THE ALGEBRAIC STRUCTURE OF FIRST ORDER CAUSALITY

SAMUEL MIMRAM

LOGIC AND INTERACTIONS ALGEBRA AND COMPUTATION

28 FEBRUARY 2012

IN THIS TALK

- Uses of higher-dimensional rewriting techniques to study models of logics and computation.
- Techniques to study rewriting in monoidal categories (PROs).
- ▶ We don't necessarily need termination to have normal forms.

GAME SEMANTICS

SEMANTICS

From a typed programming language, one can build a category \mathcal{L} :

- objects are types
- morphisms are programs of type $A \rightarrow B$, up to reduction

SEMANTICS

From a typed programming language, one can build a category \mathcal{L} :

- objects are types
- morphisms are programs of type $A \rightarrow B$, up to reduction

A denotational semantics is a functor $[\![-]\!] : \mathcal{L} \to \mathcal{C}$, thus providing *invariants* of computations over time.

SEMANTICS

From a typed programming language, one can build a category \mathcal{L} :

- objects are types
- morphisms are programs of type $A \rightarrow B$, up to reduction

A denotational semantics is a functor $[\![-]\!] : \mathcal{L} \to \mathcal{C}$, thus providing *invariants* of computations over time.

For instance, one can try to interpret the language in **Set**:

$$\llbracket \texttt{int} \rrbracket = \mathbb{N} \qquad \llbracket \texttt{A} * \texttt{B} \rrbracket = \llbracket \texttt{A} \rrbracket \times \llbracket \texttt{B} \rrbracket$$
$$\llbracket \texttt{+:int} * \texttt{int} \twoheadrightarrow \texttt{int} \rrbracket = + : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

TOWARDS GAME SEMANTICS

This naive interpretation in **Set** will fail in general.

Most programming languages require more structure than we have in Set:

x = 0; while (x < 5) { x = x + 1 }; return x

should be interpreted using a smallest fixpoint construction

TOWARDS GAME SEMANTICS

This naive interpretation in **Set** will fail in general.

Most programming languages require more structure than we have in Set:

x = 0; while (x < 5) { x = x + 1 }; return x

should be interpreted using a smallest fixpoint construction

We want to be able to characterize the image of the semantic functor (this is closely related to the *full abstraction problem*).

TOWARDS GAME SEMANTICS

This naive interpretation in **Set** will fail in general.

Most programming languages require more structure than we have in Set:

x = 0; while (x < 5) { x = x + 1 }; return x

should be interpreted using a smallest fixpoint construction

We want to be able to characterize the image of the semantic functor (this is closely related to the *full abstraction problem*).

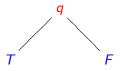
We have to interpret our programming language in categories C which are "richer" than **Set**. Here, I will be interested in C = **Games** whose objects are *games* and morphisms are *strategies*.

GAME SEMANTICS

A game $G = (M, \leq, \lambda)$ is

- a set M of moves
- ▶ a partial order ≤ on M called causality
- a *polarization* function $\lambda : M \rightarrow \{O, P\}$

For instance, the game $\ensuremath{\mathbb{B}}$ corresponding to booleans is

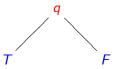


GAME SEMANTICS

A game $G = (M, \leq, \lambda)$ is

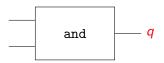
- a set M of moves
- ▶ a partial order ≤ on M called causality
- a *polarization* function $\lambda : M \rightarrow \{O, P\}$

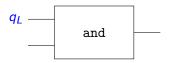
For instance, the game $\mathbb B$ corresponding to booleans is

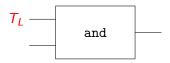


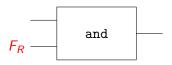
A **strategy** on a game is a set of sequences of moves (*plays*) respecting the order of the game and closed under prefix.

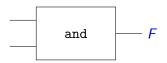
For instance, the strategy corresponding to *true* on \mathbb{B} is $\{\varepsilon, q, qT\}$.



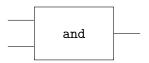








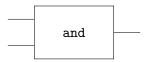
The general idea is to see a program as a black-box and see how it reacts to its environment:



So, the strategy corresponding to and will contain

 $qq_L T_L q_R F_R F$

The general idea is to see a program as a black-box and see how it reacts to its environment:

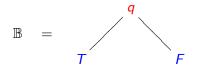


So, the strategy corresponding to and will contain

 $qq_L T_L q_R F_R F$ $qq_L T_L q_R T_R T$

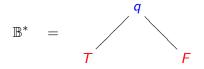
. . .

It was discovered by Joyal that Conway games can be made into a category: given a game $G = (M, \leq, \lambda)$ we define



It was discovered by Joyal that Conway games can be made into a category: given a game $G = (M, \leq, \lambda)$ we define

• G^* as G with polarities (λ) inverted

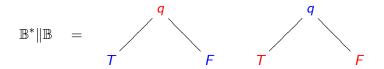


It was discovered by Joyal that Conway games can be made into a category: given a game $G = (M, \leq, \lambda)$ we define

• G^* as G with polarities (λ) inverted

•
$$G_1 || G_2 = (M_1 + M_2, \le_1 + \le_2, \lambda_1 + \lambda_2)$$

i.e. G_1 and G_2 in "parallel"



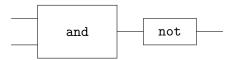
One can build a category whose objects are games, morphisms $A \rightarrow B$ are (alternating) strategies on $A^* || B$.

It was discovered by Joyal that Conway games can be made into a category: given a game $G = (M, \leq, \lambda)$ we define

• G^* as G with polarities (λ) inverted

•
$$G_1 || G_2 = (M_1 + M_2, \leq_1 + \leq_2, \lambda_1 + \lambda_2)$$

i.e. G_1 and G_2 in "parallel"



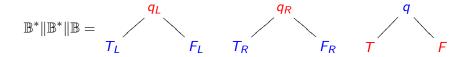
One can build a category whose objects are games, morphisms $A \rightarrow B$ are (alternating) strategies on $A^* || B$.

It was discovered by Joyal that Conway games can be made into a category: given a game $G = (M, \leq, \lambda)$ we define

• G^* as G with polarities (λ) inverted

•
$$G_1 || G_2 = (M_1 + M_2, \le_1 + \le_2, \lambda_1 + \lambda_2)$$

i.e. G_1 and G_2 in "parallel"



One can build a category whose objects are games, morphisms $A \rightarrow B$ are (alternating) strategies on $A^* || B$.

For instance, [and] is a strategy on $\mathbb{B}^* || \mathbb{B}^* || \mathbb{B}$.

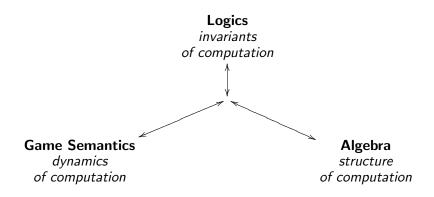
A lot can be done in this framework, in particular definable strategies (in the image of the semantics) can be characterized as *innocent strategies*.

- A lot can be done in this framework, in particular definable strategies (in the image of the semantics) can be characterized as *innocent strategies*.
- By the Curry-Howard correspondence, a program is "the same thing" as a proof, so it makes sense to study game semantics for proofs.

- A lot can be done in this framework, in particular definable strategies (in the image of the semantics) can be characterized as *innocent strategies*.
- By the Curry-Howard correspondence, a program is "the same thing" as a proof, so it makes sense to study game semantics for proofs.
- More specifically, I will be interested here in the causality induced by fist-order connectives in logic.

- A lot can be done in this framework, in particular definable strategies (in the image of the semantics) can be characterized as *innocent strategies*.
- By the Curry-Howard correspondence, a program is "the same thing" as a proof, so it makes sense to study game semantics for proofs.
- More specifically, I will be interested here in the causality induced by fist-order connectives in logic.
- I will characterize definable strategies by giving a presentation of the monoidal category of games for this logic.

UNIFYING POINTS OF VIEW



CAUSALITY IN FIRST ORDER LOGIC

FIRST-ORDER LOGIC

Formulas:

 $A ::= \exists x.A \mid \forall x.A \mid A \land A \mid A \lor A \mid P$

where *P* are given propositions depending on variables, e.g. P(x, y) = (x = y).

FIRST-ORDER LOGIC

Formulas:

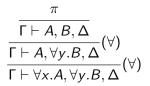
 $A ::= \exists x.A \mid \forall x.A \mid A \land A \mid A \lor A \mid P$ where P are given propositions depending on variables, e.g. P(x, y) = (x = y). Rules:

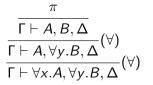
$$\frac{\Gamma \vdash P, \Delta}{\Gamma \vdash \forall x. P, \Delta} (\forall) \qquad \qquad \frac{\Gamma \vdash P[t/x], \Delta}{\Gamma \vdash \exists x. P, \Delta} (\exists)$$

(with $x \notin FV(\Gamma, \Delta)$)

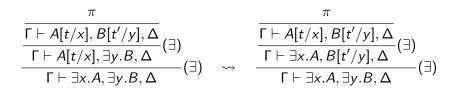
$$\frac{\Gamma \vdash A, \Delta \qquad \Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta} (\land) \qquad \qquad \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta} (\lor)$$

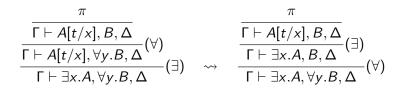
: + consistent axioms depending on the propositions

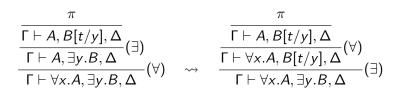


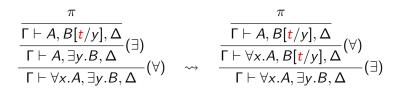


 $\rightsquigarrow \qquad \frac{\frac{\pi}{\Gamma \vdash A, B, \Delta}}{\frac{\Gamma \vdash \forall x. A, B, \Delta}{\Gamma \vdash \forall x. A, \forall y. B, \Delta}} (\forall)$









If $x \notin FV(t)!$

Remark:

$$\Gamma \vdash \forall x.A, \Delta$$

is the same as

 Γ , $\exists x. A^* \vdash \Delta$

For instance, we can permute

For instance, we can permute

but not

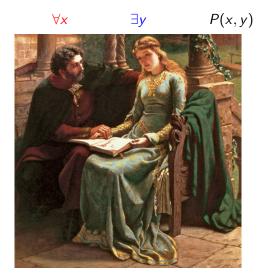
$$\frac{\overline{\mathbb{N}(x) \vdash (x - x) = 0}}{\overline{\mathbb{N}(x) \vdash \exists y.(y = 0)}}$$
$$\frac{\overline{\mathbb{N}(x) \vdash \exists y.(y = 0)}}{\exists x.\mathbb{N}(x) \vdash \exists y.(y = 0)}$$

Dependencies induced by proofs are of the form

where the witness t given for y has x as free variable.

This models the **causality** in information.

DIALOGUE GAMES



∀belard and ∃loise

GAMES

Formulas

$$A = \exists x.A \mid \forall x.A \mid A \land A \mid A \lor A \mid \ldots$$

will be interpreted as games (M, λ, \leq) :

- ▶ a set *M* of *moves*,
- a partial order \leq on *M* called *causality*,
- a function λ : M → {∀,∃} indicating polarity
 (∀: Opponent, ∃: Player)

GAMES

Formulas

$A = \exists x.A \mid \forall x.A \mid A \land A \mid A \lor A \mid \ldots$

 $\forall x.\forall y.(\forall z.P \lor \exists z'.Q)$

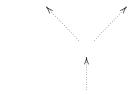
GAMES

Formulas

$$A = \exists x.A \mid \forall x.A \mid A \land A \mid A \lor A \mid \dots$$
$$\forall x.\forall y.(\forall z.P \lor \exists z'.Q) \quad \rightsquigarrow \qquad \forall \forall y.(\forall z.P \lor \exists z'.Q) \quad \forall y \in \mathbb{R}$$

strategy $\ = \$ dependency relation on the moves of the game

 $\sim \rightarrow$



 $\vdash \forall x.\forall y.(\forall z.P \lor \exists z'.Q)$

strategy $\ = \$ dependency relation on the moves of the game

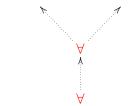
 \rightarrow

$$\frac{\vdash \forall y.(\forall z.P \lor \exists z'.Q)}{\vdash \forall x.\forall y.(\forall z.P \lor \exists z'.Q)} (\forall)$$

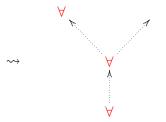
strategy $\ = \$ dependency relation on the moves of the game

 \rightarrow

$$\frac{\overline{\vdash \forall z.P, \exists z'.Q}}{\vdash \forall y.(\forall z.P \lor \exists z'.Q)} (\forall) \\ \vdash \forall x.\forall y.(\forall z.P \lor \exists z'.Q)} (\forall)$$

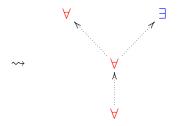


strategy $\ = \$ dependency relation on the moves of the game



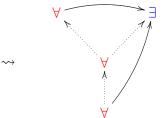
strategy $\ = \$ dependency relation on the moves of the game

$$\frac{\frac{\vdash P, Q[t/z']}{\vdash P, \exists z'.Q}(\exists)}{\frac{\vdash \forall z.P, \exists z'.Q}{\vdash \forall y.(\forall z.P \lor \exists z'.Q)}(\forall)}$$



strategy $\ = \$ dependency relation on the moves of the game

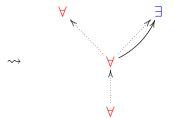
$$\frac{\overline{\vdash P, Q[t/z']}}{\vdash P, \exists z'.Q} (\exists) \\ \overline{\vdash \forall z.P, \exists z'.Q} (\forall) \\ \overline{\vdash \forall y.(\forall z.P \lor \exists z'.Q)} (\forall) \\ \overline{\vdash \forall x.\forall y.(\forall z.P \lor \exists z'.Q)} (\forall)$$



Free variables of t: $\{x, z\}$

strategy $\ = \$ dependency relation on the moves of the game

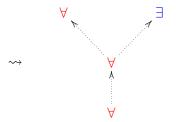
$$\frac{\overline{\vdash P, Q[t/z']}}{\vdash P, \exists z'.Q} (\exists) \\ \overline{\vdash \forall z.P, \exists z'.Q} (\forall) \\ \overline{\vdash \forall y.(\forall z.P \lor \exists z'.Q)} (\forall) \\ \overline{\vdash \forall x.\forall y.(\forall z.P \lor \exists z'.Q)} (\forall)$$



Free variables of t: $\{y\}$

strategy $\ = \$ dependency relation on the moves of the game

$$\frac{\frac{\overline{\vdash P, Q[t/z']}}{\vdash P, \exists z'.Q}(\exists)}{\frac{\vdash \forall z.P, \exists z'.Q}{\vdash \forall y.(\forall z.P \lor \exists z'.Q)}(\forall)}$$



Free variables of $t: \emptyset$

game A = partial order on the moves strategy $\sigma =$ relation on the moves

game A = partial order on the moves strategy $\sigma =$ relation on the moves

A strategy σ : A should moreover satisfy the following properties

- 1. Polarity: if $m \sigma n$ then m opponent and n player move
- 2. Acyclicity: the relation $\leq_A \cup \sigma$ is **acyclic**

game A = partial order on the moves strategy $\sigma =$ relation on the moves

A strategy σ : A should moreover satisfy the following properties 1. Polarity: if $m \sigma n$ then m opponent and n player move

Forbids:

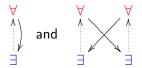
i oi bius

game A = partial order on the moves strategy $\sigma =$ relation on the moves

A strategy $\sigma: A$ should moreover satisfy the following properties

2. Acyclicity: the relation $\leq_A \cup \sigma$ is **acyclic**

Forbids:



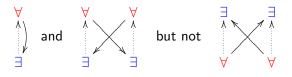
(similar to the correctness criterion of LL)

game A = partial order on the moves strategy $\sigma =$ relation on the moves

A strategy $\sigma: A$ should moreover satisfy the following properties

2. Acyclicity: the relation $\leq_A \cup \sigma$ is **acyclic**

Forbids:



(similar to the correctness criterion of LL)

In this context, a strategy σ is a partial order relation on the moves of the game. However, we could easily reformulate σ as the set of plays (= sequences of moves) which respect the partial order σ .

A FIRST STEP

We handle the case where connectives in formulas occur in leaves:

 $\forall x_1.\forall x_2.\exists x_3.\forall x_4.\forall x_5. \dots P(x_{i_1},\ldots,x_{i_k})$

so games will be *filiform* (= total orders)

INTERPRETING PROOFS

A formula

is interpreted by a game

 $\llbracket A \rrbracket$

Α

Example The formula

$\forall x. \forall y. P$

Ą

A

is interpreted by the game

INTERPRETING PROOFS

A sequent

 $A \vdash B$

is interpreted by a game

 $[\![A]\!]^* \| [\![B]\!]$

Example

The sequent

 $\forall x.\forall y.P \vdash \forall z.P$

is interpreted by the game

I

INTERPRETING PROOFS

A proof

$$\frac{1}{A \vdash B}$$

is interpreted by a strategy $\boldsymbol{\sigma}$ on the game

 $[\![A]\!]^* \| [\![B]\!]$

Example

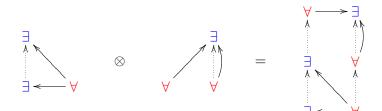
The proof is interpreted by the strategy $\frac{\overline{z = z \vdash z = z}}{\forall y.z = y \vdash z = z}$ $\frac{\forall x. \forall y.x = y \vdash z = z}{\forall x. \forall y.x = y \vdash \forall z.z = z}$

We thus build a category Games:

- Objects A are filiform games
- Morphisms $\sigma: A \rightarrow B$ are strategies on $A^* || B$

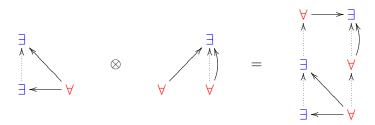
We thus build a monoidal category Games:

- Objects A are filiform games
- Morphisms $\sigma: A \rightarrow B$ are strategies on $A^* || B$
- This category is monoidal:



We thus build a monoidal category Games:

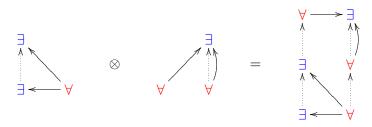
- Objects A are filiform games
- Morphisms $\sigma: A \rightarrow B$ are strategies on $A^* || B$
- This category is monoidal:



Strategies σ : A → B are particular relations on A × B, composition is defined as in Rel.

We thus build a monoidal category Games:

- Objects A are filiform games
- Morphisms $\sigma: A \rightarrow B$ are strategies on $A^* || B$
- This category is monoidal:



- Strategies σ : A → B are particular relations on A × B, composition is defined as in Rel.
- It is not obvious that the acyclicity condition of strategies is preserved by composition!

SO WHAT?

This semantics is nice but

- Why do strategies compose?
- We claim that all the strategies are definable (i.e. are interpretation of proofs).
 How do we show this?
- What does it tell us about the structure of dependencies?

SO WHAT?

This semantics is nice but

- Why do strategies compose?
- We claim that all the strategies are definable (i.e. are interpretation of proofs).
 How do we show this?
- What does it tell us about the structure of dependencies?

In order to answer these questions, we build a **presentation** the monoidal category **Games**.

PRESENTING THE CATEGORY OF GAMES

ROADMAP

We will progressively introduce presentations of the following monoidal categories.

- ► Mat_N whose objects are integers and morphisms M : m → n are m × n matrices with coefficients in N, with the direct sum as tensor product.
- ► Rel whose objects are integers and morphisms R : m → n are relations on [m] × [n].
- Games.

PRESENTING CATEGORIES

The usual notion of presentation of a monoid has been generalized by Burroni into the notion of *n*-polygraph which allows to present (n-1)-categories.

In particular, a (strict) monoidal category is the same as a 2-category with one 0-cell, so it can be presented by a 3-polygraph.

Polygraphs are a higher-dimensional generalization of rewriting systems

A 0-signature

Example

signature

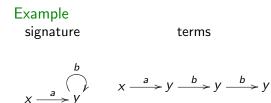
х У

A 1-polygraph

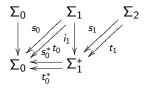
Example

A 1-signature = a 1-polygraph

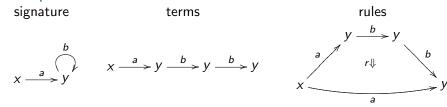
A 1-signature generates a category



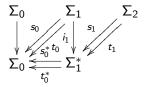
A 2-polygraph



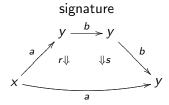
such that
$$s_0^*\circ s_1=s_0^*\circ t_1$$
 and $t_0^*\circ s_1=t_0^*\circ t_1$
Example



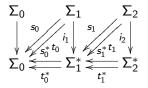
A 2-signature = a 2-polygraph



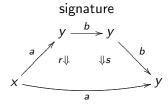
such that
$$s_0^*\circ s_1=s_0^*\circ t_1$$
 and $t_0^*\circ s_1=t_0^*\circ t_1$
Example



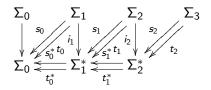
A 2-signature generates a 2-category



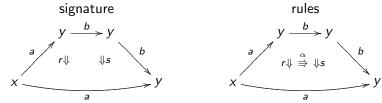
such that $s_0^*\circ s_1=s_0^*\circ t_1$ and $t_0^*\circ s_1=t_0^*\circ t_1$ Example



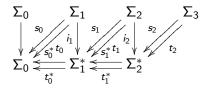
A 3-polygraph

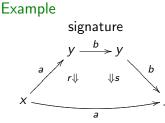


such that $s_1^*\circ s_2=s_1^*\circ t_2$ and $t_1^*\circ s_2=t_1^*\circ t_2$ Example

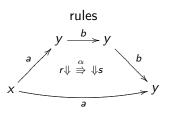


A 3-polygraph

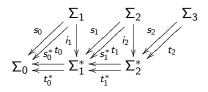




The presented 2-category: $\Sigma^*/\Sigma_3.$



A FEW PARTICULAR CASES



- When Σ₀ = {*}, the presented 2-category has one 0-cell: it is a *monoidal category*.
- When moreover Σ₁ = {1}, the presented monoidal category has integers as objects with tensor given by addition: it is a *PRO*.

•
$$\mu = \begin{pmatrix} 1 \\ 1 \end{pmatrix} : 2 \rightarrow 1 \text{ pictured as }$$

PRESENTING $Mat_{\mathbb{N}}$

•
$$\mu = \begin{pmatrix} 1 \\ 1 \end{pmatrix} : 2 \rightarrow 1$$
 pictured as
• $\eta = () : 0 \rightarrow 1$ pictured as
• $\delta = (1 \ 1) : 1 \rightarrow 2$ pictured as
• $\delta = \begin{pmatrix} 1 \ 1 \end{pmatrix} : 1 \rightarrow 2$ pictured as

•
$$\mu = \begin{pmatrix} 1 \\ 1 \end{pmatrix} : 2 \rightarrow 1$$
 pictured as
• $\eta = () : 0 \rightarrow 1$ pictured as
• $\delta = \begin{pmatrix} 1 & 1 \end{pmatrix} : 1 \rightarrow 2$ pictured as
• $\delta = \begin{pmatrix} 1 & 1 \end{pmatrix} : 1 \rightarrow 2$ pictured as

•
$$arepsilon = (): 1
ightarrow 0$$
 pictured as $-- \circ$

•
$$\mu = \begin{pmatrix} 1 \\ 1 \end{pmatrix} : 2 \rightarrow 1 \text{ pictured as}$$

• $\eta = () : 0 \rightarrow 1 \text{ pictured as}$ \sim
• $\delta = \begin{pmatrix} 1 & 1 \end{pmatrix} : 1 \rightarrow 2 \text{ pictured as}$ $-$
• $\varepsilon = () : 1 \rightarrow 0 \text{ pictured as}$ $- \circ$
• $\gamma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ pictured as}$

GENERATORS FOR $\mathsf{Mat}_{\mathbb{N}}$

Moreover, it seems that any matrix can be expressed as tensor and product of those generators:

 $\begin{pmatrix} 0 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$

GENERATORS FOR $\mathsf{Mat}_{\mathbb{N}}$

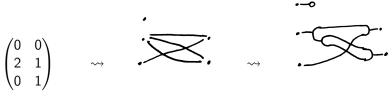
Moreover, it seems that any matrix can be expressed as tensor and product of those generators:

GENERATORS FOR $\mathsf{Mat}_{\mathbb{N}}$

Moreover, it seems that any matrix can be expressed as tensor and product of those generators:

GENERATORS FOR Mat_{\mathbb{N}}

Moreover, it seems that any matrix can be expressed as tensor and product of those generators:

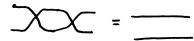


 $= (\mu \otimes \mu) \circ (1 \otimes \gamma \otimes 1) \circ (\gamma \otimes 1 \otimes 1) \circ (1 \otimes \delta \otimes 1) \circ (1 \otimes \delta \otimes \varepsilon)$

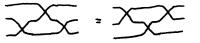
So, we have hope to have a presentation with those generators.

It is easy to show that in ${\pmb{Mat}}_{\mathbb{N}},$ the interpretations of the generators satisfy the following relations.

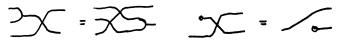
- γ induces a symmetry:
 - It is involutive:



It satisfies the Yang-Baxter:



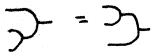
It is also "natural" wrt other generators:



etc.

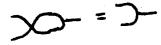
It is easy to show that in $\textbf{Mat}_{\mathbb{N}},$ the interpretations of the generators satisfy the following relations.

- γ induces a symmetry:
- (μ, η, γ) is a commutative monoid:
 - It is associative:



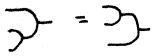
It is unital:

It is commutative:



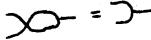
It is easy to show that in ${\pmb{Mat}}_{\mathbb{N}},$ the interpretations of the generators satisfy the following relations.

- γ induces a symmetry:
- (μ, η, γ) is a commutative monoid:
 - It is associative:



It is unital:

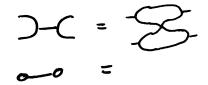
It is commutative:



• Dually, $(\delta, \varepsilon, \gamma)$ is a commutative comonoid.

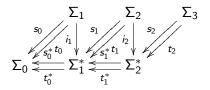
It is easy to show that in $\textbf{Mat}_{\mathbb{N}},$ the interpretations of the generators satisfy the following relations.

- γ induces a symmetry:
- (μ, η, γ) is a commutative monoid:
- Dually, $(\delta, \varepsilon, \gamma)$ is a commutative comonoid.
- $(\mu, \eta, \delta, \varepsilon, \gamma)$ is a bialgebra:



A CANDIDATE PRESENTATION

So, we have a candidate for presenting $\boldsymbol{Mat}_{\mathbb{N}}$:



with

where 2 is a notation for $1 \otimes 1$.

CANONICAL FORMS

- ► To show that the polygraph is a presentation of Mat_N, we could
 - orient the relations,
 - show that the rewriting system is terminating,
 - show that it is locally confluent (or complete it),
 - show that the canonical forms are in bijection with matrices.

CANONICAL FORMS

- ► To show that the polygraph is a presentation of Mat_N, we could
 - orient the relations,
 - show that the rewriting system is terminating,
 - show that it is locally confluent (or complete it),
 - show that the canonical forms are in bijection with matrices.
- (I think that) this can actually be done, but it is quite complicated because
 - termination is difficult to show (cf. Guiraud)
 - we are not guaranteed to have a finite number of critical pairs (cf. Lafont, Guiraud & Malbos, Mimram)
 - the normal forms can be difficult to describe

CANONICAL FORMS

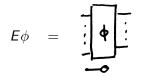
- ► To show that the polygraph is a presentation of Mat_N, we could
 - orient the relations,
 - show that the rewriting system is terminating,
 - show that it is locally confluent (or complete it),
 - show that the canonical forms are in bijection with matrices.
- (I think that) this can actually be done, but it is quite complicated because
 - termination is difficult to show (cf. Guiraud)
 - we are not guaranteed to have a finite number of critical pairs (cf. Lafont, Guiraud & Malbos, Mimram)
 - the normal forms can be difficult to describe
- Here we adopt a semantic approach (adapted from Lafont) by
 - defining (manually) normal forms,
 - show that any morphism rewrites to a normal form,
 - show that the interpretation of normal forms are in bijection with matrices

We define the following $\ensuremath{\text{pre-canonical forms}}$ for morphisms:

• $Z = id_0$ is a pcf

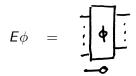
We define the following pre-canonical forms for morphisms:

- $Z = id_0$ is a pcf
- if ϕ is a pcf then $E\phi = \eta \otimes \phi$ is a pcf

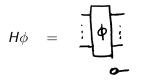


We define the following pre-canonical forms for morphisms:

- $Z = id_0$ is a pcf
- if ϕ is a pcf then $E\phi = \eta \otimes \phi$ is a pcf

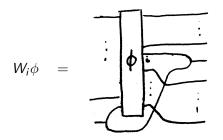


• if ϕ is a pcf then $H\phi = \varepsilon \otimes \phi$ is a pcf



We define the following pre-canonical forms for morphisms:

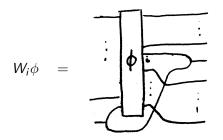
- $Z = id_0$ is a pcf
- if ϕ is a pcf then $E\phi = \eta \otimes \phi$ is a pcf
- if ϕ is a pcf then $H\phi = \varepsilon \otimes \phi$ is a pcf
- if $\phi : m \to n$ is a pcf and $i \in \mathbb{N}$ st $0 \le i < n$ then $W_i \phi$ is a pcf



(add a link between the first input and the *i*-th output)

We define the following pre-canonical forms for morphisms:

- $Z = id_0$ is a pcf
- if ϕ is a pcf then $E\phi = \eta \otimes \phi$ is a pcf
- if ϕ is a pcf then $H\phi = \varepsilon \otimes \phi$ is a pcf
- if $\phi : m \to n$ is a pcf and $i \in \mathbb{N}$ st $0 \le i < n$ then $W_i \phi$ is a pcf



(add a link between the first input and the *i*-th output) So, **pcf** are well-typed morphisms generated by the grammar ϕ ::= $Z \mid E\phi \mid H\phi \mid W_i\phi$

REDUCING TO PCF

Proposition

Every morphism ϕ is equivalent (by the rules of the presentation) to a pre-canonical form.

Proof.

We use Lafont's "tetris" method, by induction on the size of ϕ . Easy for the identity. Otherwise ϕ can be decomposed as $\xi \circ \psi$ where ξ contains exactly one generator and by IH we can suppose that ψ is a pcf. We proceed by case analysis:

1. Suppose that the generator of ξ is γ :

REDUCING TO PCF

Proposition

Every morphism ϕ is equivalent (by the rules of the presentation) to a pre-canonical form.

Proof.

We use Lafont's "tetris" method, by induction on the size of ϕ . Easy for the identity. Otherwise ϕ can be decomposed as $\xi \circ \psi$ where ξ contains exactly one generator and by IH we can suppose that ψ is a pcf. We proceed by case analysis:

- 1. Suppose that the generator of ξ is γ :
 - 1.1 Suppose that $\psi = H\psi'$:



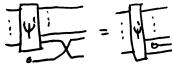
Proposition

Every morphism ϕ is equivalent (by the rules of the presentation) to a pre-canonical form.

Proof.

We use Lafont's "tetris" method, by induction on the *size* of ϕ . Easy for the identity. Otherwise ϕ can be decomposed as $\xi \circ \psi$ where ξ contains exactly one generator and by IH we can suppose that ψ is a pcf. We proceed by case analysis:

- 1. Suppose that the generator of ξ is γ :
 - 1.1 Suppose that $\psi = H\psi'$:



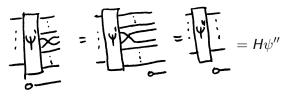
Proposition

Every morphism ϕ is equivalent (by the rules of the presentation) to a pre-canonical form.

Proof.

We use Lafont's "tetris" method, by induction on the *size* of ϕ . Easy for the identity. Otherwise ϕ can be decomposed as $\xi \circ \psi$ where ξ contains exactly one generator and by IH we can suppose that ψ is a pcf. We proceed by case analysis:

- 1. Suppose that the generator of ξ is γ :
 - 1.1 Suppose that $\psi = H\psi'$:



Proposition

Every morphism ϕ is equivalent (by the rules of the presentation) to a pre-canonical form.

Proof.

We use Lafont's "tetris" method, by induction on the *size* of ϕ . Easy for the identity. Otherwise ϕ can be decomposed as $\xi \circ \psi$ where ξ contains exactly one generator and by IH we can suppose that ψ is a pcf. We proceed by case analysis:

1. Suppose that the generator of ξ is γ :

```
1.1 Suppose that \psi = H\psi':
1.2 ...
```

Proposition

Every morphism ϕ is equivalent (by the rules of the presentation) to a pre-canonical form.

This means that every matrix M can be described by the following operations:

- $Z: 0 \rightarrow 0$: the empty matrix
- *EM*: add an empty row to the matrix
- ► HM: add an empty column to the matrix
- $W_i M$: add 1 in the (1, i)-th cell of M

Proposition

Every morphism ϕ is equivalent (by the rules of the presentation) to a pre-canonical form.

This means that every matrix M can be described by the following operations:

- $Z: 0 \rightarrow 0$: the empty matrix
- *EM*: add an empty row to the matrix
- ► *HM*: add an empty column to the matrix
- W_iM : add 1 in the (1, i)-th cell of M

However, matrices are not necessarily described in an unique way by this method.

CANONICAL FORMS

Canonical forms are pre-canonical forms

$$\phi \qquad ::= \qquad Z \quad | \quad E\phi \quad | \quad H\phi \quad | \quad W_i\phi$$

(i.e. words over $\{Z, E, H, W_i\}$) which are normal wrt the rewriting system

$$egin{array}{rcl} HW_i & \Longrightarrow & W_{i+1}H \ HE & \Longrightarrow & EH \ W_iW_j & \Longrightarrow & W_jW_i & ext{when } i < j \end{array}$$

CANONICAL FORMS

Canonical forms are pre-canonical forms

$$\phi \qquad ::= \qquad Z \quad \mid \quad E\phi \quad \mid \quad H\phi \quad \mid \quad W_i\phi$$

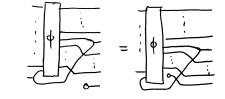
(i.e. words over $\{Z, E, H, W_i\}$) which are normal wrt the rewriting system

$$egin{array}{rcl} HW_i & \Longrightarrow & W_{i+1}H \ HE & \Longrightarrow & EH \ W_iW_j & \Longrightarrow & W_jW_i & ext{when } i < j \end{array}$$

Lemma

 $HW_i \Longrightarrow W_{i+1}H$

Two pcf ϕ and ψ such that $\phi \Longrightarrow \psi$ are equivalent wrt the relations:



CANONICAL FORMS

Canonical forms are pre-canonical forms

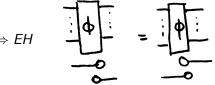
$$\phi \qquad ::= \qquad Z \quad | \quad E\phi \quad | \quad H\phi \quad | \quad W_i\phi$$

(i.e. words over $\{Z, E, H, W_i\}$) which are normal wrt the rewriting system

$$egin{array}{ccc} HW_i & \Longrightarrow & W_{i+1}H \ HE & \Longrightarrow & EH \ W_iW_j & \Longrightarrow & W_jW_i & ext{when } i < j \end{array}$$

Lemma

Two pcf ϕ and ψ such that $\phi \Longrightarrow \psi$ are equivalent wrt the relations:



$$HE \Longrightarrow EH$$

Proposition

Canonical forms wrt

are in bijection with matrices in $Mat_{\mathbb{N}}$.

Proposition

Canonical forms wrt

are in bijection with matrices in $Mat_{\mathbb{N}}$.

The canonical forms are of the form $W_{n-1}^{k_{(m-1,n-1)}} \dots W_0^{k_{(m-1,0}} E \dots E W_{n-1}^{k_{(0,n-1)}} \dots W_0^{k_{(0,0)}} E \underbrace{H \dots H}_{n \text{ times}} Z$ where

- $Z: 0 \rightarrow 0$: the empty matrix
- *EM*: add an empty row to the matrix
- HM: add an empty column to the matrix
- $W_i M$: add 1 in the (1, i)-th cell of M

Proposition

Canonical forms wrt

are in bijection with matrices in $Mat_{\mathbb{N}}$.

Theorem

The polygraph introduced earlier is a presentation of $Mat_{\mathbb{N}}$, otherwise said $Mat_{\mathbb{N}}$ is the free mon. cat. with a bicom. bialgebra.

Proposition

Canonical forms wrt

are in bijection with matrices in $Mat_{\mathbb{N}}$.

Theorem

The polygraph introduced earlier is a presentation of $Mat_{\mathbb{N}}$, otherwise said $Mat_{\mathbb{N}}$ is the free mon. cat. with a bicom. bialgebra.

These results had essentially been proved earlier by Lafont, however the "two-staged method" (pcf/cf)

- avoids having to introduce extra generators
- makes easy to see that nf correspond to matrices
- generalize easily to a presentation of Games
 (of course other methods could be used to show this result)

A PRESENTATION OF Rel

The category **Rel** can be presented by the same polygraph with the following extra relation added:

A bialgebra with (1) is called **qualitative**.

A PRESENTATION OF Rel

The category **Rel** can be presented by the same polygraph with the following extra relation added:

A bialgebra with (1) is called **qualitative**.

The fact that is a presentation can be shown directly or by showing that

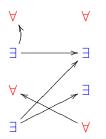
$$\mathsf{Rel} \cong \mathsf{Mat}_{\mathbb{N}}/pprox$$

where \approx identifies two matrices with the same non-null coefficients, i.e.

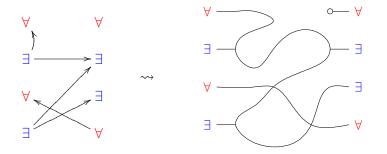
$$\mathsf{Rel} \cong \mathsf{Mat}_{\mathbb{Z}_2}$$

and showing that adding (1) precisely does this quotienting.

Similarly, we can find a presentation for the category of strategies:



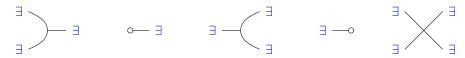
Similarly, we can find a presentation for the category of strategies:



It can be shown that our initial category of games and strategies can be presented by a 3-polygraph such that

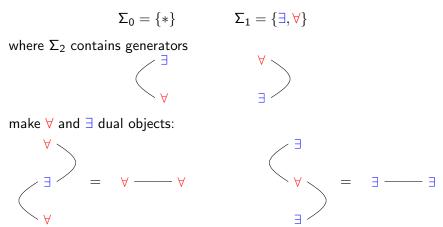
$$\Sigma_0 = \{*\}$$
 $\Sigma_1 = \{\exists, \forall\}$

where Σ_2 contains generators

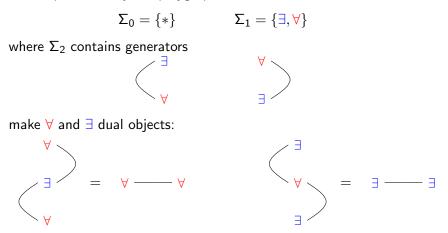


with relations making it a qualitative bicommutative bialgebra (as in the previous presentation)

It can be shown that our initial category of games and strategies can be presented by a 3-polygraph such that



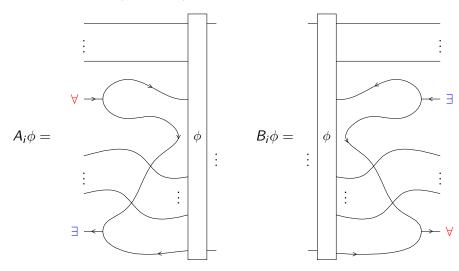
It can be shown that our initial category of games and strategies can be presented by a 3-polygraph such that



(by duality ∀ also has a structure of qualitative bicom. bialgebra)

PRE-NORMAL FORMS

Similar to before (but typed) with the following productions added:



INTERPRETATION OF THE GENERATORS

For instance

gets interpreted as

$$\frac{\overline{x = y \vdash y = x}}{x = y \vdash \exists v.y = v} \\
\frac{\overline{x = y \vdash \exists v.y = v}}{\exists y.x = y \vdash \exists u. \exists v.u = v} \\
\exists x. \exists y.x = y \vdash \exists u. \exists v.u = v$$

etc.

The category **Games** is the free monoidal category containing a qualitative bicommutative bialgebra and its dual.

TECHNICAL BYPRODUCTS

From this presentation we deduce that

- strategies do compose (the acyclicity condition is preserved by composition)
- strategies are definable

(i.e. are the interpretations of proofs)

We have replaced an *external* definition of the category **Games**:

by an *internal* definition:

We have replaced an *external* definition of the category **Games**:

 category of relations which satisfy conditions (polarity + acyclicity)

by an *internal* definition:

presentation of the category

We have replaced an *external* definition of the category **Games**:

- category of relations which satisfy conditions (polarity + acyclicity)
- restricting

by an *internal* definition:

- presentation of the category
- generating

We have replaced an *external* definition of the category **Games**:

- category of relations which satisfy conditions (polarity + acyclicity)
- restricting
- global correctness

by an *internal* definition:

presentation of the category

generating

local correctness

We have replaced an *external* definition of the category **Games**:

- category of relations which satisfy conditions (polarity + acyclicity)
- restricting
- global correctness

by an *internal* definition:

- presentation of the category
- generating
- local correctness

We ought to be able to do the same with the correctness criterion of linear logic.

ABOUT PROOFS

The proofs are very boring, systematic and involves considering lots of cases...

ABOUT PROOFS

- The proofs are very boring, systematic and involves considering lots of cases...
- ... which is good news: we can hope *mechanization*

ABOUT TECHNOLOGY

This methodology can be applied to give presentation of many categories where we know how to canonically "enumerate" the morphisms, without having to prove termination or local confluence.

ABOUT TECHNOLOGY

- This methodology can be applied to give presentation of many categories where we know how to canonically "enumerate" the morphisms, without having to prove termination or local confluence.
- However, we can in many cases get a convergent rewriting system.

ABOUT TECHNOLOGY

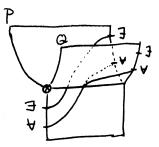
- This methodology can be applied to give presentation of many categories where we know how to canonically "enumerate" the morphisms, without having to prove termination or local confluence.
- However, we can in many cases get a convergent rewriting system.
- If we restrict the presentation of Mat_N to (μ, η, γ), we get essentially a presentation of the terminal operad Com: having an explicit symmetry avoids having to consider shuffle operads.

FORMULAS WITH CONNECTIVES

We should be able to extend this to formulas with connectives (ongoing work), this requires going up one dimension:

 $\forall x.\exists y.(P\otimes Q)\vdash (\forall s.\exists t.P)\otimes (\forall u.\exists v.Q)$

gets interpreted by the following surface diagram



First order connectives somehow act as the tensorial negation in current Melliès work!...

Thanks!

Any question?