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IN THIS TALK

> Uses of higher-dimensional rewriting techniques to study
models of logics and computation.

» Techniques to study rewriting in monoidal categories (PROs).

> We don't necessarily need termination to have normal forms.
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SEMANTICS

From a typed programming language, one can build a category L:
» objects are types

» morphisms are programs of type A — B, up to reduction

A denotational semantics is a functor [—] : £ — C, thus
providing invariants of computations over time.

For instance, one can try to interpret the language in Set:
[int] = N [A xB] = [A] x [B]

[+:int * int -> int] = 4+ :NxN—=N



TOWARDS GAME SEMANTICS

This naive interpretation in Set will fail in general.
» Most programming languages require more structure than we
have in Set:
x = 0; while (x <5) { x=x+ 1 }; return x
should be interpreted using a smallest fixpoint construction
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TOWARDS GAME SEMANTICS

This naive interpretation in Set will fail in general.
» Most programming languages require more structure than we
have in Set:
x = 0; while (x <5) { x=x+ 1 }; return x
should be interpreted using a smallest fixpoint construction

» We want to be able to characterize the image of the semantic
functor (this is closely related to the full abstraction problem).

We have to interpret our programming language in categories C
which are “richer” than Set. Here, | will be interested in

C = Games whose objects are games and morphisms are strategies.



GAME SEMANTICS

A game G = (M, <, A) is
> a set M of moves
> a partial order < on M called causality
» a polarization function A : M — {O, P}

For instance, the game B corresponding to booleans is

T/q\F
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GAME SEMANTICS

A game G = (M, <, A) is
> a set M of moves
> a partial order < on M called causality
» a polarization function A : M — {O, P}

For instance, the game B corresponding to booleans is
q
T F

A strategy on a game is a set of sequences of moves (p/ays)
respecting the order of the game and closed under prefix.

For instance, the strategy corresponding to true on B is {e,q,qT}.
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The general idea is to see a program as a black-box and see how it
reacts to its environment:

and —

So, the strategy corresponding to and will contain

qqL T qrFRF
qqLTiqrTRT
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A CATEGORY OF GAMES

It was discovered by Joyal that Conway games can be made into a
category: given a game G = (M, <, \) we define
» G* as G with polarities (\) inverted

> G1]|Go = (M1 + Mo, <1 4 <o, A1 + A2)
i.e. G and G in "parallel”

aL ar q
BB B= 7 O\ N VRN
n Fi Tr Fr T F

One can build a category whose objects are games, morphisms
A — B are (alternating) strategies on A*||B.

For instance, [and] is a strategy on B*||B*||B.
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PRESENTING
A GAME SEMANTICS
FOR FIRST-ORDER LOGIC

A lot can be done in this framework, in particular definable
strategies (in the image of the semantics) can be
characterized as innocent strategies.

By the Curry-Howard correspondence, a program is “the same
thing” as a proof, so it makes sense to study game semantics
for proofs.

More specifically, | will be interested here in the causality
induced by fist-order connectives in logic.

| will characterize definable strategies by giving a
presentation of the monoidal category of games for this logic.



UNIFYING POINTS OF VIEW

Logics
invariants
of computation

|
T

Game Semantics Algebra
dynamics structure
of computation of computation
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FIRST-ORDER LOGIC

» Formulas:
A == 3IxA | A | ANA | AVA | P

where P are given propositions depending on variables,
eg. P(x,y)=(x=y).

» Rules:

N-=P,A e Plt/x], A
———F(V) ————0)
M=vx.P,A MN-=3dx.P, A

(with x € FV(T, A))
r=AA N-=B,A r-AB, A
(n) —(V)

Fr-AAB,A r-AvB,A

+ consistent axioms depending on the propositions



CAUSALITY IN PROOFS
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A B,A
— 5~
- AVy.B,A

[ Vx.A Vy.B, A

CAUSALITY IN PROOFS

T
A B,A
o~
[ Vx.A B,A

\ ~ \
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CAUSALITY IN PROOFS

s ™

I+ Alt/x], B[t'/y],A I+ A[t/x],B[t'/y],A

)

[+ Alt/x],3y.B, A (3)(3) [+ 3x.A B[t /y], A

~ (3)
M- 3x.A,3Jy.B,A M- 3x.A,3y.B,A



CAUSALITY IN PROOFS

[+ Alt/x], B, A [+ Alt/x], B, A
M A[t[/tx/] ]vy.B A" e H[i./A] B.a
) ) (El) s ) Y (v)

M- 3x.A,Vy.B,A [ 3x.A Vy.B,A



CAUSALITY IN PROOFS

[+ A B[t/y],A [+ A B[t/y], A
MFA3y.B A S [ FVx.A, B[t/y] A"
Y Y (v) ~ ) ) (3)

M- Vx.A,Jy.B,A M- vx.AJy.B,A



CAUSALITY IN PROOFS

T T
TEABILA o rEABIEMA
r-A3Jy.B,A ) [+ Vx.A B[t/y],A -
M- Vx.A,Jy.B,A M- vx.AJy.B,A

If x & FV(t)!



Remark:
MN=vx.A A

is the same as
I dx.A"F A
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CAUSALITY IN PROOFS

For instance, we can permute

N(x)F0=0 N(x)F0=0
N(x) F3y.(y =0) IxN(x)F0=0
Ix.N(x) - 3Jy.(y =0) Ix.N(x) - 3Jy.(y =0)




CAUSALITY IN PROOFS

For instance, we can permute

N(x)F0=0 N(x)F0=0
N(x) F3y.(y =0) IxN(x)F0=0
Ix.N(x) - 3Jy.(y =0) Ix.N(x) - 3Jy.(y =0)

but not

N(x)F(x—x)=0
N(x) F3y.(y =0)
Ix.N(x) - 3Jy.(y = 0)




CAUSALITY IN PROOFS

Dependencies induced by proofs are of the form

vx T T3y

where the witness t given for y has x as free variable.

This models the causality in information.

16

52



DIALOGUE GAMES

Vx dy P(x,y)

Vbelard and dloise

17 /52



GAMES

Formulas

A = 3xA | WA | ANA | AVA |

will be interpreted as games (M, A, <):
> a set M of moves,
> a partial order < on M called causality,

» a function A\ : M — {V, 3} indicating polarity
(V: Opponent, 3: Player)

18 /52



Formulas

A = 3IxA | VxA

Vx.Vy.(Vz.P Vv 37.Q)

ANA

AV A

GAMES



GAMES

Formulas
A = IxA | A | ANA | AVA |
N 3
™ A
WxVy.(V2.PV3Z.Q) v
A
v
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STRATEGIES

strategy = dependency relation on the moves of the game‘
N
v o
FP,37.Q
() ~ v
FVvz.P,3z.Q A
(v)

= Vy.(Vz.P Vv 37.Q)
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STRATEGIES

strategy = dependency relation on the moves of the game‘
N N B =
FP,Q[t/Z
/7]
FP,3z.Q
() ~ v
FVvz.P,3z.Q A
(v)

= Vy.(Vz.P Vv 37.Q)

FVx.Vy.(Vz.P Vv 3Z.Q) ) v
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STRATEGIES

strategy = dependency relation on the moves of the game‘

FP,Q[t/Z

- P, H[Z/Q] )

—v.pas0 ) -
= Vy.(Vz.P Vv 37.Q) )
FVx.Vy.(Vz.P Vv 3Z.Q)

(V)
Free variables of t: {x,z}
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STRATEGIES

strategy = dependency relation on the moves of the game‘
!/ v\\
FP,Q[t/z
/7]
FP,3z.Q )
Fvz.P,37.Q
(v)

= Vy.(Vz.P Vv 37.Q)
FVx.Vy.(Vz.P Vv 3Z.Q)

(¥) v
Free variables of t: {y}
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STRATEGIES

strategy = dependency relation on the moves of the game‘
N N B =
FP,Q[t/Z
/7]
FP,3z.Q
() ~ v
FVvz.P,3z.Q A
(v)

= Vy.(Vz.P Vv 37.Q)
FVx.Vy.(Vz.P Vv 3Z.Q)

(V) v
Free variables of t: ()
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game A
strategy o

STRATEGIES

partial order on the moves
relation on the moves
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STRATEGIES

game A = partial order on the moves
strategy 0 = relation on the moves

A strategy o : A should moreover satisfy the following properties

2. Acyclicity: the relation <4 U o is acyclic

Forbids:
\4 v v 3 3
A A A A A
Z and >< - but not ><
3 3 3 % %

(similar to the correctness criterion of LL)



STRATEGIES

In this context, a strategy o is a partial order relation on the moves
of the game. However, we could easily reformulate o as the set of
plays (= sequences of moves) which respect the partial order o.



A FIRST STEP

We handle the case where connectives in formulas occur in leaves:
Vx1.Vx0.3x3.Vx3 V5. ... P(Xjy, ..., Xi,)

so games will be filiform (= total orders)

> < > 1] > < > <

<

N
N

(¢



INTERPRETING PROOFS

A formula

is interpreted by a game

Example
The formula

is interpreted by the game

[A]

Vx.Vy.P

> <C
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INTERPRETING PROOFS

A sequent
A+ B

is interpreted by a game

[AT[I[B]

Example

The sequent
Vx.Vy.PFVz.P

is interpreted by the game

> [

23 /52



INTERPRETING PROOFS

A proof

A+ B

is interpreted by a strategy o on the game

[AT*ITBI
Example
The proof is interpreted by the strategy
z=zFz=z %
Vyz=ykFz=1z \
VxVyx=ykFz==z J<~—

VxVyx=ykFVzz==z

23 /52
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We thus build a monoidal category Games:
» Objects A are filiform games
» Morphisms o : A — B are strategies on A*||B
» This category is monoidal:

» Strategies o : A — B are particular relations on A x B,
composition is defined as in Rel.
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A MONOIDAL CATEGORY OF GAMES

We thus build a monoidal category Games:
» Objects A are filiform games
» Morphisms o : A — B are strategies on A*||B
» This category is monoidal:

> L1
pa——

/
o

J<—o1
» Strategies 0 : A — B are particular relations on A x B,
composition is defined as in Rel.

» [t is not obvious that the acyclicity condition of strategies is
preserved by composition!



SO WHAT?

This semantics is nice but
» Why do strategies compose?

» We claim that all the strategies are definable
(i.e. are interpretation of proofs).
How do we show this?

» What does it tell us about the structure of dependencies?



SO WHAT?

This semantics is nice but
» Why do strategies compose?

» We claim that all the strategies are definable
(i.e. are interpretation of proofs).
How do we show this?

» What does it tell us about the structure of dependencies?

In order to answer these questions, we build a presentation the
monoidal category Games.






ROADMAP

We will progressively introduce presentations of the following
monoidal categories.

» Maty whose objects are integers and morphisms M : m — n
are m X n matrices with coefficients in N, with the direct sum
as tensor product.

» Rel whose objects are integers and morphisms R : m — n are
relations on [m] x [n].

» Games.



PRESENTING CATEGORIES

The usual notion of presentation of a monoid has been generalized
by Burroni into the notion of n-polygraph which allows to present
(n — 1)-categories.

In particular, a (strict) monoidal category is the same as a
2-category with one 0-cell, so it can be presented by a 3-polygraph.



Polygraphs are
a higher-dimensional generalization
of rewriting systems
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POLYGRAPHS

A 0-signature

Example
signature

X y
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POLYGRAPHS

A 1-polygraph

Example

signature rules

b
x y @
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POLYGRAPHS

A 1-signature = a 1-polygraph

2o PX}

So
to

2o

Example
signature

b
,O)

X —Y
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POLYGRAPHS

A 1-signature generates a category

>0 >

So
i1
* 1
55 H0

o= ZT
to

Example
signature terms

b
O x ey by by

X—=Y

30/52



POLYGRAPHS

A 2-polygraph

2o PX} 2o

S0 S1
i
* T t:
s o 1

Z0 <~ ZT
tg

such that st osy =stotjand tfosy =t oty
0 0 0 0

Example
signature terms rules
b
Yy —Y

b
a b
N NI ST N N

X—=Y

30/52



POLYGRAPHS

A 2-signature = a 2-polygraph

2o PX} 2o

S0 S1
i
* T t:
s o 1

< *
Z0 <~ Z1
7
such that sjos; =sjot;and tfosy =tjoty

Example
signature

y—L2.y

VRN

rl Us

X\_/_/yy
a

30/52



POLYGRAPHS

A 2-signature generates a 2-category

29 2 2
i S0 ; \L S1 . l
n 2
*to ftl
e D ¥
7 t

such that sjos; =sjot;and tfosy =tjoty

Example
signature

y—L2.y

VRN

rl Us

X\_/_/yy
a
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POLYGRAPHS

A 3-polygraph

2o PX} 2o 23

S0 S1 2
i i2
* T * T t;
s to st 2

A S
ty t

such that sfosy =sfotrand tfosy =tj oty

Example
signature rules
y—Lsy y—Lsy
a b a . b
b s r§ = ys
X -— y X —_— y
a a

30/52



POLYGRAPHS

A 3-polygraph

2o PX} 2o 23

S0 S1 S2
i i2
Sg to s f t1 tr

Yo——Xi==—13;
t* *

0 t

Example
signature rules
y Loy y—Lsy

a b a . b
b s rf = ys
X\_/y
a

The presented 2-category: ¥*/X3.

30 /52



A FEW PARTICULAR CASES

> 25 >3

S0 s1 s
i i
* to * T tr
S0 51

zOﬁziﬁzg

to ty

» When ¥y = {x}, the presented 2-category has one 0-cell:
it is a monoidal category.

» When moreover ¥; = {1}, the presented monoidal category

has integers as objects with tensor given by addition:
it is a PRO.

31/52



PRESENTING Maty

The category Maty of matrices with coefficients in N contains the
following morphisms:

= (1) : 2 — 1 pictured as >—
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PRESENTING Maty

The category Maty of matrices with coefficients in N contains the
following morphisms:

= (1) : 2 — 1 pictured as >—

» n={():0— 1 pictured as o—

= (1 1) : 1 — 2 pictured as —<

e=():1— 0 pictured as —o

_ (01 ictured as
PY_ 1 0 p u

v

v

v



GENERATORS FOR Maty

Moreover, it seems that any matrix can be expressed as tensor and
product of those generators:

X
o NN O
= = O
N~ —
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GENERATORS FOR Maty

Moreover, it seems that any matrix can be expressed as tensor and
product of those generators:

— (ko) o(1e7®1)o(19181)o(18581)o(185®:)

So, we have hope to have a presentation with those generators.

33/52



RELATIONS

It is easy to show that in Maty, the interpretations of the
generators satisfy the following relations.

> v induces a symmetry:
» [t is involutive:

> |t satisfies the Yang-Baxter:

S - 2SS

> It is also “natural” wrt other generators:

C.
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RELATIONS

It is easy to show that in Maty, the interpretations of the
generators satisfy the following relations.

> v induces a symmetry:
> (u,m,7) is a commutative monoid:
» It is associative:

3
Y

» [t is unital:

» It is commutative:
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RELATIONS

It is easy to show that in Maty, the interpretations of the
generators satisfy the following relations.

> v induces a symmetry:
> (u,m,7) is a commutative monoid:
» It is associative:

3
Y

» [t is unital:

» It is commutative:

» Dually, (d,¢,7) is a commutative comonoid.
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RELATIONS

It is easy to show that in Maty, the interpretations of the
generators satisfy the following relations.

> v induces a symmetry:
> (p,1m,7) is a commutative monoid:
» Dually, (4,¢,7) is a commutative comonoid.

» (u,1n,9d,e,7) is a bialgebra:

DC = o2

("

34 /52



A CANDIDATE PRESENTATION

So, we have a candidate for presenting Maty:

1 P 3
S0 lyl S
i i
sgt() Sftl t
Yo=—3¥Yj =3}
& t
with
Yo = {x}
Y; = {l:x—x}
Yo = {p:2-1n:0—-10:201,e:1—0,7:2—2}
Y3 = {...}

where 2 is a notation for 1 ® 1.
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CANONICAL FORMS

» To show that the polygraph is a presentation of Maty,
we could

vV vy vy

orient the relations,

show that the rewriting system is terminating,

show that it is locally confluent (or complete it),

show that the canonical forms are in bijection with matrices.

36
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CANONICAL FORMS

» To show that the polygraph is a presentation of Maty,
we could

v vy

>

orient the relations,

show that the rewriting system is terminating,

show that it is locally confluent (or complete it),

show that the canonical forms are in bijection with matrices.

» (I think that) this can actually be done, but it is quite
complicated because

>

>

| 4

termination is difficult to show (cf. Guiraud)

we are not guaranteed to have a finite number of critical pairs
(cf. Lafont, Guiraud & Malbos, Mimram)

the normal forms can be difficult to describe
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CANONICAL FORMS

» To show that the polygraph is a presentation of Maty,
we could

v vy

>

orient the relations,

show that the rewriting system is terminating,

show that it is locally confluent (or complete it),

show that the canonical forms are in bijection with matrices.

» (I think that) this can actually be done, but it is quite
complicated because

>

>

| 4

termination is difficult to show (cf. Guiraud)

we are not guaranteed to have a finite number of critical pairs
(cf. Lafont, Guiraud & Malbos, Mimram)

the normal forms can be difficult to describe

» Here we adopt a semantic approach (adapted from Lafont) by

>

>

>

defining (manually) normal forms,

show that any morphism rewrites to a normal form,

show that the interpretation of normal forms are in bijection
with matrices

36
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PRE-CANONICAL FORMS

We define the following pre-canonical forms for morphisms:
» Z =idg is a pcf
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PRE-CANONICAL FORMS

We define the following pre-canonical forms for morphisms:

>

| 4
>
| 4

Z =1idg is a pcf

if ¢ is a pcfthen E¢p =n® ¢ is a pcf

if ¢ is a pcf then Hp = e ® ¢ is a pcf
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(add a link between the first input and the i-th output)



PRE-CANONICAL FORMS

We define the following pre-canonical forms for morphisms:
» Z =idg is a pcf
> if ¢ isapcfthen Ep =n® ¢ is a pcf
> if ¢ is a pcfthen Hp = ® ¢ is a pcf
» if¢g:m—>nisapcfandi € Nst 0 </ < nthen W;¢ is a pcf

(add a link between the first input and the i-th output)
So, pcf are well-typed morphisms generated by the grammar

¢ u=  Z | E¢ | Ho | W

37/52



REDUCING TO PCF

Proposition
Every morphism ¢ is equivalent (by the rules of the presentation)
to a pre-canonical form.

Proof.

We use Lafont's “tetris” method, by induction on the size of ¢.
Easy for the identity. Otherwise ¢ can be decomposed as & o 1)
where £ contains exactly one generator and by IH we can suppose
that 1 is a pcf. We proceed by case analysis:

1. Suppose that the generator of £ is :
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REDUCING TO PCF

Proposition
Every morphism ¢ is equivalent (by the rules of the presentation)
to a pre-canonical form.

Proof.

We use Lafont's “tetris” method, by induction on the size of ¢.
Easy for the identity. Otherwise ¢ can be decomposed as & o 1)
where £ contains exactly one generator and by IH we can suppose
that 1 is a pcf. We proceed by case analysis:

1. Suppose that the generator of £ is :
1.1 Suppose that ¢ = H)':

1.2 ... O

38 /52



REDUCING TO PCF

Proposition
Every morphism ¢ is equivalent (by the rules of the presentation)
to a pre-canonical form.

This means that every matrix M can be described by the following
operations:

> Z:0 — 0: the empty matrix

» EM: add an empty row to the matrix

» HM: add an empty column to the matrix
» W;M: add 1 in the (1,/)-th cell of M
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REDUCING TO PCF

Proposition
Every morphism ¢ is equivalent (by the rules of the presentation)
to a pre-canonical form.

This means that every matrix M can be described by the following
operations:

> Z:0 — 0: the empty matrix

» EM: add an empty row to the matrix

» HM: add an empty column to the matrix
» W;M: add 1 in the (1,/)-th cell of M

However, matrices are not necessarily described in an unique way
by this method.

38 /52



CANONICAL FORMS

Canonical forms are pre-canonical forms
6 == Z | E¢ | H¢
(i.e. words over {Z, E, H, W;}) which are normal wrt the rewriting

system

Wi¢

HW; — Wii1H
HE — EH
W; W; = W; W; when | < j
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CANONICAL FORMS

Canonical forms are pre-canonical forms
¢ = Z | E¢ | Ho | W

(i.e. words over {Z, E, H, W;}) which are normal wrt the rewriting

system
HW, = W 1H
HE == EH
W; W; = W; W; when | < j

Lemma
Two pcf ¢ and 1 such that ¢ = 1 are equivalent wrt the

relations:

r
1
e

HW; = W1 H
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CANONICAL FORMS

Canonical forms are pre-canonical forms
¢ = Z | E¢ | Ho | W

(i.e. words over {Z, E, H, W;}) which are normal wrt the rewriting

system
HW, = W 1H
HE == EH
W; W; = W; W; when | < j

Lemma
Two pcf ¢ and 1 such that ¢ = 1 are equivalent wrt the

relations:

HE — EH

39 /52



FINALLY THE PRESENTATION

Proposition
Canonical forms wrt
HW; = Wi H

HE = EH
W;W; — w;wW; when | < j

are in bijection with matrices in Maty.
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FINALLY THE PRESENTATION

Proposition
Canonical forms wrt

HW; — Wi H
HE = EH
W;W; — w;wW; when | < j

are in bijection with matrices in Maty.

The canonical forms are of the form

Kim—1.n— _ Ko n— K,
Wt Wy T E EW O W, YEH...HZ
N——

n times
where

> Z:0 — 0: the empty matrix

» EM: add an empty row to the matrix

» HM: add an empty column to the matrix
» W;M: add 1 in the (1,/)-th cell of M
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FINALLY THE PRESENTATION

Proposition
Canonical forms wrt
HW; = Wi H

HE = EH
W;W; — w;wW; when | < j

are in bijection with matrices in Maty.

Theorem
The polygraph introduced earlier is a presentation of Maty,

otherwise said Maty is the free mon. cat. with a bicom. bialgebra.
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FINALLY THE PRESENTATION

Proposition
Canonical forms wrt

HW; = Wi H
HE = EH
W;W; — w;wW; when | < j

are in bijection with matrices in Maty.

Theorem
The polygraph introduced earlier is a presentation of Maty,
otherwise said Maty is the free mon. cat. with a bicom. bialgebra.

These results had essentially been proved earlier by Lafont, however the
“two-staged method” (pcf/cf)

» avoids having to introduce extra generators

> makes easy to see that nf correspond to matrices

> generalize easily to a presentation of Games
(of course other methods could be used to show this result)
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A PRESENTATION OF Rel

The category Rel can be presented by the same polygraph with the
following extra relation added:

\Q— = (1)

A bialgebra with (1) is called qualitative.
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A PRESENTATION OF Rel

The category Rel can be presented by the same polygraph with the
following extra relation added:

\Q— = (1)

A bialgebra with (1) is called qualitative.

The fact that is a presentation can be shown directly or by showing
that
Rel = Maty/~

where & identifies two matrices with the same non-null
coefficients, i.e.
Rel = Maty,

and showing that adding (1) precisely does this quotienting.

41 /52



PRESENTING Games

Similarly, we can find a presentation for the category of strategies:
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PRESENTING Games

Similarly, we can find a presentation for the category of strategies:

v o—V
v v
y 3 3
J——>4
v 3 v 3
3 N



PRESENTING Games

It can be shown that our initial category of games and strategies
can be presented by a 3-polygraph such that

Yo = {x} ri={3,v}
where Y, contains generators
3 3 3 3
} 3 o— 3 3 { 3—o ><
3 3 3 3

with relations making it a qualitative bicommutative bialgebra (as

in the previous presentation)
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PRESENTING Games

It can be shown that our initial category of games and strategies
can be presented by a 3-polygraph such that

Yo = {*} Y ={3,V}

where Y, contains generators

D

make V and 3 dual objects:

v =
3 > = Vv——V < v = 3—3
G, D
(by duality ¥ also has a structure of qualitative bicom. bialgebra)

43 /52



PRE-NORMAL FORMS

Similar to before (but typed) with the following productions added:




INTERPRETATION OF THE
GENERATORS

N
= =

For instance

gets interpreted as

x=ykFy=x

x=yFdvy=v

x=ykFdudviu=v

dyx=ykFdudviu=v

dxdyx=yFJdudviu=v

etc.



The category Games
is the
free monoidal category
containing a
qualitative bicommutative bialgebra
and its dual.
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TECHNICAL BYPRODUCTS

From this presentation we deduce that

> strategies do compose
(the acyclicity condition is preserved by composition)

> strategies are definable
(i.e. are the interpretations of proofs)



ABSTRACT METHODOLOGY

We have replaced an external definition of the category Games:

by an internal definition:
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ABSTRACT METHODOLOGY

We have replaced an external definition of the category Games:
» category of relations which satisfy conditions
(polarity + acyclicity)
> restricting
> global correctness
by an internal definition:
> presentation of the category
» generating

» local correctness

We ought to be able to do the same with the correctness criterion
of linear logic.

48 /52



ABOUT PROOFS

» The proofs are very boring, systematic and involves
considering lots of cases. ..
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ABOUT PROOFS

» The proofs are very boring, systematic and involves
considering lots of cases. ..

» ...which is good news: we can hope mechanization

49 /52



ABOUT TECHNOLOGY

» This methodology can be applied to give presentation of many
categories where we know how to canonically “enumerate” the
morphisms, without having to prove termination or local
confluence.
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ABOUT TECHNOLOGY

» This methodology can be applied to give presentation of many
categories where we know how to canonically “enumerate” the
morphisms, without having to prove termination or local
confluence.

» However, we can in many cases get a convergent rewriting
system.
> If we restrict the presentation of Maty to (u,7,7), we get

essentially a presentation of the terminal operad Com: having
an explicit symmetry avoids having to consider shuffle operads.



FORMULAS WITH CONNECTIVES

We should be able to extend this to formulas with connectives
(ongoing work), this requires going up one dimension:

Vx.Jy.(P® Q) F (Vs.3t.P) ® (Vu.3v.Q)

gets interpreted by the following surface diagram

'F

First order connectives somehow act as the tensorial negation in
current Mellies work!...
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Thanks!

Any question?



