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Rewriting systems

A rewriting system consists of rules which are pairs of “terms”
(elements of some free stuff):

f r=⇒ g

Given a context C, we say that C[f] rewrites to C[g], and write

C[f]
C[r]
=⇒ C[g]
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Convergent rewriting systems

A rewriting system is
▶ confluent when

f
∗

{� ��
��
��
��

��
��
��
��

∗

�#
??

??
??

??

??
??

??
??

g1

∗
�#

g2

∗
{�

h

▶ terminating when there is no infinite rewriting sequence
▶ convergent when both terminating and confluent

:
in this case normal forms provide canonical representatives
of terms modulo the congruence generated by the rules
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PROs

Definition
A PRO is a monoidal category whose objects are integers and
tensor product is given by addition.

Example

The PRO Bij is presented by : 2 → 2 with relations

= =

Theorem (Lafont)
This is a convergent presentation.
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The PRO FRO

FRO is the PRO generated by

µ δ γ

such that

▶ symmetry satisfies Yang-Baxter and is involutive
▶ multiplication is associative and commutative
▶ comultiplication is associative and commutative
▶ Frobenius relations are satisfied
▶ symmetry is “natural” wrt multiplication and comultiplication:
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The PRO FRO

FRO is the PRO generated by

µ δ γ

such that
▶ symmetry satisfies Yang-Baxter and is involutive
▶ multiplication is associative and commutative
▶ comultiplication is associative and commutative
▶ Frobenius relations are satisfied
▶ symmetry is “natural” wrt multiplication and comultiplication:
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Weighting diagrams

The weight of a diagram is the number of multiplications or
comultiplications (but we do not count crossings):∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥ = 2

The relations are homogeneous and therefore the weight is also
defined on the quotient.
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Our goal

We want to orient those rules and complete them in order to get
a convergent presentation of the PRO.

We add another requirement: rules should be homogeneous and
in weight ≤ 2 (the usual requirement for showing koszulity).
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Take 1

The “usual” normal form is

We should orient Frobenius as

⇒ ⇐

We should orient associativity and coassociativity as

⇒ ⇒

so that ⇒ ⇒
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Take 1

During the completion a non-quadratic rule has to be added:

~� ��
��
��
��

��
��
��
��

��
88

88
88

88
8

88
88

88
88

8
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Take 2

We could add a new generator

⇒ •

(I think that) this gives rise to a convergent quadratic + linear
presentation, but this generator would have to be in weight 2 in
order not to change the presented PRO.
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Take 3

The idea of the preceding normal form is to have many wires in
on top, many wire out at the bottom, and genus in the middle.
Maybe can we find some other ways to do this.
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Take 3

This gives rise to the rewriting system

⇒ ⇒

⇒ ⇒

which can be completed into a quadratic one (?) but

+3 +3
hp
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A convergent presentation

Let’s try another idea for normal forms.

Now, we can orient relations and complete the rewriting system…
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A convergent presentation

Associativity and commutativity:

⇒ ⇒

⇒ ⇒
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A convergent presentation

Frobenius laws:

⇒ ⇒

⇒ ⇒
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A convergent presentation

Symmetry:

⇒ ⇒
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A convergent presentation

“Naturality” of symmetry:

⇒ ⇒

⇒ ⇒
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A convergent presentation

Rules obtained by completion:

⇒ ⇒

⇒ ⇒
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A convergent presentation

Rules obtained by completion:

. . .

. . .

⇒

. . .

. . .

. . .

. . .

⇒

. . .

. . .
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A convergent presentation

Rules obtained by completion:

n ⇒ n n ⇒ n

with

4 = . . .

(admittedly this one is not subquadratic, but not too bad…)
16 / 48



Termination

Termination is not easy to show because of the interaction
between Frobenius and commutativity:

⇒ ⇒

▶ the usual argument commutativity decreases transpositions
does not work because Frobenius increases it

▶ the usual interpretations as functions do not work
▶ etc.

17 / 48



Termination

We show termination as follows:

1. first we eliminate commutativity by interpreting a diagram as
a relation

2. then we eliminate Frobenius rules by counting, for each
(co)multiplication, the number of inputs or outputs of the
global diagram its left branch is liked to

3. rules left can be shown terminating using standard
techniques

18 / 48



The category Rel

We consider the category Rel whose objects are sets and
morphisms R : A→ B are relations R ⊆ A× B.

This category is cartesian with A× B = A ⊎ B, thus symmetric
monoidal.

It is enriched in posets via inclusion of relations:

R ⊆ R′ and S ⊆ S′ implies S ◦ R ⊆ S′ ◦ R′

and the order on hom-sets is well-founded.
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Diagram as relations

We interpret the generators as the following relations:

• •
~~

•
•

• •
@@ •

MMM
M •
qqq

q

• •

So that
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The category IRel

In Rel, the relations link from inputs to outputs, we define a
variant where there can also be links between inputs and inputs
(and same for outputs).

Notice that the category Rel is traced.
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The category IRel

The category IRel has finite sets as objects. Morphisms
R : A→ B are relations R : A ⊎ B→ A ⊎ B in Rel.

Composition of R : A→ B and S : B→ C is given by

A B

R

A B

;

B C

S

B C

=

A C

R S

A C

(this is essentially the Int construction / the composition of GoI)
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Diagrams as relations

We interpret generators as the following generalized relations:

• @@ •
~~

•
•

•
~~

•
@@ •

MMM
M •
qqq

q

• •

We interpret (co)multiplications as the multiset of inputs/outputs
they are linked to:

a b

c d

⇒

a b

c d

a+ 2c a+ c
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KOSZULITY
OF

PROPERADS
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PROPerads

A PRO is a monoidal category whose objects are integers and
tensor product is given by addition.

A PROP is a PRO equipped with a symmetry.

A PROPerad is (roughly) a PROP in which morphisms cannot be
split as non-trivial connected components and only the
compositions preserving this are allowed.

An operad is a PROPerad with operations of coarity 1.

δ δ

µ µ

δ δ

µ µ

δ δ

µ µ

OK NOT OK NOT OK
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A PROPerad is (roughly) a PROP in which morphisms cannot be
split as non-trivial connected components and only the
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We generally consider the case where we are enriched over Vect.
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PROPerads

A PRO is a monoidal category whose objects are integers and
tensor product is given by addition.

A PROP is a PRO equipped with a symmetry.

A PROPerad is (roughly) a PROP in which morphisms cannot be
split as non-trivial connected components and only the
compositions preserving this are allowed.

An operad is a PROPerad with operations of coarity 1.

We have forgetful functors

Operads → PROPerads → PROP → PRO

δ δ

µ µ

δ δ

µ µ

δ δ

µ µ

OK NOT OK NOT OK
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Symmetric bimodules

A Σ-bimodule is a family (M(m, n)) of k-modules M(m, n) with a
left action of Σn and a right action of Σm.

Notice that in a PROP(erad) every Hom-set is a Σ-bimodule, and
we have an adjunction

PROPerad
U

11⊥ Σ-Bimod
Tqq

i.e. we have a notion of free PROPerad on a Σ-bimodule.

The formal definition of a PROPerad can be given as a monoid for
a suitable tensor product in the category Σ-Bimod.

26 / 48



Symmetric bimodules

A Σ-bimodule is a family (M(m, n)) of k-modules M(m, n) with a
left action of Σn and a right action of Σm.

Notice that in a PROP(erad) every Hom-set is a Σ-bimodule, and
we have an adjunction

PROPerad
U

11⊥ Σ-Bimod
Tqq

i.e. we have a notion of free PROPerad on a Σ-bimodule.

The formal definition of a PROPerad can be given as a monoid for
a suitable tensor product in the category Σ-Bimod.

26 / 48



Symmetric bimodules

A Σ-bimodule is a family (M(m, n)) of k-modules M(m, n) with a
left action of Σn and a right action of Σm.

Notice that in a PROP(erad) every Hom-set is a Σ-bimodule, and
we have an adjunction

PROPerad
U

11⊥ Σ-Bimod
Tqq

i.e. we have a notion of free PROPerad on a Σ-bimodule.

The formal definition of a PROPerad can be given as a monoid for
a suitable tensor product in the category Σ-Bimod.

26 / 48



The PROPerad Frob

We define the following PROPerad:

Frob = T
(

,
)
/(R)

with

R =



= =

= =

= =
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Weight

Given a PROPerad of the form

P = TM/(R)

where R is homogeneous, the weight |ϕ| of an operation ϕ is the
number of operations in M necessary to write it.

We will be in this case in the following.
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The bar construction

The bar construction BP of a PROPerad P is the free
(co)PROPerad on the underlying Σ-module of P.

ϕ =

ϕ1

ϕ2 ϕ3

ϕ4
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The bar construction

The bar construction BP of a PROPerad P is the free
(co)PROPerad on the underlying Σ-module of P.

ϕ =

ϕ1

ϕ2 ϕ3

ϕ4

An operation has
▶ a weight: |ϕ| =

∑
i |ϕ1|+ |ϕ2|+ |ϕ3|+ |ϕ4|

▶ an homological degree: deg(ϕ) = 4
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The bar construction

The bar construction BP of a PROPerad P is the free
(co)PROPerad on the underlying Σ-module of P.

d



ϕ1

ϕ2 ϕ3

ϕ4


= ±

ϕ2 ◦ ϕ1

ϕ3

ϕ4

±

ϕ3 ◦ ϕ1

ϕ2

ϕ4

±. . .

It is equipped with a differential d : BP → BP of degree −1 ob-
tained as the sum of± the composition of two adjacent operations
(extends composition in degree 2 as a coderivaion)

29 / 48



Koszulity of PROPerads

Definition
A PROPerad is koszul when Hn(BP) is concentrated in weight n,
for every n.

Thus the question à 1000 Frs:

Is the Frobenius PROPerad koszul ?
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Koszulity of PROPerads

Definition
A PROPerad is koszul when Hn(BP) is concentrated in weight n,
for every n.

Thus the question à 1000 Frs:

Is the Frobenius PROPerad koszul ?

Instead of lots of spectral sequences,
can we use the rewriting method?
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The PROPerad Frob is difficult

There is a well-studied theory of koszulity for operads
(Ginzburg-Kapranov, Getzler-Jones, …).
In particular, a convergent quadratic presentation of the
(associated shuffle) operad implies koszulity (Hoffbeck,
Dotsenko-Khoroshkin, …).

When a PROPerad is obtained by composing a koszul operad
with a koszul opoperad then it is koszul.

Intuitively, this is almost the case with Frob:

= but

= 0

In fact, involutive Frobenius algebras are easily shown to be
koszul by this method.
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Monomial PROPerads

Given a PROPerad
P = TM/(R)

presented by a convergent rewriting system, we write

◦
P = TM/(

◦
R)

where
◦
R is the set of left members of R.

In the case of algebras or operads, a monomial quadratic algebra
is always koszul, and this can be used to show that the existence
of a quadratic convergent presentation implies koszulity.
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The general plan

In order to show that Frob is koszul:

1. we “remark” that we have a convergent “quadratic” rewriting
system for FRO (the underlying PRO)

2. we construct from it a filtration of the bar construction and
show that it is enough to show that the associated monomial
PROPerad is koszul

3. we show that this is the case
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Free PRO(P)(erads)

A Σ-bimodule generates a PRO whose generators are
▶ ϕ : m→ n where ϕ is in a basis of M(m, n)

▶ γ : 2 → 2 drawn as

such that

= =
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Free PRO(P)(erads)

A Σ-bimodule generates a PRO whose generators are
▶ ϕ : m→ n where ϕ is in a basis of M(m, n)

▶ γ : 2 → 2 drawn as

such that

Proposition
The category thus constructed is the free PROP on the Σ-module
M and the free PROPerad generated by M embeds faithfully in it.
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Shuffle operads

In the case of free operads on M with M(0, 1) = 0, terms modulo
equations are in bijection with planar trees with
▶ nodes labeled by any element ϕ of a fixed basis of M
▶ n leaves whose set of labels is {1, . . . , n} such that given a
node ϕ(t1, . . . , tn), the min of labels of ti is less than the min
of labels of tj when i < j

Shuffle operads where defined by Dotsenko and Khoroshkin,
starting from this observation from Hoffbeck.
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Shuffle operads

For instance, we have

ϕ1

ϕ2

=

ϕ1

ϕ2

=

ϕ1

ϕ′
2

ϕ2(ϕ1(2, 3), 1) = ϕ2(ϕ1(2, 3), 1) = ϕ′2(1, ϕ1(2, 3))
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Shuffle PROPerads?

Unfortunately, there is no such notion as a shuffle PROPerad:

ϕ′
1

ϕ2

=

ϕ1

ϕ2

=

ϕ1

ϕ′
2
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The bar construction

The bar construction on FRO has operations of the form

δ
δ

µ
µ

=

δ
δ

µ
µ

such that
▶ FRO axioms are satisfied inside the boxes
▶ there is an external symmetry
▶ external symmetry coincides with internal one

38 / 48



The bar construction

The bar construction on FRO has operations of the form

δ
δ

µ
µ

=

δ
δ

µ
µ

such that
▶ FRO axioms are satisfied inside the boxes
▶ there is an external symmetry
▶ external symmetry coincides with internal one

38 / 48



The bar construction

The bar construction on FRO has operations of the form

δ
δ

µ
µ

such that
▶ FRO axioms are satisfied inside the boxes
▶ there is an external symmetry
▶ external symmetry coincides with internal one

38 / 48



The bar construction

The bar construction on FRO has operations of the form

δ
δ

µ
µ

such that
▶ FRO axioms are satisfied inside the boxes
▶ there is an external symmetry
▶ external symmetry coincides with internal one

38 / 48



The bar construction
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δ
δ

µ
µ

such that
▶ FRO axioms are satisfied for same colors

▶ there is an external symmetry
▶ external symmetry coincides with internal one
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A convergent presentation of the bar construction

We thus have a convergent presentation of the PRO for the bar
construction:
▶ it is generated my

µc : 2 → 1 δc : 2 → 1 γ : 2 → 2

with c ∈ N a color
▶ quotiented by relations of Frobenius with same colors for δ
and µ

δ

µ
⇒

δ

µ

(the resulting PROP has to be taken up to renaming of colors
and two disconnected components must have different colors)
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Differential of the bar construction

The differential is given by

d



δ
δ

µ
µ


= ±

δ
δ

µ
µ

± . . .
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Differential of the bar construction

A morphism of the bar construction is represented by a diagram
in T(δc, µc, γ).

To such a diagram, we can associate a partial order whose
elements are the instances of δc and µc (but not γ) and
dependencies correspond to composition in the “expected way”:

δ
δ

µ
µ

⇝

δ

δ

OO

µ

OO

µ
OO

Two operations which are immediate predecessor / successor
are adjacent and their colors can be merged by the differential.

41 / 48



Differential of the bar construction

A morphism of the bar construction is represented by a diagram
in T(δc, µc, γ).

To such a diagram, we can associate a partial order whose
elements are the instances of δc and µc (but not γ) and
dependencies correspond to composition in the “expected way”:

δ
δ

µ
µ

⇝

δ

δ

OO

µ

OO

µ
OO

Two operations which are immediate predecessor / successor
are adjacent and their colors can be merged by the differential.

41 / 48



Filtering the bar construction

By “forgetting about colors”, we have a forgetful functor

U : T(δc, µc, γ)/(R′) = B(FRO) → FRO = T(δ, µ, γ)/(R)

(before and after quotienting by relations)

Given two diagrams ϕ and ψ in T(δ, µ, γ), we write ϕ ⪯ ψ
whenever ϕ⇒∗ ψ in FRO.

We can thus define a filtration of T(δn, µn, γ) indexed by T(δ, µ, γ):

Fϕ(T(δc, µc, γ)) = {ψ ∈ T(δc, µc, γ) | U(ψ) ⪯ ϕ}

which induces a filtration on the quotient B(FRO).
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A good filtration

This filtration has nice properties:
▶ differential is stable

d


δ

δ

µ

 =

δ
δ

µ

⇒
δ

δ

µ

▶ it is exhaustive
▶ the partial order ⪯ can be extended as a total order
isomorphic to (N,≤)
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Reducing to the monomial case

We can therefore use a spectral sequence, whose first page is

E0ϕ(B(FRO)) = Fϕ(B(FRO))/Fϕ−1(B(FRO))

and we have
E0ϕ(B(FRO)) ∼= B(

◦
FRO)

where
◦

FRO is the monomial version of FRO:

⇒ 0 ⇒ . . .

It is therefore enough to show that this one is koszul.
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Koszulity of
◦

FRO

An operation in B(
◦

FRO) consists of a diagram in T(δn, µn, γ) in
normal form:

δ
δ

µ

The differential takes two adjacent operations and merges their
color: either the resulting diagram is normal, or the result is zero.

d


δ

δ

µ

 = ±
δ

δ

µ

±
δ

δ

µ

︸ ︷︷ ︸
=0
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Koszulity of
◦

FRO

Consider an element of B(
◦

FRO), where all operations are colored
differently:

δ
δ

µ

An element like this is in the diagonal: it has the same
▶ degree: number of used colors
▶ weight: number of operations

B(
◦

FRO) splits as a direct sum of complexes obtained as
colorings of such elements.
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Koszulity of
◦

FRO

Consider an element of B(
◦

FRO):

δ
δ

µ

If the image of the differential is 0 then we are done, since it is on
the diagonal.
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Koszulity of
◦

FRO

Consider an element of B(
◦

FRO):

δ
δ

µ
µ

If the mergings of adjacent colors are independent then the com-
plex is acyclic since it is isomorphic to the one of ∆k−1 (k = 3 in
the above example).
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Koszulity of
◦

FRO

Consider an element of B(
◦

FRO):

If the mergings of adjacent colors are not independent, i.e. the
morphism contains a “diamond” as above, then we cannot con-
clude…

but this does not happen because if a morphism contains
a diamond, then its normal form too!

47 / 48



Koszulity of
◦

FRO

Consider an element of B(
◦

FRO):

δ
δ

δ
δ

µ
µ

µ
µ

If the mergings of adjacent colors are not independent, i.e. the
morphism contains a “diamond” as above, then we cannot con-
clude… but this does not happen because if a morphism contains
a diamond, then its normal form too!

47 / 48



Conclusion

[Once every detail checked] we have shown that the PROPerad
Frob is koszul.

Explicit handling of symmetries seems to be fruitful!

This is a motivating example for developing a theory of higher
linear polygraphic rewriting system.
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