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These are notes about Loday and Vallette’s point of view about Koszul
duality for algebras [LV12]. Most of what is in here comes from there (excepting
errors and some detailed examples). Two introductory articles about Koszul
duality where also used [Fr699, Krél.

1 Homology of algebras

We suppose fixed a field k over which vector spaces will be considered. We do
not recall basic definitions about vector spaces. The free vector space over a
(finite) set X is denoted kX. It is quite useful to keep in mind the following
isomorphisms:

k(XwY)=kX @ kY k(X x V) 2 kX ® kY

1.1 Algebras

Definition 1. An algebra (A, 1) consists of a vector space A together with a
multiplication
nw o A®A — A

which is associative

A A A A A

- |

ARA—7——A

(all algebras considered here are associative). We often write ab instead of
w(la®b). A unital algebra (A, u,n) consists of an algebra together with a unit

n : k — A
satisfying
k@ A5 A0 A< Aek
]
A

An augmented algebra (A4,¢) is an algebra equipped with a morphism of
algebras € : A — k (in particular, for unital algebras € o n = idy).

Remark 2. More abstractly an algebra can be defined as a monoid in the
monoidal category Vect.

Remark 3. There is an isomorphism between non-unital algebras and augmented
unital algebras. Namely, given (A, ) augmented, we have the isomorphism of
vector spaces

A =2 klgkere = klgA

So, to an algebra A, we associate the augmented unital algebra k1 & A (with
obvious multiplication) and A augmented unital we associated A.



Definition 4. The tensor algebra TV over a vector space V is
TV = kleVeV®aV®e...

with tensor as multiplication and the inclusion n : k — TV as unit. The
reduced tensor algebra TV is

TV = VoV®2epv®ig. ..
(ie. TV =kla® TV, ie. TV =TV).

Remark 5. The tensor algebra is canonically augmented by e(l) = 1 and
e(u)=0forueTV CTV.

Proposition 6. The tensor algebra TV is the free unital algebra over V, i.e. any
linear map f : V. — A where A is an unital algebra extends uniquely as an
algebra map f: TV — A:

Similarly, the reduced tensor algebra TV is the free (non-unital) algebra over V.

Definition 7. A (left) module (M, \) over an algebra A is a vector space M
equipped with an action

A AQM — M

satisfying
AvAe M2 Ao M

= s

A M A

This definition extends to unital algebras by also requiring

koMM Ag M
\ l/\
M

The notion of a right module (M, p) with p: M ® A — M is defined similarly.
A bimodule (M, A, p) is both a left and a right module such that

AMo A4 oA

A@pl l

A®M—/\>M



Remark 8. Given an augmented k-algebra A, k is canonically a left (or similarly
for right/bi) A-module by

Ma, k) = ela)k

Proposition 9. The free left (resp. right, resp. bi) A-module over V is AQV
(resp. V@ A, resp. AQV ®@ A).

Remark 10. Given an algebra A = (A, u), we define A°°? = (A, u°P) where
pP =porTwith7: A® A — AR® A the canonical switching. The category of
right A-modules is isomorphic to the category of left A°P-modules, A-bimodules
can be seen as left A°? ® A-modules, etc. In this sense, the distinction between
left, right and bi-modules is not fundamental (but of course we won’t get the
same results if we compute homology in left, right or bimodules...). In the
following, we sometimes use the notation

A = A®A®

1.2 Homology of free modules and algebras
Definition 11. A chain complex

ds do dy do

Co 0

Cs Cy

consists of a (left/right/bi) modules (C;);>0 and module maps d; : C; — C;_1
such that
di o di+1 = 0

Notice that this implies im d; 1 C ker d;, so that we can define the n-th homol-
ogy group by

H,(Cs) = kerd;/imd;4q
The complex is exact when we have imd;,; = kerd;. A morphism between
to such chain complexes f : C¢ — D, consists of maps f; : C; — D; such that

fiodi = dit10 fina
i.e. the following diagram commutes
ds

da di

Cs C Co 0
J{fz \Lﬁ J{fo \L
% py—2.p, % D, 0

An homotopy h: f = g: Cy — De between two such morphisms consists of
linear (not module) maps h; : C; = D;11

ds do dq

. Cy & Cy 0
h2/92 \u]fz hl/gl \u/fl ho/g(l \u/fo \L
/ds /d2 /dl
N D2 Dl DO 0
such that
fi—g9i = diyiohi+hi10d;



The operation H extends to a functor, i.e. a morphism f : P — @Q of chain
complexes induces morphisms

Proposition 12. Two homotopic maps induce the same morphism in homology.

Definition 13. An augmented chain complex C, of a chain complex to-

gether with a linear map
3 : Co - M

to a module M, such that the sequence
Co—=>M—>0

is exact, i.e. ime = M, and
(SNl d1 = 0

It is a resolution of M when the complex C is acyclic, i.e. the complex

ds do di

Cr

Cy Co—=>M 0

has vanishing homology groups (i.e. the sequence is exact).

Remark 14. The right way to see a an augmented chain complex is as a mor-
phism of chain complexes

<7
-
~

O=<=——70O

and the condition for it to be a resolution is equivalent to requiring that the
above morphism is a quasi-isomorphism, i.e. induces an isomorphism in ho-
mology.

Definition 15. A module P is projective if for any morphism f : P — M
and surjective morphism p : N — M there exists a unique morphism g : P — N
such that

N
7
g .-
P'T>M

Lemma 16. FEvery free module is projective.

Proof. Since p is surjective, it admits a section s : M — N. Since P is free, the
function which to a generator = of P associates so f(x) extends to a morphism
of modules g: P — N. O

Remark 17. Conversely, every projective module is a direct summand of a free
module.



Proposition 18. Every finitely generated module over a local ring is free.
Proof. Use Nakayama’s lemma. See also [Kr]. O

Proposition 19. Between any two projective resolutions of M there is a mor-
phism, whose component on M 1is idps, and between any two such morphisms
there is a homotopy.

Proof. Consider two projective resolutions P and P’ of M. We build a morphism
between them, by induction, as follows:

P, P, Py—>M 0
f2 f1 fo lid J/

’ Y ’ Y ’ Y
S op o Ny 0

Since ¢ is surjective and P is projective, we have fy. Suppose the morphisms
constructed up to f;. We have that d} o f; od;y1 = fi—10d; 0od;11 = 0, and
therefore im(f; o dj1) C kerd; = imd; ;. Therefore f;;; exists since Piyq is
projective and d;_ ; is surjective on its image. The construction of the homotopy
is similar. O

Suppose given a k-module A and consider a resolution of a right A-module M
by projective right A-modules P;

dn+t1 dn da dy €

P, P i) M 0

Tensoring it by a left A-module N yields a chain complex which is not exact
anymore

dny1®aN, dp®@aN do®@ AN di1®aN
S P @A NS A Py N2 Py ——>0

The torsion functor
Tor2(M,N) = H,(P,®a N)

is the n-th homology group of this chain complex (the above tensor notation
is explained in Definition 42). Since we have chosen projective resolutions,
the homology does not depend on the choice of the resolution by the above
propositions. These constructions can be developed similarly for resolutions by
left, and bi A-modules.

In the case where we have a group (or a monoid) G, we consider the free
ring A = kG, and define

H,(G) = Tor(k k)

where k is seen as a trivial left A-module, i.e. g-k = k for g € G and k € k. This
construction works more generally for augmented algebras with the “trivial”
A-module structure on k being given by a - k = e(a)k.


http://en.wikipedia.org/wiki/Nakayama_lemma

Ezample 20. Consider the monoid M = (x,y | zx = yy,zy = yx). We write
A = kM with k = Z. We can start building a resolution of the trivial left
A-module k by free left A-modules as follows

ds do dy

Cs Gy Co ——k 0

We begin by Cy = kM @ k =2 kM and ¢ : kM — k such that e(m) = 1 for
m € M. Now, we have ker d; generated by elements of the form m—1 form € M.
So we could take C; = kM @ kM with d; (1 ® m) = m — 1. However, we can do
better since kerd; is also generated by {z — 1,y — 1} as a left kM-module: we
have

ma—1=m(a—1)+(m—1)
and we can conclude by induction. So, we can take C; = kM ® k {x,y} with
di(l®z) =x—1and di(1 ® y) = y — 1. Geometrically, this means that we
have a path from 1 to every word m € M in the graph with M as vertices and
m®x:m — mx as edges

1Rz QY
l— 2 ——2ay=yx

i.e. it is connected. In order to go on, we should take in account the two rules
a:xx =1yy and B : zy = yx. Namely, considering 5, we have

q(lerz+zRy) = z-l4+zy—2z = yr—1 = d(1Ry+yx)

Geometrically, this corresponds to the fact that we have to add 2-cells in order
to make the “graph” simply connected

x x
1Rz QT 1®x @Y
1 Ja T =Yy 1 I8 Ty = yx
1oy y®y 1oy y®z
Y Yy

We can thus take Cy = kM ® k{«, 8} with

da(a) = 1@z+zRzr—-1Qy—yRy
d2(f) = 1@z+zy—-1Q0Qy—yQu

(in order to formally prove that the chain complex constructed so far is ex-
act, one can for example construct a contracting homotopy). Notice that from
what we have constructed, we have Hy(M) = k (as always). Moreover, on the
trivialized complex Hy(M) is computed from

k{&,ﬁ} A®xd2 k{%y} A®xdy Kk

with

(Aodi)(z) =1  (A®di)(y) =1  (A®d2)(a) =22-2y  (A®d2)(B8) =0



So, in characteristic 0, we have ker(A®d; ) = k{z — y} and im(A®ds) =k {z — y},
and therefore

H(M) = 0
When the monoid is presented by a convergent rewriting system, we can take C3
to be the free kM-module on critical pairs, Cy the free kM-module on critical
triples, and so on, in order to make the “graph” contractile. This is nicely ex-
plained in [LP91]. These ideas are the basis of the partial resolution constructed

by Squier [Squ87] and Anick’s resolution [Ani86] for algebras, rediscovered for
monoids by Kobayashi [Kob90]. ..

In the above example, we have been particularly smart and have built a quite
reasonably small resolution. However, if we only want to theoretically build a
resolution we can use a much more canonical way, at the expense of constructing
a much bigger complex. In the above situation notice that kM is not only a
ring, but actually an algebra A = kM which is augmented as described above.

Definition 21. Suppose given an augmented algebra A. The bar resolution
of the trivial A-module k by free left A-modules is

ds da dq

Cy & Co >k 0
with
C, = A®A®"
An element of A ® A®" is often denoted
alailas]| ... |ay]
and the differential is defined by
dp([ar]az] ... |lan]) = aifas]...|as]+ Z (=1)[a1]. .. |aiait1] .. |an]+(—=1)"[a1]|as]
1<i<n

The normalized bar resolution is defined similarly, without taking the unit
in account: e

Cn = A®A"
There are of course right and bimodule versions of this: in the bimodule case,
we have

C, = ARA®"®A
the augmentation is p: A® A — A and
do(lar]az| .. Jan]) = ailas|.. Jan]+ > (=1)[a1]. .. |aiaia] . . |an]+(—1)"[asas]
1<i<n

Remark 22. Geometrically, this corresponds to constructing a complex with the
elements of A as vertices and making it contractible:

alayas]

N |an,1}

can—1lan



which explains graphically why d(a[a1]) = aa; — a and
d(alar]az]) = aai[az] — alaias] + alaq]
We refer to [MLM95, Lod98] for a presentation of the homology of algebras.

Definition 23. The Hochschild homology of an algebra with coefficients in
a A-bimodule M is
H,(A,M) = Tor’ (A, M)

where A is considered to be a bimodule over itself using multiplication. More
explicitly, it is the homology of the Hochschild complex
d3 ®2 d2 d1
— = MRQA® — M RQA——M
with

dn(mlal...lan]) = mafas|.. lan]+ Y (=1)[a1].. . [aigisa] .. |an]+(=1)"anmlas] .. . an_1]
1<i<n

Definition 24. Given an augmented chain complex ¢ : (A ® Cs) — M of free

left A-modules

..LA®CQi>A®Cli>A®CO*E>M—>O

a contracting homotopy consists of k-linear (generally not A-linear!) mor-
phismsn: M - A Cyand s; : AQC; - AR Ciqq

ds ds dy
..:A®02<:>A®Cl<:>A®COéM—>O
S2 S1 S0 n
such that
eon=idy diosg+noe=idagc, diy108;+ si—10d; =idagc;

Proposition 25. An augmented chain complex equipped with a contacting ho-
motopy as above is a resolution of M.

Example 26. We can define a contracting homotopy on the left bar resolution
by
n(k) = k[l sn(alaa] .. lan]) = [alar] .. . |an]
(this works more generally for augmented unital algebras).
We are often interested in building smallest possible resolutions.
Definition 27. A resolution P of M is minimal if H,,(P) =0 for n > 1 (and
Hy(P) = M).

Remark 28. From [Kri], a free finitely generated resolution is minimal when
the matrices encoding the differentials

dn
Py 2 Abrtr 0 Abn = py

have coefficients in A. Namely, when we —® 4 k to compute the homology, with
the usual augmentation ¢ : A — k (sending everything excepting 1 to 0), the
maps become 0.



1.3 Anick’s resolution for algebras

We describe in this section the resolution introduced by Anick in [Ani86]. It
can be seen as a generalization of the resolution for monoids described by
Kobayashi [Kob90]. Consider an (augmented unital) algebra A = A(X,R)
where R is a reduced Grébner basis (see Definition 97). We are going to build
a resolution

dnt1 dn da dy do €
== C & A——=..—=C, ®kA<:>CO®kA<:>A$k*>O

int1 in, @2 i1 %0

of the trivial right A-module k by free right A-modules. Above, the d,, and e
are A-linear whereas the i,, and 1 are k-linear. These should moreover satisfy

edop =10 dpt1dn, =0
and
en = idg dii1 +ne =1idgy dnt1in+1 + indy =ide, A
It is actually simpler to construct
i, = kerd,_1 — C,QA
and replace last axiom by
dpin = idkerd,_,

(any extension to the domain C),_; ®k A will suit in the previous sense, typically
by 0 in the following).

Definition 29. An n-chain is a sequence of n+ 1 words defined inductively by
e there is a unique (—1)-chain
e a O-chain is any letter
e a (n+ 1)-chain z|uy|...|un41 is a sequence of words such that

— z|u]...|u, is an n-chain,
— Upy1 is a non-empty word in normal form,

— the word w,uy,41 is reducible, in a unique way, at a rightmost posi-
tion.

Lemma 30. The forgetful function from n-chain to words, sending x|uy|. .. |u,
to xuy ... u, is injective. We can therefore omit the “” if we feel like to.

We define the C,, as the free k-modules generated by the n-chains. The
complicated part is to define the maps, which by are going to do by induction
on both homological degree and monomials: the monomials in C,, are totally
ordered since we have a Grébner basis and we extend this order on C,, ® A by
u@v <u v if uv < u'v’ in Cy,. In addition to the required axioms, it will be
checked inductively that d,, is weakly decreasing (d,(u) < «) and 4, does not
change the order (so that i,d, is weakly decreasing).

10



We define dy : Coy® A— Aonxz®1€ CyR A by
do(z®1) = z—ne(x)
and ig: A > Co® Aon u € A by
iolu) = zT®v

if zv = 4 is the normal form of the word u. Those morphisms are easily verified
to satisfy the required axioms.

We now suppose defined d,, : C,,® A — C,,_1®A and i, : C,,_1 @A (up ton)
and we construct d, 41 and i,41. The morphism dy,41 : Cry1 ® A = C, ® A is
defined by

dpt1(u®l) = U @uptp1 — indy (v @ upgq)
with u = zluq| ... |up|tnt1 = W|ups1 € Cpi1. We have that d,d,41 = 0:
dpdpi1(u®1) = dp(u' @upi1) — dpindn (v’ @ tpi1)

and dypind, (v @ upt1) = dp (v @ upt1) because dp (v @ up4+1) € kerg, _, since
dp—1d, = 0 and di, = idkerq, _,. Moreover, we have

dy(t @upi1) = mlug|.. . |un_1 @ upung + 1t

where [t designates strictly lower terms so i, d,, (4 @up+1) < ' @up41 because iy,
does not change the order, d,, is decreasing, and wu,u,+1 is reducible by definition
of chains, so that

in(zlu] .. |Jun_1 @ uptini1) < U @upyq

We define i,,41 : kerd,, — C,, ® A as follows. Suppose given a term

T = lu®utlt
in C,, with u = z|uq|...|u, (we have identified the summand of maximal de-
gree). We know that
do(t) = AMdp(u®wv)+dy(it)
= Ax|ur|... |un—1 ® upv + dp(lt)
= 0
This implies that u,v is reducible (otherwise A\x|uy]...|un—1 ® u, could not be

canceled in d,(It) < It). Therefore, we can write u,v = v'wv” with w a left
member of a rule, and we choose the leftmost decomposition (with v" as small
as possible). We finally define

inc1(t) = Aup'w@v” +in1(t — Adp(ulv'w @0"))
where ip,41(t — Ady, (u]v'w ® v")) is defined inductively. Namely,
dp(up'w@v") = u@upy1 —in—1dn—1(U ® Upi1)
which shows that the leading term of ¢ gets canceled. It can be checked that
dn+41in+1 = idgerd,: we the above notations, we have by induction
dpi1ini1(t) = Mpg1(ulv'w @ 0") + dyiy, (1)
= Mur1(u@v'wo'”) +1t
= A Upt1 + It
=

11



Example 31. Consider

A = (x,y|rx—yy Ty —yr)

with x > y and the usual augmentation for graded algebras. We have

C_y = {x} Co ={z,y} Cy = {zz,zy} Cp ={z"z, 2"y}
with
dz®1)=x dlye1l)=y
dzz®1l)=zQx—-yQy dzy@l)=zy—y®x

dz"z@1)=2"r—2""yey da"yel)=2"y—y" lyeu

2 Bar, cobar, and twisting morphisms

2.1 Algebras and coalgebras

The right bar resolution can be seen as
BA®, A

where BA denotes the collection of all the A®™, i.e. T A as a vector space. First,
it can be noticed that BA has a structure of free dg coalgebra. The differential
on this complex is the sum of two distinct contributions

e d([a1]...|an]) = [a1]...|a;ait1] ... |an] comes from the multiplication ex-
tended as a coderivation on the coalgebra

e d([a1]...|an]) = [a1]...|an—1]a, derives from a morphism 7 : BA — a
called “twisting”

Then we are going to study when we can find a “small” coalgebra C', which can
play the role of BA in our constructions. This will typically be the case for
Koszul algebras.

Definition 32. A derivation d: A — M from an algebra A to a bimodule M
over A is a linear map such that

dop = po(d®ida)+ Ao (ida ®d)

i.e.

d(ab) = d(a)b+ad(d)
SRR

12

Graphically,



Proposition 33. A derivation on TV is completely determined by its restriction
toV:

4

Hom(V,M) = Der(TV,M)
and given f:V — M,

di(vi...v,) = Z vy f(0g) oy

1<i<n

Remark 34. Given a smooth manifold M, we write C*(M) for the ring of
smooth functions M — R. The tangent space T,M at a point x can be de-
fined as the vector space of derivations of C*°(M) at x, i.e. its elements are
d:C>®(M) — R such that

d(fg) = d(f)g(x)+ f(z)d(g)

Ezxample 35. Let us give an example in Set, which is not exactly in the context
we describe, but is enlightening. Consider the monoid M = {a,b}" and suppose
that we want to count the number of as before a b in words u. We consider the
monoid N; = N {1} whose addition extends the one on natural numbers by
1l +n=n=mn+ L. Since M is free, we can define a (left) action of M on N
by its effect on generators. We define

a-1L=1 a-n=(n+1) b-L=1 b-n=n

This can be extended as a biaction, whose action on the right is trivial. Consider
the map f: {a,b} — N defined by

a— L b—0

This extends as a derivation d; on words by

di(zy...2) = Z 1. f(Tg) .

1<i<n

A term z1 ... f(z;) ...z, in this sum is L if 2; = b and is equal to the number
of as in x1...x;_1 otherwise. The derivation thus computes the number of as
before a b in a word. It can be for instance used to show that the rewriting

system
(a,b | ab — bba)

terminates.

Definition 36. A coalgebra (C,A) is a comonoid in Vect: A : C - C®C

such that

c—2 .cwcC

Ai Jase

Variants are also defined: counital (¢ : C' — k linear), coaugmented (n : k — C
coalgebra morphism). In the counital coaugmented case we have

C = Cokl

13



with C' = im7. The reduced coproduct A : C — C @ C is given by
Alr) = A@@)-1rz-231

We write A" : C — C°" for the iterated reduced coproduct. An augmented
coalgebra C is conilpotent when for every x € C, there exists n € N such that

A(z) = 0
Proposition 37. The cofree conilpotent coalgebra TV on a vector space V
18
TV = kleVe..oV®¥ae..

equipped with the deconcatenation tensor product A : TV — TV TV defined
by
Alvy...v,) = Z Ve 0 QUigy .. Uy
0<i<n
(in particular A(1) =1® 1). By this we mean that any linear map f: C =V Topo: i (viz
from a conilpotent coalgebra C to V extends uniquely as a morphism of coalge-  meronions such ae

f satisfy f(1) = 0,
bras Why?...

T°Vv

P l
P

C——=V

In the non-unital context, we have TV = @
deconcatenation coproduct

>0 V&n equipped with the reduced

Alvy...v,) = Z V1.V @ Vig-..Up

0<i<n

Definition 38. A coderivation is a linear map d : C' — C such that d(1) =0
and
Aod = (d®idg)oA+ (ideg®d)oA

2 - i

Proposition 39. A coderivation on TV is determined by its corestriction to 'V .
To f : TV — V corresponds the coderivation whose corestriction to any V&™

18
df(l‘)(n) = Z Zx(l)®...®f(x(i))®...®z(n)

1<i<n (z)

Graphically,

with A (x) =Y ) 1) © - @ ().

Ezample 40. Consider an algebra (A, ). The multiplication p can be extended

as a coderivation d, on T°A. If we write [ai]...|a,] for an element of A®™ we
have
n—1
du(lan] . Jan)) = D ar].. laiais]. .. |an]
i=1

14



which is almost the bar complex (see Definition 21), excepting for the signs and
the fact that we do not really remember about the grading, see Definition 52
for details in the graded case.

2.2 Differential graded vector spaces

Definition 41. A graded vector space is a family (V,,)nez of vector spaces
whose direct sum is denoted V,, elements v € V,, are of degree |[v|] = n. A
morphism [ :V — W of degree |f| = r is a family of maps f, : Vi, = W4

Definition 42. The tensor product V ® W of graded vector spaces V and W
is
i+j=n

Notice that given a graded vector space V', the tensor TV thus admits two
gradings: given v € VO its

e degree is |v] = |v1| + ... + |v,]
e weight is n

We write ks for the graded vector space generated by s with |s|] = 1. The
suspension sV of V is
sV = ks®V

so that we have (sV); = V;_;. The desuspension s~V is defined similarly
with 57! in degree —1.

The category of vector spaces is equipped with the symmetric structure
induced by the natural family of maps 7: V@ W — W ® V defined by

rvow) = (—D)Plyee

This has a number of consequences. For instance, given an algebra A, A® A is
canonically equipped with a structure of algebra with

(p@p)o(lda®7T®idsa) @ (ARA)RARA) - ARA

as multiplication:

This means that the sign rule is
oy oy) = ()@ oyy)

For similar reasons, we follow the Koszul sign rule, defining the tensor product
fRg: VeV - WeW of twomaps f:V — V and g: W — W’ of graded
vector spaces by

(fegreow) = (Df0)egw)
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and given maps f': V' — V" and ¢’ : W' — W", we have

(f@g)e(fog) = (D)W o og) (1)

which is better understood if we look at the graphical version of the exchange

AR

Another way to represent the graded exchange law (1) is by using “leveled”

string diagrams
<D, <D,
, @D
- (fl)lg 51
D,

Definition 43. A differential graded vector space (or dg vector space or
chain complex) (V,d) consists of a graded vector space together with a map
d: Ve = V4_1 of degree —1 such that

& = 0

A morphism of degree r between two chain complexes is a map f: Vo — Weyr
such that
dwof = (=1)"fody

The tensor product V @ W of two chain complexes is equipped with the differ-
ential
dvew = dy ®idw +idy @ dw

ie.forveweV,® W,
dvew(@ew) = dy(®)@w+(-1)"vedy(w)
The suspension is defined as before, which implies
dsy = —dv
Definition 44. The derivative of a map f : Vo — W, of degree r is
of) = df] = dwof—(-1)fods

Remark 45. f is a morphism of chain complexes if and only if 9(f) = 0. Notice
that 92 = 0, i.e. we have a differential on hom-dg vector spaces.

16



Remark 46. We will mostly consider dg vector spaces in which V;, = 0 for n < 0.
However, keeping the gradation in Z ensure that morphisms of negative degree
are properly defined, etc.

Remark 47. Given two graded vector spaces V and W, Hom(V, W) is graded
(by the degree of morphisms) and differential graded by the derivative (Defini-
tion 44) when V and W are dg.

Definition 48. A homotopy between two maps f,g : V — W of degree 0 is
h:V — W of degree +1 such that

f—g9g = 0(h) = dwoh—hody
Definition 49. Given a chain complex (V,d), the homology groups are
H,(V) = ker(d:V, = Voy1)/im(d: Vo1 = V4)

We write Ho (V') for the associated graded vector space. A quasi-isomorphism
is a morphism of chain complexes which induces an isomorphism in homology.
A chain complex V' is acyclic when, for n # 0,

Ho(V) =k H,(V)=0

which means that ker(d : V,, = V,,11) =im(d : V-1 — V) for n > 1.

2.3 Differential graded (co)algebras

Definition 50. A graded algebra is a graded vector space (4,)n,>0 equipped
with a product p : A ® A — A of degree zero: it is thus a family of maps
tpq: Vp ®Vy = Vpy, A differential graded algebra is a dg vector space A
such that the multiplication p: A ® A — A is a morphism of chain complexes.
More explicitly, it consists of a graded vector space (A,),>o which is a graded
algebra such that differential is a derivation for the product

dop = po(d®ida)+ po (ida®d)

i.e.

d(ab) = d(a)b+ (=1)%a d(b)
It is connected when Ag = k1.
Definition 51. A differential graded coalgebra is defined similarly.

Definition 52. Consider an augmented algebra A = k1 @ A with multiplica-
tion : A® A — A. This algebra can be thought as a dg algebra concentrated
in degree 0 with trivial differential, the general case being given below. The bar
construction associates to it a coalgebra BA. As a differential algebra, we have
BA = T¢(sA). Notice that sA = ks ® A is equipped with a “multiplication”

Sy sA®sA — sA
of degree —1 defined as
ks @ AR ks ® A 2™, ko oks 0 A9 A 2 ks A
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where p; : ks @ ks — ks is the map of degree —1 defined by us(s® s) = s. This
induces a map B B
fu + T(s4) — sA

by precomposing su by the canonical projection T¢(sA) — sA. Since T¢(sA) is
cofree, by Proposition 39 it extends as a unique coderivation

d, : T°(sA) — T(sA)
which satisfies di = 0 because p is associative.

The coderivation can be pictured as follows

T¢(sA) - k A A% % -
dy, 0/ S,LL/ spu®id+1d®su /
| S e e
T°(sA) = k A A A
Concretely, it can be identified with the (non-unital) Hochschild complex of A
A% A——>k
with .
dular]. Ja]) = D (=1 Mar|...Jp(ai, air)] . fag]
i=1

For instance, in the case [a1]az|as] = (sa; ® sag ® sas)

du(sar ® sas ® saz) = fu(sa1) ® saa ® sag — sa1 ® f,(sa2) @ sas + sa1 @ saz @ f,(sas3)
+ fu(sa1 ® sas) ® saz — sa; @ fu(sas ® saz) + fu(sa1 @ sas @ saz)
sp(sa; ® sas) ® saz — sa; @ sp(sas ® sas)

By the sign rule, we get a minus in the last line because p is switched with sa;,
etc.
When A is a graded algebra the same construction works and we get

d#(sa1®. X .®5an) = Z(_l)iflJr\m\+...+|a171\sa1®. . ~®3N(ai®ai+1)®~ ..Qay,
=1

Lemma 53. The map d,, : T°(sA) — T°(sA) is a differential: dz = 0.

When A is differential graded, the differential d4 : A — A induces a differ-
ential on A®" (and thus on T¢(sA)) by

ZidA®...®dA®...®idA COA® o p®n
1=1

that we still write d4. The chain complex BA then has the total differential

dpa = dy+da
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Lemma 54. The map dpa satisfies d% 4, = 0.
Proof. Since p4 is a morphism of dgvs, we have d,, od4 + d4 od, = 0. O

Proposition 55. Any quasi-isomorphism f : A — A’ of aug. dga induces a
quasi-isomorphism Bf : BA — BA.

Proof. Spectral sequence. O

Definition 56. The cobar construction QC on a coaugmented dg coalge-
bra C is defined similarly. We start from the free dg algebra T'(s~!C) and add
to the differential, the differential obtained by extending A by derivation in
T(s~'C), seen as a bimodule over itself.

Theorem 57. We have an adjunction
Q : {con. dgcoalg.} - {aug. dgalg} : B
Proof. See Theorem 67. O

2.4 Twisting morphisms

So far we have defined the bar complex BA. How do we define the bar resolu-
tion? We could take something like BA ® A. The boundary is almost what we
expect, excepting that we miss the last term in the sum:

n

d([ar] .. anlani:) = D (1) Haa| . Jaiaigal]. . |an]+(=1)" " aa| .. an—1]anan
=1

The proper differential can be achieved by “twisting” the tensor product along
a morphism 7 with suitable properties.

Definition 58. Given a coalgebra (C, A, ¢) and an algebra (A, u,n), the con-
volution product on Hom(C, A) defined by

fxg = po(f®g)oA
is associative, with 7 o € as unit, i.e. we have a convolution algebra
(Hom(C, A),*,no¢)

Definition 59. Suppose given a dg algebra A. A derivation on a right A-mod-
ule M is a linear dp; : M — M such that

duyop = po(dy®ida)+po(idy @da)
i.e. form € M and a € A,
dy(ma) = dy(m)a+ (=1)"™md(a)
A coderivation of a left comodule is defined in a similar way.

Proposition 60. Given a dg algebra A a dg coalgebra C and a chain complex N,
we have
Der(N® A) = Hom(N,N® A)

and

4

Coder(C® N) = Hom(C ® N, N)
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A linear map o : C' — A defines

CA o0 ¥ oA

which extends as a derivation on C'® A and a morphism

CoA22 Ao at A

which extends as a coderivation on C'® A. Both extensions are equal to

da _ C@A ARid 4 C®C®A ido®a®id 4 C®A®A ide®u C®A
C A

(A3
D,
<D,

C A

Ezxample 61. Given an algebra A, consider C' = T¢A. We have a projec-
tion w : T°A — A. The associated differential on C' ® A is given on A" ® A
by

de(a1®...Qan)ant1 = (A1 ®...Q ap_1)anani1

which is almost (up to sign and grading) the missing part from the differential
on BA® A.

Lemma 62. Given o, : C — A, we have
da o dﬁ = da*ﬁ and daon = idc®A
Thus if a* o = 0, we have d = 0 and we get a chain complez (C ® A, dy).

Remark 63. In the (non-differential) graded setting, the convolution algebra
(Hom(C, A), %, 0) is a dg algebra equipped with the derivative 0 of graded linear
maps (Definition 44): given f: C — A, we recall 0f =dao f — (—=1)fIfod,.

In the dg setting, things goes on as follows. We would like (C'® A, d,) to be
a chain complex with
do = doga+d,

where doga = do ® id4 +ide ® d4 and
d, = (ide®p)o(idec®a®ida)o (A®ida)
is the previously defined differential.
Proposition 64. We have
di = /8((1)+a*o¢
It is a derivation if and only if a satisfies the Maurer-Cartan equation
a)+axa = 0

Such an a: C — A of degree —1 is called a twisting morphism.
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Remark 65. In the dg setting, when o : C' — A is twisting we get a dg algebra
(Hom(C, A), %, d,) with perturbed differential

alf) = O(f)+ I f]

Definition 66. Given a twisting morphism « : C — A, the twisted tensor
product is

(C®a A, da)

Theorem 67. The adjunction of Theorem 57 can be factored through twisting
morphisms:

Homdg alg(ch A) = Homtwisting(07 A) = Homdg coalg(ca BA)

Proof. Consider the first bijection. A dg alg morphism f : QC — A is charac-
terized by its restriction to C since QC = T(s~1C) (as an algebra) is free. And
since we consider C' coaugmented and A augmented, o sends k to 0 and C to A.
By commutation to differentials, we get the fact that the morphism is actually
twisting. Conversely, a twisting morphism « : C — A extends by derivation as
a morphism of algebras QC — A. O

Proposition 68. By the universal property of the adjunction Q 4 B, any twist-
ing morphism « : C' — A factorizes uniquely as

ac
/ o
« BN
C A
o A
BA

where go is a dg algebra morphism and f, is a dg coalgebra morphism.

Proof. We show this for the lower triangle (the upper one is similar). Consider
a dg coalgebra C and the dg algebra morphism idgc : 2C — QC. Since we
have Homgg a1 (2C, QC) = Homyyisting (C, QC), we get the twisting morphism
7w : C — QC and the natural bijection gives the universal property. O

Concretely, m is the composite
BA=T(sA) »sA~A— A
of degree —1 (and ¢ is similar).
Definition 69. Given a dg algebra A, its (right) bar resolution is
BA®, A

Proof. This is the bar (or Hochschild) resolution, acyclicity can be checked as
usual, for instance using a contracting homotopy. O
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3 Koszul duality

3.1 Quadratic algebras

Given an algebra A, we know that we can always compute the bar resolution
BA ®; A. However, BA is quite big and often impractical for computation
purposes, so we would like to find a smaller dg coalgebra C such that C ®, A is
acyclic. Koszul duality provides a way to do this in the quadratic case (there are
some extensions to quadratic + linear and + constants). First, to any algebra A
we associate a “natural” coalgebra Al, called the Koszul dual coalgebra, which
is a good candidate for a coalgebra such that Al ® A is acyclic. When it is
the case, the algebra A is called Koszul and various properties to show that an
algebra is Koszul are studied.
In the following, we will consider quadratic algebras, i.e. of the form

AV.R) = TV/(R)
with R C V®2. If we do this by hand, we are lead to consider C of the form
C = VeRSRIVNVRIR)®...

In good cases (when the algebra is Koszul), this will actually prove to provide
a resolution.

Definition 70. Given R C V®2 the algebra
A\V,R) = TV/(R)

is the quotient of TV by the two-sided ideal generated by R. It is universal
among algebras such that

R—TV A = 0

i.e. for any such algebra A, an algebra morphism f : TV — A factors uniquely
through the quotient TV — A(V, R):

TV#

A(V.R)

Notice that A(V, R) is graded by the weight (length of words) and augmented:

A = PAa» = kleVe(V®/Re..e|Ve/ > VIRV |o...
n>0 i+24+j=n

Definition 71. The same game can be played for coalgebras. The coalgebra
C(V, R) is the subcoalgebra of T°V which is universal among subcoalgebras C'
of TV such that

C—TV»V®/R = 0
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For any such coalgebra C' a coalgebra morphism f : C' — TV factors uniquely

as
f

— L sTV
7
C(V,R)
Explicitly,
¢ = @Pc™ = keVeRs(ReVNVeRe..e| (| VI¥eRaVY |a...
n>0 1+2+j=n

3.2 Dual coalgebra and algebra

Definition 72. The Koszul dual coalgebra Ai of a quadratic algebra A = A(V, R)
is the coalgebra

Al = (C(sV,s’R)
Ezample 73. Consider the algebra (z,y | x@ — yy, zy — yx) with the augmenta-
tion e(x) = e(y) = 0. Notice that with z > y, we have a Grobner basis:

a:xr — Yy B xy = yx
Namely,
TTT Ty
K &
TYY TYT
ax X l,@y ay X \Lﬁw
yry Yyrr
yyzx Yyyy

The dual coalgebra is given by
AP =k AV =k{zy} AP =k{ez - yy,zy - ya)
Next, A®) —V@RNR®V is given by solutions of

a(rrr — xyy) + blyrr — yyy) + c(zry — zyr) + d(yry — yyx)
= e(rvrx —yyz) + f(rey — yyy) + g(xyz — yrx) + h(ryy — yry)

i.e.
axzrx + crxy — cxyr — axyy + byxx + dyxy — dyyx — byyy
= exxx + frxy + gryx + hayy — gyxx — hyxy — eyyx — fyyy
Therefore
e c=f —c=g —a=h
b=—g =—h d=c¢e b=f
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ie.

a:d:e:—h b:C:f:_g
and we have
AY = k{zze - ayy + yry — yyz, ooy — oyz +yrz —yyyd = k{X,Y)

(we write X and Y for the two elements of the basis generated by xzz and xxy
respectively). Similarly, critical triples are

TXTIT TXTT

axrxT TTrox

\
arx :Xm ryﬁ/ Bzy
e v

yyo ayy

yyyy
and

TTTY TTTY

axy

ayx

J/ - yyp ayx

yyyx Yyyyx
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We have
AW — ROVRVNVRRVNAVRVOR

and its elements are given by solutions of

/ "

a a a TTTT
b v e’ TTTY
c e’ —e" TTYT
d ! —a” TT
e —f e b’ J‘yig
f - f f" TyTy

! 2
g —a —f TyyT
h —b " T

—e - c - c’ y%i

_ d/ 1 xx

ijqc g fg” zfcyg

—h h' —c" YTYY

—a —q' d"’ YYTT

-b —h' h YyTy

—c —c —h" YYyT

—d —d —d" yyyy

and therefore

a:a/:—g:g/:a//:—f/:f”:—d:—d//:f:.'.

b=V =-h=hK=€"=-=0'=-c=h"=e=...
i.e. restricting to first column
a=—-d=f=—g b=—-c=e=-h
A basis for A is thus

TTTT — TTYY + TYTY — TYYT — YYyrr + Yyyyy — yrry + yryx
TTTY — TTYT + TYTT — TYYY — Yyry + yyyr — yrarx + yryy
Notice that we could have been a little smarter and used

Ai(4) — Ai(?’) ®VQV®A1(3)

but anyway this is starting to get quite boring. We will see a much more direct
way of computing Al in Example 76, via the dual algebra.

Since people are more used to algebras than coalgebras, the dual algebra is
more often considered.

Definition 74. The Koszul dual algebra A' of an algebra A is the suspended
linear dual of the dual coalgebra Ai:

(AI)(”) - sn(Ai*)(”)

equipped with “obvious” multiplication coming from the comultiplication of Al.
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In order to compute a presentation for it, notice that dualizing the exact
sequence
0= R—V® 5 V®/R 50

yields the exact sequence

0 R« (V)2 <Rt 0
where R is the image of (V®2/R)* in (V*)®?2 through the iso (V®2)* = (V/*)®2
(there is a canonical map (V*)®2 — (V®2)* which is an isomorphism in finite

dimension). The notation R+ comes from the fact that R+ is the vector subspace
of (V®2)* of functions vanishing on R, i.e. is orthogonal to R.

Proposition 75. The Koszul dual algebra of A(V, R) is
A = AWV RY)
Example 76. Going back to Example 73. We have the two rules
a=zxr—yy and 8 =uzy—yx

Notice that V®2/R admits u = yy and v = yx as (PBW) basis. So, we have
made explicit the first exact sequence

0— k{a, B} — k{z,y}*? > k{u,0} -0
Writing ¢ and ¢ for the two non-trivial morphisms, we have
o(a) =zz—yy ¢(B) =zy—yz P(ez)=u Pay)=v Yyz)=v P(yy)=u
Thus, dualizing we get the map ¥* : k{u,v}" — (k {x,y}®2)* defined by
G =uwtop W) = v oy
Therefore,
Pru)(r) = (W) (yy) =1 Y7 (u)(zy) = ¢ (u)(yz) =
(and similarly for v*), and we deduce
Pr(u’) = (zz)” + (yy)" (") = (2y)" + (yz)"
By postcomposing with the isomorphism (k {z, y}®2)* =~ (k{z,y}")®?%, we get
D) =2t 9 -yt @y DY) = @yt +yF @t
which means
A = @yt | T 4y, Y 4yt

A simpler way to perform this computation is to consider the matrix associated

to :

100 1
My = (0 11 o) o k{zz ey gyl = k{u o)
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and the matrix for the dual is obtained by transposition

)

M'zp* = k{u*v*} — k{xx*vxy*vyx*vyy*}

—_ 0 O =
O = =

Let us describe A' more explicitly. We can orient the relations by z* < y*:

We have a Grobner basis and thus

A! — k{x*n’ x*ny*}
with multiplication
,LL(I*m I*n) x*ern ‘u(x*m T y) x*erny
pla™™y,a™™) = (1) 2"y @My, et y) = (<1 e

From which, we immediately deduce that dim Ai™ = dim A — 2, i.e.

At = k{z", 2"y}
with comultiplication
n—2
A(xn) Zx Q" z+2(71)n Z.’ﬂy@l’” i 2y
=0
+ Z n i—1 1 1y ® xn—i—ly + Z(_l)n—ixi—Qy ®xn—7y
=2
A(xny) _ Z(_l)n zxzy ® "™ i + b ® l,n—iy

=0

For instance

Alzz) = 1Quzr+zr—yQyt+zr®l
Alzy) = 1®ay+zy—yQert+zy®l
Alzzz) = 1Qurzx+zQrrt+rzrR@r+rzrz®@l—2yQy+yQay
Alzzy) = 1Qazy+zrry+rrQy+yRrr—zyzr+zry® 1

We recover the previous presentation given in Example 73 with the following
renaming of generators:

above presentation | previous presentation (Ex 73)
T z eV
y Y ev
TT T — Yy €R
Ty Y — YT €ER
XX TTT — TYY + YTy — Yyw e VRNRV
Ty TTY — TYT + YTrT — Yyy e VRNRV
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3.3 Some more examples

We give here some more examples.

3.3.1 The free algebra

Consider the free algebra

A(V,0)
The dual coalgebra is
Al = CsV,0) = kleV
The dual algebra is given by R+ = V®2 and therefore
AL = AWV (VP = kaV

Given a basis ¢; of V, multiplication is

A' is called the algebra of dual numbers.

3.3.2 An example from Froberg
This comes from [Fr699]. Consider

A = k[z,y,z]/(x2,yz,zzfz2)

i.e.
A = <1:,y,z|zz,yz,xz—z2,a:y—yx,xz—za:,yz—zy>

(the generators for R are independent). If we orient them as rules and complete
in order to remove inclusion critical pairs we get

22 =0 yz =0 T2 = 22 TY = YT 2x = 22 zy =0
A basis for A®?/R is thus
R = k{yz,yy,zz}

and the quotient matrix A — A®2/R is

01 01 00O0O00O0
00 0O01O0O0O0O0
0 01 0 0 O01O01
The dual algebra is thus
A! _ <$*,y*72* ‘ x*y*+y*x*7y*y*’x*z* +Z*$*+Z*Z*>
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3.3.3 The symmetric algebra

Consider the symmetric algebra over V =k {x;}
SV = <$1 ‘ LBil'j — xj$i>
A basis for R is thus [z;,z;] with ¢ < j. The Koszul dual At = C(sV, s*R):

Al = kaVOR®(RIVNVOR)®...

xl,IQGV}
T1yeee,Tn EV}

For instance, consider A® —ReVNV® R, an element of the basis is of the
form

We have that R is spanned in V®?2 by

{ > sgn(0)szo(1) + 5Te(2)

gEY

and more generally Ai™ is spanned in V& by

{ Z SgN(0)5Ty(1) + 8To(2) T -+ + 8To(n)
oEY,

TiTjT — TjXT + TjTpT; — TRTjT; + TETiLj — TiTRTy
zi(zjrr — orxy) + o (e — xizyk) + xp(Tix; — x7;)

= (xjor — 2pwy)T; + (Tpx; — Txp)x; + (X2 — T525) T

This coalgebra is called the exterior coalgebra A°(sV'). Its Koszul dual is the
exterior algebra

SVi = AVY) = (a] | @il +ajay)
3.3.4 Quantum stuff
The quantum plane is a variant over the preceeding example (see e.g. [Man87]):
A = (zy |y —aqyx)
The Koszul dual coalgebra is
At = kok{ry} ok{ry - qyx}
i.e. (A =0 for n > 3 and the Koszul dual algebra is
A = @y et (- yte gy

This could be called a quantized exterior algebra [Kri].
We can also consider quantum matrices

<a, b,c,d | ab = qba,ac = gca,ad — da = (g — q_l)bc7 bc = ¢b,bd = qdb, cd = qdc>
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3.3.5 Limits of Grobner basis
In [Fr699] is recalled an example from [ERT94]:

A = Kz 2/k{zz + 2y, yy +yz, 22 + 2z}

which is a Koszul commutative quadratic algebra, but admits no quadratic
Grobner basis, for any coordinates and any monomial order (see also Sec-
tion 3.6).

TODO: the following explanation is messed up because we are in the com-
mutative case... Notice that it is “obviously” Kosuzl if we could allow rewriting
systems instead of Grobner basis since the rewriting system

T — TY yy — Yz 2z — ZT
has no critical pairs. And indeed, we have the following linear resolution by free

left A-modules

0 y+z 0

(m+y 0 0 )
0 0 z+x 453 (x Y z)

0— A®3 ASk—0

3.3.6 The Sklyanin algebra
In the same vein consider the Sklyanin algebra
<:C,y,z ’ TYz = z3 +y3 +23>

It is Koszul [TVdB96] but admits no Grébner basis [Ber98].

3.3.7 No bounds for linear resolutions

In [Fré99] is recalled an example from [FL91] showing that there is no bound
until which it is enough to check that an algebra admits a linear resolution to
be Koszul. Consider

A = <a,b,c,d | ab—ac,bc—cb—/\cg,bd>

In characteristic 0, if A\™! = € N then Tor,?! (k, k) is concentrated in weight n
if n <14 2, but not for n =1+ 3.

3.4 Koszul at the bar

Given an algebra A = A(V, R), consider the bar construction BA = T°(sA). It
is bigraded: an element [a1]...|a,] of (sA)™ has

e a homological degree: n

e a weight: w([ai]...|an]) =w(ar) + ...+ w(an)
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where the weight of an element of A is the grading coming from the grading
of TA since A =TV/(R) and R is homogeneous. Bigraded in this way, the bar
chain complex B, A looks like

VeaVeV—s(V2/ReV)e (Ve V?/R)——=V3/(VR+ RV) ——=0

Vv V2/R 0

1% 0

k

3 2 1 0

Notice that the diagonal is T°V. In order to make this diagonal into a column,
we now define

e a syzygy degree: w([ai|...|as]) —n

Since A has trivial differential, the differential of BA is d,, which is of weight
degree 0 and homological degree —1 (of course since it’s a differential). Therefore
it is of syzygy degree +1. So, we have a cochain complex B®A (this notation
with index as exponent of B is for the syzygy graduation) which splits wrt
weight. It therefore looks like

0<—V3/(VR+RV)<~— (VZ/RV)O (VR V?/R) ~——VRVRV

0 V2/R Vev
0 1%
k
3 2 1 0

Columns are syzygy degrees and lines are weight degree. Notice that the Koszul
dual coalgebra is a subspace of the first column.

Proposition 77. Given A = A(V, R) and its dual Al = C(sV,s*R), the natural
inclusion At — BA (in degree 0) induces an isomorphism of graded coalgebras

~

At 5 HY(B®A)

i.e.
(A =~ HO(B*A4)™
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3.5 The Koszul resolution

Given an algebra A(V, R), we define a twisting morphism & : At — A from the
Koszul dual by
Al = C(sV,8°R) — sV 5 V s A(V,R) = A
which is of degree —1.
Definition 78. The Koszul complex is Al ®, A.
Notice that the summand of weight n of this complex is
0— A 5 4D g 4 oy 4D g A1) 40 s
Definition 79. An algebra is Koszul when its Koszul complex is acyclic.
Proposition 80. An algebra is Koszul iff
At = HYB®A)
i.e. At =2 HO(B®A) as in Proposition 77, and H"(BA) = 0 for n > 0.

This means that the cohomology of BA is concentrated in syzygy degree 0,
which can be equivalently rephrased as homological degree n is concentrated in
weight n, i.e. the homology of its bar complex is diagonal. Since the homology
does not really depends on the complex but on A,

Proposition 81. An algebra A is Koszul iff it has diagonal homology:
Tor(k, k)™ = 0 forn #m

Proposition 82. An algebra A is Koszul iff it admits a linear minimal graded
resolution of k by free A-modules. We recall that linear means that P, is con-
centrated in degree n and minimal means that H,(Ps ® 4 k) = 0 (and actually
a linear resolution is always minimal).

Remark 83. In [Kri], this is reformulated by saying that A admits a mini-
mal resolution of k, such that the matrices of the differentials have coefficients
in A For instance, the quantum plane

(z,y | vy — qyx)

(see Section 3.3.4) is Koszul because we have the following resolution of k by

left A-modules:
<qy>
T
A®2

2 d1

v)

0 A ASk—0

Namely, ker ¢ is generated (as a left A-module) by x and y. To compute ker dy,
notice that x’y’ forms a basis of A and

dy Z )\i]miyj & Z Pijl’iyj = Z )\ijxiyjz + Z pijxiijrl
= ) Njg 72Ty £ piaty T
ij ij

= D wogr™ 4D o+ Y (imnia ™+ pigon) 7'

i>0 i>0 ,7>0
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and kerd; is generated by elements which satisfy A;p¢ = 0, po; = 0 and
)\(i,l)jq_j + pij—1) = 0, i.e. spanned over k by

—qz'y @ gty = 'y (—qy @)

i.e. generated by (—qy, z) as a left A-module. Notice that we get precisely Koszul
and Anick resolutions. In the general case, we do understand the criterion from
the Anick resolution when the presentation is quadratic, since in this case the
coefficients of the differential are in A,

Proposition 84. An algebra A is Koszul iff the dual algebra A' is Koszul.

3.6 Koszulity and rewriting
One way to show that a quadratic algebra is Koszul is to
e order the generators

e consider the associated deglex ordering, this gives an orientation of the
generators of R as rewriting rules

e check that critical pairs are confluent

Theorem 85. If a quadratic algebra admits an ordering on generators, for
which the associated rewriting system is confluent then the algebra is Koszul.

Proof. In this case the Anick resolution is diagonal. O

In the following, we suppose fixed A(V, R), with A = kX, and a total order-
ing on the generators. This ordering is extended (by deglex for instance) as a
total ordering on X*. We consider the filtration of A

F,A = im||Pk{iv}]| TV >4
v<u

(Fy,A are elements of A which can be written by words < u) and define the
associated graded algebra

gr,A = F,A/F,-A
where u~ is the immediate predecessor of u, whose multiplication
w o gr,A®gr, A — gr, A

is given by original multiplication in A. If we have a Grobner basis, gr,, A is the
set of polynomials in normal form whose leading term is u.

Ezample 86. In (z,y | zx — yy,zy — yx) with z > y, we have

Borogrp,®er, —  gry, Bonogr,@gr, — gry,
r®@x — 0 yKy — yy

Theorem 87. A is Koszul iff gr A is Koszul.

Proof. Spectral sequence. O
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We write
Ricaa = ker (V2 =TV — grA)

(the space generated by leading terms of elements of R) and define
A = TV/(Ricaa)

Ezample 88. For A = (z,y | zz — yy,xy — yx) with © > y,
A = k{ywy'y)

with multiplication

n+m+1 n+m-+1

py "z, ymx) = ply "z, y"y) =0 u(y"y,y"y) =y y pyy,y"r) =y x

We have a commutative diagram of epimorphisms of graded modules (but
not algebras in general) which respects the grading in X*:

TV grA

~

A =TV/Rieaa

Notice that A —» gr A is bijective in weights 0, 1 and 2.
Ezample 89. Counsider (x,y, z | xy = xz,yz = yy) with < y < z. Notice that

AB) =k {zre, zrz, 220,02y, x22, YTX, Y2, YYT, Yyy }

We have a critical pair which is not confluent

xyYz
TTZ Yy
xxy
TXT
and therefore zzz is killed by zxz in gr A:
(gr A)(?’) =  k{zzz,xzz, 22y, v22, yre, yaez, yyr, yyy  # A®)

Lemma 90. Consider A(V, R) with a monomial ordering. If the algebra A= TV/Ricad
is Koszul and if the canonical projection A — gr A is an isomorphism of algebras
then A is Koszul.

Proof. Immediate by Theorem 87. O
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Lemma 91. If generators in X are totally ordered (which is the case we are
usually considering), i.e. the decomposition

vV o= G@w

zeX

consists of one-dimensional vector spaces V, = k{x}, the algebra A is monomial
and quadratic, and therefore always Koszul.

Proof. The Koszul complex Al @, A is described explicitly below, and can be
checked to be acyclic (by constructing a contracting homotopy). O

Proposition 92. Consider A(V,R). If the canonical projection A - grA is
injective in weight 3 then it is an isomorphism.

Proof. Spectral sequence. O

In the case where V = kX and X = {z; | i € I} is totally ordered, all this
is more easily understood through rewriting. We write:

e reducible pairs: AR C I x I for the set of pairs (4, j) such that z;z; is a

leading term of a relation
e irreducible pairs: L(?) = I? \Z(Q)
e reducible uples: ™ C I™ for the set of (i1,...,1,) such that for every k,
. —(2
(iksik+1) € £

e irreducible uples: L") C I"™ for the set of (iy,...,i,) such that for every
k, (i irs1) € L)

Given ¢ = (i1,...,i,) € I, we write z, for z;, ... x; , and
L=z L=z"™
Lemma 93. We have

A = kiz |rel}

and )
At = ki, ’ L€ L}

and A' = A(V*, R*) with

Rt = k {a:fx;‘

@ﬁefm}

Definition 94. The image of the basis {z, | : € L} of A under the surjection

A — gr A spans gr A. When these are linearly independent they are called a
Poincaré-Birkhoff-Witt basis (or PBW basis).

Proposition 95. An algebra A equipped with a quadratic PBW basis is Koszul.

Proof. The monomial algebra A is Koszul (as a quadratic monomial algebra),
and A = gr A. We conclude using Theorem 87. O
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Proposition 96. Given an algebra A(V,R), with an ordering of the basis X
of V., if critical pairs are confluent then {x, | « € L} forms a PBW basis of A
and A is therefore Koszul.

Definition 97. A Grobner basis of an ideal [ is a set G C I such that
1. G generates the ideal I: (G) =1
2. leading terms generate the same ideal: (1t(G)) = (1t(1))

Proposition 98. Given an algebra A(V, R) equipped with an ordered basis, the
terms
{z, | v€ L}

form a PBW basis iff the elements

vy = Y Njwwan | (i) € I
(k,1)eL®
(k,1)<(4,5)

spanning R form a Grébner basis of (R) in TV.

3.7 Hilbert series

Definition 99. Given a weight-graded algebra A such that Ay = k1 and A
is finite-dimensional, its generating series or Hilbert-Poincaré series is

Az = ZdimA(")m”
n=0

Theorem 100. Given a Koszul algebra A,

@) e = 1

Remark 101. Given a quadratic algebra A, if the series 1/f4(—x) contains
negative coefficient then the algebra A is not Koszul.

3.8 Quadratic-linear algebras

Consider A = A(V, R) with R CV @& V®2. We consider
g : TV —» V®2

the projection. In particular, A(V,gR) is quadratic. We suppose that our
algebra satisfies the following two conditions:

1. There are no superfluous generators:

RNV = {0}

2. There are no “critical pairs”:

(RV+V@RNV®: C RNV®?
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Example 102. The presentation
(z,y,2 | = +y)
does not satisfy condition 1. The presentation
(z,y,2 | 2y — 2,yz — y)
does not satisfy condition 2 since
rz—zy € (RV+V ®R)

which comes from the fact that the critical pair

xyz
xz Ty
is not confluent.
By condition 1, we can define
p : qR — V

which to a quadratic relation associates its linear part in R. Now, the map

-1
(qA)l = C(sV,s%qR) — s?qR =5 sV
extends as a coderivation
dy = (A — TsV)

By condition 2, its image is actually in (gA)! C T°(sV) and (still by condition
2) it squares to 0. By definition, the Koszul dual dg coalgebra of A is

A = ((¢4)'.dy)

It gives rises to a quasi-isomorphism QA — A.

Example 103. Consider

A = (vy|rr—z,yy—v)
We have
gA = (z,y|27,yy)
and therefore .
(@A) = kok{r,y}ok{rz,yy}
with
d(zr) =z d(yy) =y
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3.9 Minimal models
Definition 104. A model for a dg algebra A is a surjective map of dg algebras
p : M — A

which is a quasi-isomorphism, such that M is quasi-free, i.e. M 2 TV (M is
free as a graded algebra). It is minimal when

1. differential is decomposable:

d V. o (TV)¥=?

2. the generating graded module V' admits a decomposition into

v = pvw

E>1

such that

d(va“)) c | Pve

1<i<k

Proposition 105. Given a connected wdg algebra A and connected wdg coal-
gebra C, the following are equivalent

1. C®q A is acyclic

2. ARy C is acyclic

3. the dg coaglebra morphism f, : C — BA is a quasi-isomorphism

4. the dg algebra morphism g, : QA — C' is a quasi-isomorphism
where fo and go are the liftings of « defined in Proposition 68.

Proof. (1) & (3) Consider f, ®ids : C ® A - BA® A. It is a morphism of
chain complexes C ®, A — BA ®, A and the second one is acyclic. Therefore
C ®q A is acyclic iff f, ®id 4 is a quasi-iso, which is the case iff f, is a quasi-iso
(this last step requires a spectral sequence). O

Remark 106. In particular, since the bar complex BA ®, A is acyclic, we get a
resolution (in algebras, i.e. a model)

QBA —» A

called the cobar-bar resolution.

Proposition 107. An algebra A is Koszul iff the projection QA — A is a
quasi-isomorphism, i.e. provides a minimal resolution of A.

Proof. 1t is a minimal resolution: it is quasi-free by construction, differential is
decomposable by construction, Hy(QesAl) = A by (dual of) Proposition 77 and
QA — A is a quasi-isomorphism. O
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Corollary 108. A is Koszul iff
Al =2 H*(BA)

Remark 109. In the case of operads, this resolution provides the right notion of
operad up to homotopy or co-operad. For instance,

A = QAssi

Ezample 110. Consider the algebra A = (z,y | zz — yy,zy — yz). In Exam-
ple 76, we have seen that

A= k{z", 2"y}

equipped with suitable comultiplication...................
TODO: QA

3.10 A_-algebras

Definition 111. An A-algebra A is a graded vector space A equipped with
a codifferential B B
m : TsA) — T°(sA)

(i.e. a coderivation of degree |m| = —1 with m om = 0).

Since T¢(sA) is cofree, the codifferential is determined by its corestriction
to degree 1, and we have the following equivalent definition:

Definition 112. An A -algebra A is a graded vector space A equipped with
m, : A% A

for n > 1, of degree
Imn,| = n-—2

such that

S D) gy 0 (AT @ my ©id®T) = 0 (2)
p+gtr=n

It is interesting to have a look at the relation (2) for low values of n:
1. n=1: my is a differential

miom; = 0

2. n = 2: my is a derivation for the product mso

miome = mgo(my®idg)+mgo (idg ® my)

3. n = 3: associativity defect of my is the border of the associator mg

moo(ida®@mo—mo®idy) = mlom3+m30(m1®id§2+id1®m1®id,4+id(§2®m1)
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4. n = 4: my is the pentagonator and measures the failure of mg to satisty
MacLane’s pentagon.

Definition 113. A nilpotent A..-coalgebra is a graded vector space C
equipped with a differential

A TsTIO) - Te(sTIO)

(|JA] = —1 and A% = 0). This map is determined by maps
A" . C = C®
for n > 1 of degree |A™| = 2 — n satisfying relations

> (—)PHT(dEP @ A @idT) 0 APTIH =
ptgtr=n
The cobar-twisting-bar correspondence extends to A as follows [Kel05].

Given a (dg) coalgebra C and an augmented A..-algebra A the complex Hom(C, A)
is an A-algebra with

*n(fla”'vfn) = Nno(f1®'~'®fn)oAn

where A" is the iterated coproduct. An co-twisting morphism is 7: C — A

such that
> wnlrm) =0

n>0

and we write Two, (C, A) for the space of twisting morphisms from C to A. The

functor
Coalg — Set

C = Twe(C,A)

is representable and we write By, A for a representative: it is 7¢(sA) endowed
with the coderivation whose post-composition by the projection Bo,A — sA
has components %, : (sA)®" — sA for n > 1.

Remark 114. A similar construction can be performed in the case where C is
an oo-coalgebra and A is a dg algebra for the cobar construction.

Anick resolution can be recasted, at least for monomial algebras, in the
above setting as follows. This is mostly inspired of [DK09, DK13]. Consider a
(non-homogeneous) monomial presentation of an algebra A(V, R) with V' = kX.
Consider the vector space

OF = k{u®@u A...Au,}
with |u| = k and the u; are subwords of v in R, i.e.
v = u,ereu] € TVQRTV

i.e. elements of the free T'V-bimodule over R, with

Foa 1
’lLiTUi = U
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We write

O, = PoP
k

We define a differential by
du@u Ao Aup) = Y (D)Tu@u AL AG AL AU,
i=1

and a product by
(URQUINA. .. AUp) - (VRVIA...AV,) = UWRUIVA...AUnpUAUVIA...Auvy,
This makes O a dg-algebra.

Definition 115. Given an augmented algebra A, the space of indecompos-
ables is o
indec(A) = A/(A)?

An element @ # 1 is thus indecomposable when a = bc implies b =1 or ¢ = 1.
Lemma 116. The algebra O is free over its indecomposable elements.
Proposition 117. The dg-algebra O is a free resolution of the algebra A.

In fact, we have
O = QC

for some oo-coalgebra C: C' is the free co-coalgebra
We now build a resolution of A by free right A-modules

o1 M oA AS K0

We define dp(z ® 1) =z

References

[Ani86] David J Anick. On the homology of associative algebras. Transac-
tions of the American Mathematical Society, 296(2):641-659, 1986.

[Ber98]  Roland Berger. Weakly confluent quadratic algebras. Algebras and
Representation, 1(3):189-213, 1998.

[DK09]  Vladimir Dotsenko and Anton Khoroshkin. Free resolutions via
grobner bases. arXiv preprint arXiv:0912.4895, 2009.

[DK13] Vladimir Dotsenko and Anton Khoroshkin. Quillen homology for
operads via grobner bases. Documenta Mathematica, 18:707-747,
2013.

[ERT94] David Eisenbud, Alyson Reeves, and Burt Totaro. Initial ideals,
Veronese subrings, and rates of algebras. Advances in Mathematics,
109(2):168-187, 1994.

41



[FLO1]

[Fr699]

[Kel05]

[Kob90)]

[Kri]

[Lod9s]

[LPO1]

[LV12]

[Man87]

[MLM95]

[Squ8T]

[TVdB96)

Ralf Froberg and Clas Lofwall. On Hilbert series for commutative
and noncommutative graded algebras. Journal of pure and Applied
Algebra, 76(1):33-38, 1991.

Ralph Froberg. Koszul algebras. Lecture notes in pure and applied
mathematics, pages 337-350, 1999.

Bernhard Keller. A-infinity algebras, modules and functor categories.
arXiv preprint math/0510508, 2005.

Yuji Kobayashi. Complete rewriting systems and homology of
monoid algebras. Journal of Pure and Applied Algebra, 65(3):263—
275, 1990.

Ulrich Krahmer. Notes on Koszul algebras.
Jean-Louis Loday. Cyclic homology, volume 301. Springer, 1998.

Yves Lafont and Alain Prouté. Church-Rosser property and ho-
mology of monoids. Mathematical structures in computer science,
1(03):297-326, 1991.

Jean-Louis Loday and Bruno Vallette. Algebraic operads, volume
346. Springer, 2012.

Yu I Manin. Some remarks on Koszul algebras and quantum groups.
Ann. Inst. Fourier (Grenoble), 37(4):191-205, 1987.

Saunders Mac Lane and Saunders MacLane. Homology, volume 114.
Springer, 1995.

Craig C Squier. Word problems and a homological finiteness condi-
tion for monoids. J. Pure Appl. Algebra, 49(1-2):201-217, 1987.

John Tate and Michel Van den Bergh. Homological properties
of Sklyanin algebras. Inventiones mathematicae, 124(1-3):619-648,
1996.

42



	Homology of algebras
	Algebras
	Homology of free modules and algebras
	Anick's resolution for algebras

	Bar, cobar, and twisting morphisms
	Algebras and coalgebras
	Differential graded vector spaces
	Differential graded (co)algebras
	Twisting morphisms

	Koszul duality
	Quadratic algebras
	Dual coalgebra and algebra
	Some more examples
	The free algebra
	An example from Fröberg
	The symmetric algebra
	Quantum stuff
	Limits of Gröbner basis
	The Sklyanin algebra
	No bounds for linear resolutions

	Koszul at the bar
	The Koszul resolution
	Koszulity and rewriting
	Hilbert series
	Quadratic-linear algebras
	Minimal models
	A-algebras


