Koszul Duality for Algebras

Samuel Mimram

October 1, 2013

SO, I TRIED TO READ...

Grundlehren der mathematischen Wissenschaften 346 A Series of Comprehensive Studies in Mathematics

Jean-Louis Loday Bruno Vallette

Algebraic Operads

O Springer

SOME DEFINITIONS

An (unital) algebra is a monoid in Vect.

An (unital) algebra is a monoid in Vect.

```
The tensor algebra over V is

TV = \mathbb{K}1 \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \dots
It is the free algebra over V.
```

An (unital) algebra is a monoid in Vect.

The **tensor algebra** over *V* is $TV = \mathbb{K}1 \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \dots$ It is the *free algebra* over *V*.

In particular, when $V = \mathbb{K}x_1 \oplus \ldots \oplus \mathbb{K}x_n$, $TV = \mathbb{K}\langle x_1, \ldots, x_n \rangle$.

An (unital) algebra is a monoid in Vect.

The **tensor algebra** over V is $TV = \mathbb{K}1 \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \dots$ It is the *free algebra* over V.

In particular, when $V = \mathbb{K}x_1 \oplus \ldots \oplus \mathbb{K}x_n$, $TV = \mathbb{K}\langle x_1, \ldots, x_n \rangle$.

An **augmented** algebra is equipped with a morphism of algebras $\varepsilon : A \to \mathbb{K}$. In this case $A \cong \mathbb{K}1 \oplus \text{Ker } A$.

non-unital algebras \cong augmented unital algebras

DERIVATIONS

A **derivation** $d : A \rightarrow M$ of a bimodule M over A satisfies

$$d(ab) = d(a) b + a d(b)$$

We write Der(A, M) for the space of derivations.

DERIVATIONS

A derivation $d: A \rightarrow M$ of a bimodule M over A satisfies

$$d(ab) = d(a) b + a d(b)$$

We write Der(A, M) for the space of derivations.

Proposition When A = TV, we have

 $\operatorname{Hom}(V, M) \cong \operatorname{Der}(TV, M)$

COALGEBRAS

Dually, a coalgebra is a comonoid in Vect.

The **tensor coalgebra** over V is

$$T^{c}V = \mathbb{K}1 \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \dots$$

equipped with the deconcatenation tensor product

$$\Delta(v_1\ldots v_n) = \sum_{i=0}^n v_1\ldots v_i \otimes v_{i+1}\ldots v_n$$

It is the *cofree conilpotent coalgebra*. (conilpotent: $\forall v, \exists n \in \mathbb{N}, \overline{\Delta}^n(v) = 0$)

CODERIVATIONS

A coderivation $d: C \rightarrow C$ of a coalgebra (C, Δ) should satisfy

$$\Delta \circ d = (d \otimes \mathsf{id}) \circ \Delta + (\mathsf{id} \otimes d) \circ \Delta$$

Proposition

When $C = T^{c}V$, any coderivation is uniquely determined by its weight 1 component

$$T^{c}C \xrightarrow{d} T^{c}V \xrightarrow{\operatorname{proj}_{V}} V$$

GRADED VECTOR SPACES

A graded vector space is

$$V = \bigoplus_{i \in \mathbb{Z}} V_i$$

GRADED VECTOR SPACES

A graded vector space is

$$V = \bigoplus_{i \in \mathbb{Z}} V_i$$

Their tensor product is defined by

$$(V \otimes W)_n = \bigoplus_{i+j=n} V_i \otimes W_j$$

Its elements $v = v_1 \dots v_n$ admit a *degree* $|v| = |v_1| + \dots + |v_n|$ and a *weight* weight(v) = n.

GRADED VECTOR SPACES

A graded vector space is

$$I = \bigoplus_{i \in \mathbb{Z}} V_i$$

Their tensor product is defined by

$$(V \otimes W)_n = \bigoplus_{i+j=n} V_i \otimes W_j$$

Its elements $v = v_1 \dots v_n$ admit a *degree* $|v| = |v_1| + \dots + |v_n|$ and a *weight* weight(v) = n.

The suspension is

$$sV = \mathbb{K}s \otimes V$$

with |s| = 1 (it increments the weight).

KOSZUL SIGN CONVENTION

The symmetry $\tau: V \otimes W \to W \otimes V$ is

$$au(v\otimes w) = (-1)^{|v||w|}w\otimes v$$

KOSZUL SIGN CONVENTION

The symmetry $au: V \otimes W o W \otimes V$ is $au(v \otimes w) = (-1)^{|v||w|} w \otimes v$

Similarly,

$$(f\otimes g)(v\otimes w) = (-1)^{|g||v|}f(v)\otimes g(w)$$

and

$$(f\otimes g)\circ (f'\otimes g') \quad = \quad (-1)^{|g||f'|}(f\circ f')\otimes (g\circ g')$$

KOSZUL SIGN CONVENTION

The symmetry $au : V \otimes W \to W \otimes V$ is $au(v \otimes w) = (-1)^{|v||w|} w \otimes v$

Similarly,

$$(f\otimes g)(v\otimes w) = (-1)^{|g||v|}f(v)\otimes g(w)$$

and

$$(f\otimes g)\circ (f'\otimes g') \quad = \quad (-1)^{|g||f'|}(f\circ f')\otimes (g\circ g')$$

CODERIVATIONS

For instance, if (A, μ) is a graded algebra, we can extend multiplication as a coderivation on $T^{c}(A)$:

$$d^{(n)} = \sum_{i+j+2=n} \operatorname{id}_i \otimes \mu \otimes \operatorname{id}_j$$

which means

$$d(x_1 \otimes \ldots \otimes x_n) = \sum_{i=1}^{n-1} (-1)^{i-1} x_1 \otimes \ldots \otimes x_{i-1} \otimes \mu(x_i \otimes x_{i+1}) \otimes x_{i+2} \otimes \ldots \otimes x_n$$

when $|\mu| = -1$ and $|x_i| = 1$.

DGA ALGEBRAS

A differential graded vector space is (V, d) with $d: V \rightarrow V$ such that |d| = -1 and $d^2 = 0$.

The **tensor product** $V \otimes W$ has differential

$$d_{V\otimes W} = d_V \otimes \mathrm{id}_W + \mathrm{id}_V \otimes d_W$$

DGA ALGEBRAS

A differential graded vector space is (V, d) with $d: V \rightarrow V$ such that |d| = -1 and $d^2 = 0$.

The **tensor product** $V \otimes W$ has differential

$$d_{V\otimes W} = d_V \otimes \mathrm{id}_W + \mathrm{id}_V \otimes d_W$$

A differential graded associative algebra (dga alg.) (A, d) is a monoid in dgvs: differential is a derivation for the product

$$d \circ \mu = \mu \circ (d \otimes \operatorname{id} + \operatorname{id} \otimes d)$$

It is *connected* when $A_0 = \mathbb{K}1$.

SPECTRAL SEQUENCES

Suppose that we have a chain complex

$$\ldots \to C_n \stackrel{d_n}{\to} C_{n-1} \to \ldots$$

together with a filtration

$$\ldots \subseteq F_p C_n \subseteq F_{p+1} C_n \subseteq \ldots$$

compatible with differential so that we have a chain complex F_pC .

SPECTRAL SEQUENCES

Starting from $F_{\bullet}C_{\bullet}$,

- ▶ we define $E_{p,q}^0 = F_p C_{p+q} / F_{p-1} C_{p+q}$ with $d^0 : E_{\bullet,\bullet}^0 \to E_{\bullet,\bullet-1}^0$ induced by d
- $E^1 = H(E^0, d^0)$, there exists a boundary $d^1 : E^1_{\bullet, \bullet} \to E^1_{\bullet-1, \bullet}$
- ► $E^2 = H(E^1, d^1)$, there exists a boundary $d^1 : E^1_{\bullet, \bullet} \to E^1_{\bullet-2, \bullet+1}$ ► etc.

we get pages

$$(E^r_{p,q}, d^r)$$
 with $d^r: E^r_{ullet,ullet} o E^r_{ullet-r,ullet+r-1}$

Theorem

When F is bounded below ($\forall n, \exists k, \forall p \leq k, F_pC_n = 0$) and exhaustive ($C_n = \bigcup_p F_pC_n$) the sequence converges:

$$\operatorname{gr} H(C_{\bullet}, d) = E^{\infty}$$

i.e.

$$F_{p}H_{p+q}(C)/F_{p-1}H_{p+q}(C) \cong E_{p,q}^{\infty}$$

A **model** $p: M \rightarrow A$ is a surjective morphism of dga alg which is a quasi-iso.

A **model** $p: M \rightarrow A$ is a surjective morphism of dga alg which is a quasi-iso.

A model is **minimal** when

- 1. *M* is quasi-free: for some *V*, $M \cong TV$ as a graded algebra
- 2. its differential is *decomposable*: $d: V \rightarrow TV^{(\geq 2)}$
- 3. V admits a decomposition into

$$V = \bigoplus_{k \ge 1} V^{(k)}$$

such that

$$d\left(V^{(k+1)}
ight) \subseteq T\left(igoplus_{i=1}^k V^{(i)}
ight)$$

Such a model is unique up to (non-canonical) isomorphism.

A projective (=free) resolution of M by A-modules is **minimal** when matrices corresponding to

$$\ldots \rightarrow A^{b_i} \rightarrow A^{b_{i-1}} \rightarrow \ldots$$

contain only *positive* entries in A.

A projective (=free) resolution of M by A-modules is **minimal** when matrices corresponding to

$$\ldots \rightarrow A^{b_i} \rightarrow A^{b_{i-1}} \rightarrow \ldots$$

contain only *positive* entries in A.

This means that all the boundary maps of

$$\ldots \to \mathbb{K} \otimes_{\mathcal{A}} \mathcal{A}^{b_1} \to \mathbb{K} \otimes_{\mathcal{A}} \mathcal{A}^{b_0} \to 0$$

are zero and thus

$$\operatorname{Tor}_{i}^{\mathcal{A}}(\mathbb{K}, M) = \mathbb{K}^{b_{i}}$$

(and similarly for Ext). It has minimal projective dimension $(\sup\{i \mid P_i \neq 0\}$ for a projective resolution P).

A projective (=free) resolution of M by A-modules is **minimal** when matrices corresponding to

$$\ldots \rightarrow A^{b_i} \rightarrow A^{b_{i-1}} \rightarrow \ldots$$

contain only *positive* entries in A.

This means that all the boundary maps of

$$\ldots \to \mathbb{K} \otimes_{\mathcal{A}} \mathcal{A}^{b_1} \to \mathbb{K} \otimes_{\mathcal{A}} \mathcal{A}^{b_0} \to 0$$

are zero and thus

$$\operatorname{Tor}_{i}^{\mathcal{A}}(\mathbb{K}, M) = \mathbb{K}^{b_{i}}$$

(and similarly for Ext). It has minimal projective dimension $(\sup\{i \mid P_i \neq 0\}$ for a projective resolution P).

An algebra is **Koszul** when the matrices of the boundary maps belong to A_1 .

BAR AND COBAR CONSTRUCTIONS

BAR AND COBAR FUNCTORS

We are going to construct two functors

- 1. $B : \mathbf{DGAAlg} \to \mathbf{DGACoalg}$
- $2. \ \Omega: \textbf{DGACoalg} \rightarrow \textbf{DGAAlg}$

such that

$\Omega \dashv B$

Moreover, the unit and counit

$$C o B\Omega C \qquad \Omega BA o A$$

will be quasi-iso, the counit thus providing a free resolution of A.

BAR AND COBAR FUNCTORS

We are going to construct two functors

- 1. $B : \mathbf{DGAAlg} \to \mathbf{DGACoalg}$
- $2. \ \Omega: \textbf{DGACoalg} \rightarrow \textbf{DGAAlg}$

such that

$\Omega \dashv B$

Moreover, the unit and counit

$$C o B\Omega C \qquad \Omega BA o A$$

will be quasi-iso, the counit thus providing a free resolution of A.

In fact, we have more:

 $DGAAlg(\Omega C, A) \cong Twisting(C, A) \cong DGACoalg(C, BA)$

Let's recap the case we all know.

We start from a monoid M and construct a free resolution

$$\dots \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} \dots \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$$

of \mathbb{Z} by left $\mathbb{Z}M$ -modules with

C_n = ZM[Mⁿ]
 ε : ZM[M⁰] → Z is the map such that ε([]) = 1, i.e. ε(∑_{u∈M} n_uu) = ∑_{u∈M} n_u
 ∂_n[a₁|...|a_n] is

$$a_1[a_2|\ldots|a_n] + \sum_{i=1}^{n-1} (-1)^i [a_1|\ldots|a_i a_{i+1}|\ldots|a_n] + (-1)^n [a_1|\ldots|a_{n-1}]$$

Geometrically, we have

- vertices a[]
- edges a[b] with $\partial_1(a[b]) = ab[] a[]$

$$a[] \xrightarrow{a[b]} ab[]$$

• triangles a[b|c] with $\partial_2(a[b|c]) = ab[c] - a[bc] + a[b]$

- tetrahedron a[b|c|d]
- etc.

We can construct a contracting homotopy

$$\dots \xrightarrow{\partial_{n+1}}_{\leq s_n} C_n \xrightarrow{\partial_n}_{\leq s_{n-1}} \dots \xrightarrow{\partial_2}_{\leq s_1} C_1 \xrightarrow{\partial_1}_{\leq s_0} C_0 \xrightarrow{\varepsilon}_{\leq \eta} \mathbb{Z} \longrightarrow 0$$

where η and the s_i are \mathbb{Z} -linear (not $\mathbb{Z}M$!) and such that

 $\varepsilon \eta = \mathrm{id}_{\mathbb{Z}} \qquad \partial_1 s_0 + \eta \varepsilon = \mathrm{id}_{C_0} \qquad \partial_{n+2} s_{n+1} + s_n \partial_{n+1} = \mathrm{id}_{C_{n+1}}$

by

- ▶ Because of the contracting homotopy, the sequence is exact (it's a free resolution of Z by ZM-modules).
- Between two free resolutions there is a morphism which is unique up to homotopy.
- ► Thus, the homology of the complex obtained by ⊗_{ZM} Z does not depend on the choice of the free resolution (only on M).

- ▶ Because of the contracting homotopy, the sequence is exact (it's a free resolution of Z by ZM-modules).
- Between two free resolutions there is a morphism which is unique up to homotopy.
- ► Thus, the homology of the complex obtained by ⊗_{ZM} Z does not depend on the choice of the free resolution (only on M).

Remark

We can get a slightly smaller resolution by setting

```
[a_1|\ldots|1|\ldots|a_n]=0
```

This is the normalized bar resolution.

FREE RESOLUTIONS

A resolution:

A morphism of resolutions:

An homotopy between morphism of resolutions:

such that

$$f_0 - g_0 = \partial'_1 h_0 \qquad \qquad f_n - g_n = \partial'_{n+1} h_n + h_{n+1} \partial'_n$$

A morphism of resolutions:

Proposition

Between two free resolutions there is a morphism. Proof.

 f_0 : ε' is surjective and C_0 free (projective).

 f_{n+1} : for every x in a basis of C_{n+1} , $f_n\partial_{n+1}(x) \in \operatorname{Im} \partial'_{n+1} = \operatorname{Ker} \partial'_n$ because $\partial_n\partial_{n+1} = 0$ and $\partial'_n f_n = f_{n-1}\partial_n$.

An homotopy between morphism of resolutions:

such that

$$f_0 - g_0 = \partial'_1 h_0$$
 $f_n - g_n = \partial'_{n+1} h_n + h_{n+1} \partial'_n$

Proposition

Between two morphisms of free resolutions there is an homotopy. Proof. Similar.

We start from an augmented algebra $A = \mathbb{K}1 \oplus \overline{A}$ concentrated in degree 0. The differential graded coalgebra BA is $T^{c}(s\overline{A})$ with differential the coderivation $d_{2} : BA \to BA$ extending

$$T^{c}(s\overline{A}) \twoheadrightarrow \mathbb{K}s \otimes \overline{A} \otimes \mathbb{K}s \otimes \overline{A} \xrightarrow{\mathrm{id} \otimes \tau \otimes \mathrm{id}} \mathbb{K}s \otimes \mathbb{K}s \otimes \overline{A} \otimes \overline{A} \xrightarrow{\mathrm{II}_{s} \otimes \mu_{\overline{A}}} \mathbb{K}s \otimes \overline{A}$$

with

$$\ \ \, \sqcap_s(s\otimes s)=s$$

• $\mu_{\overline{A}}$ is the restriction of μ to \overline{A}

Lemma

Because μ is associative, we have $(d_2)^2 = 0$ (i.e. $(d_2)^2$ measures associativity).

Lemma

Because μ is associative, we have $(d_2)^2 = 0$ (i.e. $(d_2)^2$ measures associativity).

Lemma

The bar complex of A can be identified with the nonunital Hochschild complex of \overline{A} :

$$\dots \longrightarrow \overline{A}^{\otimes n} \xrightarrow{\partial_n} \overline{A}^{\otimes n-1} \longrightarrow \dots \longrightarrow \overline{A} \longrightarrow \mathbb{K} \longrightarrow 0$$

with

$$\partial_n[a_1|\ldots|a_n] = \sum_{i=1}^{n-1} (-1)^{i-1}[a_1|\ldots|\mu(a_i,a_{i+1})|\ldots|a_n]$$

Lemma

Because μ is associative, we have $(d_2)^2 = 0$ (i.e. $(d_2)^2$ measures associativity).

Lemma

The bar complex of A can be identified with the nonunital Hochschild complex of \overline{A} :

$$\dots \longrightarrow \overline{A}^{\otimes n} \xrightarrow{\partial_n} \overline{A}^{\otimes n-1} \longrightarrow \dots \longrightarrow \overline{A} \longrightarrow \mathbb{K} \longrightarrow 0$$

with

$$\partial_n[a_1|\ldots|a_n] = \sum_{i=1}^{n-1} (-1)^{i-1}[a_1|\ldots|\mu(a_i,a_{i+1})|\ldots|a_n]$$

Proposition

For $f : A \rightarrow A'$ morphism of aug dga alg, $Bf : BA \rightarrow BA'$ is a quasi-iso.

If we start from a dga alg (A, d_A) there is an induced differential on $A^{\otimes n}$

$$d_1 = \sum_{i=1}^{n} (\mathrm{id}, \ldots, \mathrm{id}, d_A, \mathrm{id}, \ldots, \mathrm{id})$$

which induces a differential on $T^{c}A$. On can check

$$d_1\circ d_2+d_2\circ d_1=0$$

(because μ_A is a morphism of dg vector spaces) and we define

$$BA = (T^c(s\overline{A}), d_1 + d_2)$$

We start from a coaug graded coalg $C = \overline{C} \oplus \mathbb{K}1$. The reduced coproduct $\overline{\Delta} : \overline{C} \to \overline{C} \otimes \overline{C}$ is such that $\Delta(x) = 1 \otimes x + \overline{\Delta}(x) + x \otimes 1$.

We start from a coaug graded coalg $C = \overline{C} \oplus \mathbb{K}1$. The reduced coproduct $\overline{\Delta} : \overline{C} \to \overline{C} \otimes \overline{C}$ is such that $\Delta(x) = 1 \otimes x + \overline{\Delta}(x) + x \otimes 1$.

The cobar construction is the aug alg $\Omega C = T(s^{-1}\overline{C})$ with differential the derivation $d_2 : \Omega C \rightarrow \Omega C$ extending

 $\mathbb{K}s^{-1} \otimes \overline{C} \xrightarrow{\Delta_s \otimes \overline{\Delta}} \mathbb{K}s^{-1} \otimes \mathbb{K}s^{-1} \otimes \overline{C} \otimes \overline{C} \xrightarrow{\mathsf{id} \otimes \tau \otimes \mathsf{id}} \mathbb{K}s^{-1} \otimes \overline{C} \otimes \mathbb{K}s^{-1} \otimes \overline{C}$ with $\Delta_s(s^{-1}) = -s^{-1} \otimes s^{-1}$.

We start from a coaug graded coalg $C = \overline{C} \oplus \mathbb{K}1$. The reduced coproduct $\overline{\Delta} : \overline{C} \to \overline{C} \otimes \overline{C}$ is such that $\Delta(x) = 1 \otimes x + \overline{\Delta}(x) + x \otimes 1$.

The cobar construction is the aug alg $\Omega C = T(s^{-1}\overline{C})$ with differential the derivation $d_2 : \Omega C \rightarrow \Omega C$ extending

$$\begin{split} \mathbb{K}s^{-1} \otimes \overline{C} \xrightarrow{\Delta_s \otimes \overline{\Delta}} \mathbb{K}s^{-1} \otimes \mathbb{K}s^{-1} \otimes \overline{C} \otimes \overline{C} \xrightarrow{\mathsf{id} \otimes \tau \otimes \mathsf{id}} \mathbb{K}s^{-1} \otimes \overline{C} \otimes \mathbb{K}s^{-1} \otimes \overline{C} \\ \text{with } \Delta_s(s^{-1}) = -s^{-1} \otimes s^{-1}. \end{split}$$

This extends as before to graded coalg by taking $d_1 + d_2$ as differential with, on $C^{\otimes n}$,

$$d_1 = \sum_{i=1}^n (\mathrm{id}, \ldots, \mathrm{id}, d_C, \mathrm{id}, \ldots, \mathrm{id})$$

THE BAR RESOLUTION

Proposition We have an adjunction $\Omega \dashv B$.

Proposition

The counit $\varepsilon_A : \Omega BA \to A$ is the bar-cobar resolution.

Elements of (ΩBA) of weight *n* and degree *p* are

 $([a_1|\ldots|a_{k_1}] \parallel \ldots \parallel [a_1|\ldots|a_{k_n}])$

with $(k_1 - 1) + \ldots + (k_n - 1) = p$.

- The differential does:
 - ▶ split a [...]
 - multiply inside a [...]

• $\varepsilon_A([a_1] \parallel \ldots \parallel [a_n]) = a_1 \ldots a_n$ (and 0 if not all unary)

We have the following equivalences of categories:

 $DGAAlg(\Omega C, A) \cong Twisting(C, A) \cong DGACoalg(C, BA)$

Let's define twisting morphisms.

Given a (dga) coalgebra (C, Δ) and a (dga) algebra (A, μ) , the **convolution algebra** is $(\text{Hom}(C, A), \star)$ with

$$(f \star g) = \mu \circ (f \otimes g) \circ \Delta$$

Given a (dga) coalgebra (C, Δ) and a (dga) algebra (A, μ) , the **convolution algebra** is $(Hom(C, A), \star)$ with

$$(f \star g) = \mu \circ (f \otimes g) \circ \Delta$$

The map

$$C \xrightarrow{\Delta} C \otimes C \xrightarrow{\mathsf{id} \otimes \alpha} C \otimes A$$

induces a unique derivation on $C \otimes A$. It's equal to the coderivation induced by

$$C \otimes A \xrightarrow{\alpha \otimes \mathsf{id}} A \otimes A \xrightarrow{\mu} A$$

and both are equal to

$$d_{lpha} \quad = \quad (\mathsf{id}_{\mathcal{C}} \otimes \mu) \circ (\mathsf{id}_{\mathcal{C}} \otimes lpha \otimes \mathsf{id}_{\mathcal{A}}) \circ (\Delta \otimes \mathsf{id}_{\mathcal{A}})$$

Given a (dga) coalgebra (C, Δ) and a (dga) algebra (A, μ) , the **convolution algebra** is $(Hom(C, A), \star)$ with

$$(f \star g) = \mu \circ (f \otimes g) \circ \Delta$$

The map

$$C \xrightarrow{\Delta} C \otimes C \xrightarrow{\mathsf{id} \otimes \alpha} C \otimes A$$

induces a unique derivation on $C \otimes A$. It's equal to the coderivation induced by

$$C \otimes A \xrightarrow{\alpha \otimes \mathsf{id}} A \otimes A \xrightarrow{\mu} A$$

and both are equal to

(

$$d_{lpha} = (\mathrm{id}_{\mathcal{C}} \otimes \mu) \circ (\mathrm{id}_{\mathcal{C}} \otimes \alpha \otimes \mathrm{id}_{\mathcal{A}}) \circ (\Delta \otimes \mathrm{id}_{\mathcal{A}})$$

We have

$$d_lpha \circ d_eta = d_{lpha \star eta}$$

therefore $lpha \star lpha = 0$ implies $(d_lpha)^2 = 0.$

29 / 67

TWISTED DERIVATION

A twisting morphism is $\alpha : C \to A$ of degree -1 satisfying Maurer-Cartan:

$$\partial(\alpha) + \alpha \star \alpha = 0$$

with

$$\partial(\alpha) = d_A \circ \alpha + \alpha \circ d_C$$

TWISTED DERIVATION

A twisting morphism is $\alpha : C \to A$ of degree -1 satisfying Maurer-Cartan:

$$\partial(\alpha) + \alpha \star \alpha \quad = \quad \mathbf{0}$$

with

$$\partial(\alpha) = d_A \circ \alpha + \alpha \circ d_C$$

The **twisted derivation** is defined on $f : C \rightarrow A$ by

$$\partial_{\alpha}(f) = \partial(f) + [\alpha, f]$$

where

$$\partial(f) = d_C \circ f - (-1)^{|f|} f \circ d_A$$

and

$$[f,g] = f \star g - (-1)^{|f||g|} g \star f$$

This is a differential and a derivation wrt \star , $(\text{Hom}(C, A), \star, \partial_{\alpha})$ is thus a dga algebra.

TWISTED TENSOR PRODUCT

We define the twisted tensor product as

$$C \otimes_{\alpha} A = (C \otimes A, d_{C \otimes A} + d_{\alpha})$$

with

$$d_{C\otimes A} = d_C \otimes \mathrm{id}_A + \mathrm{id}_C \otimes d_A$$

and d_{α} is the lifting of $\alpha : C \to A$ as a (co)derivation.

TWISTED TENSOR PRODUCT

We define the twisted tensor product as

$$C \otimes_{\alpha} A = (C \otimes A, d_{C \otimes A} + d_{\alpha})$$

with

$$d_{C\otimes A} = d_C \otimes \mathrm{id}_A + \mathrm{id}_C \otimes d_A$$

and d_{α} is the lifting of $\alpha : C \rightarrow A$ as a (co)derivation.

We get a differential when α is a twisting morphism:

$$\begin{aligned} (d_{C\otimes A} + d_{\alpha})^2 &= d_{C\otimes A}^2 + d_{C\otimes A} \circ d_{\alpha} + d_{\alpha} \circ d_{C\otimes A} + d_{\alpha}^2 \\ &= d_{d_A \circ \alpha + \alpha \circ d_C} + d_{\alpha \star \alpha} \\ &= d_{\partial(\alpha) + \alpha \star \alpha} = 0 \end{aligned}$$

TWISTED TENSOR PRODUCT

THE ADJUNCTION

 $\mathsf{DGAAlg}(\Omega C, A) \cong \mathsf{Twisting}(C, A) \cong \mathsf{DGACoalg}(C, BA)$

The first equivalence:

A map

$$\phi \quad : \quad \Omega C = T(s^{-1}C) \to A$$

is characterized by its restriction $\overline{\varphi}: \overline{C} \to A$ (*T* is left adjoint) and thus by

$$arphi = c \mapsto \overline{arphi}(s^{-1}c)$$

• ϕ commutes with differentials:

$$d_A \circ \phi = \phi \circ (d_1 + d_2)$$

$$d_A \circ \varphi = -\varphi \circ d_C - \varphi \star \varphi$$

$$0 = d_A \circ \varphi + \varphi \circ d_C + \varphi \star \varphi$$

$$0 = \partial(\varphi) + \varphi \star \varphi$$

THE BAR RESOLUTION

By the equivalence of categories there is a (universal) twisting morphism

 $\pi: BA \to A$

given by

The twisted tensor product $BA \otimes_{\pi} A$ is the nonunital Hochschild complex with coefficients in A and is acyclic!

BUG: we've lost the first term!...

THE BAR RESOLUTION

We have that $BA \otimes_{\pi} A$ is $BA \otimes A$ as a graded space.

It differential (forgetting about suspensions):

- $\pi: BA \rightarrow A$ is the corestriction
- $\blacktriangleright \ d_{\pi} = (\mathsf{id}_{BA} \otimes \mu) \circ (\mathsf{id}_{BA} \otimes \pi \otimes \mathsf{id}_A) \circ (\Delta \otimes \mathsf{id}_A)$

$$\bullet \ 0 = \partial(\pi) + \pi \star \pi = \pi \circ d_{BA} + \pi \star \pi$$

COMPARISON THEOREM

Theorem

Let A (resp. C) be a connected wdga algebra (resp. coalgebra), for any twisting morphism the following are equivalent:

- 1. $C \otimes_{\alpha} A$ is acyclic
- 2. $A \otimes_{\alpha} C$ is acyclic
- 3. the canonical dga coalgebra morphism $C \rightarrow BA$ is a quasi-iso
- 4. the canonical dga algebra morphism $\Omega C \rightarrow A$ is a quasi-iso

Proof.

Using spectral sequences...

KOSZUL DUALITY FOR QUADRATIC ALGEBRAS

COMPARISON THEOREM

In good cases, we can construct from an algebra A a dg coalgebra $A^{\rm i}$ and a twisting morphism $\kappa:A^{\rm i}\to A$ such that

Theorem

The following are equivalent:

- 1. $A^{i} \otimes_{\kappa} A$ is acyclic
- 2. $A \otimes_{\kappa} A^{i}$ is acyclic
- 3. $A^i \rightarrow BA$ is a quasi-iso
- 4. $\Omega A^{i} \twoheadrightarrow A$ is a quasi-iso

and when these hold, Aⁱ gives a minimal resolution of A.

In other words, we are looking for a "small" coalgebra A^i playing the same role as BA.

QUADRATIC ALGEBRAS

A quadratic algebra A is

$$A = A(V,R) = TV/(R)$$

where (*R*) is the two-sided ideal generated by $R \subseteq V^{\otimes 2}$:

$$A = \mathbb{K} 1 \oplus \mathbb{V} \oplus \left(\mathbb{V}^{\otimes 2} / \mathbb{R} \right) \oplus \ldots \oplus \left(\mathbb{V}^{\otimes n} / \sum_{i+2+j=n} \mathbb{V}^{\otimes i} \otimes \mathbb{R} \otimes \mathbb{V}^{\otimes j} \right) \oplus \ldots$$

.

QUADRATIC ALGEBRAS

A quadratic algebra A is

$$A = A(V,R) = TV/(R)$$

where (*R*) is the two-sided ideal generated by $R \subseteq V^{\otimes 2}$:

$$A = \mathbb{K} 1 \oplus \mathbb{V} \oplus \left(\mathbb{V}^{\otimes 2} / \mathbb{R} \right) \oplus \ldots \oplus \left(\mathbb{V}^{\otimes n} / \sum_{i+2+j=n} \mathbb{V}^{\otimes i} \otimes \mathbb{R} \otimes \mathbb{V}^{\otimes j} \right) \oplus \ldots$$

It is universal among subalgebras A of TV such that

$$R \rightarrow TV \twoheadrightarrow A = 0$$

i.e.

TOWARDS A MINIMAL MODEL

Given A(V, R) quadratic we want to construct a quasi-free resolution:

- it is of the form (T(W), d)
- ► $d: W \to \bigoplus_{i \ge 2} W^{\otimes i}$

Such that there is a quasi-iso $(T(W), d) \twoheadrightarrow A$.

TOWARDS A MINIMAL MODEL

Given A(V, R) quadratic we want to construct a quasi-free resolution:

- it is of the form (T(W), d)
- ► $d: W \to \bigoplus_{i \ge 2} W^{\otimes i}$

Such that there is a quasi-iso $(T(W), d) \twoheadrightarrow A$.

Notice that A is weighted (length of words) but seen as a dga concentrated in degree 0.

TOWARDS A MINIMAL MODEL

Given A(V, R) quadratic we want to construct a quasi-free resolution:

- it is of the form (T(W), d)
- ► $d: W \to \bigoplus_{i \ge 2} W^{\otimes i}$

Such that there is a quasi-iso $(T(W), d) \twoheadrightarrow A$.

Notice that A is weighted (length of words) but seen as a dga concentrated in degree 0.

So, let's try:

- we start from W = V: $TV \twoheadrightarrow A$
- we need to kill relations: $W = V \oplus R$
- we need to kill relations between relations: $W = V \oplus R \oplus (R \otimes V \cap V \otimes R)$

etc.

QUADRATIC COALGEBRAS

The **quadratic coalgebra** is C(V, R) with $R \subseteq V^{\otimes 2}$ is the universal subcoalgebra of T^cV such that

i.e.

$$C(V, R) \longrightarrow T^{c}V$$
Explicitly,

$$C = \mathbb{K} 1 \oplus V \oplus R \oplus \ldots \oplus \left(\bigcap_{i+2+j=n} V^{\otimes i} \otimes R \otimes V^{\otimes j} \right) \oplus \ldots$$

 $C \rightarrow T^c V \rightarrow V^{\otimes 2}/R = 0$
The **Koszul dual** of A(V, R) is the coalgebra

$$A^{i} = C(sV, s^{2}R)$$

The **Koszul dual** of A(V, R) is the coalgebra

$$A^{i} = C(sV, s^{2}R)$$

In the case where R is generated by monomials, elements of degree n look like critical n-uples.

If we consider $\langle x, y | xx - yy \rangle$, elements of degree 3 are of the form a(xx - yy)x + b(xx - yy)y = cx(xx - yy) + dy(xx - yy)So

$$a=b=c=d=0$$

The Koszul dual algebra $A^!$ is defined by

$$(A^!)^{(n)} = s^n (A^{i^*})^{(n)}$$

The Koszul dual algebra $A^!$ is defined by

$$(A^!)^{(n)} = s^n (A^{i^*})^{(n)}$$

If we dualize the exact sequence

$$0 o R
ightarrow V^{\otimes 2} woheadrightarrow V^{\otimes 2}/R o 0$$

we get

$$0 \leftarrow R^* \twoheadleftarrow (V^*)^{\otimes 2} \leftarrow R^{\perp} \leftarrow 0$$

 R^{\perp} is the image of $(V^{\otimes 2}/R)^*$ in $(V^{\otimes 2})^* \cong V^* \otimes V^*$ (finite dim.), i.e. functions which cancel on R^{\perp} . We have

$$A^{i^*} = A(s^{-1}V, s^{-2}R^{\perp})$$
 $A^{!} = A(V^*, R^{\perp})$

The Koszul dual algebra $A^!$ is defined by

$$(A^!)^{(n)} = s^n (A^{i^*})^{(n)}$$

If we dualize the exact sequence

$$0 o R
ightarrow V^{\otimes 2} woheadrightarrow V^{\otimes 2}/R o 0$$

we get

$$0 \leftarrow R^* \twoheadleftarrow (V^*)^{\otimes 2} \leftarrow R^{\perp} \leftarrow 0$$

 R^{\perp} is the image of $(V^{\otimes 2}/R)^*$ in $(V^{\otimes 2})^* \cong V^* \otimes V^*$ (finite dim.), i.e. functions which cancel on R^{\perp} . We have

$$A^{i^*} = A(s^{-1}V, s^{-2}R^{\perp})$$
 $A^{!} = A(V^*, R^{\perp})$
When A is f.d., $(A^{!})^{!} = A$.

▶ $\langle x, y \mid \rangle$: an element $v \in R^{\perp}$ is $v \in V^* \otimes V^*$ satisfying

$$0 = v0$$

 $A^! = \mathbb{K} 1 \oplus \mathbb{K} \{x^*, y^*\}$ is the algebra of *dual numbers*.

• $\langle x, y \mid \rangle$: an element $v \in R^{\perp}$ is $v \in V^* \otimes V^*$ satisfying

$$0 = v0$$

 $A^{!} = \mathbb{K}1 \oplus \mathbb{K}\{x^{*}, y^{*}\} \text{ is the algebra of } dual \text{ numbers.}$ $\langle x, y \mid xy - yx \rangle: \text{ an element } v \in R^{\perp} \text{ is of the form}$

$$v = a(x^*x^*) + b(x^*y^* - y^*x^*) + c(x^*y^* + y^*x^*) + d(y^*y^*)$$

with b = 0. Therefore

$$A^! = T(\mathbb{K}\{x^*, y^*\})/(x^*x^*, x^*y^* + y^*x^*, y^*y^*)$$

►
$$\langle x, y \mid xx - yy \rangle$$
:
 $A^! = T(\mathbb{K}\{x^*, y^*\})/(x^*x^* + y^*y^*, x^*y^*, y^*x^*)$
► etc.

BACK TO BAR

We consider $BA = T^{c}(s\overline{A})$ over A(V, R) quadratic. We have three gradings on BA:

- the homological degree of $[u_1| \dots |u_n]$ is n
- the weight grading of $[u_1| \dots |u_n]$ is the sum of lengths of u_i

▶ the syzygy degree of $[u_1|...|u_n]$ is the weight grading minus nThe differential on BA is d_2 which is of weight degree 0 and syzygy degree 1, so we have a cochain complex

$$0 \longleftarrow V^{3}/(VR + RV) \longleftarrow (V^{2}/R \otimes V) \oplus (V \otimes V^{2}/R) \longleftarrow V \otimes V \otimes V$$
(3)

1

$$0 < V^2/R < V \otimes V$$
 (2)

$$0 \ll V$$
 (1)

K

0

(0)

Column: syzygy / row: weight

2

3

BACK TO BAR

$$0 < V^2/R < V \otimes V$$
 (2)

$$0 \prec V$$
 (1)

 \mathbb{K}

(0)

First column is $T^{c}(sV)$ of which A^{i} is a subspace.

BACK TO BAR

$$0 \longleftarrow V^{3}/(VR + RV) \longleftarrow (V^{2}/R \otimes V) \oplus (V \otimes V^{2}/R) \longleftarrow V \otimes V \otimes V$$
(3)

$$0 < V^2/R < V \otimes V$$
 (2)

$$0 \prec V$$
 (1)

 \mathbb{K}

(0)

3 2 1 0

First column is $T^{c}(sV)$ of which A^{i} is a subspace.

Proposition

The inclusion $A^i \rightarrow BA$ induces an iso of graded coalg:

 $A^{i} \xrightarrow{\sim} H^{0}(B^{\bullet}A)$ *i.e.* $A^{i(n)} \cong H^{0}(B^{\bullet}A)^{(n)}$

where $B^{\bullet}A$ is graded by syzygy degree and $(-)^{(n)}$ is the weight. Proof.

The inclusion $A^{i(n)} \rightarrow (sV)^{\otimes n}$ is the kernel of the differential.

SIMILARLY FOR COBAR

$H_0(\Omega_{ullet}C) \cong C^i$ (for the "obvious" definition of C^i)

THE KOSZUL COMPLEX

We define $\kappa: C(sV, s^2R) \rightarrow A(V, R)$ as

$$C(sV, s^2R) \twoheadrightarrow sV \xrightarrow{s^{-1}} V \rightarrowtail A(V, R)$$

It's twisting: $\kappa \star \kappa = 0$

THE KOSZUL COMPLEX

We define $\kappa : C(sV, s^2R) \rightarrow A(V, R)$ as

$$C(sV, s^2R) \twoheadrightarrow sV \xrightarrow{s^{-1}} V \rightarrowtail A(V, R)$$

It's twisting: $\kappa \star \kappa = 0$

The **Koszul complex** $A^{i} \otimes_{\kappa} A$ is weight graded. In weight *n*: $0 \to A^{i(n)} \to A^{i(n-1)} \otimes A^{(1)} \to \ldots \to A^{i(1)} \otimes A^{(n-1)} \to A^{(n)} \to 0$

COMPARISON THEOREM

Theorem

The following are equivalent:

- 1. $A^{i} \otimes_{\kappa} A$ is acyclic
- 2. $A \otimes_{\kappa} A^{i}$ is acyclic
- 3. $A^i \rightarrow BA$ is a quasi-iso
- 4. $\Omega A^{i} \twoheadrightarrow A$ is a quasi-iso

and when these hold, Aⁱ gives a minimal resolution of A.

Proof.

We use previous comparison theorem with A and $C = A^{i}$. ΩA^{i} is a free graded algebra, differential $d_{\Omega A^{i}} = d_{2}$ satisfies $d(W) \subseteq W^{\geq 2}$ by construction, by "dual" of previous proposition we have $H_{0}(\Omega_{\bullet}A^{i}) = A$ and the map $\Omega A \twoheadrightarrow A$ is a quasi-iso.

KOSZUL ALGEBRAS

A quadratic algebra A is Koszul if

• its Koszul complex $A^{i} \otimes_{\kappa} A$ is acyclic

•
$$H^d(B^{\bullet}A) = 0$$
 when $d > 0$

•
$$H_d(\Omega_{\bullet}A^{i}) = 0$$
 when $d > 0$

- $H^{\bullet}(BA)$ is a subcoalgebra of $T^{c}(sV)$
- A[!] is Koszul

▶ ...

KOSZUL ALGEBRAS ARE QUADRATIC

Koszul: $H^d(B^{\bullet}A) = 0$ when d > 0

 $H^1(B^{ullet}A)^{(3)} = 0$ means that $V \otimes V \otimes V \rightarrow (V^2/R \otimes V) \oplus (V \otimes V^2/R) \rightarrow V^3/(RV + VR)$

is exact.

KOSZUL ALGEBRAS ARE QUADRATIC

Koszul: $H^d(B^{\bullet}A) = 0$ when d > 0

 $H^1(B^ullet A)^{(3)}=0$ means that

$$\begin{array}{cccc} V \otimes V \otimes V & \to & (V^2/R \otimes V) \oplus (V \otimes V^2/R) & \to & V^3/(RV + VR) \\ [x|y|z] & \mapsto & [xy|z] - [x|yz] & \mapsto & 0 \end{array}$$

is exact.

KOSZUL ALGEBRAS ARE QUADRATIC

Koszul: $H^d(B^{\bullet}A) = 0$ when d > 0

Suppose *R* has elements of degree 2 and 3, $R_3 = \{xxx - yyy\}$. $H^1(B^{\bullet}A)^{(3)} = 0$ means that $V \otimes V \otimes V \rightarrow (V^2/R_2 \otimes V) \oplus (V \otimes V^2/R_2) \rightarrow V^3/(R_2V + R_3 + VR_2)$? \mapsto ? \mapsto xxx - yyy

is exact.

AN EXAMPLE

The dual of the symmetric algebra on X

$$S(\mathbb{K}X) = \mathbb{K}X/(x_ix_j - x_jx_i, i < j)$$

is the **exterior coalgebra**

$$\Lambda^{c}(s\mathbb{K}X) = \mathbb{K}X/(x_{i}x_{j}+x_{j}x_{i}, i \leq j)$$

and we have $\Lambda^c(s\mathbb{K}X)\otimes_{\kappa}S(\mathbb{K}X)$ acyclic.

Proof.

Define a contracting homotopy.

Therefore $S(\mathbb{K}X)$ is Koszul (and $\Lambda^c(sX)$ too).

Previous constructions can be generalized to the **quadratic-linear** case where $R \subseteq V \oplus V^{\otimes 2}$.

Previous constructions can be generalized to the **quadratic-linear** case where $R \subseteq V \oplus V^{\otimes 2}$.

Canonical example: universal enveloping alg of a Lie alg

$$U(\mathfrak{g}) = T(\mathfrak{g})/(x \otimes y - y \otimes x - [x, y])$$

Previous constructions can be generalized to the **quadratic-linear** case where $R \subseteq V \oplus V^{\otimes 2}$.

Canonical example: universal enveloping alg of a Lie alg

$$U(\mathfrak{g}) = T(\mathfrak{g})/(x \otimes y - y \otimes x - [x, y])$$

We write $q: TV \twoheadrightarrow V^{\otimes 2}$ so that qA = A(V, qR) is quadratic.

Previous constructions can be generalized to the **quadratic-linear** case where $R \subseteq V \oplus V^{\otimes 2}$.

Canonical example: universal enveloping alg of a Lie alg

$$U(\mathfrak{g}) = T(\mathfrak{g})/(x \otimes y - y \otimes x - [x, y])$$

We write $q: TV \twoheadrightarrow V^{\otimes 2}$ so that qA = A(V, qR) is quadratic.

From now on, we suppose

• (ql_1) : $R \cap V = 0$ (no superfluous generator)

Previous constructions can be generalized to the **quadratic-linear** case where $R \subseteq V \oplus V^{\otimes 2}$.

Canonical example: universal enveloping alg of a Lie alg

$$U(\mathfrak{g}) = T(\mathfrak{g})/(x \otimes y - y \otimes x - [x, y])$$

We write $q: TV \twoheadrightarrow V^{\otimes 2}$ so that qA = A(V, qR) is quadratic.

From now on, we suppose

 (ql₁): R ∩ V = 0 (no superfluous generator)

In this case there exists a map arphi: q R
ightarrow V such that

$$R = \{X - \varphi(X) \mid X \in qR\}$$

A DIFFERENTIAL

The map $\tilde{\varphi}$

$$(qA)^{i} = C(sV, s^{2}qR) \twoheadrightarrow s^{2}qR \xrightarrow{s^{-1}\varphi} sV$$

extends by coderivation as

$$d_{arphi}$$
 : $(qA)^{\mathsf{i}}
ightarrow \mathsf{T}^{\mathsf{c}}(sV)$

A DIFFERENTIAL

The map $\tilde{\varphi}$

$$(qA)^{i} = C(sV, s^{2}qR) \twoheadrightarrow s^{2}qR \xrightarrow{s^{-1}\varphi} sV$$

extends by coderivation as

$$d_{arphi}$$
 : $(qA)^{i}
ightarrow T^{c}(sV)$

If we suppose

▶
$$(ql_2)$$
: $(R \otimes V + V \otimes R) \cap V^{\otimes 2} \subseteq R \cap V^{\otimes 2}$
we have that

• the image of d_{φ} is in $(qA)^{i} \subseteq T^{c}(sV)$

►
$$d_{\varphi}^2 = 0$$

KOSZUL DUAL DGA COALGEBRA

Given A = A(V, R) quadratic-linear satisfying (ql_1) and (ql_2) , the **Koszul dual dga coalgebra** is

$$A^{i} = ((qA)^{i}, d_{\varphi}) = \left(C\left(T^{c}(sV), s^{2}R\right), d_{\varphi}\right)$$

KOSZUL DUAL DGA COALGEBRA

Given A = A(V, R) quadratic-linear satisfying (ql_1) and (ql_2) , the **Koszul dual dga coalgebra** is

$$A^{i} = ((qA)^{i}, d_{\varphi}) = (C(T^{c}(sV), s^{2}R), d_{\varphi})$$

What we did before generalizes to this case by taking this differential in account.

KOSZUL DUAL DGA COALGEBRA

Given A = A(V, R) quadratic-linear satisfying (ql_1) and (ql_2) , the **Koszul dual dga coalgebra** is

$$A^{i} = ((qA)^{i}, d_{\varphi}) = (C(T^{c}(sV), s^{2}R), d_{\varphi})$$

What we did before generalizes to this case by taking this differential in account.

The conditions (ql_1) and (ql_2) are equivalent to

 $(R) \cap V = \{0\}$ and $R = (R) \cap \{V \oplus V^{\otimes 2}\}$

A GRADED ALGEBRA

A quadratic-linear A(V, R) is filtered by

 $F_n A = \operatorname{Im}(\oplus_{k \leq n} V^{\otimes k} \twoheadrightarrow A)$

A GRADED ALGEBRA

A quadratic-linear A(V, R) is filtered by

$$F_n A = \operatorname{Im}(\oplus_{k \leq n} V^{\otimes k} \twoheadrightarrow A)$$

We write gr A for the associated graded algebra with $\operatorname{gr}_n A = F_n A / F_{n-1} A$ (intuitively, words which admit a writing of length n but none of length < n).

A GRADED ALGEBRA

A quadratic-linear A(V, R) is filtered by

$$F_n A = \operatorname{Im}(\oplus_{k \leq n} V^{\otimes k} \twoheadrightarrow A)$$

We write gr A for the associated graded algebra with $\operatorname{gr}_n A = F_n A / F_{n-1} A$ (intuitively, words which admit a writing of length n but none of length < n).

Theorem (PBW) When A q-I algebra is Koszul, the epimorphism

$$p$$
 : $qA \rightarrow grA$

is an isomorphism of graded algebras.

Proof. Spectral sequences...

THE REWRITING METHOD
THE REWRITING METHOD

Given a quadratic algebra A(V, R), we can

- 1. order a basis of V,
- 2. extend this order to monomials of TV (generally using deglex)
- 3. choose a basis of R and see it as rewriting rules $r_{lead} \rightarrow (r r_{lead})$
- 4. check that critical pairs are confluent

In this case, the algebra is Koszul!

When A = A(V, R) admits a nice filtration, there exists a morphism

$$\overset{\circ}{A} = A(V, R_{lead}) \twoheadrightarrow \operatorname{gr} A$$

if $\stackrel{\circ}{A}$ is Koszul (often easier to show) and the map is an iso (in weight 3) then A is also Koszul.

When A = A(V, R) admits a nice filtration, there exists a morphism

$$\overset{\circ}{A} = A(V, R_{lead}) \twoheadrightarrow \operatorname{gr} A$$

if A is Koszul (often easier to show) and the map is an iso (in weight 3) then A is also Koszul.

The deglex ordering induces a grading on TV which refines the weight grading. We consider the associated filtration

$$F_p TV = \bigoplus_{q=0}^p TV_q$$

(elements below the *p*-th element in the deglex ordering).

When A = A(V, R) admits a nice filtration, there exists a morphism

$$\overset{\circ}{A} = A(V, R_{lead}) \twoheadrightarrow \operatorname{gr} A$$

if A is Koszul (often easier to show) and the map is an iso (in weight 3) then A is also Koszul.

The deglex ordering induces a grading on TV which refines the weight grading. We consider the associated filtration

$$F_p TV = \bigoplus_{q=0}^p TV_q$$

(elements below the *p*-th element in the deglex ordering). We can consider its image under $TV \rightarrow A$ and define

$$\operatorname{gr}_{p}A = F_{p}A/F_{p-1}A$$

Proposition

If the algebra gr A is Koszul then so is A.

Proof.

Spectral sequences...

Proposition

If the algebra gr A is Koszul then so is A.

Proof.

Spectral sequences...

We have

with ψ iso in weights 0, 1 and 2.

If
$$\psi$$
 is iso and $\overset{\circ}{A}$ is Koszul, so is A.

THE DIAMOND LEMMA

Theorem

Suppose that A = A(V, R) quadratic such that A is Koszul. If $\stackrel{\circ}{A} \rightarrow gr A$ is injective in weight 3 then it is an isomorphism (in every weight). And A is Koszul.

Proof.

Spectral sequences...

MONOMIAL ARE KOSZUL

Theorem

Any quadratic monomial algebra A = A(V, R) is Koszul.

MONOMIAL ARE KOSZUL

Theorem

Any quadratic monomial algebra A = A(V, R) is Koszul.

Proof.

We fix a basis Σ_V of V and Σ_R of R and define

► $L^{(n)}$: normal forms $a_1 ldots a_n$ such that $\forall i, a_i a_{i+1} \notin \Sigma_R$ ► $\overline{L}^{(n)}$: critical pairs $a_1 ldots a_n$ such that $\forall i, a_i a_{i+1} \in \Sigma_R$ L is a basis of A and \overline{L} is a basis of A^i . A basis of $A^i \otimes_{\kappa} A$ is $a_1 ldots a_m \otimes b_1 ldots b_n$ with $a_1 ldots a_m \in \overline{L}^{(m)}$ and $b_1 ldots b_n \in L^{(n)}$ and we have

$$\begin{array}{rcl} d(a_1 \ldots a_m \otimes b_1 \ldots b_m) &=& a_1 \ldots a_{m-1} \otimes a_m b_1 \ldots b_n & \text{if } a_m b_1 \not\in \Sigma_R \\ &=& 0 & \text{if } a_m b_1 \in \Sigma_R \end{array}$$

In the latter case, this is the boundary of $a_1 \dots a_m b_1 \otimes b_2 \dots b_n$ and the Koszul complex is acyclic.

PBW BASIS

Now, consider $\stackrel{\circ}{A}$ associated to a quadratic algebra: it is monomial and thus Koszul.

The elements of *L* form a basis of A and their image under $\psi : A \xrightarrow{\circ} \operatorname{gr} A \cong A$ span *A*. When they are independent they form a **PBW basis** (or **Gröbner basis**) of *A* and ψ is an iso.

PBW BASIS

Now, consider $\stackrel{\circ}{A}$ associated to a quadratic algebra: it is monomial and thus Koszul.

The elements of *L* form a basis of A and their image under $\psi : A \rightarrow gr A \cong A$ span *A*. When they are independent they form a **PBW basis** (or **Gröbner basis**) of *A* and ψ is an iso.

It's enough to check this in weight 3.