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ALGEBRAS
An (unital) algebra is a monoid in Vect.

The tensor algebra over V is
TV = K1⊕ V ⊕ V⊗2 ⊕ V⊗3 ⊕ . . .

It is the free algebra over V .

In particular, when V = Kx1 ⊕ . . .⊕Kxn, TV = K〈x1, . . . , xn〉.

An augmented algebra is equipped with a morphism of algebras
ε : A→ K. In this case A ∼= K1⊕ KerA.

non-unital algebras ∼= augmented unital algebras
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DERIVATIONS

A derivation d : A→ M of a bimodule M over A satisfies

d(ab) = d(a) b + a d(b)

We write Der(A,M) for the space of derivations.

Proposition
When A = TV , we have

Hom(V ,M) ∼= Der(TV ,M)
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COALGEBRAS

Dually, a coalgebra is a comonoid in Vect.

The tensor coalgebra over V is

T cV = K1⊕ V ⊕ V⊗2 ⊕ V⊗3 ⊕ . . .

equipped with the deconcatenation tensor product

∆(v1 . . . vn) =
n∑

i=0
v1 . . . vi ⊗ vi+1 . . . vn

It is the cofree conilpotent coalgebra.
(conilpotent: ∀v , ∃n ∈ N,∆n

(v) = 0)
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CODERIVATIONS

A coderivation d : C → C of a coalgebra (C ,∆) should satisfy

∆ ◦ d = (d ⊗ id) ◦∆ + (id⊗ d) ◦∆

Proposition
When C = T cV , any coderivation is uniquely determined by its
weight 1 component

T cC d // T cV
projV // V
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GRADED VECTOR SPACES
A graded vector space is

V =
⊕
i∈Z

Vi

Their tensor product is defined by

(V ⊗W )n =
⊕

i+j=n
Vi ⊗Wj

Its elements v = v1 . . . vn admit a degree |v | = |v1|+ . . .+ |vn| and
a weight weight(v) = n.

The suspension is
sV = Ks ⊗ V

with |s| = 1 (it increments the weight).

8 / 67



GRADED VECTOR SPACES
A graded vector space is

V =
⊕
i∈Z

Vi

Their tensor product is defined by

(V ⊗W )n =
⊕

i+j=n
Vi ⊗Wj

Its elements v = v1 . . . vn admit a degree |v | = |v1|+ . . .+ |vn| and
a weight weight(v) = n.

The suspension is
sV = Ks ⊗ V

with |s| = 1 (it increments the weight).

8 / 67



GRADED VECTOR SPACES
A graded vector space is

V =
⊕
i∈Z

Vi

Their tensor product is defined by

(V ⊗W )n =
⊕

i+j=n
Vi ⊗Wj

Its elements v = v1 . . . vn admit a degree |v | = |v1|+ . . .+ |vn| and
a weight weight(v) = n.

The suspension is
sV = Ks ⊗ V

with |s| = 1 (it increments the weight).
8 / 67



KOSZUL SIGN CONVENTION
The symmetry τ : V ⊗W →W ⊗ V is

τ(v ⊗ w) = (−1)|v ||w |w ⊗ v

Similarly,

(f ⊗ g)(v ⊗ w) = (−1)|g ||v |f (v)⊗ g(w)

and

(f ⊗ g) ◦ (f ′ ⊗ g ′) = (−1)|g ||f
′|(f ◦ f ′)⊗ (g ◦ g ′)
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CODERIVATIONS

For instance, if (A, µ) is a graded algebra, we can extend
multiplication as a coderivation on T c(A):

d (n) =
∑

i+j+2=n
idi ⊗ µ⊗ idj

which means

d(x1⊗. . .⊗xn) =
n−1∑
i=1

(−1)i−1x1⊗. . .⊗xi−1⊗µ(xi⊗xi+1)⊗xi+2⊗. . .⊗xn

when |µ| = −1 and |xi | = 1.
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DGA ALGEBRAS

A differential graded vector space is (V , d) with d : V → V
such that |d | = −1 and d2 = 0.

The tensor product V ⊗W has differential

dV⊗W = dV ⊗ idW + idV ⊗ dW

A differential graded associative algebra (dga alg.) (A, d) is a
monoid in dgvs: differential is a derivation for the product

d ◦ µ = µ ◦ (d ⊗ id + id⊗ d)

It is connected when A0 = K1.
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SPECTRAL SEQUENCES
Suppose that we have a chain complex

. . .→ Cn
dn→ Cn−1 → . . .

together with a filtration

. . . ⊆ FpCn ⊆ Fp+1Cn ⊆ . . .

compatible with differential so that we have a chain complex FpC .

. . .
d3 // F2C2

d2 // F2C1
d1 // F2C0

d0 // . . .

. . .
d3 // F1C2

d2 //

⋃
F1C1

d1 //

⋃
F1C0

d0 //

⋃
. . .

. . .
d3 // F0C2

d2 //

⋃
F0C1

d1 //

⋃
F0C0

d0 //

⋃
. . .
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SPECTRAL SEQUENCES
Starting from F•C•,
I we define E 0

p,q = FpCp+q/Fp−1Cp+q with d0 : E 0
•,• → E 0

•,•−1
induced by d

I E 1 = H(E 0, d0), there exists a boundary d1 : E 1
•,• → E 1

•−1,•
I E 2 = H(E 1, d1), there exists a boundary d1 : E 1

•,• → E 1
•−2,•+1

I etc.
we get pages

(E r
p,q, d r ) with d r : E r

•,• → E r
•−r ,•+r−1

Theorem
When F is bounded below (∀n,∃k, ∀p ≤ k,FpCn = 0) and
exhaustive (Cn =

⋃
p FpCn) the sequence converges:

grH(C•, d) = E∞

i.e.
FpHp+q(C)/Fp−1Hp+q(C) ∼= E∞p,q
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MINIMAL MODELS
A model p : M � A is a surjective morphism of dga alg which is a
quasi-iso.

A model is minimal when
1. M is quasi-free: for some V , M ∼= TV as a graded algebra
2. its differential is decomposable: d : V → TV (≥2)

3. V admits a decomposition into

V =
⊕
k≥1

V (k)

such that

d
(
V (k+1)

)
⊆ T

( k⊕
i=1

V (i)
)

Such a model is unique up to (non-canonical) isomorphism.
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MINIMAL MODELS
A projective (=free) resolution of M by A-modules is minimal
when matrices corresponding to

. . .→ Abi → Abi−1 → . . .

contain only positive entries in A.

This means that all the boundary maps of

. . .→ K⊗A Ab1 → K⊗A Ab0 → 0

are zero and thus

TorAi (K,M) = Kbi

(and similarly for Ext). It has minimal projective dimension
(sup{i | Pi 6= 0} for a projective resolution P).

An algebra is Koszul when the matrices of the boundary maps
belong to A1.
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BAR AND COBAR
CONSTRUCTIONS
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BAR AND COBAR FUNCTORS
We are going to construct two functors
1. B : DGAAlg→ DGACoalg
2. Ω : DGACoalg→ DGAAlg

such that
Ω a B

Moreover, the unit and counit

C → BΩC ΩBA→ A

will be quasi-iso, the counit thus providing a free resolution of A.

In fact, we have more:

DGAAlg(ΩC ,A) ∼= Twisting(C ,A) ∼= DGACoalg(C ,BA)
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THE BAR RESOLUTION

Let’s recap the case we all know.
We start from a monoid M and construct a free resolution

. . .
∂n+1 // Cn

∂n // . . .
∂2 // C1

∂1 // C0
ε // Z // 0

of Z by left ZM-modules with
I Cn = ZM[Mn]

I ε : ZM[M0]→ Z is the map such that ε([]) = 1,
i.e. ε(

∑
u∈M nuu) =

∑
u∈M nu

I ∂n[a1| . . . |an] is

a1[a2| . . . |an]+
n−1∑
i=1

(−1)i [a1| . . . |aiai+1| . . . |an]+(−1)n[a1| . . . |an−1]
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THE BAR RESOLUTION
Geometrically, we have
I vertices a[]

I edges a[b] with ∂1(a[b]) = ab[]− a[]

a[]
a[b] // ab[]

I triangles a[b|c] with ∂2(a[b|c]) = ab[c]− a[bc] + a[b]

ab[]
ab[c]

""
a[]

a[b]
>>

a[bc]
// abc[]

I tetrahedron a[b|c|d ]

I etc.
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THE BAR RESOLUTION
We can construct a contracting homotopy

. . .
∂n+1 // Cnsn
oo

∂n // . . .
sn−1
oo

∂2 // C1s1
oo

∂1 // C0s0
oo

ε // Z
η
oo // 0

where η and the si are Z-linear (not ZM!) and such that
εη = idZ ∂1s0 + ηε = idC0 ∂n+2sn+1 + sn∂n+1 = idCn+1

by
η(1) = [] sn(a0[a1| . . . |an]) = [a0|a1| . . . |an]

ab[]

ab[c]

��

a[][a|b]

[a|bc]

a[b]

OO

a[bc]

''

a[b|c]

[]

[ab]

AA

[a]

88

[abc]
// abc[]
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THE BAR RESOLUTION

I Because of the contracting homotopy, the sequence is exact
(it’s a free resolution of Z by ZM-modules).

I Between two free resolutions there is a morphism which is
unique up to homotopy.

I Thus, the homology of the complex obtained by −⊗ZM Z does
not depend on the choice of the free resolution (only on M).

Remark
We can get a slightly smaller resolution by setting

[a1| . . . |1| . . . |an] = 0

This is the normalized bar resolution.
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FREE RESOLUTIONS
A resolution:

. . .
∂n+1 // Cn

∂n // . . .
∂2 // C1

∂1 // C0
ε // Z // 0
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FREE RESOLUTIONS
A morphism of resolutions:

. . .
∂n+1 // Cn

fn
��

∂n // . . .
∂2 // C1

f1
��

∂1 // C0

f0
��

ε // Z

id
��

// 0

��
. . .

∂′n+1

// C ′n ∂′n

// . . .
∂′2

// C ′1 ∂′1

// C ′0 ε′
// Z // 0
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FREE RESOLUTIONS
An homotopy between morphism of resolutions:

. . .
∂n+1 // Cn

hn

~~

fn
��

gn
��

∂n // . . .

hn−1

~~

∂2 // C1

h1

~~

f1
��

g1
��

∂1 // C0

h0
~~

f0
��

g0
��

ε // Z

id
��

// 0

��
. . .

∂′n+1

// C ′n ∂′n

// . . .
∂′2

// C ′1 ∂′1

// C ′0 ε′
// Z // 0

such that

f0 − g0 = ∂′1h0 fn − gn = ∂′n+1hn + hn+1∂
′
n
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Proposition
Between two free resolutions there is a morphism.
Proof.
f0: ε′ is surjective and C0 free (projective).
fn+1: for every x in a basis of Cn+1, fn∂n+1(x) ∈ Im ∂′n+1 = Ker ∂′n
because ∂n∂n+1 = 0 and ∂′nfn = fn−1∂n.
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Proposition
Between two morphisms of free resolutions there is an homotopy.
Proof.
Similar.
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THE BAR CONSTRUCTION

We start from an augmented algebra A = K1⊕ A concentrated in
degree 0. The differential graded coalgebra BA is T c(sA) with
differential the coderivation d2 : BA→ BA extending

T c(sA)� Ks⊗A⊗Ks⊗A id⊗τ⊗id−−−−−→ Ks⊗Ks⊗A⊗A
Πs⊗µA−−−−→ Ks⊗A

with
I Πs(s ⊗ s) = s
I µA is the restriction of µ to A
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THE BAR CONSTRUCTION
Lemma
Because µ is associative, we have (d2)2 = 0
(i.e. (d2)2 measures associativity).

Lemma
The bar complex of A can be identified with the nonunital
Hochschild complex of A:

. . . // A⊗n ∂n // A⊗n−1 // . . . // A // K // 0

with

∂n[a1| . . . |an] =
n−1∑
i=1

(−1)i−1[a1| . . . |µ(ai , ai+1)| . . . |an]

Proposition
For f : A→ A′ morphism of aug dga alg, Bf : BA→ BA′ is a
quasi-iso.
TODO: proofs
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THE BAR CONSTRUCTION

If we start from a dga alg (A, dA) there is an induced differential
on A⊗n

d1 =
n∑

i=1
(id, . . . , id, dA, id, . . . , id)

which induces a differential on T cA. On can check

d1 ◦ d2 + d2 ◦ d1 = 0

(because µA is a morphism of dg vector spaces) and we define

BA = (T c(sA), d1 + d2)
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THE COBAR CONSTRUCTION
We start from a coaug graded coalg C = C ⊕K1. The reduced
coproduct ∆ : C → C ⊗ C is such that
∆(x) = 1⊗ x + ∆(x) + x ⊗ 1.

The cobar construction is the aug alg ΩC = T (s−1C) with
differential the derivation d2 : ΩC → ΩC extending

Ks−1⊗C ∆s⊗∆−−−−→ Ks−1⊗Ks−1⊗C⊗C id⊗τ⊗id−−−−−→ Ks−1⊗C⊗Ks−1⊗C

with ∆s(s−1) = −s−1 ⊗ s−1.

This extends as before to graded coalg by taking d1 + d2 as
differential with, on C⊗n,

d1 =
n∑

i=1
(id, . . . , id, dC , id, . . . , id)

26 / 67



THE COBAR CONSTRUCTION
We start from a coaug graded coalg C = C ⊕K1. The reduced
coproduct ∆ : C → C ⊗ C is such that
∆(x) = 1⊗ x + ∆(x) + x ⊗ 1.

The cobar construction is the aug alg ΩC = T (s−1C) with
differential the derivation d2 : ΩC → ΩC extending

Ks−1⊗C ∆s⊗∆−−−−→ Ks−1⊗Ks−1⊗C⊗C id⊗τ⊗id−−−−−→ Ks−1⊗C⊗Ks−1⊗C

with ∆s(s−1) = −s−1 ⊗ s−1.

This extends as before to graded coalg by taking d1 + d2 as
differential with, on C⊗n,

d1 =
n∑

i=1
(id, . . . , id, dC , id, . . . , id)

26 / 67



THE COBAR CONSTRUCTION
We start from a coaug graded coalg C = C ⊕K1. The reduced
coproduct ∆ : C → C ⊗ C is such that
∆(x) = 1⊗ x + ∆(x) + x ⊗ 1.

The cobar construction is the aug alg ΩC = T (s−1C) with
differential the derivation d2 : ΩC → ΩC extending

Ks−1⊗C ∆s⊗∆−−−−→ Ks−1⊗Ks−1⊗C⊗C id⊗τ⊗id−−−−−→ Ks−1⊗C⊗Ks−1⊗C

with ∆s(s−1) = −s−1 ⊗ s−1.

This extends as before to graded coalg by taking d1 + d2 as
differential with, on C⊗n,

d1 =
n∑

i=1
(id, . . . , id, dC , id, . . . , id)

26 / 67



THE BAR RESOLUTION

Proposition
We have an adjunction Ω a B.

Proposition
The counit εA : ΩBA→ A is the bar-cobar resolution.

Elements of (ΩBA) of weight n and degree p are

([a1| . . . |ak1 ] ‖ . . . ‖ [a1| . . . |akn ])

with (k1 − 1) + . . .+ (kn − 1) = p.
I The differential does:

I split a [. . .]
I multiply inside a [. . .]

I εA([a1]‖ . . . ‖[an]) = a1 . . . an (and 0 if not all unary)
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TWISTING MORPHISMS

We have the following equivalences of categories:

DGAAlg(ΩC ,A) ∼= Twisting(C ,A) ∼= DGACoalg(C ,BA)

Let’s define twisting morphisms.
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TWISTING MORPHISMS
Given a (dga) coalgebra (C ,∆) and a (dga) algebra (A, µ), the
convolution algebra is (Hom(C ,A), ?) with

(f ? g) = µ ◦ (f ⊗ g) ◦∆

The map
C ∆ // C ⊗ C id⊗α // C ⊗ A

induces a unique derivation on C ⊗ A. It’s equal to the
coderivation induced by

C ⊗ A α⊗id // A⊗ A µ // A
and both are equal to

dα = (idC ⊗ µ) ◦ (idC ⊗ α⊗ idA) ◦ (∆⊗ idA)

We have
dα ◦ dβ = dα?β

therefore α ? α = 0 implies (dα)2 = 0.
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TWISTING MORPHISMS

dα =

dα ◦ dβ = = dα?β
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TWISTING MORPHISMS

dα =

dα ◦ dβ = = dα?β
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TWISTED DERIVATION
A twisting morphism is α : C → A of degree −1 satisfying
Maurer-Cartan:

∂(α) + α ? α = 0
with

∂(α) = dA ◦ α + α ◦ dC

The twisted derivation is defined on f : C → A by

∂α(f ) = ∂(f ) + [α, f ]

where
∂(f ) = dC ◦ f − (−1)|f |f ◦ dA

and
[f , g ] = f ? g − (−1)|f ||g |g ? f

This is a differential and a derivation wrt ?, (Hom(C ,A), ?, ∂α) is
thus a dga algebra.
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TWISTED TENSOR PRODUCT
We define the twisted tensor product as

C ⊗α A = (C ⊗ A, dC⊗A + dα)

with
dC⊗A = dC ⊗ idA + idC ⊗ dA

and dα is the lifting of α : C → A as a (co)derivation.

We get a differential when α is a twisting morphism:

(dC⊗A + dα)2 = d2
C⊗A + dC⊗A ◦ dα + dα ◦ dC⊗A + d2

α

= ddA◦α+α◦dC + dα?α
= d∂(α)+α?α = 0
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TWISTED TENSOR PRODUCT

dC⊗A ◦ dα + dα ◦ dC⊗A

=

=

=

= ddA◦α+α◦dC
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THE ADJUNCTION

DGAAlg(ΩC ,A) ∼= Twisting(C ,A) ∼= DGACoalg(C ,BA)

The first equivalence:
I A map

φ : ΩC = T (s−1C)→ A
is characterized by its restriction ϕ : C → A (T is left adjoint)
and thus by

ϕ = c 7→ ϕ(s−1c)

I φ commutes with differentials:
dA ◦ φ = φ ◦ (d1 + d2)

dA ◦ ϕ = −ϕ ◦ dC − ϕ ? ϕ
0 = dA ◦ ϕ+ ϕ ◦ dC + ϕ ? ϕ

0 = ∂(ϕ) + ϕ ? ϕ
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THE BAR RESOLUTION

By the equivalence of categories there is a (universal) twisting
morphism

π : BA→ A

given by
ΩC

gα

!!
C

ι

==

fα !!

α // A

BA
π

==

The twisted tensor product BA⊗π A is the nonunital Hochschild
complex with coefficients in A and is acyclic!

BUG: we’ve lost the first term!...
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THE BAR RESOLUTION
We have that BA⊗π A is BA⊗ A as a graded space.

It differential (forgetting about suspensions):
I π : BA→ A is the corestriction
I dπ = (idBA ⊗ µ) ◦ (idBA ⊗ π ⊗ idA) ◦ (∆⊗ idA)

BA A

∆

π

µ

BA A

I 0 = ∂(π) + π ? π = π ◦ dBA + π ? π
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COMPARISON THEOREM

Theorem
Let A (resp. C) be a connected wdga algebra (resp. coalgebra), for
any twisting morphism the following are equivalent:
1. C ⊗α A is acyclic
2. A⊗α C is acyclic
3. the canonical dga coalgebra morphism C → BA is a quasi-iso
4. the canonical dga algebra morphism ΩC → A is a quasi-iso

Proof.
Using spectral sequences. . .
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KOSZUL
DUALITY

FOR
QUADRATIC
ALGEBRAS
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COMPARISON THEOREM

In good cases, we can construct from an algebra A a dg
coalgebra A¡ and a twisting morphism κ : A¡ → A such that

Theorem
The following are equivalent:
1. A¡ ⊗κ A is acyclic
2. A⊗κ A¡ is acyclic
3. A¡ � BA is a quasi-iso
4. ΩA¡ � A is a quasi-iso

and when these hold, A¡ gives a minimal resolution of A.

In other words, we are looking for a “small” coalgebra A¡ playing
the same role as BA.
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QUADRATIC ALGEBRAS
A quadratic algebra A is

A = A(V ,R) = TV /(R)

where (R) is the two-sided ideal generated by R ⊆ V⊗2:

A = K1⊕V⊕
(
V⊗2/R

)
⊕. . .⊕

V⊗n/
∑

i+2+j=n
V⊗i ⊗ R ⊗ V⊗j

⊕. . .

It is universal among subalgebras A of TV such that

R � TV � A = 0

i.e.
TV // //

$$ $$

A

A(V ,R)

;;
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QUADRATIC ALGEBRAS
A quadratic algebra A is
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A
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TOWARDS A MINIMAL MODEL
Given A(V ,R) quadratic we want to construct a quasi-free
resolution:
I it is of the form (T (W ), d)

I d : W →
⊕

i≥2 W⊗i

Such that there is a quasi-iso (T (W ), d)� A.

Notice that A is weighted (length of words) but seen as a dga
concentrated in degree 0.

So, let’s try:
I we start from W = V : TV � A
I we need to kill relations: W = V ⊕ R
I we need to kill relations between relations:

W = V ⊕ R ⊕ (R ⊗ V ∩ V ⊗ R)

I etc.
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QUADRATIC COALGEBRAS

The quadratic coalgebra is C(V ,R) with R ⊆ V⊗2 is the
universal subcoalgebra of T cV such that

C � T cV � V⊗2/R = 0

i.e.
C(V ,R)

%%

%%
C

;;

// // T cV
Explicitly,

C = K1⊕ V ⊕ R ⊕ . . .⊕

 ⋂
i+2+j=n

V⊗i ⊗ R ⊗ V⊗j

⊕ . . .
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KOSZUL DUAL COALGEBRA

The Koszul dual of A(V ,R) is the coalgebra

A¡ = C(sV , s2R)

In the case where R is generated by monomials, elements of
degree n look like critical n-uples.
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KOSZUL DUAL COALGEBRA

If we consider 〈x , y | xx − yy〉, elements of degree 3 are of the form

a(xx − yy)x + b(xx − yy)y = cx(xx − yy) + dy(xx − yy)

So
a = b = c = d = 0

44 / 67



KOSZUL DUAL ALGEBRA
The Koszul dual algebra A! is defined by

(A!)(n) = sn(A¡∗)(n)

If we dualize the exact sequence

0→ R � V⊗2 � V⊗2/R → 0

we get
0← R∗ � (V ∗)⊗2 � R⊥ ← 0

R⊥ is the image of (V⊗2/R)∗ in (V⊗2)∗ ∼= V ∗ ⊗ V ∗ (finite dim.),
i.e. functions which cancel on R⊥. We have

A¡∗ = A(s−1V , s−2R⊥) A! = A(V ∗,R⊥)

When A is f.d., (A!)! = A.
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KOSZUL DUAL ALGEBRA

I 〈x , y | 〉: an element v ∈ R⊥ is v ∈ V ∗ ⊗ V ∗ satisfying

0 = v0

A! = K1⊕K{x∗, y∗} is the algebra of dual numbers.

I 〈x , y | xy − yx〉: an element v ∈ R⊥ is of the form

v = a(x∗x∗)+b(x∗y∗−y∗x∗)+c(x∗y∗+y∗x∗)+d(y∗y∗)

with b = 0. Therefore

A! = T (K{x∗, y∗})/(x∗x∗, x∗y∗ + y∗x∗, y∗y∗)
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KOSZUL DUAL ALGEBRA

I 〈x , y | xx − yy〉:

A! = T (K{x∗, y∗})/(x∗x∗ + y∗y∗, x∗y∗, y∗x∗)

I etc.

47 / 67



BACK TO BAR
We consider BA = T c(sA) over A(V ,R) quadratic. We have three
gradings on BA:
I the homological degree of [u1| . . . |un] is n
I the weight grading of [u1| . . . |un] is the sum of lengths of ui
I the syzygy degree of [u1| . . . |un] is the weight grading minus n

The differential on BA is d2 which is of weight degree 0 and syzygy
degree 1, so we have a cochain complex

0 V 3/(VR + RV )oo (V 2/R ⊗ V )⊕ (V ⊗ V 2/R)oo V ⊗ V ⊗ Voo (3)

0 V 2/Roo V ⊗ Voo (2)

0 Voo (1)

K (0)

3 2 1 0

Column: syzygy / row: weight
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BACK TO BAR

0 V 3/(VR + RV )oo (V 2/R ⊗ V )⊕ (V ⊗ V 2/R)oo V ⊗ V ⊗ Voo (3)

0 V 2/Roo V ⊗ Voo (2)

0 Voo (1)

K (0)

3 2 1 0

First column is T c(sV ) of which A¡ is a subspace.

Proposition
The inclusion A¡ � BA induces an iso of graded coalg:

A¡ ∼→ H0(B•A) i.e. A¡(n) ∼= H0(B•A)(n)

where B•A is graded by syzygy degree and (−)(n) is the weight.

Proof.
The inclusion A¡(n) � (sV )⊗n is the kernel of the differential.
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SIMILARLY FOR COBAR

0 // VR ∩ RV // (V ⊗ R)⊕ (R ⊗ V ) // V ⊗ V ⊗ V (3)

0 // R // V ⊗ V (2)

0 // V (1)

K (0)

3 2 1 0

H0(Ω•C) ∼= C ¡

(for the “obvious” definition of C ¡)
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THE KOSZUL COMPLEX

We define κ : C(sV , s2R)→ A(V ,R) as

C(sV , s2R)� sV s−1
−−→ V � A(V ,R)

It’s twisting: κ ? κ = 0

The Koszul complex A¡ ⊗κ A is weight graded. In weight n:

0→ A¡(n) → A¡(n−1) ⊗ A(1) → . . .→ A¡(1) ⊗ A(n−1) → A(n) → 0
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COMPARISON THEOREM

Theorem
The following are equivalent:
1. A¡ ⊗κ A is acyclic
2. A⊗κ A¡ is acyclic
3. A¡ � BA is a quasi-iso
4. ΩA¡ � A is a quasi-iso

and when these hold, A¡ gives a minimal resolution of A.

Proof.
We use previous comparison theorem with A and C = A¡.
ΩA¡ is a free graded algebra, differential dΩA¡ = d2 satisfies
d(W ) ⊆W≥2 by construction, by “dual” of previous proposition
we have H0(Ω•A¡) = A and the map ΩA� A is a quasi-iso.
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KOSZUL ALGEBRAS

A quadratic algebra A is Koszul if
I its Koszul complex A¡ ⊗κ A is acyclic
I Hd (B•A) = 0 when d > 0
I Hd (Ω•A¡) = 0 when d > 0
I H•(BA) is a subcoalgebra of T c(sV )

I A! is Koszul
I . . .
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KOSZUL ALGEBRAS ARE QUADRATIC

Koszul: Hd (B•A) = 0 when d > 0

Suppose R has elements of degree 2 and 3, R3 = {xxx − yyy}.

H1(B•A)(3) = 0 means that

V ⊗ V ⊗ V → (V 2/R ⊗ V )⊕ (V ⊗ V 2/R) → V 3/(RV + VR)

[x |y |z ] 7→ [xy |z ]− [x |yz ] 7→ 0

is exact.
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KOSZUL ALGEBRAS ARE QUADRATIC

Koszul: Hd (B•A) = 0 when d > 0

Suppose R has elements of degree 2 and 3, R3 = {xxx − yyy}.

H1(B•A)(3) = 0 means that

V ⊗ V ⊗ V → (V 2/R2 ⊗ V )⊕ (V ⊗ V 2/R2) → V 3/(R2V + R3 + VR2)
? 7→ ? 7→ xxx − yyy

is exact.
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AN EXAMPLE

The dual of the symmetric algebra on X

S(KX ) = KX/(xixj − xjxi , i < j)

is the exterior coalgebra

Λc(sKX ) = KX/(xixj + xjxi , i ≤ j)

and we have Λc(sKX )⊗κ S(KX ) acyclic.

Proof.
Define a contracting homotopy.

Therefore S(KX ) is Koszul (and Λc(sX ) too).
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QUADRATIC-LINEAR
ALGEBRAS
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QUADRATIC-LINEAR ALGEBRAS
Previous constructions can be generalized to the quadratic-linear
case where R ⊆ V ⊕ V⊗2.

Canonical example: universal enveloping alg of a Lie alg
U(g) = T (g)/(x ⊗ y − y ⊗ x − [x , y ])

We write q : TV � V⊗2 so that qA = A(V , qR) is quadratic.

From now on, we suppose
I (ql1): R ∩ V = 0 (no superfluous generator)

In this case there exists a map ϕ : qR → V such that
R = {X − ϕ(X ) | X ∈ qR}
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A DIFFERENTIAL

The map ϕ̃

(qA)¡ = C(sV , s2qR)� s2qR s−1ϕ−−−→ sV

extends by coderivation as

dϕ : (qA)¡ → T c(sV )

If we suppose

I (ql2): (R ⊗ V + V ⊗ R) ∩ V⊗2 ⊆ R ∩ V⊗2

we have that
I the image of dϕ is in (qA)¡ ⊆ T c(sV )

I d2
ϕ = 0
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KOSZUL DUAL DGA COALGEBRA

Given A = A(V ,R) quadratic-linear satisfying (ql1) and (ql2), the
Koszul dual dga coalgebra is

A¡ =
(
(qA)¡ , dϕ

)
=

(
C
(
T c (sV ) , s2R

)
, dϕ

)

What we did before generalizes to this case by taking this
differential in account.

The conditions (ql1) and (ql2) are equivalent to

(R) ∩ V = {0} and R = (R) ∩ {V ⊕ V⊗2}
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A GRADED ALGEBRA
A quadratic-linear A(V ,R) is filtered by

FnA = Im(⊕k≤nV⊗k � A)

We write grA for the associated graded algebra with
grn A = FnA/Fn−1A (intuitively, words which admit a writing of
length n but none of length < n).

Theorem (PBW)
When A q-l algebra is Koszul, the epimorphism

p : qA� grA

is an isomorphism of graded algebras.

Proof.
Spectral sequences. . .
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THE REWRITING METHOD

Given a quadratic algebra A(V ,R), we can
1. order a basis of V ,
2. extend this order to monomials of TV (generally using deglex)
3. choose a basis of R and see it as rewriting rules

rlead → (r − rlead )

4. check that critical pairs are confluent

In this case, the algebra is Koszul!
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REDUCTION BY FILTRATION
When A = A(V ,R) admits a nice filtration, there exists a
morphism

◦
A = A(V ,Rlead )� grA

if
◦
A is Koszul (often easier to show) and the map is an iso (in

weight 3) then A is also Koszul.

The deglex ordering induces a grading on TV which refines the
weight grading. We consider the associated filtration

FpTV =
p⊕

q=0
TVq

(elements below the p-th element in the deglex ordering).
We can consider its image under TV � A and define

grpA = FpA/Fp−1A
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REDUCTION BY FILTRATION

Proposition
If the algebra grA is Koszul then so is A.

Proof.
Spectral sequences. . .

We have
TV

����
&& &&◦

A = TV /(Rlead )
ψ
// // grA

with ψ iso in weights 0, 1 and 2.

If ψ is iso and
◦
A is Koszul, so is A.
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THE DIAMOND LEMMA

Theorem
Suppose that A = A(V ,R) quadratic such that

◦
A is Koszul. If

◦
A� grA is injective in weight 3 then it is an isomorphism (in
every weight). And A is Koszul.

Proof.
Spectral sequences. . .
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MONOMIAL ARE KOSZUL
Theorem
Any quadratic monomial algebra A = A(V ,R) is Koszul.

Proof.
We fix a basis ΣV of V and ΣR of R and define
I L(n): normal forms a1 . . . an such that ∀i , aiai+1 6∈ ΣR

I L(n): critical pairs a1 . . . an such that ∀i , aiai+1 ∈ ΣR

L is a basis of A and L is a basis of A¡. A basis of A¡ ⊗κ A is
a1 . . . am ⊗ b1 . . . bn with a1 . . . am ∈ L(m) and b1 . . . bn ∈ L(n) and
we have

d(a1 . . . am ⊗ b1 . . . bm) = a1 . . . am−1 ⊗ amb1 . . . bn if amb1 6∈ ΣR
= 0 if amb1 ∈ ΣR

In the latter case, this is the boundary of a1 . . . amb1 ⊗ b2 . . . bn
and the Koszul complex is acyclic.
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PBW BASIS

Now, consider
◦
A associated to a quadratic algebra: it is monomial

and thus Koszul.

The elements of L form a basis of
◦
A and their image under

ψ :
◦
A� grA ∼= A span A. When they are independent they form a

PBW basis (or Gröbner basis) of A and ψ is an iso.

It’s enough to check this in weight 3.
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