo Σ∗2
s∗1oo
t∗1

oo
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Example
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a
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POLYGRAPHS
A 3-polygraph

Σ0

��

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1

��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}
i2

��

Σ3
s2

~~}}}}}}}}

t2~~}}}}}}}}

Σ0 Σ∗1
s∗0oo
t∗0

oo Σ∗2
s∗1oo
t∗1

oo

such that s∗1 ◦ s2 = s∗1 ◦ t2 and t∗1 ◦ s2 = t∗1 ◦ t2

Example
signature rules

y b // y

b

��>>>>>>>

x

a
??��������

a

22

r⇓ ⇓s

y

y b // y

b

��>>>>>>>

x

a
??��������

a

22

r⇓
α
V ⇓s

y

The presented 2-category: Σ∗/Σ3.
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POLYGRAPHS
A 3-polygraph

Σ0

��

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1

��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}
i2

��

Σ3
s2

~~}}}}}}}}

t2~~}}}}}}}}

Σ0 Σ∗1
s∗0oo
t∗0

oo Σ∗2
s∗1oo
t∗1

oo

such that s∗1 ◦ s2 = s∗1 ◦ t2 and t∗1 ◦ s2 = t∗1 ◦ t2

Example
signature rules

y b // y

b

��>>>>>>>

x

a
??��������

a

22

r⇓ ⇓s

y

y b // y

b

��>>>>>>>

x

a
??��������

a

22

r⇓
α
V ⇓s

y

The presented 2-category: Σ∗/Σ3.
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A FEW PARTICULAR CASES

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1

��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}
i2

��

Σ3
s2

~~}}}}}}}}

t2~~}}}}}}}}

Σ0 Σ∗1
s∗0oo
t∗0

oo Σ∗2
s∗1oo
t∗1

oo

I When Σ0 = {∗}, the presented 2-category has one 0-cell:
it is a monoidal category.

I When moreover Σ1 = {1}, the presented monoidal category
has integers as objects with tensor given by addition:
it is a PRO.
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PRESENTING MatN

The category MatN of matrices with coefficients in N contains the
following morphisms:

I µ =

(
1
1

)
: 2→ 1 pictured as

I η = () : 0→ 1 pictured as

I δ =
(
1 1

)
: 1→ 2 pictured as

I ε = () : 1→ 0 pictured as

I γ =

(
0 1
1 0

)
pictured as
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GENERATORS FOR MatN

Moreover, it seems that any matrix can be expressed as tensor and
product of those generators:

0 0
2 1
0 1



  

= (µ⊗ µ) ◦ (1⊗ γ ⊗ 1) ◦ (γ ⊗ 1⊗ 1) ◦ (1⊗ δ ⊗ 1) ◦ (1⊗ δ ⊗ ε)

So, we have hope to have a presentation with those generators.
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RELATIONS
It is easy to show that in MatN, the interpretations of the
generators satisfy the following relations.
I γ induces a symmetry:

I It is involutive:

I It satisfies the Yang-Baxter:

I It is also “natural” wrt other generators:

etc.

I (µ, η, γ) is a commutative monoid:
I Dually, (δ, ε, γ) is a commutative comonoid.
I (µ, η, δ, ε, γ) is a bialgebra:
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A CANDIDATE PRESENTATION

So, we have a candidate for presenting MatN:

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1

��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}
i2

��

Σ3
s2

~~}}}}}}}}

t2~~}}}}}}}}

Σ0 Σ∗1
s∗0oo
t∗0

oo Σ∗2
s∗1oo
t∗1

oo

with

Σ0 = {∗}
Σ1 = {1 : ∗ → ∗}
Σ2 = {µ : 2→ 1, η : 0→ 1, δ : 2⊗ 1, ε : 1→ 0, γ : 2→ 2}
Σ3 = {. . .}

where 2 is a notation for 1⊗ 1.
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CANONICAL FORMS
I To show that the polygraph is a presentation of MatN,

we could
I orient the relations,
I show that the rewriting system is terminating,
I show that it is locally confluent (or complete it),
I show that the canonical forms are in bijection with matrices.

I (I think that) this can actually be done, but it is quite
complicated because

I termination is difficult to show (cf. Guiraud)
I we are not guaranteed to have a finite number of critical pairs

(cf. Lafont, Guiraud & Malbos, Mimram)
I the normal forms can be difficult to describe

I Here we adopt a semantic approach (adapted from Lafont) by
I defining (manually) normal forms,
I show that any morphism rewrites to a normal form,
I show that the interpretation of normal forms are in bijection

with matrices
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PRE-CANONICAL FORMS
We define the following pre-canonical forms for morphisms:
I Z = id0 is a pcf

I if φ is a pcf then Eφ = η ⊗ φ is a pcf
I if φ is a pcf then Hφ = ε⊗ φ is a pcf
I if φ : m→ n is a pcf and i ∈ N st 0 ≤ i < n then Wiφ is a pcf

Wiφ =

(add a link between the first input and the i-th output)

So, pcf are well-typed morphisms generated by the grammar

φ ::= Z | Eφ | Hφ | Wiφ

37 / 52



PRE-CANONICAL FORMS
We define the following pre-canonical forms for morphisms:
I Z = id0 is a pcf
I if φ is a pcf then Eφ = η ⊗ φ is a pcf

Eφ =

I if φ is a pcf then Hφ = ε⊗ φ is a pcf

Hφ =

I if φ : m→ n is a pcf and i ∈ N st 0 ≤ i < n then Wiφ is a pcf

Wiφ =

(add a link between the first input and the i-th output)

So, pcf are well-typed morphisms generated by the grammar

φ ::= Z | Eφ | Hφ | Wiφ

37 / 52



PRE-CANONICAL FORMS
We define the following pre-canonical forms for morphisms:
I Z = id0 is a pcf
I if φ is a pcf then Eφ = η ⊗ φ is a pcf

Eφ =

I if φ is a pcf then Hφ = ε⊗ φ is a pcf

Hφ =

I if φ : m→ n is a pcf and i ∈ N st 0 ≤ i < n then Wiφ is a pcf

Wiφ =

(add a link between the first input and the i-th output)

So, pcf are well-typed morphisms generated by the grammar

φ ::= Z | Eφ | Hφ | Wiφ

37 / 52



PRE-CANONICAL FORMS
We define the following pre-canonical forms for morphisms:
I Z = id0 is a pcf
I if φ is a pcf then Eφ = η ⊗ φ is a pcf
I if φ is a pcf then Hφ = ε⊗ φ is a pcf
I if φ : m→ n is a pcf and i ∈ N st 0 ≤ i < n then Wiφ is a pcf

Wiφ =

(add a link between the first input and the i-th output)

So, pcf are well-typed morphisms generated by the grammar

φ ::= Z | Eφ | Hφ | Wiφ

37 / 52



PRE-CANONICAL FORMS
We define the following pre-canonical forms for morphisms:
I Z = id0 is a pcf
I if φ is a pcf then Eφ = η ⊗ φ is a pcf
I if φ is a pcf then Hφ = ε⊗ φ is a pcf
I if φ : m→ n is a pcf and i ∈ N st 0 ≤ i < n then Wiφ is a pcf

Wiφ =

(add a link between the first input and the i-th output)

So, pcf are well-typed morphisms generated by the grammar

φ ::= Z | Eφ | Hφ | Wiφ

37 / 52



REDUCING TO PCF
Proposition

Every morphism φ is equivalent (by the rules of the presentation)
to a pre-canonical form.

Proof.
We use Lafont’s “tetris” method, by induction on the size of φ.
Easy for the identity. Otherwise φ can be decomposed as ξ ◦ ψ
where ξ contains exactly one generator and by IH we can suppose
that ψ is a pcf. We proceed by case analysis:

1. Suppose that the generator of ξ is γ:

1.1 Suppose that ψ = Hψ′:
1.2 . . .

This means that every matrix M can be described by the following
operations:
I Z : 0→ 0: the empty matrix
I EM: add an empty row to the matrix
I HM: add an empty column to the matrix
I WiM: add 1 in the (1, i)-th cell of M

However, matrices are not necessarily described in an unique way
by this method.
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38 / 52



REDUCING TO PCF

Proposition

Every morphism φ is equivalent (by the rules of the presentation)
to a pre-canonical form.

This means that every matrix M can be described by the following
operations:

I Z : 0→ 0: the empty matrix

I EM: add an empty row to the matrix

I HM: add an empty column to the matrix

I WiM: add 1 in the (1, i)-th cell of M

However, matrices are not necessarily described in an unique way
by this method.

38 / 52



CANONICAL FORMS
Canonical forms are pre-canonical forms

φ ::= Z | Eφ | Hφ | Wiφ

(i.e. words over {Z ,E ,H,Wi}) which are normal wrt the rewriting
system

HWi =⇒ Wi+1H
HE =⇒ EH

WiWj =⇒ WjWi when i < j

Lemma
Two pcf φ and ψ such that φ =⇒ ψ are equivalent wrt the
relations:
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FINALLY THE PRESENTATION
Proposition
Canonical forms wrt
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HE =⇒ EH

WiWj =⇒ WjWi when i < j

are in bijection with matrices in MatN.
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The canonical forms are of the form

W
k(m−1,n−1)

n−1 . . .W
k(m−1,0

0 E . . . . . . . . .EW
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n−1 . . .W
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0 E H . . .H︸ ︷︷ ︸
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where
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I WiM: add 1 in the (1, i)-th cell of M
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FINALLY THE PRESENTATION
Proposition
Canonical forms wrt

HWi =⇒ Wi+1H
HE =⇒ EH

WiWj =⇒ WjWi when i < j

are in bijection with matrices in MatN.

Theorem
The polygraph introduced earlier is a presentation of MatN,
otherwise said MatN is the free mon. cat. with a bicom. bialgebra.

These results had essentially been proved earlier by Lafont, however the
“two-staged method” (pcf/cf)

I avoids having to introduce extra generators

I makes easy to see that nf correspond to matrices

I generalize easily to a presentation of Games
(of course other methods could be used to show this result)

40 / 52



FINALLY THE PRESENTATION
Proposition
Canonical forms wrt

HWi =⇒ Wi+1H
HE =⇒ EH

WiWj =⇒ WjWi when i < j

are in bijection with matrices in MatN.

Theorem
The polygraph introduced earlier is a presentation of MatN,
otherwise said MatN is the free mon. cat. with a bicom. bialgebra.

These results had essentially been proved earlier by Lafont, however the
“two-staged method” (pcf/cf)

I avoids having to introduce extra generators

I makes easy to see that nf correspond to matrices

I generalize easily to a presentation of Games
(of course other methods could be used to show this result) 40 / 52



A PRESENTATION OF Rel

The category Rel can be presented by the same polygraph with the
following extra relation added:

(1)

A bialgebra with (1) is called qualitative.

The fact that is a presentation can be shown directly or by showing
that

Rel ∼= MatN/ ≈
where ≈ identifies two matrices with the same non-null
coefficients, i.e.

Rel ∼= MatZ2

and showing that adding (1) precisely does this quotienting.
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PRESENTING Games

Similarly, we can find a presentation for the category of strategies:

∀ ∀

∃

VV

// ∃

∀ ∃

∃

77oooooooooo

??�������������
∀

ggOOOOOOOOOO
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∀ ∃

∃ ∀

42 / 52



PRESENTING Games

Similarly, we can find a presentation for the category of strategies:

∀ ∀

∃

VV

// ∃

∀ ∃

∃

77oooooooooo

??�������������
∀

ggOOOOOOOOOO

 

∀ ∀

∃ ∃

∀ ∃

∃ ∀

42 / 52



PRESENTING Games

It can be shown that our initial category of games and strategies
can be presented by a 3-polygraph such that

Σ0 = {∗} Σ1 = {∃,∀}
where Σ2 contains generators

∃
∃

∃
∃

∃
∃

∃
∃

∃ ∃

∃ ∃

with relations making it a qualitative bicommutative bialgebra (as
in the previous presentation)
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PRE-NORMAL FORMS
Similar to before (but typed) with the following productions added:

Aiφ =

...

∀

φ
...

...
...

∃

Biφ =

...

∃

φ
...

...
...

∀
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INTERPRETATION OF THE
GENERATORS

For instance
∃ ∃

∃ ∃
gets interpreted as

x = y ` y = x

x = y ` ∃v .y = v

x = y ` ∃u.∃v .u = v

∃y .x = y ` ∃u.∃v .u = v

∃x .∃y .x = y ` ∃u.∃v .u = v

etc.
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The category Games
is the

free monoidal category
containing a

qualitative bicommutative bialgebra
and its dual.

46 / 52



TECHNICAL BYPRODUCTS

From this presentation we deduce that

I strategies do compose
(the acyclicity condition is preserved by composition)

I strategies are definable
(i.e. are the interpretations of proofs)
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ABSTRACT METHODOLOGY
We have replaced an external definition of the category Games:

I category of relations which satisfy conditions
(polarity + acyclicity)

I restricting

I global correctness

by an internal definition:

I presentation of the category

I generating

I local correctness

We ought to be able to do the same with the correctness criterion
of linear logic.
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ABOUT PROOFS

I The proofs are very boring, systematic and involves
considering lots of cases. . .

I . . . which is good news: we can hope mechanization
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ABOUT TECHNOLOGY

I This methodology can be applied to give presentation of many
categories where we know how to canonically “enumerate” the
morphisms, without having to prove termination or local
confluence.

I However, we can in many cases get a convergent rewriting
system.

I If we restrict the presentation of MatN to (µ, η, γ), we get
essentially a presentation of the terminal operad Com: having
an explicit symmetry avoids having to consider shuffle operads.
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FORMULAS WITH CONNECTIVES
We should be able to extend this to formulas with connectives
(ongoing work), this requires going up one dimension:

. . .

∀x .∃y .(P ⊗ Q) ` (∀s.∃t.P)⊗ (∀u.∃v .Q)

gets interpreted by the following surface diagram

First order connectives somehow act as the tensorial negation in
current Melliès work!...
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Thanks!

Any question?
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