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These are notes about Loday and Vallette’s point of view about Koszul
duality for algebras [LV12]. Most of what is in here comes from there (excepting
errors and some detailed examples). Two introductory articles about Koszul
duality where also used [Frö99, Krä].

1 Homology of algebras

We suppose fixed a field k over which vector spaces will be considered. We do
not recall basic definitions about vector spaces. The free vector space over a
(finite) set X is denoted kX. It is quite useful to keep in mind the following
isomorphisms:

k(X ] Y ) ∼= kX ⊕ kY k(X × Y ) ∼= kX ⊗ kY

1.1 Algebras

Definition 1. An algebra (A,µ) consists of a vector space A together with a
multiplication

µ : A⊗A → A

which is associative

A⊗A⊗A
A⊗µ

��

µ⊗A // A⊗A
µ

��
A⊗A

µ
// A

(all algebras considered here are associative). We often write ab instead of
µ(a⊗ b). A unital algebra (A,µ, η) consists of an algebra together with a unit

η : k → A

satisfying

k⊗A η⊗A //

∼=
$$

A⊗A
µ

��

A⊗ k
A⊗ηoo

∼=
zz

A

An augmented algebra (A, ε) is an algebra equipped with a morphism of
algebras ε : A→ k (in particular, for unital algebras ε ◦ η = idk).

Remark 2. More abstractly an algebra can be defined as a monoid in the
monoidal category Vect.

Remark 3. There is an isomorphism between non-unital algebras and augmented
unital algebras. Namely, given (A, ε) augmented, we have the isomorphism of
vector spaces

A ∼= k1⊕ ker ε = k1⊕A
So, to an algebra A, we associate the augmented unital algebra k1 ⊕ A (with
obvious multiplication) and A augmented unital we associated A.
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Definition 4. The tensor algebra TV over a vector space V is

TV = k1⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ . . .

with tensor as multiplication and the inclusion η : k → TV as unit. The
reduced tensor algebra TV is

TV = V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ . . .

(i.e. TV = k1⊕ TV , i.e. TV = TV ).

Remark 5. The tensor algebra is canonically augmented by ε(1) = 1 and
ε(u) = 0 for u ∈ TV ⊆ TV .

Proposition 6. The tensor algebra TV is the free unital algebra over V , i.e. any
linear map f : V → A where A is an unital algebra extends uniquely as an
algebra map f̃ : TV → A:

V

i

��

f // A

TV
f̃

==

Similarly, the reduced tensor algebra TV is the free (non-unital) algebra over V .

Definition 7. A (left) module (M,λ) over an algebra A is a vector space M
equipped with an action

λ : A⊗M → M

satisfying

A⊗A⊗M
µ⊗M

��

A⊗λ // A⊗M
λ

��
A⊗M

λ
// A

This definition extends to unital algebras by also requiring

k⊗M η⊗M //

∼=
%%

A⊗M
λ

��
M

The notion of a right module (M,ρ) with ρ : M ⊗ A → M is defined similarly.
A bimodule (M,λ, ρ) is both a left and a right module such that

A⊗M ⊗A
A⊗ρ
��

λ⊗A // M ⊗A
ρ

��
A⊗M

λ
// M
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Remark 8. Given an augmented k-algebra A, k is canonically a left (or similarly
for right/bi) A-module by

λ(a, k) = ε(a)k

Proposition 9. The free left (resp. right, resp. bi) A-module over V is A⊗ V
(resp. V ⊗A, resp. A⊗ V ⊗A).

Remark 10. Given an algebra A = (A,µ), we define Aop = (A,µop) where
µop = µ ◦ τ with τ : A ⊗ A → A ⊗ A the canonical switching. The category of
right A-modules is isomorphic to the category of left Aop-modules, A-bimodules
can be seen as left Aop ⊗A-modules, etc. In this sense, the distinction between
left, right and bi-modules is not fundamental (but of course we won’t get the
same results if we compute homology in left, right or bimodules...). In the
following, we sometimes use the notation

Ae = A⊗Aop

1.2 Homology of free modules and algebras

Definition 11. A chain complex

. . .
d3 // C2

d2 // C1
d1 // C0

d0 // 0

consists of a (left/right/bi) modules (Ci)i≥0 and module maps di : Ci → Ci−1

such that
di ◦ di+1 = 0

Notice that this implies im di+1 ⊆ ker di, so that we can define the n-th homol-
ogy group by

Hn(C•) = ker di/ im di+1

The complex is exact when we have im di+1 = ker di. A morphism between
to such chain complexes f : C• → D• consists of maps fi : Ci → Di such that

fi ◦ di = di+1 ◦ fi+1

i.e. the following diagram commutes

. . .
d3 // C2

f2

��

d2 // C1

f1

��

d1 // C0

f0

��

// 0

��
. . .

d3 // D2
d2 // D1

d1 // D0
// 0

An homotopy h : f ⇒ g : C• → D• between two such morphisms consists of
linear (not module) maps hi : Ci → Di+1

. . .
d3 // C2

h2

~~

g2

��
f2

��

d2 // C1

h1

}}
g1

��
f1

��

d1 // C0

h0

}}
g0

��
f0

��

// 0

��
. . .

d3 // D2
d2 // D1

d1 // D0
// 0

such that
fi − gi = di+1 ◦ hi + hi−1 ◦ di
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The operation H extends to a functor, i.e. a morphism f : P → Q of chain
complexes induces morphisms

Hn(f) : Hn(P ) → Hn(Q)

Proposition 12. Two homotopic maps induce the same morphism in homology.

Definition 13. An augmented chain complex C• of a chain complex to-
gether with a linear map

ε : C0 →M

to a module M , such that the sequence

C0
ε // M // 0

is exact, i.e. im ε = M , and
ε ◦ d1 = 0

It is a resolution of M when the complex C is acyclic, i.e. the complex

. . .
d3 // C2

d2 // C1
d1 // C0

ε // M // 0

has vanishing homology groups (i.e. the sequence is exact).

Remark 14. The right way to see a an augmented chain complex is as a mor-
phism of chain complexes

. . .
d3 // C2

��

d2 // C1

��

d1 // C0

ε

��

// 0

��
. . . // 0 // 0 // M // 0

and the condition for it to be a resolution is equivalent to requiring that the
above morphism is a quasi-isomorphism, i.e. induces an isomorphism in ho-
mology.

Definition 15. A module P is projective if for any morphism f : P → M
and surjective morphism p : N �M there exists a unique morphism g : P → N
such that

N

p
����

P

g
>>

f
// M

Lemma 16. Every free module is projective.

Proof. Since p is surjective, it admits a section s : M → N . Since P is free, the
function which to a generator x of P associates s ◦ f(x) extends to a morphism
of modules g : P → N .

Remark 17. Conversely, every projective module is a direct summand of a free
module.
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Proposition 18. Every finitely generated module over a local ring is free.

Proof. Use Nakayama’s lemma. See also [Krä].

Proposition 19. Between any two projective resolutions of M there is a mor-
phism, whose component on M is idM , and between any two such morphisms
there is a homotopy.

Proof. Consider two projective resolutions P and P ′ ofM . We build a morphism
between them, by induction, as follows:

. . .
d3 // P2

f2

��

d2 // P1

f1

��

d1 // P0

f0

��

ε // M

id

��

// 0

��
. . .

d′3 // P ′2
d′2 // P ′1

d′1 // P ′0
ε′ // M // 0

Since ε is surjective and P0 is projective, we have f0. Suppose the morphisms
constructed up to fi. We have that d′i ◦ fi ◦ di+1 = fi−1 ◦ di ◦ di+1 = 0, and
therefore im(fi ◦ di+1) ⊆ ker d′i = im d′i+1. Therefore fi+1 exists since Pi+1 is
projective and d′i+1 is surjective on its image. The construction of the homotopy
is similar.

Suppose given a k-module A and consider a resolution of a right A-module M
by projective right A-modules Pi

. . .
dn+1 // Pn

dn // . . .
d2 // P1

d1 // P0
ε // M // 0

Tensoring it by a left A-module N yields a chain complex which is not exact
anymore

. . .
dn+1⊗AN// Pn ⊗A N

dn⊗AN// . . .
d2⊗AN// P1 ⊗A N

d1⊗AN// P0
// 0

The torsion functor

TorAn (M,N) = Hn(P• ⊗A N)

is the n-th homology group of this chain complex (the above tensor notation
is explained in Definition 42). Since we have chosen projective resolutions,
the homology does not depend on the choice of the resolution by the above
propositions. These constructions can be developed similarly for resolutions by
left, and bi A-modules.

In the case where we have a group (or a monoid) G, we consider the free
ring A = kG, and define

Hn(G) = TorAn (k,k)

where k is seen as a trivial left A-module, i.e. g ·k = k for g ∈ G and k ∈ k. This
construction works more generally for augmented algebras with the “trivial”
A-module structure on k being given by a · k = ε(a)k.
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Example 20. Consider the monoid M = 〈x, y | xx = yy, xy = yx〉. We write
A = kM with k = Z. We can start building a resolution of the trivial left
A-module k by free left A-modules as follows

. . .
d3 // C2

d2 // C1
d1 // C0

ε // k // 0

We begin by C0 = kM ⊗ k ∼= kM and ε : kM → k such that ε(m) = 1 for
m ∈M . Now, we have ker d1 generated by elements of the formm−1 form ∈M .
So we could take C1 = kM ⊗ kM with d1(1⊗m) = m− 1. However, we can do
better since ker d1 is also generated by {x− 1, y − 1} as a left kM -module: we
have

ma− 1 = m(a− 1) + (m− 1)

and we can conclude by induction. So, we can take C1 = kM ⊗ k {x, y} with
d1(1 ⊗ x) = x − 1 and d1(1 ⊗ y) = y − 1. Geometrically, this means that we
have a path from 1 to every word m ∈M in the graph with M as vertices and
m⊗ x : m→ mx as edges

1
1⊗x // x

x⊗y // xy = yx

i.e. it is connected. In order to go on, we should take in account the two rules
α : xx = yy and β : xy = yx. Namely, considering β, we have

d1(1⊗ x+ x⊗ y) = x− 1 + xy − x = yx− 1 = d1(1⊗ y + y ⊗ x)

Geometrically, this corresponds to the fact that we have to add 2-cells in order
to make the “graph” simply connected

x
x⊗x

$$
1

1⊗x
>>

1⊗y
  

⇓ α xx = yy

y
y⊗y

::

x
x⊗y

$$
1

1⊗x
>>

1⊗y
  

⇓ β xy = yx

y
y⊗x

::

We can thus take C2 = kM ⊗ k {α, β} with

d2(α) = 1⊗ x+ x⊗ x− 1⊗ y − y ⊗ y
d2(β) = 1⊗ x+ x⊗ y − 1⊗ y − y ⊗ x

(in order to formally prove that the chain complex constructed so far is ex-
act, one can for example construct a contracting homotopy). Notice that from
what we have constructed, we have H0(M) = k (as always). Moreover, on the
trivialized complex H1(M) is computed from

k {α, β} A⊗kd2 // k {x, y} A⊗kd1 // k

with

(A⊗d1)(x) = 1 (A⊗d1)(y) = 1 (A⊗d2)(α) = 2x−2y (A⊗d2)(β) = 0
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So, in characteristic 0, we have ker(A⊗d1) = k {x− y} and im(A⊗d2) = k {x− y},
and therefore

H1(M) = 0

When the monoid is presented by a convergent rewriting system, we can take C3

to be the free kM -module on critical pairs, C4 the free kM -module on critical
triples, and so on, in order to make the “graph” contractile. This is nicely ex-
plained in [LP91]. These ideas are the basis of the partial resolution constructed
by Squier [Squ87] and Anick’s resolution [Ani86] for algebras, rediscovered for
monoids by Kobayashi [Kob90]. . .

In the above example, we have been particularly smart and have built a quite
reasonably small resolution. However, if we only want to theoretically build a
resolution we can use a much more canonical way, at the expense of constructing
a much bigger complex. In the above situation notice that kM is not only a
ring, but actually an algebra A = kM which is augmented as described above.

Definition 21. Suppose given an augmented algebra A. The bar resolution
of the trivial A-module k by free left A-modules is

. . .
d3 // C2

d2 // C1
d1 // C0

ε // k // 0

with
Cn = A⊗A⊗n

An element of A⊗A⊗n is often denoted

a[a1|a2| . . . |an]

and the differential is defined by

dn([a1|a2| . . . |an]) = a1[a2| . . . |an]+
∑

1≤i<n
(−1)i[a1| . . . |aiai+1| . . . |an]+(−1)n[a1|a2| . . . |an−1]

The normalized bar resolution is defined similarly, without taking the unit
in account:

Cn = A⊗A⊗n

There are of course right and bimodule versions of this: in the bimodule case,
we have

Cn = A⊗A⊗n ⊗A
the augmentation is µ : A⊗A→ A and

dn([a1|a2| . . . |an]) = a1[a2| . . . |an]+
∑

1≤i<n
(−1)i[a1| . . . |aiai+1| . . . |an]+(−1)n[a1|a2| . . . |an−1]an

Remark 22. Geometrically, this corresponds to constructing a complex with the
elements of A as vertices and making it contractible:

a
a[a1a2] //

a[a1|a2]
aa1a2

aa1

a[a1]

aa

aa1[a2]

::

1

[a]

XX

[aa1]

OO [aa1a2]

DD
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which explains graphically why d(a[a1]) = aa1 − a and

d(a[a1|a2]) = aa1[a2]− a[a1a2] + a[a1]

We refer to [MLM95, Lod98] for a presentation of the homology of algebras.

Definition 23. The Hochschild homology of an algebra with coefficients in
a A-bimodule M is

Hn(A,M) = TorA
e

n (A,M)

where A is considered to be a bimodule over itself using multiplication. More
explicitly, it is the homology of the Hochschild complex

. . .
d3 // M ⊗A⊗2 d2 // M ⊗A d1 // M

with

dn(m[a1| . . . |an]) = ma1[a2| . . . |an]+
∑

1≤i<n
(−1)i[a1| . . . |aiai+1| . . . |an]+(−1)nanm[a1| . . . |an−1]

Definition 24. Given an augmented chain complex ε : (A ⊗ C•) → M of free
left A-modules

. . .
d3 // A⊗ C2

d2 // A⊗ C1
d1 // A⊗ C0

ε // M // 0

a contracting homotopy consists of k-linear (generally not A-linear!) mor-
phisms η : M → A⊗ C0 and si : A⊗ Ci → A⊗ Ci+1

. . .
d3 // A⊗ C2
s2
oo

d2 // A⊗ C1
s1
oo

d1 // A⊗ C0
s0
oo

ε // M
η
oo // 0

such that

ε ◦ η = idM d1 ◦ s0 + η ◦ ε = idA⊗C0
di+1 ◦ si + si−1 ◦ di = idA⊗Ci

Proposition 25. An augmented chain complex equipped with a contacting ho-
motopy as above is a resolution of M .

Example 26. We can define a contracting homotopy on the left bar resolution
by

η(k) = k[] sn(a[a1| . . . |an]) = [a|a1| . . . |an]

(this works more generally for augmented unital algebras).

We are often interested in building smallest possible resolutions.

Definition 27. A resolution P of M is minimal if Hn(P ) = 0 for n > 1 (and
H0(P ) = M).

Remark 28. From [Krä], a free finitely generated resolution is minimal when
the matrices encoding the differentials

Pn+1
∼= Abn+1

dn+1−−−→ Abn ∼= Pn

have coefficients in A. Namely, when we −⊗A k to compute the homology, with
the usual augmentation ε : A → k (sending everything excepting 1 to 0), the
maps become 0.
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1.3 Anick’s resolution for algebras

We describe in this section the resolution introduced by Anick in [Ani86]. It
can be seen as a generalization of the resolution for monoids described by
Kobayashi [Kob90]. Consider an (augmented unital) algebra A = A(X,R)
where R is a reduced Gröbner basis (see Definition 97). We are going to build
a resolution

. . .
dn+1 // Cn ⊗k A
in+1

oo
dn // . . .
in
oo

d2 // C1 ⊗k A
i2
oo

d1 // C0 ⊗k A
i1
oo

d0 // A
i0
oo

ε // k
η
oo // 0

of the trivial right A-module k by free right A-modules. Above, the dn and ε
are A-linear whereas the in and η are k-linear. These should moreover satisfy

εd0 = 0 dn+1dn = 0

and

εη = idk d1i1 + ηε = idA dn+1in+1 + indn = idCn⊗kA

It is actually simpler to construct

in : ker dn−1 → Cn ⊗k A

and replace last axiom by

dnin = idker dn−1

(any extension to the domain Cn−1⊗kA will suit in the previous sense, typically
by 0 in the following).

Definition 29. An n-chain is a sequence of n+1 words defined inductively by

• there is a unique (−1)-chain

• a 0-chain is any letter

• a (n+ 1)-chain x|u1| . . . |un+1 is a sequence of words such that

– x|u1| . . . |un is an n-chain,

– un+1 is a non-empty word in normal form,

– the word unun+1 is reducible, in a unique way, at a rightmost posi-
tion.

Lemma 30. The forgetful function from n-chain to words, sending x|u1| . . . |un
to xu1 . . . un is injective. We can therefore omit the “|” if we feel like to.

We define the Cn as the free k-modules generated by the n-chains. The
complicated part is to define the maps, which by are going to do by induction
on both homological degree and monomials: the monomials in Cn are totally
ordered since we have a Gröbner basis and we extend this order on Cn ⊗ A by
u⊗ v < u′⊗ v′ if uv̂ < u′v̂′ in Cn. In addition to the required axioms, it will be
checked inductively that dn is weakly decreasing (dn(u) ≤ u) and in does not
change the order (so that indn is weakly decreasing).
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We define d0 : C0 ⊗A→ A on x⊗ 1 ∈ C0 ⊗A by

d0(x⊗ 1) = x− ηε(x)

and i0 : A→ C0 ⊗A on u ∈ A by

i0(u) = x⊗ v
if xv = û is the normal form of the word u. Those morphisms are easily verified
to satisfy the required axioms.

We now suppose defined dn : Cn⊗A→ Cn−1⊗A and in : Cn−1⊗A (up to n)
and we construct dn+1 and in+1. The morphism dn+1 : Cn+1 ⊗A→ Cn ⊗A is
defined by

dn+1(u⊗ 1) = u′ ⊗ un+1 − indn(u′ ⊗ un+1)

with u = x|u1| . . . |un|un+1 = u′|un+1 ∈ Cn+1. We have that dndn+1 = 0:

dndn+1(u⊗ 1) = dn(u′ ⊗ un+1)− dnindn(u′ ⊗ un+1)

and dnindn(u′ ⊗ un+1) = dn(u′ ⊗ un+1) because dn(u′ ⊗ un+1) ∈ kerdn−1
since

dn−1dn = 0 and dnin = idker dn−1
. Moreover, we have

dn(u′ ⊗ un+1) = x|u1| . . . |un−1 ⊗ unun+1 + lt

where lt designates strictly lower terms so indn(u′⊗un+1) < u′⊗un+1 because in
does not change the order, dn is decreasing, and unun+1 is reducible by definition
of chains, so that

in(x|u1| . . . |un−1 ⊗ unun+1) < u′ ⊗ un+1

We define in+1 : ker dn → Cn ⊗A as follows. Suppose given a term

t = λu⊗ v + lt

in Cn with u = x|u1| . . . |un (we have identified the summand of maximal de-
gree). We know that

dn(t) = λdn(u⊗ v) + dn(lt)

= λx|u1| . . . |un−1 ⊗ unv + dn(lt)

= 0

This implies that unv is reducible (otherwise λx|u1| . . . |un−1 ⊗ un could not be
canceled in dn(lt) ≤ lt). Therefore, we can write unv = v′wv′′ with w a left
member of a rule, and we choose the leftmost decomposition (with v′ as small
as possible). We finally define

in+1(t) = λu|v′w ⊗ v′′ + in+1(t− λdn(u|v′w ⊗ v′′))
where in+1(t− λdn(u|v′w ⊗ v′′)) is defined inductively. Namely,

dn(u|v′w ⊗ v′′) = u⊗ un+1 − in−1dn−1(u⊗ un+1)

which shows that the leading term of t gets canceled. It can be checked that
dn+1in+1 = idker dn : we the above notations, we have by induction

dn+1in+1(t) = λdn+1(u|v′w ⊗ v′′) + dnin(lt)

= λdn+1(u⊗ v′wv′′) + lt

= λu⊗ un+1 + lt

= t

11



Example 31. Consider

A = 〈x, y | xx− yy, xy − yx〉

with x > y and the usual augmentation for graded algebras. We have

C−1 = {∗} C0 = {x, y} C1 = {xx, xy} . . . Cn = {xnx, xny}

with

d(x⊗ 1) = x d(y ⊗ 1) = y

d(xx⊗ 1) = x⊗ x− y ⊗ y d(xy ⊗ 1) = x⊗ y − y ⊗ x
...

...

d(xnx⊗ 1) = xn ⊗ x− xn−1y ⊗ y d(xny ⊗ 1) = xn ⊗ y − yn−1y ⊗ x

2 Bar, cobar, and twisting morphisms

2.1 Algebras and coalgebras

The right bar resolution can be seen as

BA⊗π A

where BA denotes the collection of all the A⊗n, i.e. TA as a vector space. First,
it can be noticed that BA has a structure of free dg coalgebra. The differential
on this complex is the sum of two distinct contributions

• d([a1| . . . |an]) = [a1| . . . |aiai+1| . . . |an] comes from the multiplication ex-
tended as a coderivation on the coalgebra

• d([a1| . . . |an]) = [a1| . . . |an−1]an derives from a morphism π : BA → a
called “twisting”

Then we are going to study when we can find a “small” coalgebra C, which can
play the role of BA in our constructions. This will typically be the case for
Koszul algebras.

Definition 32. A derivation d : A→M from an algebra A to a bimodule M
over A is a linear map such that

d ◦ µ = ρ ◦ (d⊗ idA) + λ ◦ (idA ⊗ d)

i.e.
d(ab) = d(a) b+ a d(b)

Graphically,

d
= d + d

12



Proposition 33. A derivation on TV is completely determined by its restriction
to V :

Hom(V,M) ∼= Der(TV,M)

and given f : V →M ,

df (v1 . . . vn) =
∑

1≤i≤n
v1 . . . f(vi) . . . vn

Remark 34. Given a smooth manifold M , we write C∞(M) for the ring of
smooth functions M → R. The tangent space TxM at a point x can be de-
fined as the vector space of derivations of C∞(M) at x, i.e. its elements are
d : C∞(M)→ R such that

d(fg) = d(f)g(x) + f(x)d(g)

Example 35. Let us give an example in Set, which is not exactly in the context
we describe, but is enlightening. Consider the monoid M = {a, b}∗ and suppose
that we want to count the number of as before a b in words u. We consider the
monoid N⊥ = N ] {⊥} whose addition extends the one on natural numbers by
⊥+ n = n = n+⊥. Since M is free, we can define a (left) action of M on N⊥
by its effect on generators. We define

a · ⊥ = ⊥ a · n = (n+ 1) b · ⊥ = ⊥ b · n = n

This can be extended as a biaction, whose action on the right is trivial. Consider
the map f : {a, b} → N⊥ defined by

a 7→ ⊥ b 7→ 0

This extends as a derivation df on words by

df (x1 . . . xn) =
∑

1≤i≤n
x1 . . . f(xi) . . . xn

A term x1 . . . f(xi) . . . xn in this sum is ⊥ if xi = b and is equal to the number
of as in x1 . . . xi−1 otherwise. The derivation thus computes the number of as
before a b in a word. It can be for instance used to show that the rewriting
system

〈a, b | ab→ bba〉
terminates.

Definition 36. A coalgebra (C,∆) is a comonoid in Vect: ∆ : C → C ⊗ C
such that

C

∆

��

∆ // C ⊗ C
∆⊗C
��

C ⊗ C
C⊗∆

// C ⊗ C ⊗ C

Variants are also defined: counital (ε : C → k linear), coaugmented (η : k→ C
coalgebra morphism). In the counital coaugmented case we have

C = C ⊕ k1

13



with C = im η. The reduced coproduct ∆ : C → C ⊗ C is given by

∆(x) = ∆(x)− 1⊗ x− x⊗ 1

We write ∆
n

: C → C
⊗n

for the iterated reduced coproduct. An augmented
coalgebra C is conilpotent when for every x ∈ C, there exists n ∈ N such that

∆
n
(x) = 0

Proposition 37. The cofree conilpotent coalgebra T cV on a vector space V
is

T cV = k1⊕ V ⊕ . . .⊕ V ⊗n ⊕ . . .
equipped with the deconcatenation tensor product ∆ : T cV → T cV ⊗T cV defined
by

∆(v1 . . . vn) =
∑

0≤i≤n
v1 . . . vi ⊗ vi+1 . . . vn

(in particular ∆(1) = 1⊗ 1). By this we mean that any linear map f : C → V TODO: in [LV12]
they impose that
morphisms such as
f satisfy f(1) = 0,
why?...

from a conilpotent coalgebra C to V extends uniquely as a morphism of coalge-
bras

T cV

p

��
C

f̃
==

f
// V

In the non-unital context, we have T cV =
⊕

n>0 V
⊗n equipped with the reduced

deconcatenation coproduct

∆(v1 . . . vn) =
∑

0<i<n

v1 . . . vi ⊗ vi+1 . . . vn

Definition 38. A coderivation is a linear map d : C → C such that d(1) = 0
and

∆ ◦ d = (d⊗ idC) ◦∆ + (idC ⊗ d) ◦∆

Graphically,

d =
d

+
d

Proposition 39. A coderivation on T cV is determined by its corestriction to V .
To f : T cV → V corresponds the coderivation whose corestriction to any V ⊗n

is
df (x)(n) =

∑
1≤i≤n

∑
(x)

x(1) ⊗ . . .⊗ f(x(i))⊗ . . .⊗ x(n)

with ∆
n
(x) =

∑
(x) x(1) ⊗ . . .⊗ x(n).

Example 40. Consider an algebra (A,µ). The multiplication µ can be extended
as a coderivation dµ on T cA. If we write [a1| . . . |an] for an element of A⊗n we
have

dµ([a1| . . . |an]) =

n−1∑
i=1

[a1| . . . |aiai+1| . . . |an]

14



which is almost the bar complex (see Definition 21), excepting for the signs and
the fact that we do not really remember about the grading, see Definition 52
for details in the graded case.

2.2 Differential graded vector spaces

Definition 41. A graded vector space is a family (Vn)n∈Z of vector spaces
whose direct sum is denoted V•, elements v ∈ Vn are of degree |v| = n. A
morphism f : V →W of degree |f | = r is a family of maps fn : Vn →Wn+r.

Definition 42. The tensor product V ⊗W of graded vector spaces V and W
is

(V ⊗W )n =
⊕
i+j=n

Vi ⊗Wj

Notice that given a graded vector space V , the tensor TV thus admits two
gradings: given v ∈ V ⊗n, its

• degree is |v| = |v1|+ . . .+ |vn|

• weight is n

We write ks for the graded vector space generated by s with |s| = 1. The
suspension sV of V is

sV = ks⊗ V
so that we have (sV )i ∼= Vi−1. The desuspension s−1V is defined similarly
with s−1 in degree −1.

The category of vector spaces is equipped with the symmetric structure
induced by the natural family of maps τ : V ⊗W →W ⊗ V defined by

τ(v ⊗ w) = (−1)|v||w|w ⊗ v

This has a number of consequences. For instance, given an algebra A, A⊗A is
canonically equipped with a structure of algebra with

(µ⊗ µ) ◦ (idA ⊗ τ ⊗ idA) : (A⊗A)⊗ (A⊗A)→ A⊗A

as multiplication:

This means that the sign rule is

(x⊗ y)(x′ ⊗ y′) = (−1)|y||x|(xx′ ⊗ yy′)

For similar reasons, we follow the Koszul sign rule, defining the tensor product
f ⊗ g : V ⊗ V ′ → W ⊗W ′ of two maps f : V → V and g : W → W ′ of graded
vector spaces by

(f ⊗ g)(v ⊗ w) = (−1)|g||x|f(v)⊗ g(w)

15



and given maps f ′ : V ′ → V ′′ and g′ : W ′ →W ′′, we have

(f ′ ⊗ g′) ◦ (f ⊗ g) = (−1)|g
′||f |(f ′ ◦ f)⊗ (g′ ◦ g) (1)

which is better understood if we look at the graphical version of the exchange
law

f ′ g′ f g

⊗ ⊗

◦

=

f ′ g′ f g

◦ ◦
⊗

Another way to represent the graded exchange law (1) is by using “leveled”
string diagrams

g

f

g′

f ′

= (−1)|g
′||f |

g

g′

f
f ′

Definition 43. A differential graded vector space (or dg vector space or
chain complex) (V, d) consists of a graded vector space together with a map
d : V• → V•−1 of degree −1 such that

d2 = 0

A morphism of degree r between two chain complexes is a map f : V• →W•+r
such that

dW ◦ f = (−1)rf ◦ dV
The tensor product V ⊗W of two chain complexes is equipped with the differ-
ential

dV⊗W = dV ⊗ idW + idV ⊗ dW
i.e. for v ⊗ w ∈ Vp ⊗Wq

dV⊗W (v ⊗ w) = dV (v)⊗ w + (−1)|p|v ⊗ dW (w)

The suspension is defined as before, which implies

dsV = −dV

Definition 44. The derivative of a map f : V• →W•+r of degree r is

∂(f) = [d, f ] = dW ◦ f − (−1)rf ◦ dv

Remark 45. f is a morphism of chain complexes if and only if ∂(f) = 0. Notice
that ∂2 = 0, i.e. we have a differential on hom-dg vector spaces.
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Remark 46. We will mostly consider dg vector spaces in which Vn = 0 for n < 0.
However, keeping the gradation in Z ensure that morphisms of negative degree
are properly defined, etc.

Remark 47. Given two graded vector spaces V and W , Hom(V,W ) is graded
(by the degree of morphisms) and differential graded by the derivative (Defini-
tion 44) when V and W are dg.

Definition 48. A homotopy between two maps f, g : V → W of degree 0 is
h : V →W of degree +1 such that

f − g = ∂(h) = dW ◦ h− h ◦ dV

Definition 49. Given a chain complex (V, d), the homology groups are

Hn(V ) = ker(d : Vn → Vn+1)/ im(d : Vn−1 → Vn)

We write H•(V ) for the associated graded vector space. A quasi-isomorphism
is a morphism of chain complexes which induces an isomorphism in homology.
A chain complex V is acyclic when, for n 6= 0,

H0(V ) = k Hn(V ) = 0

which means that ker(d : Vn → Vn+1) = im(d : Vn−1 → Vn) for n ≥ 1.

2.3 Differential graded (co)algebras

Definition 50. A graded algebra is a graded vector space (An)n≥0 equipped
with a product µ : A ⊗ A → A of degree zero: it is thus a family of maps
µp,q : Vp ⊗ Vq → Vp+q. A differential graded algebra is a dg vector space A
such that the multiplication µ : A⊗ A→ A is a morphism of chain complexes.
More explicitly, it consists of a graded vector space (An)n≥0 which is a graded
algebra such that differential is a derivation for the product

d ◦ µ = µ ◦ (d⊗ idA) + µ ◦ (idA ⊗ d)

i.e.
d(ab) = d(a) b+ (−1)|a|a d(b)

It is connected when A0 = k1.

Definition 51. A differential graded coalgebra is defined similarly.

Definition 52. Consider an augmented algebra A = k1 ⊕ A with multiplica-
tion µ : A⊗A→ A. This algebra can be thought as a dg algebra concentrated
in degree 0 with trivial differential, the general case being given below. The bar
construction associates to it a coalgebra BA. As a differential algebra, we have
BA = T c(sA). Notice that sA = ks⊗A is equipped with a “multiplication”

sµ : sA⊗ sA→ sA

of degree −1 defined as

ks⊗A⊗ ks⊗A idks⊗τ⊗idA−−−−−−−−→ ks⊗ ks⊗A⊗A µs⊗µ−−−→ ks⊗A

17



where µs : ks⊗ks→ ks is the map of degree −1 defined by µs(s⊗ s) = s. This
induces a map

fµ : T c(sA) → sA

by precomposing sµ by the canonical projection T c(sA)� sA. Since T c(sA) is
cofree, by Proposition 39 it extends as a unique coderivation

dµ : T c(sA) → T c(sA)

which satisfies d2
µ = 0 because µ is associative.

The coderivation can be pictured as follows

T c(sA)

dµ

��

= k A

0

��

A
⊗2

sµ

��

A
⊗3

sµ⊗id+id⊗sµ
}}

. . .

...

~~

T c(sA) = k A A
⊗2

A
⊗3

. . .

Concretely, it can be identified with the (non-unital) Hochschild complex of A

. . . // A
⊗2 // A // k

with

dµ([a1| . . . |an]) =

n∑
i=1

(−1)i−1[a1| . . . |µ(ai, ai+1)| . . . |an]

For instance, in the case [a1|a2|a3] = (sa1 ⊗ sa2 ⊗ sa3)

dµ(sa1 ⊗ sa2 ⊗ sa3) = fµ(sa1)⊗ sa2 ⊗ sa3 − sa1 ⊗ fµ(sa2)⊗ sa3 + sa1 ⊗ sa2 ⊗ fµ(sa3)

+ fµ(sa1 ⊗ sa2)⊗ sa3 − sa1 ⊗ fµ(sa2 ⊗ sa3) + fµ(sa1 ⊗ sa2 ⊗ sa3)

= sµ(sa1 ⊗ sa2)⊗ sa3 − sa1 ⊗ sµ(sa2 ⊗ sa3)

By the sign rule, we get a minus in the last line because µ is switched with sa1,
etc.

When A is a graded algebra the same construction works and we get

dµ(sa1⊗. . .⊗san) =

n∑
i=1

(−1)i−1+|a1|+...+|ai−1|sa1⊗. . .⊗sµ(ai⊗ai+1)⊗. . .⊗an

Lemma 53. The map dµ : T c(sA)→ T c(sA) is a differential: d2
µ = 0.

When A is differential graded, the differential dA : A → A induces a differ-
ential on A⊗n (and thus on T c(sA)) by

n∑
i=1

idA ⊗ . . .⊗ dA ⊗ . . .⊗ idA : A⊗n → A⊗n

that we still write dA. The chain complex BA then has the total differential

dBA = dµ + dA
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Lemma 54. The map dBA satisfies d2
BA = 0.

Proof. Since µA is a morphism of dgvs, we have dµ ◦ dA + dA ◦ dµ = 0.

Proposition 55. Any quasi-isomorphism f : A → A′ of aug. dga induces a
quasi-isomorphism Bf : BA→ BA.

Proof. Spectral sequence.

Definition 56. The cobar construction ΩC on a coaugmented dg coalge-
bra C is defined similarly. We start from the free dg algebra T (s−1C) and add
to the differential, the differential obtained by extending ∆ by derivation in
T (s−1C), seen as a bimodule over itself.

Theorem 57. We have an adjunction

Ω : {con. dg coalg.} a {aug. dg alg.} : B

Proof. See Theorem 67.

2.4 Twisting morphisms

So far we have defined the bar complex BA. How do we define the bar resolu-
tion? We could take something like BA⊗A. The boundary is almost what we
expect, excepting that we miss the last term in the sum:

d([a1| . . . |an]an+1) =

n∑
i=1

(−1)i−1[a1| . . . |aiai+1| . . . |an]+(−1)n−1[a1| . . . |an−1]anan+1

The proper differential can be achieved by “twisting” the tensor product along
a morphism π with suitable properties.

Definition 58. Given a coalgebra (C,∆, ε) and an algebra (A,µ, η), the con-
volution product on Hom(C,A) defined by

f ? g = µ ◦ (f ⊗ g) ◦∆

is associative, with η ◦ ε as unit, i.e. we have a convolution algebra

(Hom(C,A), ?, η ◦ ε)

Definition 59. Suppose given a dg algebra A. A derivation on a right A-mod-
ule M is a linear dM : M →M such that

dM ◦ ρ = ρ ◦ (dM ⊗ idA) + ρ ◦ (idM ⊗ dA)

i.e. for m ∈M and a ∈ A,

dM (ma) = dM (m)a+ (−1)|m|mdA(a)

A coderivation of a left comodule is defined in a similar way.

Proposition 60. Given a dg algebra A a dg coalgebra C and a chain complex N ,
we have

Der(N ⊗A) ∼= Hom(N,N ⊗A)

and
Coder(C ⊗N) ∼= Hom(C ⊗N,N)
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A linear map α : C → A defines

C
∆−→ C ⊗ C idC⊗α−−−−→ C ⊗A

which extends as a derivation on C ⊗A and a morphism

C ⊗A α⊗idA−−−−→ A⊗A µ−→ A

which extends as a coderivation on C ⊗A. Both extensions are equal to

dα = C ⊗A ∆⊗idA−−−−→ C ⊗ C ⊗A idC⊗α⊗idA−−−−−−−−→ C ⊗A⊗A idC⊗µ−−−−→ C ⊗A

C A

∆

α

µ

C A

Example 61. Given an algebra A, consider C = T cA. We have a projec-
tion π : T cA � A. The associated differential on C ⊗ A is given on An ⊗ A
by

dπ(a1 ⊗ . . .⊗ an)an+1 = (a1 ⊗ . . .⊗ an−1)anan+1

which is almost (up to sign and grading) the missing part from the differential
on BA⊗A.

Lemma 62. Given α, β : C → A, we have

dα ◦ dβ = dα?β and dε◦η = idc⊗A

Thus if α ? α = 0, we have d2
α = 0 and we get a chain complex (C ⊗A, dα).

Remark 63. In the (non-differential) graded setting, the convolution algebra
(Hom(C,A), ?, ∂) is a dg algebra equipped with the derivative ∂ of graded linear
maps (Definition 44): given f : C → A, we recall ∂f = dA ◦ f − (−1)|f |f ◦ dA.

In the dg setting, things goes on as follows. We would like (C⊗A, dα) to be
a chain complex with

dα = dC⊗A + d′α

where dC⊗A = dC ⊗ idA + idC ⊗ dA and

d′α = (idC ⊗ µ) ◦ (idC ⊗ α⊗ idA) ◦ (∆⊗ idA)

is the previously defined differential.

Proposition 64. We have

d2
α = d′∂(α)+α?α

It is a derivation if and only if α satisfies the Maurer-Cartan equation

∂(α) + α ? α = 0

Such an α : C → A of degree −1 is called a twisting morphism.
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Remark 65. In the dg setting, when α : C → A is twisting we get a dg algebra
(Hom(C,A), ?, ∂α) with perturbed differential

∂α(f) = ∂(f) + [α, f ]

Definition 66. Given a twisting morphism α : C → A, the twisted tensor
product is

(C ⊗α A, dα)

Theorem 67. The adjunction of Theorem 57 can be factored through twisting
morphisms:

Homdg alg(ΩC,A) ∼= Homtwisting(C,A) ∼= Homdg coalg(C,BA)

Proof. Consider the first bijection. A dg alg morphism f : ΩC → A is charac-
terized by its restriction to C since ΩC ∼= T (s−1C) (as an algebra) is free. And
since we consider C coaugmented and A augmented, α sends k to 0 and C to A.
By commutation to differentials, we get the fact that the morphism is actually
twisting. Conversely, a twisting morphism α : C → A extends by derivation as
a morphism of algebras ΩC → A.

Proposition 68. By the universal property of the adjunction Ω a B, any twist-
ing morphism α : C → A factorizes uniquely as

ΩC
gα

!!
C

ι

==

α //

fα !!

A

BA

π

==

where gα is a dg algebra morphism and fα is a dg coalgebra morphism.

Proof. We show this for the lower triangle (the upper one is similar). Consider
a dg coalgebra C and the dg algebra morphism idΩC : ΩC → ΩC. Since we
have Homdg alg(ΩC,ΩC) ∼= Homtwisting(C,ΩC), we get the twisting morphism
π : C → ΩC and the natural bijection gives the universal property.

Concretely, π is the composite

BA = T c(sA)� sA ∼= A� A

of degree −1 (and ι is similar).

Definition 69. Given a dg algebra A, its (right) bar resolution is

BA⊗π A

Proof. This is the bar (or Hochschild) resolution, acyclicity can be checked as
usual, for instance using a contracting homotopy.
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3 Koszul duality

3.1 Quadratic algebras

Given an algebra A, we know that we can always compute the bar resolution
BA ⊗π A. However, BA is quite big and often impractical for computation
purposes, so we would like to find a smaller dg coalgebra C such that C⊗π A is
acyclic. Koszul duality provides a way to do this in the quadratic case (there are
some extensions to quadratic + linear and + constants). First, to any algebra A
we associate a “natural” coalgebra A¡, called the Koszul dual coalgebra, which
is a good candidate for a coalgebra such that A¡ ⊗ A is acyclic. When it is
the case, the algebra A is called Koszul and various properties to show that an
algebra is Koszul are studied.

In the following, we will consider quadratic algebras, i.e. of the form

A(V,R) = TV/(R)

with R ⊆ V ⊗2. If we do this by hand, we are lead to consider C of the form

C = V ⊕R⊕ (R⊗ V ∩ V ⊗R)⊕ . . .

In good cases (when the algebra is Koszul), this will actually prove to provide
a resolution.

Definition 70. Given R ⊆ V ⊗2 the algebra

A(V,R) = TV/(R)

is the quotient of TV by the two-sided ideal generated by R. It is universal
among algebras such that

R� TV � A = 0

i.e. for any such algebra A, an algebra morphism f : TV → A factors uniquely
through the quotient TV � A(V,R):

TV
f //

����

A

A(V,R)
f̃

;;

Notice that A(V,R) is graded by the weight (length of words) and augmented:

A =
⊕
n≥0

A(n) = k1⊕V⊕(V ⊗2/R)⊕. . .⊕

V ⊗n/ ∑
i+2+j=n

V ⊗i ⊗R⊗ V ⊗j
⊕. . .

Definition 71. The same game can be played for coalgebras. The coalgebra
C(V,R) is the subcoalgebra of T cV which is universal among subcoalgebras C
of T cV such that

C � T cV � V ⊗2/R = 0
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For any such coalgebra C a coalgebra morphism f : C → T cV factors uniquely
as

C
f //

��

��

T cV

C(V,R)
f̃

::

Explicitly,

C =
⊕
n≥0

C(n) = k1⊕V⊕R⊕(R⊗ V ∩ V ⊗R)⊕. . .⊕

 ⋂
i+2+j=n

V ⊗i ⊗R⊗ V ⊗j
⊕. . .

3.2 Dual coalgebra and algebra

Definition 72. The Koszul dual coalgebraA¡ of a quadratic algebraA = A(V,R)
is the coalgebra

A¡ = C(sV, s2R)

Example 73. Consider the algebra 〈x, y | xx− yy, xy − yx〉 with the augmenta-
tion ε(x) = ε(y) = 0. Notice that with x > y, we have a Gröbner basis:

α : xx→ yy β : xy → yx

Namely,
xxx

αx

��

xα

##

X⇐

xyy

βy

��
yxy

yβ
{{

yyx

xxy

αy

��

xβ

##

Y⇐

xyx

βx

��
yxx

xα
{{

yyy

The dual coalgebra is given by

A¡(0)
= k A¡(1)

= k {x, y} A¡(2)
= k {xx− yy, xy − yx}

Next, A¡(3) = V ⊗R ∩R⊗ V is given by solutions of

a(xxx− xyy) + b(yxx− yyy) + c(xxy − xyx) + d(yxy − yyx)

= e(xxx− yyx) + f(xxy − yyy) + g(xyx− yxx) + h(xyy − yxy)

i.e.

axxx+ cxxy − cxyx− axyy + byxx+ dyxy − dyyx− byyy
= exxx+ fxxy + gxyx+ hxyy − gyxx− hyxy − eyyx− fyyy

Therefore

a = e c = f −c = g −a = h

b = −g d = −h d = e b = f
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i.e.
a = d = e = −h b = c = f = −g

and we have

A¡(3)
= k {xxx− xyy + yxy − yyx, xxy − xyx+ yxx− yyy} = k {X,Y }

(we write X and Y for the two elements of the basis generated by xxx and xxy
respectively). Similarly, critical triples are

xxxx

αxx

��

xαx

��

xxα

$$
xxyy

xX⇐= xβy

��

αyy

��

Xx⇐=

xyxy

βxy

��
xyβ

zz
xyyx

βyx

��

= yxxy

yxβ

zz

yαy

��

Y y
=⇒

yxyx

yβx

��
yY
=⇒

yyxx

yyα
$$
yyyy

V

xxxx

αxx

��

xxα

��

xy

xy

yyxx

yyα

��

= xxyy

αyy

��

xy

xy

yyyy

and

xxxy

αxy

��

xαy

��

xxβ

$$
xxyx

xY⇐= xβx

��

αyx

��

Xy⇐=

xyxx

xyα

zz
βxx

��
xyyy

βyy

��

= yxxx

yxα

zz

yαx

��

Y x
=⇒

yxyy

yβy

��
yX
=⇒

yyxy

yyβ
$$
yyyx

V

xxxy

αxy

��

xxβ

��

xy

xy

yyxy

yyβ

��

= xxyx

αyx

��

xy

xy

yyyx
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We have
A¡(4)

= R⊗ V ⊗ V ∩ V ⊗R⊗ V ∩ V ⊗ V ⊗R
and its elements are given by solutions of

a
b
c
d
e
f
g
h
−e
−f
−g
−h
−a
−b
−c
−d



=



a′

b′

e′

f ′

−e′
−f ′
−a′
−b′
c′

d′

g′

h′

−g′
−h′
−c′
−d′



=



a′′

e′′

−e′′
−a′′
b′′

f ′′

−f ′′
−b′′
c′′

g′′

−g′′
−c′′
d′′

h′′

−h′′
−d′′



xxxx
xxxy
xxyx
xxyy
xyxx
xyxy
xyyx
xyyy
yxxx
yxxy
yxyx
yxyy
yyxx
yyxy
yyyx
yyyy

and therefore

a = a′ = −g = g′ = a′′ = −f ′ = f ′′ = −d = −d′′ = f = . . .

b = b′ = −h = h′ = e′′ = −e′ = b′′ = −c = h′′ = e = . . .

i.e. restricting to first column

a = −d = f = −g b = −c = e = −h

A basis for A¡(4) is thus

xxxx− xxyy + xyxy − xyyx− yyxx+ yyyy − yxxy + yxyx

xxxy − xxyx+ xyxx− xyyy − yyxy + yyyx− yxxx+ yxyy

Notice that we could have been a little smarter and used

A¡(4)
= A¡(3) ⊗ V ∩ V ⊗A¡(3)

but anyway this is starting to get quite boring. We will see a much more direct
way of computing A¡ in Example 76, via the dual algebra.

Since people are more used to algebras than coalgebras, the dual algebra is
more often considered.

Definition 74. The Koszul dual algebra A! of an algebra A is the suspended
linear dual of the dual coalgebra A¡:

(A!)(n) = sn(A¡∗)(n)

equipped with “obvious” multiplication coming from the comultiplication of A¡.
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In order to compute a presentation for it, notice that dualizing the exact
sequence

0→ R� V ⊗2 � V ⊗2/R→ 0

yields the exact sequence

0← R∗ � (V ∗)⊗2 � R⊥ ← 0

where R⊥ is the image of (V ⊗2/R)∗ in (V ∗)⊗2 through the iso (V ⊗2)∗ ∼= (V ∗)⊗2

(there is a canonical map (V ∗)⊗2 → (V ⊗2)∗, which is an isomorphism in finite
dimension). The notationR⊥ comes from the fact thatR⊥ is the vector subspace
of (V ⊗2)∗ of functions vanishing on R, i.e. is orthogonal to R.

Proposition 75. The Koszul dual algebra of A(V,R) is

A! = A(V ∗, R⊥)

Example 76. Going back to Example 73. We have the two rules

α = xx− yy and β = xy − yx

Notice that V ⊗2/R admits u = yy and v = yx as (pbw) basis. So, we have
made explicit the first exact sequence

0→ k {α, β}� k {x, y}⊗2 � k {u, v} → 0

Writing φ and ψ for the two non-trivial morphisms, we have

φ(α) = xx−yy φ(β) = xy−yx ψ(xx) = u ψ(xy) = v ψ(yx) = v ψ(yy) = u

Thus, dualizing we get the map ψ∗ : k {u, v}∗ → (k {x, y}⊗2
)∗ defined by

ψ∗(u∗) = u∗ ◦ ψ ψ∗(v∗) = v∗ ◦ ψ

Therefore,

ψ∗(u∗)(xx) = ψ∗(u∗)(yy) = 1 ψ∗(u∗)(xy) = ψ∗(u∗)(yx) = 0

(and similarly for v∗), and we deduce

ψ∗(u∗) = (xx)∗ + (yy)∗ ψ∗(v∗) = (xy)∗ + (yx)∗

By postcomposing with the isomorphism (k {x, y}⊗2
)∗ ∼= (k {x, y}∗)⊗2, we get

ψ∗(u∗) = x∗ ⊗ x∗ + y∗ ⊗ y∗ ψ∗(v∗) = x∗ ⊗ y∗ + y∗ ⊗ x∗

which means

A! = 〈x∗, y∗ | x∗x∗ + y∗y∗, x∗y∗ + y∗x∗〉

A simpler way to perform this computation is to consider the matrix associated
to ψ:

Mψ =

(
1 0 0 1
0 1 1 0

)
: k {xx, xy, yx, yy} → k {u, v}
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and the matrix for the dual is obtained by transposition

Mψ∗ =


1 0
0 1
0 1
1 0

 : k {u∗v∗} → k {xx∗, xy∗, yx∗, yy∗}

Let us describe A! more explicitly. We can orient the relations by x∗ < y∗:

y∗y∗ → −x∗x∗ y∗x∗ → −x∗y∗

We have a Gröbner basis and thus

A! = k {x∗n, x∗ny∗}

with multiplication

µ(x∗m, x∗n) = x∗m+n µ(x∗m, x∗ny) = x∗m+ny

µ(x∗my, x∗n) = (−1)nx∗m+ny µ(x∗my, x∗ny) = (−1)n+1x∗m+n+2

From which, we immediately deduce that dimA¡(n) = dimA!(n)
= 2, i.e.

A¡ = k {xn, xny}

with comultiplication

∆(xn) =

n∑
i=0

xi ⊗ xn−i +

n−2∑
i=0

(−1)n−ixiy ⊗ xn−i−2y

+

n−1∑
i=1

(−1)n−i−1xi−1y ⊗ xn−i−1y +

n∑
i=2

(−1)n−ixi−2y ⊗ xn−iy

∆(xny) =

n∑
i=0

(−1)n−ixiy ⊗ xn−i + xi ⊗ xn−iy

For instance

∆(xx) = 1⊗ xx+ x⊗ x− y ⊗ y + xx⊗ 1

∆(xy) = 1⊗ xy + x⊗ y − y ⊗ x+ xy ⊗ 1

∆(xxx) = 1⊗ xxx+ x⊗ xx+ xx⊗ x+ xxx⊗ 1− xy ⊗ y + y ⊗ xy
∆(xxy) = 1⊗ xxy + x⊗ xy + xx⊗ y + y ⊗ xx− xy ⊗ x+ xxy ⊗ 1

We recover the previous presentation given in Example 73 with the following
renaming of generators:

above presentation previous presentation (Ex 73)
x x ∈ V
y y ∈ V
xx xx− yy ∈ R
xy xy − yx ∈ R
xxx xxx− xyy + yxy − yyx ∈ V R ∩RV
xxy xxy − xyx+ yxx− yyy ∈ V R ∩RV

...
...
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3.3 Some more examples

We give here some more examples.

3.3.1 The free algebra

Consider the free algebra
A(V, 0)

The dual coalgebra is

A¡ = C(sV, 0) = k1⊕ V

The dual algebra is given by R⊥ = V ⊗2 and therefore

A! = A(V ∗, (V ∗)⊗2) = k⊕ V

Given a basis εi of V , multiplication is(
a+

∑
i

biεi

)(
a′ +

∑
i

b′iεi

)
= aa′ +

∑
i

(bia
′ + ab′i) εi

A! is called the algebra of dual numbers.

3.3.2 An example from Fröberg

This comes from [Frö99]. Consider

A = k[x, y, z]/(x2, yz, xz − z2)

i.e.
A =

〈
x, y, z

∣∣ x2, yz, xz − z2, xy − yx, xz − zx, yz − zy
〉

(the generators for R are independent). If we orient them as rules and complete
in order to remove inclusion critical pairs we get

x2 ⇒ 0 yz ⇒ 0 xz ⇒ z2 xy ⇒ yx zx⇒ z2 zy ⇒ 0

A basis for A⊗2/R is thus

R = k {yx, yy, zz}

and the quotient matrix A→ A⊗2/R is0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 1


The dual algebra is thus

A! = 〈x∗, y∗, z∗ | x∗y∗ + y∗x∗, y∗y∗, x∗z∗ + z∗x∗ + z∗z∗〉
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3.3.3 The symmetric algebra

Consider the symmetric algebra over V = k {xi}

SV = 〈xi | xixj − xjxi〉

A basis for R is thus [xi, xj ] with i < j. The Koszul dual A¡ = C(sV, s2R):

A¡ = k⊕ V ⊕R⊕ (R⊗ V ∩ V ⊗R)⊕ . . .

We have that R is spanned in V ⊗2 by{∑
σ∈Σ2

sgn(σ)sxσ(1) + sxσ(2)

∣∣∣∣∣ x1, x2 ∈ V
}

and more generally A¡(n) is spanned in V ⊗n by{∑
σ∈Σn

sgn(σ)sxσ(1) + sxσ(2) + . . .+ sxσ(n)

∣∣∣∣∣ x1, . . . , xn ∈ V
}

For instance, consider A¡(3) = R⊗ V ∩ V ⊗R, an element of the basis is of the
form

xixjxk − xjxixk + xjxkxi − xkxjxi + xkxixj − xixkxj
= xi(xjxk − xkxj) + xj(xkxi − xixk) + xk(xixj − xjxi)
= (xjxk − xkxj)xi + (xkxi − xixk)xj + (xixj − xjxi)xk

This coalgebra is called the exterior coalgebra Λc(sV ). Its Koszul dual is the
exterior algebra

SV ! = Λ(V ∗) =
〈
x∗i
∣∣ x∗i x∗j + x∗jx

∗
i

〉
3.3.4 Quantum stuff

The quantum plane is a variant over the preceeding example (see e.g. [Man87]):

A = 〈x, y | xy − qyx〉

The Koszul dual coalgebra is

A¡ = k⊕ k {x, y} ⊕ k {xy − qyx}

i.e. (A¡)(n) = 0 for n ≥ 3 and the Koszul dual algebra is

A! = 〈x∗, y∗ | x∗x∗, (1− q)y∗x∗, y∗y∗〉

This could be called a quantized exterior algebra [Krä].
We can also consider quantum matrices〈

a, b, c, d
∣∣ ab = qba, ac = qca, ad− da = (q − q−1)bc, bc = cb, bd = qdb, cd = qdc

〉
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3.3.5 Limits of Gröbner basis

In [Frö99] is recalled an example from [ERT94]:

A = k[x, y, z]/k {xx+ xy, yy + yz, zz + zx}

which is a Koszul commutative quadratic algebra, but admits no quadratic
Gröbner basis, for any coordinates and any monomial order (see also Sec-
tion 3.6).

TODO: the following explanation is messed up because we are in the com-
mutative case... Notice that it is “obviously” Kosuzl if we could allow rewriting
systems instead of Gröbner basis since the rewriting system

xx→ xy yy → yz zz → zx

has no critical pairs. And indeed, we have the following linear resolution by free
left A-modules

0→ A⊗3


x+ y 0 0

0 y + z 0
0 0 z + x


−−−−−−−−−−−−−−−−−−→ A⊗3

(
x y z

)
−−−−−−−−→ A

ε−→ k→ 0

3.3.6 The Sklyanin algebra

In the same vein consider the Sklyanin algebra〈
x, y, z

∣∣ xyz = x3 + y3 + z3
〉

It is Koszul [TVdB96] but admits no Gröbner basis [Ber98].

3.3.7 No bounds for linear resolutions

In [Frö99] is recalled an example from [FL91] showing that there is no bound
until which it is enough to check that an algebra admits a linear resolution to
be Koszul. Consider

A =
〈
a, b, c, d

∣∣ ab− ac, bc− cb− λc2, bd〉
In characteristic 0, if λ−1 = l ∈ N then TorA

!

n (k,k) is concentrated in weight n
if n ≤ l + 2, but not for n = l + 3.

3.4 Koszul at the bar

Given an algebra A = A(V,R), consider the bar construction BA = T c(sA). It
is bigraded: an element [a1| . . . |an] of (sA)n has

• a homological degree: n

• a weight: ω([a1| . . . |an]) = ω(a1) + . . .+ ω(an)
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where the weight of an element of A is the grading coming from the grading
of TA since A = TV/(R) and R is homogeneous. Bigraded in this way, the bar
chain complex B•A looks like

...
...

...
... (4)

V ⊗ V ⊗ V // (V 2/R⊗ V )⊕ (V ⊗ V 2/R) // V 3/(V R+RV ) // 0 (3)

V ⊗ V // V 2/R // 0 (2)

V // 0 (1)

k (0)

3 2 1 0

Notice that the diagonal is T cV . In order to make this diagonal into a column,
we now define

• a syzygy degree: ω([a1| . . . |an])− n

Since A has trivial differential, the differential of BA is dµ which is of weight
degree 0 and homological degree−1 (of course since it’s a differential). Therefore
it is of syzygy degree +1. So, we have a cochain complex B•A (this notation
with index as exponent of B is for the syzygy graduation) which splits wrt
weight. It therefore looks like

...
...

...
... (4)

0 V 3/(V R+RV )oo (V 2/R⊗ V )⊕ (V ⊗ V 2/R)oo V ⊗ V ⊗ Voo (3)

0 V 2/Roo V ⊗ Voo (2)

0 Voo (1)

k (0)

3 2 1 0

Columns are syzygy degrees and lines are weight degree. Notice that the Koszul
dual coalgebra is a subspace of the first column.

Proposition 77. Given A = A(V,R) and its dual A¡ = C(sV, s2R), the natural
inclusion A¡ � BA (in degree 0) induces an isomorphism of graded coalgebras

A¡ ∼→ H0(B•A)

i.e.
(A¡)(n) ∼= H0(B•A)(n)
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3.5 The Koszul resolution

Given an algebra A(V,R), we define a twisting morphism κ : A¡ → A from the
Koszul dual by

A¡ = C(sV, s2R)� sV
s−1

−−→ V � A(V,R) = A

which is of degree −1.

Definition 78. The Koszul complex is A¡ ⊗κ A.

Notice that the summand of weight n of this complex is

0→ A¡(n) → A¡(n−1) ⊗A(1) → . . .→ A¡(1) ⊗A(n−1) → A(n) → 0

Definition 79. An algebra is Koszul when its Koszul complex is acyclic.

Proposition 80. An algebra is Koszul iff

A¡ ∼= H0(B•A)

i.e. A¡ ∼= H0(B•A) as in Proposition 77, and Hn(BA) = 0 for n > 0.

This means that the cohomology of BA is concentrated in syzygy degree 0,
which can be equivalently rephrased as homological degree n is concentrated in
weight n, i.e. the homology of its bar complex is diagonal. Since the homology
does not really depends on the complex but on A,

Proposition 81. An algebra A is Koszul iff it has diagonal homology:

TorAn (k,k)(m) = 0 for n 6= m

Proposition 82. An algebra A is Koszul iff it admits a linear minimal graded
resolution of k by free A-modules. We recall that linear means that Pn is con-
centrated in degree n and minimal means that Hn(P• ⊗A k) = 0 (and actually
a linear resolution is always minimal).

Remark 83. In [Krä], this is reformulated by saying that A admits a mini-
mal resolution of k, such that the matrices of the differentials have coefficients
in A(1). For instance, the quantum plane

〈x, y | xy − qyx〉
(see Section 3.3.4) is Koszul because we have the following resolution of k by
left A-modules:

0→ A

−qy
x


−−−−−−→

d2
A⊗2

(
x y

)
−−−−−→

d1
A

ε−→ k→ 0

Namely, ker ε is generated (as a left A-module) by x and y. To compute ker d1,
notice that xiyj forms a basis of A and

d1

∑
ij

λijx
iyj ⊗

∑
ij

ρijx
iyj

 =
∑
ij

λijx
iyjx+

∑
ij

ρijx
iyj+1

=
∑
ij

λijq
−jxi+1yj +

∑
ij

ρijx
iyj+1

=
∑
i≥0

λi0qx
i+1 +

∑
i≥0

ρ0iy
i+1 +

∑
i,j>0

(
λ(i−1)jq

−j + ρi(j−1)

)
xiyj
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and ker d1 is generated by elements which satisfy λi0q = 0, ρ0i = 0 and
λ(i−1)jq

−j + ρi(j−1) = 0, i.e. spanned over k by

−qxiyj+1 ⊗ q−jxi+1yj = xiyj(−qy ⊗ x)

i.e. generated by (−qy, x) as a left A-module. Notice that we get precisely Koszul
and Anick resolutions. In the general case, we do understand the criterion from
the Anick resolution when the presentation is quadratic, since in this case the
coefficients of the differential are in A(1).

Proposition 84. An algebra A is Koszul iff the dual algebra A! is Koszul.

3.6 Koszulity and rewriting

One way to show that a quadratic algebra is Koszul is to

• order the generators

• consider the associated deglex ordering, this gives an orientation of the
generators of R as rewriting rules

• check that critical pairs are confluent

Theorem 85. If a quadratic algebra admits an ordering on generators, for
which the associated rewriting system is confluent then the algebra is Koszul.

Proof. In this case the Anick resolution is diagonal.

In the following, we suppose fixed A(V,R), with A = kX, and a total order-
ing on the generators. This ordering is extended (by deglex for instance) as a
total ordering on X∗. We consider the filtration of A

FuA = im

⊕
v≤u

k {v}

� TV � A


(FuA are elements of A which can be written by words ≤ u) and define the
associated graded algebra

gruA = FuA/Fu−A

where u− is the immediate predecessor of u, whose multiplication

µ : gruA⊗ grv A → gruv A

is given by original multiplication in A. If we have a Gröbner basis, gruA is the
set of polynomials in normal form whose leading term is u.

Example 86. In 〈x, y | xx− yy, xy − yx〉 with x > y, we have

µ : grx⊗ grx → grxx µ : gry ⊗ gry → gryy
x⊗ x 7→ 0 y ⊗ y 7→ yy

Theorem 87. A is Koszul iff grA is Koszul.

Proof. Spectral sequence.
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We write
Rlead = ker

(
V ⊗2 � TV � grA

)
(the space generated by leading terms of elements of R) and define

Å = TV/(Rlead)

Example 88. For A = 〈x, y | xx− yy, xy − yx〉 with x > y,

Å = k {ynx, yny}

with multiplication

µ(ynx, ymx) = µ(ynx, ymy) = 0 µ(yny, ymy) = yn+m+1y µ(yny, ymx) = yn+m+1x

We have a commutative diagram of epimorphisms of graded modules (but
not algebras in general) which respects the grading in X∗:

TV // //

&& &&

grA

Å = TV/Rlead

88 88

Notice that Å� grA is bijective in weights 0, 1 and 2.

Example 89. Consider 〈x, y, z | xy ⇒ xx, yz ⇒ yy〉 with x < y < z. Notice that

Å(3) = k {xxx, xxz, xzx, xzy, xzz, yxx, yxz, yyx, yyy}

We have a critical pair which is not confluent

xyz

|| ##
xxz xyy

��
xxy

��
xxx

and therefore xxz is killed by xxx in grA:

(grA)
(3)

= k {xxx, xzx, xzy, xzz, yxx, yxz, yyx, yyy} 6= Å(3)

Lemma 90. Consider A(V,R) with a monomial ordering. If the algebra Å = TV/Rlead

is Koszul and if the canonical projection Å� grA is an isomorphism of algebras
then A is Koszul.

Proof. Immediate by Theorem 87.
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Lemma 91. If generators in X are totally ordered (which is the case we are
usually considering), i.e. the decomposition

V =
⊕
x∈X

Vx

consists of one-dimensional vector spaces Vx = k {x}, the algebra Å is monomial
and quadratic, and therefore always Koszul.

Proof. The Koszul complex Å¡ ⊗κ Å is described explicitly below, and can be
checked to be acyclic (by constructing a contracting homotopy).

Proposition 92. Consider A(V,R). If the canonical projection Å � grA is
injective in weight 3 then it is an isomorphism.

Proof. Spectral sequence.

In the case where V = kX and X = {xi | i ∈ I} is totally ordered, all this
is more easily understood through rewriting. We write:

• reducible pairs: L
(2) ⊆ I × I for the set of pairs (i, j) such that xixj is a

leading term of a relation

• irreducible pairs: L(2) = I2 \ L(2)

• reducible uples: L
(n) ⊆ In for the set of (i1, . . . , in) such that for every k,

(ik, ik+1) ∈ L(2)

• irreducible uples: L(n) ⊆ In for the set of (i1, . . . , in) such that for every
k, (ik, ik+1) ∈ L(2)

Given ι = (i1, . . . , in) ∈ In, we write xι for xi1 . . . xin , and

L =
⊎
n

L(n) L =
⊎
n

L
(n)

Lemma 93. We have
Å = k {xι | ι ∈ L}

and
Å¡ = k

{
xι
∣∣ ι ∈ L}

and Å! = A(V ∗, R⊥) with

R⊥ = k
{
x∗i x

∗
j

∣∣∣ (i, j) ∈ L(2)
}

Definition 94. The image of the basis
{
xι
∣∣ ι ∈ L} of Å under the surjection

Å � grA spans grA. When these are linearly independent they are called a
Poincaré-Birkhoff-Witt basis (or pbw basis).

Proposition 95. An algebra A equipped with a quadratic pbw basis is Koszul.

Proof. The monomial algebra Å is Koszul (as a quadratic monomial algebra),
and Å ∼= grA. We conclude using Theorem 87.
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Proposition 96. Given an algebra A(V,R), with an ordering of the basis X
of V , if critical pairs are confluent then {xι | ι ∈ L} forms a pbw basis of A
and A is therefore Koszul.

Definition 97. A Gröbner basis of an ideal I is a set G ⊆ I such that

1. G generates the ideal I: (G) = I

2. leading terms generate the same ideal: (lt(G)) = (lt(I))

Proposition 98. Given an algebra A(V,R) equipped with an ordered basis, the
terms

{xι | ι ∈ L}
form a pbw basis iff the elementsxixj −

∑
(k,l)∈L(2)

(k,l)<(i,j)

λi,jk,lxkxl

∣∣∣∣∣∣∣∣∣ (i, j) ∈ L(2)


spanning R form a Gröbner basis of (R) in TV .

3.7 Hilbert series

Definition 99. Given a weight-graded algebra A such that A0 = k1 and A(n)

is finite-dimensional, its generating series or Hilbert-Poincaré series is

fA(x) =

∞∑
n=0

dimA(n)xn

Theorem 100. Given a Koszul algebra A,

fA
!

(x)fA(−x) = 1

Remark 101. Given a quadratic algebra A, if the series 1/fA(−x) contains
negative coefficient then the algebra A is not Koszul.

3.8 Quadratic-linear algebras

Consider A = A(V,R) with R ⊆ V ⊕ V ⊗2. We consider

q : TV � V ⊗2

the projection. In particular, A(V, qR) is quadratic. We suppose that our
algebra satisfies the following two conditions:

1. There are no superfluous generators:

R ∩ V = {0}

2. There are no “critical pairs”:

(R⊗ V + V ⊗R) ∩ V ⊗2 ⊆ R ∩ V ⊗2
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Example 102. The presentation

〈x, y, z | x+ y〉

does not satisfy condition 1. The presentation

〈x, y, z | xy − x, yz − y〉

does not satisfy condition 2 since

xz − xy ∈ (R⊗ V + V ⊗R)

which comes from the fact that the critical pair

xyz

|| ""
xz xy

is not confluent.

By condition 1, we can define

ϕ : qR → V

which to a quadratic relation associates its linear part in R. Now, the map

(qA)¡ = C(sV, s2qR)� s2qR
s−1ϕ−−−→ sV

extends as a coderivation

dϕ : (qA)¡ → T c(sV )

By condition 2, its image is actually in (qA)¡ ⊆ T c(sV ) and (still by condition
2) it squares to 0. By definition, the Koszul dual dg coalgebra of A is

A¡ = ((qA)
¡
, dϕ)

It gives rises to a quasi-isomorphism ΩA¡ � A.

Example 103. Consider

A = 〈x, y | xx− x, yy − y〉

We have
qA = 〈x, y | xx, yy〉

and therefore
(qA)

¡
= k⊕ k {x, y} ⊕ k {xx, yy}

with
d(xx) = x d(yy) = y
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3.9 Minimal models

Definition 104. A model for a dg algebra A is a surjective map of dg algebras

p : M � A

which is a quasi-isomorphism, such that M is quasi-free, i.e. M ∼= TV (M is
free as a graded algebra). It is minimal when

1. differential is decomposable:

d : V → (TV )⊗≥2

2. the generating graded module V admits a decomposition into

V =
⊕
k≥1

V (k)

such that

d
(
V (k+1)

)
⊆ T

 ⊕
1≤i≤k

V (i)


Proposition 105. Given a connected wdg algebra A and connected wdg coal-
gebra C, the following are equivalent

1. C ⊗α A is acyclic

2. A⊗α C is acyclic

3. the dg coaglebra morphism fα : C → BA is a quasi-isomorphism

4. the dg algebra morphism gα : ΩA→ C is a quasi-isomorphism

where fα and gα are the liftings of α defined in Proposition 68.

Proof. (1) ⇔ (3) Consider fα ⊗ idA : C ⊗ A → BA ⊗ A. It is a morphism of
chain complexes C ⊗α A → BA⊗π A and the second one is acyclic. Therefore
C⊗αA is acyclic iff fα⊗ idA is a quasi-iso, which is the case iff fα is a quasi-iso
(this last step requires a spectral sequence).

Remark 106. In particular, since the bar complex BA⊗π A is acyclic, we get a
resolution (in algebras, i.e. a model)

ΩBA � A

called the cobar-bar resolution.

Proposition 107. An algebra A is Koszul iff the projection ΩA¡ � A is a
quasi-isomorphism, i.e. provides a minimal resolution of A.

Proof. It is a minimal resolution: it is quasi-free by construction, differential is
decomposable by construction, H0(Ω•A¡) = A by (dual of) Proposition 77 and
ΩA¡ � A is a quasi-isomorphism.
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Corollary 108. A is Koszul iff

A¡ ∼= H•(BA)

Remark 109. In the case of operads, this resolution provides the right notion of
operad up to homotopy or ∞-operad. For instance,

A∞ = ΩAss¡

Example 110. Consider the algebra A = 〈x, y | xx− yy, xy − yx〉. In Exam-
ple 76, we have seen that

A¡ = k {xn, xny}

equipped with suitable comultiplication...................
TODO: ΩA¡

3.10 A∞-algebras

Definition 111. An A∞-algebra A is a graded vector space A equipped with
a codifferential

m : T c(sA) → T c(sA)

(i.e. a coderivation of degree |m| = −1 with m ◦m = 0).

Since T c(sA) is cofree, the codifferential is determined by its corestriction
to degree 1, and we have the following equivalent definition:

Definition 112. An A∞-algebra A is a graded vector space A equipped with

mn : A⊗n → A

for n ≥ 1, of degree
|mn| = n− 2

such that ∑
p+q+r=n

(−1)p+qrm(p+1+r) ◦ (id⊗p ⊗mq ⊗ id⊗r) = 0 (2)

It is interesting to have a look at the relation (2) for low values of n:

1. n = 1: m1 is a differential

m1 ◦m1 = 0

2. n = 2: m1 is a derivation for the product m2

m1 ◦m2 = m2 ◦ (m1 ⊗ idA) +m2 ◦ (idA ⊗m1)

3. n = 3: associativity defect of m2 is the border of the associator m3

m2◦(idA⊗m2−m2⊗idA) = m1◦m3+m3◦(m1⊗id⊗2
A +id1⊗m1⊗idA+id⊗2

A ⊗m1)
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4. n = 4: m4 is the pentagonator and measures the failure of m3 to satisfy
MacLane’s pentagon.

Definition 113. A nilpotent A∞-coalgebra is a graded vector space C
equipped with a differential

∆ : T c(s−1C) → T c(s−1C)

(|∆| = −1 and ∆2 = 0). This map is determined by maps

∆n : C → C⊗n

for n ≥ 1 of degree |∆n| = 2− n satisfying relations∑
p+q+r=n

(−1)p+qr(id⊗pC ⊗∆q ⊗ idδr) ◦∆p+1+q = 0

The cobar-twisting-bar correspondence extends to A∞ as follows [Kel05].
Given a (dg) coalgebra C and an augmentedA∞-algebraA the complex Hom(C,A)
is an A∞-algebra with

?n(f1, . . . , fn) = µn ◦ (f1 ⊗ . . .⊗ fn) ◦∆n

where ∆n is the iterated coproduct. An ∞-twisting morphism is τ : C → A
such that ∑

n≥0

?n(τ, . . . , τ) = 0

and we write Tw∞(C,A) for the space of twisting morphisms from C to A. The
functor

Coalg → Set
C 7→ Tw∞(C,A)

is representable and we write B∞A for a representative: it is T c(sA) endowed
with the coderivation whose post-composition by the projection B∞A � sA
has components ?n : (sA)⊗n → sA for n ≥ 1.

Remark 114. A similar construction can be performed in the case where C is
an ∞-coalgebra and A is a dg algebra for the cobar construction.

Anick resolution can be recasted, at least for monomial algebras, in the
above setting as follows. This is mostly inspired of [DK09, DK13]. Consider a
(non-homogeneous) monomial presentation of an algebra A(V,R) with V = kX.
Consider the vector space

O(k)
n = k {u⊗ u1 ∧ . . . ∧ un}

with |u| = k and the ui are subwords of u in R, i.e.

ui = u′i ⊗ ri ⊗ u′′i ∈ TV ⊗R⊗ TV

i.e. elements of the free TV -bimodule over R, with

u′iru
′′
i = u
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We write
On =

⊕
k

O(k)
n

We define a differential by

d(u⊗ u1 ∧ . . . ∧ un) =

n∑
i=1

(−1)i−1u⊗ u1 ∧ . . . ∧ ûi ∧ . . . ∧ un

and a product by

(u⊗u1∧ . . .∧um) · (v⊗v1∧ . . .∧vn) = uv⊗u1v∧ . . .∧umv∧uv1∧ . . .∧uvn

This makes O a dg-algebra.

Definition 115. Given an augmented algebra A, the space of indecompos-
ables is

indec(A) = A/(A)2

An element a 6= 1 is thus indecomposable when a = bc implies b = 1 or c = 1.

Lemma 116. The algebra O is free over its indecomposable elements.

Proposition 117. The dg-algebra O is a free resolution of the algebra A.

In fact, we have
O = Ω∞C

for some ∞-coalgebra C: C is the free ∞-coalgebra
We now build a resolution of A by free right A-modules

. . .
d2−→ C1 ⊗ 1

d1−→ C0 ⊗A d0−→ A
ε−→ k→ 0

We define d0(x⊗ 1) = x
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