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ALGEBRAS

An (unital) algebra is a monoid in Vect.
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ALGEBRAS

An (unital) algebra is a monoid in Vect.

The tensor algebra over V is
TV = KleVeVv®2gv®g...

It is the free algebra over V.
In particular, when V =Kx; @ ... ®Kx,, TV =K(xq,..., ).

An augmented algebra is equipped with a morphism of algebras
€: A — K. In this case A = K1 & Ker A.

~

non-unital algebras = augmented unital algebras

4 /67



DERIVATIONS

A derivation d : A — M of a bimodule M over A satisfies
d(ab) = d(a) b+ ad(b)

We write Der(A, M) for the space of derivations.
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DERIVATIONS

A derivation d : A — M of a bimodule M over A satisfies
d(ab) = d(a) b+ ad(b)

We write Der(A, M) for the space of derivations.

Proposition
When A = TV, we have

Hom(V,M) = Der(TV,M)
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COALGEBRAS

Dually, a coalgebra is a comonoid in Vect.

The tensor coalgebra over V is
TV = KloVeV®2gVv®g. ..

equipped with the deconcatenation tensor product
n
Alvy...vp) = Zvl...v,-®v,-+1...v,,
i=0

It is the cofree conilpotent coalgebra.
(conilpotent: Yv,3n € N, A"(v) = 0)

6

67



CODERIVATIONS

A coderivation d : C — C of a coalgebra (C, A) should satisfy

Aod = (d®id)oA+(d®d)oA

Proposition

When C = TV, any coderivation is uniquely determined by its
weight 1 component

projy

TeCc—95 Tev v
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GRADED VECTOR SPACES

A graded vector space is



GRADED VECTOR SPACES

A graded vector space is

v = v

i€Z

Their tensor product is defined by

(Vew), = € Vview
i+j=n
Its elements v = v; ... v, admit a degree |v| = |vi| + ...+ |v,| and

a weight weight(v) = n.
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GRADED VECTOR SPACES

A graded vector space is

v = v

i€Z

Their tensor product is defined by

(Vew), = € Vview
i+j=n
Its elements v = v; ... v, admit a degree |v| = |vi| + ...+ |v,| and

a weight weight(v) = n.

The suspension is
sV = Ks®V

with |s| =1 (it increments the weight).
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KOSZUL SIGN CONVENTION

Thesymmetry 7: VW - W® Vis

rvow) = (D)VI"wey
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KOSZUL SIGN CONVENTION

Thesymmetry 7: VW - W® Vis

rvow) = (D)VI"wey
Similarly,
(fegveow) = (-1)EMfiv)egw)
and
(fog)o(fog) = (-1 (for)e(gog)
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CODERIVATIONS

For instance, if (A, ) is a graded algebra, we can extend
multiplication as a coderivation on T<(A):

d” = Y idieupeid
i+j+2=n
which means
n—1 )
da®...0x) = > (-1) @, . .@x_10u(x®xi11)@Xi2®. . .©xp

i=1

when |u] = —1 and |x;| = 1.
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DGA ALGEBRAS

A differential graded vector space is (V,d) with d: V — V
such that |d| = —1 and d? = 0.

The tensor product V ® W has differential

dvew = dv®idw +idy ® dw
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DGA ALGEBRAS

A differential graded vector space is (V,d) with d: V — V
such that |d| = —1 and d? = 0.

The tensor product V ® W has differential

dvew = dv®idw +idy ® dw

A differential graded associative algebra (dga alg.) (A, d) is a
monoid in dgvs: differential is a derivation for the product

dopy = po(d®id+id® d)

It is connected when Ag = K1.
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SPECTRAL SEQUENCES

Suppose that we have a chain complex
L C,,ﬁﬁ Cho1— ...
together with a filtration
C FRG < FuG C

compatible with differential so that we have a chain complex F,C.

B R -2 B P Ry -
U U U

ARG --FCG -G
U U U

ds3 d d d

F0C2 2 F0C1 — F0C04>0
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SPECTRAL SEQUENCES

Starting from FqC,,
> we define qu = FpCptq/Fp—1Cprq With d°: E,Oy, — E,Oj._l
induced by d
> E' = H(E®,d°), there exists a boundary d* : EJ, — E} |,
> E? = H(E',d"), there exists a boundary d* : EJ, — E} ,,,;
> etc.
we get pages

(E,;q,dr) with d" Ege = Eq teir1

Theorem
When F is bounded below (Vn,3k,¥p < k,F,C, =0) and
exhaustive (C, = U, FpC,) the sequence converges:

grH(C,d) = E=™

ie.

FpHp+q(C)/Fp*1Hp+q(C) = E/;Oq

13 /67



MINIMAL MODELS

A model p: M — A is a surjective morphism of dga alg which is a
quasi-iso.
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MINIMAL MODELS

A model p: M — A is a surjective morphism of dga alg which is a
quasi-iso.

A model is minimal when
1. M is quasi-free: for some V, M = TV as a graded algebra
2. its differential is decomposable: d : V — TV(22)
3. V admits a decomposition into

v = Ppvi

k>1

such that .
d (v(k“)) c T (@ v(">>
i=1

Such a model is unique up to (non-canonical) isomorphism.

14 /67



MINIMAL MODELS

A projective (=free) resolution of M by A-modules is minimal
when matrices corresponding to

Ry L Ry L S

contain only positive entries in A.
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MINIMAL MODELS

A projective (=free) resolution of M by A-modules is minimal
when matrices corresponding to

Ry L Ry L S

contain only positive entries in A.

This means that all the boundary maps of
oo Kea AP 5 Kea AP — 0
are zero and thus
Tord(K,M) = Kb

(and similarly for Ext). It has minimal projective dimension
(sup{i | P; # 0} for a projective resolution P).
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MINIMAL MODELS

A projective (=free) resolution of M by A-modules is minimal
when matrices corresponding to

Ry L Ry L S

contain only positive entries in A.

This means that all the boundary maps of
oo K@a A 5 K@a A -0
are zero and thus
Tord(K,M) = Kb
(and similarly for Ext). It has minimal projective dimension

(sup{i | P; # 0} for a projective resolution P).

An algebra is Koszul when the matrices of the boundary maps
belong to A;.

15 /67



BAR AND COBAR
CONSTRUCTIONS



BAR AND COBAR FUNCTORS

We are going to construct two functors
1. B: DGAAIg — DGACoalg
2. Q: DGACoalg — DGAAIg

such that
Q 4 B

Moreover, the unit and counit
C — BQC QBA — A

will be quasi-iso, the counit thus providing a free resolution of A.
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BAR AND COBAR FUNCTORS

We are going to construct two functors
1. B: DGAAIg — DGACoalg

2. Q: DGACoalg — DGAAIg
such that

Q 4 B
Moreover, the unit and counit

C — BQC QBA — A

will be quasi-iso, the counit thus providing a free resolution of A.

In fact, we have more:

DGAAIg(QC,A) =

Twisting(C,A) =

DGACoalg(C, BA)

17 /67



THE BAR RESOLUTION

Let's recap the case we all know.
We start from a monoid M and construct a free resolution

On On 15, 15,
jiis Nyl P s G 7 0

G

of Z by left ZM-modules with
» Cp=ZM[M"]
» ¢ : ZM[MP] — Z is the map such that ¢([]) = 1,
ie. e(Xuem Mut) = 3 uem Nu
> Oplai]...|an] is

n—1
afa|. .. an]+ > (—=1)[a1]. .. |aiait1] - - |an]+(=1)"[a1] . . |an-1]
i=1

18 /67



THE BAR RESOLUTION

Geometrically, we have
> vertices 3]
> edges a[b] with 01(a[b]) = ab[] — a]

all B ap

» triangles a[b|c] with d2(a[b|c]) = ab[c] — a[bc] + a[b]

ab|]

— b abcl]

» tetrahedron a[b|c|d]

> etc.

19 /67



THE BAR RESOLUTION

We can construct a contracting homotopy

On+1 On 02 o1 €
C, - 1 Go 7 ——0

Sn Sp—1 S1 So n

where 1 and the s; are Z-linear (not ZM!) and such that

en=idz  Oiso+ne=idg,  Ont2Snt+1 + SnOnt1 =idc,,,
by
n(1) =1 sn(aola1]. . - |an]) = [aola1]. . . |an]
abl]
7 A

“,lqﬂ

[ab]
[""v_’?b a[] _alblc]
Sl g albe

IE ~ abc[]

[abc]

20 /67



THE BAR RESOLUTION

» Because of the contracting homotopy, the sequence is exact
(it's a free resolution of Z by ZM-modules).

» Between two free resolutions there is a morphism which is
unique up to homotopy.

» Thus, the homology of the complex obtained by — Q7 Z does
not depend on the choice of the free resolution (only on M).

21/67



THE BAR RESOLUTION

» Because of the contracting homotopy, the sequence is exact
(it's a free resolution of Z by ZM-modules).

» Between two free resolutions there is a morphism which is
unique up to homotopy.

» Thus, the homology of the complex obtained by — Q7 Z does
not depend on the choice of the free resolution (only on M).

Remark
We can get a slightly smaller resolution by setting

[a1]...]1]...]a,] =0

This is the normalized bar resolution.

21/67



FREE RESOLUTIONS

A resolution:

0 On 15,
syl 2 G




FREE RESOLUTIONS

A morphism of resolutions:

On On o 0

+1 Cn ¢l Cl 1 CO 7
fnl fll foi idl
C C G 7

Ia " O % oo O

O<—0O

22 /67



FREE RESOLUTIONS

An homotopy between morphism of resolutions:

O e 8"/... 2. - =7 0
Aot alorde |
/ C/ / q G Z 0
/A 9, % 2 4
such that
fo—go = aihO fn—8&n= a;Hrlhn + hn+la;1

22 /67



FREE RESOLUTIONS

A morphism of resolutions:

On 3
L LN o . S /S |
!/ / !/
T G G G 0
Proposition

Between two free resolutions there is a morphism.

Proof.

fo: €' is surjective and Cp free (projective).

fay1: for every x in a basis of Cpi1, f10p11(x) € ImI), 1 = Ker 0],
because 9,0,+1 = 0 and 9,,f, = f,_10,. O

22 /67



FREE RESOLUTIONS

An homotopy between morphism of resolutions:

e 8"/... % T
A A o
e c e cl c, Z 0
Ot O 9 o ¢
such that
fo— 8o = 81/70 fn—8&n = a:Hrlhn + hn+la:1
Proposition

Between two morphisms of free resolutions there is an homotopy.
Proof.

Similar. O

22 /67



THE BAR CONSTRUCTION

We start from an augmented algebra A = K1 @ A concentrated in
degree 0. The differential graded coalgebra BA is T¢(sA) with
differential the coderivation d, : BA — BA extending

(A = — id®T®id —  — N®uz _
T¢(sA) » Ks AQKs®A —— Ks@Ks@A®A — Ks® A

with
» MNs(s®@s)=s
> pz is the restriction of 1 to A
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THE BAR CONSTRUCTION

Lemma
Because ju1 is associative, we have (dz)? = 0
(i.e. (d2)? measures associativity).
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THE BAR CONSTRUCTION

Lemma
Because ju1 is associative, we have (dz)? = 0
(i.e. (d2)? measures associativity).

Lemma

The bar complex of A can be identified with the nonunital
Hochschild complex of A:

Z@n 8,; Z@n—l

|
~
o

with

n—1
Onla1]...lan] = (=1)Ya1|...|u(ai, ais1)] - - |an]
1

i=
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THE BAR CONSTRUCTION

Lemma
Because p is associative, we have (d2)? = 0
(i.e. (d2)? measures associativity).

Lemma
The bar complex of A can be identified with the nonunital
Hochschild complex of A:

Z@n 8,; Z@n—l

|
~
o

with

n—1
Oplaa]. .. |an] = (1) Haul. .. lu(ai, aip1)] - - - lan]
i=1
Proposition
For f : A— A’ morphism of aug dga alg, Bf : BA— BA' is a
quasi-iso.
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THE BAR CONSTRUCTION

If we start from a dga alg (A, da) there is an induced differential
on A®"

d = zn:(id,...,id,dA,id,...,id)
i=1
which induces a differential on T<A. On can check
diodr+drod; =0
(because pi4 is a morphism of dg vector spaces) and we define

BA = (TS(sA),di+ d)

25 /67



THE COBAR CONSTRUCTION

We start from a coaug graded coalg C = C @ K1. The reduced
coproduct A : C — C® C is such that
Ax)=1®x+A(x) +x® 1.
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THE COBAR CONSTRUCTION

We start from a coaug graded coalg C = C @ K1. The reduced
coproduct A : C — C® C is such that
Ax)=1®x+A(x) +x® 1.

The cobar construction is the aug alg QC = T(s71C) with
differential the derivation d, : QC — QC extending

Ks1gC 228, K 1lgKs 1oCoC 4784 K 1gToKs 10T

with Ag(s™!) = —st@s 1
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THE COBAR CONSTRUCTION

We start from a coaug graded coalg C = C @ K1. The reduced
coproduct A : C — C® C is such that
Ax)=1®x+A(x) +x® 1.

The cobar construction is the aug alg QC = T(s71C) with
differential the derivation d, : QC — QC extending

Ks '@C 222 Ks1@Ks '@ CoC 2279 Ks 1o CaKs 1@ C
with Ag(s™!) = —st@s 1

This extends as before to graded coalg by taking di + db as
differential with, on C®",

n

= > (id,...,id, dc,id,...,id)
i=1

26
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THE BAR RESOLUTION

Proposition
We have an adjunction Q2 4 B.

Proposition
The counit €4 : 2BA — A is the bar-cobar resolution.

Elements of (2BA) of weight n and degree p are

(lanf - faw] A - M [l ak])

with (k1 = 1)+ ...+ (ks — 1) = p.
» The differential does:
» splital[...]
» multiply inside a [.. ]

» ca([a1]ll - - l[an]) = a1 ... an (and 0O if not all unary)

27 /67



TWISTING MORPHISMS

We have the following equivalences of categories:

DGAAIg(QC,A) = Twisting(C,A) = DGACoalg(C,BA)

Let’s define twisting morphisms.

28 /67



TWISTING MORPHISMS

Given a (dga) coalgebra (C,A) and a (dga) algebra (A, i), the
convolution algebra is (Hom(C, A), x) with

(fxg) = po(feg)oA

29 /67



TWISTING MORPHISMS

Given a (dga) coalgebra (C,A) and a (dga) algebra (A, i), the
convolution algebra is (Hom(C, A), x) with
(fxg) = no(fwg)oA

The map

C-2.coc® coA

induces a unique derivation on C ® A. It's equal to the
coderivation induced by

CoAL A A—tsA
and both are equal to
de = (dc®p)o(ide®@a®ida)o(A®ida)
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TWISTING MORPHISMS

Given a (dga) coalgebra (C,A) and a (dga) algebra (A, i), the
convolution algebra is (Hom(C, A), x) with
(fxg) = no(fwg)oA
The map
C-2-coc®®coa

induces a unique derivation on C ® A. It's equal to the
coderivation induced by

CoA22L AgA—ts A
and both are equal to
dy = (idc®u)o(idc®a®ida)o(A®ida)
We have
do 0 dg = dusp

therefore a x a = 0 implies (d,)? = 0.

29 /67



TWISTING MORPHISMS



TWISTING MORPHISMS

n ((L\
ﬁ C}/ ?“
dy 0 dﬁ = = = \j = da*ﬁ

30 /67



TWISTED DERIVATION

A twisting morphism is o : C — A of degree —1 satisfying
Maurer-Cartan:
a)+axa = 0
with
J(a) = daoca+aodc

31/67



TWISTED DERIVATION

A twisting morphism is o : C — A of degree —1 satisfying
Maurer-Cartan:
a)+axa = 0
with
d(a) = daoca+aodc

The twisted derivation is defined on f : C — A by

Ou(f) = O(f) +[o, ]
where
(f) = dcof—(-1)fIfod,
and
[f.e]l = frg—(-1)lelgcr

This is a differential and a derivation wrt x, (Hom(C, A), x, 0y) is
thus a dga algebra.

31/67



TWISTED TENSOR PRODUCT

We define the twisted tensor product as
CRA = (C®Adcga+ da)

with
dcga = dc®idatidc®da

and d, is the lifting of av: C — A as a (co)derivation.

32/67



TWISTED TENSOR PRODUCT

We define the twisted tensor product as
CRA = (C®Adcga+ da)

with
dcga = dc®idatidc®da

and d, is the lifting of av: C — A as a (co)derivation.

We get a differential when « is a twisting morphism:

(dewa+da)® = dEga+ dcwa© do + do o depa + d
ddAoa+aodC + da*a
- d@(a)—l—a*a =0

32/67



TWISTED TENSOR PRODUCT

dcoa © do + do 0 dega

A
U
i

= ddjoa+aodc



THE ADJUNCTION

DGAAIg(QC,A) = Twisting(C,A) = DGACoalg(C,BA)

The first equivalence:
> A map
¢ : QC=T(sC)—A
is characterized by its restriction @ : C — A (T is left adjoint)
and thus by
o = c—p(ste)
» ¢ commutes with differentials:
daod = ¢o(di+d)
dacy = —podc—ypx*p
0 = dacptypodct+oxe

0 = O(p)+ex*p

34 /67



THE BAR RESOLUTION

By the equivalence of categories there is a (universal) twisting
morphism

m:BA— A
given by
QC
/ 8o
A

The twisted tensor product BA ®, A is the nonunital Hochschild
complex with coefficients in A and is acyclic!

BUG: we've lost the first term!...

35/67



THE BAR RESOLUTION

We have that BA®, A is BA® A as a graded space.

It differential (forgetting about suspensions):
» 7 : BA — A is the corestriction
» dr = (idpa ® p) o (idpa @ T ®ida) o (A ®ida)

BA A

(A

BA A

» 0=0(n)+mxm=modpa+m*m

36
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COMPARISON THEOREM

Theorem
Let A (resp. C) be a connected wdga algebra (resp. coalgebra), for
any twisting morphism the following are equivalent:

1. C®q A is acyclic
2. A®, C is acyclic
3. the canonical dga coalgebra morphism C — BA is a quasi-iso

4. the canonical dga algebra morphism QC — A is a quasi-iso

Proof.

Using spectral sequences. . .

O
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KOSZUL
DUALITY
FOR
QUADRATIC
ALGEBRAS
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COMPARISON THEOREM

In good cases, we can construct from an algebra A a dg
coalgebra Al and a twisting morphism x : Al — A such that

Theorem

The following are equivalent:
1. Al ®, A is acyclic
2. A®, Al is acyclic
3. Al BA is a quasi-iso
4. QA — A is a quasi-iso

and when these hold, Al gives a minimal resolution of A.

In other words, we are looking for a “small” coalgebra Al playing
the same role as BA.

39/67



QUADRATIC ALGEBRAS
A quadratic algebra A is
A = AWV,R) = TV/R)
where (R) is the two-sided ideal generated by R C V®2:

A = Kl@V@(V®2/R)@...@(V®"/ 3 V®’®R®V®f)
i+2+j=n

D. ..

40 /67



QUADRATIC ALGEBRAS

A quadratic algebra A is
A = AWV,R) = TV/(R)

where (R) is the two-sided ideal generated by R C V®2:

A = Kl@V@(V®2/R)@...@(V®"/ 3 v®"®R®v®f)
i+2+j=n

It is universal among subalgebras A of TV such that

R—TV—+-A = 0
i.e.
TV A
\ 7
A(V.R)

D. ..

40 /67



TOWARDS A MINIMAL MODEL

Given A(V, R) quadratic we want to construct a quasi-free
resolution:

> it is of the form (T(W), d)
> d: W — Py W
Such that there is a quasi-iso (T (W), d) — A.

41 /67



TOWARDS A MINIMAL MODEL

Given A(V, R) quadratic we want to construct a quasi-free
resolution:

> it is of the form (T(W), d)
> d: W — Py W
Such that there is a quasi-iso (T (W), d) — A.

Notice that A is weighted (length of words) but seen as a dga
concentrated in degree 0.
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TOWARDS A MINIMAL MODEL

Given A(V, R) quadratic we want to construct a quasi-free
resolution:

> it is of the form (T(W), d)
> d: W — Py W
Such that there is a quasi-iso (T (W), d) — A.

Notice that A is weighted (length of words) but seen as a dga
concentrated in degree 0.

So, let's try:
» we start from W =V: TV —» A
» we need to kill relations: W =V & R

» we need to kill relations between relations:
W=VeR®(R®VNVE®R)

> etc.

41 /67



QUADRATIC COALGEBRAS

The quadratic coalgebra is C(V, R) with R C V®? is the
universal subcoalgebra of T¢V such that

C— TV V2R = 0
i.e.
C(V,R)
c Tev
Explicitly,

C = KigVeRa..a| (| VVeReVY|a..
i+2+j=n

42 /67



KOSZUL DUAL COALGEBRA

The Koszul dual of A(V, R) is the coalgebra

Al = (C(sV,s’R)

43 /67



KOSZUL DUAL COALGEBRA

The Koszul dual of A(V, R) is the coalgebra

Al = (C(sV,s’R)

In the case where R is generated by monomials, elements of
degree n look like critical n-uples.

43 /67



KOSZUL DUAL COALGEBRA

If we consider (x,y | xx — yy), elements of degree 3 are of the form

a(xx —yy)x + b(xx —yy)y = ox(xx —yy)+dy(xx — yy)

So

44 /67



KOSZUL DUAL ALGEBRA

The Koszul dual algebra A' is defined by

(AH(M = sn(A*)()



KOSZUL DUAL ALGEBRA

The Koszul dual algebra A' is defined by

(AH(M = sn(A*)()

If we dualize the exact sequence
0= R— V® 5 V®2/R 50

we get

0 R* « (V¥)*2 < Rt 0
R* is the image of (V®2/R)* in (V®2)* = V* @ V* (finite dim.),
i.e. functions which cancel on R+. We have

Ai* _ A(S—l V,S_zRJ_) A! — A(V*, RJ_)
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KOSZUL DUAL ALGEBRA

The Koszul dual algebra A' is defined by

(AH(M = sn(A*)()

If we dualize the exact sequence
0= R— V® 5 V®2/R 50

we get
0 R* « (V¥)*2 < Rt 0

R* is the image of (V®2/R)* in (V®2)* = V* @ V* (finite dim.),
i.e. functions which cancel on R+. We have

Ai* _ A(S—l V,S_zRJ_) A! — A(V*, RJ_)

When A'is f.d., (A")' = A.

45 /67



KOSZUL DUAL ALGEBRA

» (x,y | ): an element v € Rt is v € V* ® V* satisfying
0 = 0

A' =K1 @ K{x*, y*} is the algebra of dual numbers.

46 / 67



KOSZUL DUAL ALGEBRA

» (x,y | ): an element v € Rt is v € V* @ V* satisfying
0 = 0

A' =K1 @ K{x*, y*} is the algebra of dual numbers.
> (x,y | xy — yx): an element v € Rt is of the form

with b = 0. Therefore

46 / 67



KOSZUL DUAL ALGEBRA

> (X, y | xx —yy):

> etc.



BACK TO BAR

We consider BA = T¢(sA) over A(V, R) quadratic. We have three
gradings on BA:

» the homological degree of [ui|...|up] is n
» the weight grading of [u1] ... |up] is the sum of lengths of u;

» the syzygy degree of [ui|...|uy] is the weight grading minus n

The differential on BA is dy which is of weight degree 0 and syzygy
degree 1, so we have a cochain complex

0<— V3/(VR+RV) =<—— (VZ/ROV)B (VO V?/R) =<—— VR VOV (3)
0 V2/R VeV (2
0 v 1)
K (0)
3 2 1 0

Column: syzygy / row: weight
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BACK TO BAR

0<— V3/(VR+RV) <—— (VZ/ROV)® (VO VZ/R) =<—— VRV V (3)
0 V2/R VeV (2)
0 v ©)
K (0
3 2 1 0

First column is T¢(sV) of which Ai is a subspace.
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BACK TO BAR

0<— V3/(VR+RV) <—— (VZ/ROV)® (VO VZ/R) =<—— VRV V (3)
0 V2/R VeV (2)
0 v ©)
K (0)
3 2 1 0

First column is T¢(sV) of which Ai is a subspace.

Proposition
The inclusion At — BA induces an iso of graded coalg:

Al 5 HO(B*A) ie. Al o (0 Be A)(7)

where B*A is graded by syzygy degree and (—)(") is the weight.

Proof.
The inclusion Ai(" . (sV)®" is the kernel of the differential. [
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SIMILARLY FOR COBAR

VR N RV (VRR)®(RQV) —=VRVRV 3)
0 R VeV (2)
0o ——mMm— =V o)
K (0)

2 1 0

Ho(QC) = Ci

(for the “obvious” definition of C)
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THE KOSZUL COMPLEX

We define s : C(sV,s?R) — A(V, R) as

C(sV,s2R) — sV =5 V o A(V, R)

It's twisting: kx Kk =0
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THE KOSZUL COMPLEX

We define s : C(sV,s?R) — A(V, R) as

C(sV,s2R) — sV =5 V o A(V, R)

It's twisting: kx Kk =0

The Koszul complex Al ®, A is weight graded. In weight n:

0— Ai(”) - Ai(”_l) ® A(l) O Ai(l) ® A(”*l) N A(") -0
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COMPARISON THEOREM

Theorem
The following are equivalent:

1. Ai®, A is acyclic
2. A®, Al is acyclic
3. Al — BA is a quasi-iso
4. QA — A is a quasi-iso

and when these hold, Al gives a minimal resolution of A.

Proof.

We use previous comparison theorem with A and C = Al.

QA is a free graded algebra, differential doa = d» satisfies

d(W) C W=2 by construction, by “dual” of previous proposition
we have Hp(Q.Al) = A and the map QA — A is a quasi-iso. O

52 /67



KOSZUL ALGEBRAS

A quadratic algebra A is Koszul if
» its Koszul complex Al @, A is acyclic
H?(B®*A) = 0 when d >0
H4(QeAi) = 0 when d > 0
H*(BA) is a subcoalgebra of T¢(sV)

Al is Koszul

v

v

v

v
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KOSZUL ALGEBRAS ARE QUADRATIC

Koszul: HY(B*A) = 0 when d > 0

H(B*A)®) = 0 means that

VeVveV — (V2/ReV)a (Ve V?/R) — V3/(RV+ VR)

is exact.



KOSZUL ALGEBRAS ARE QUADRATIC

Koszul: HY(B*A) = 0 when d > 0

H(B*A)®) = 0 means that

VeveV — (V?/ReV)e (Ve V?/R) — V3/(RV+ VR)
[xly|z] > [xv|z] — [x|yz] > 0

is exact.
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KOSZUL ALGEBRAS ARE QUADRATIC

Koszul: HY(B*A) = 0 when d > 0

Suppose R has elements of degree 2 and 3, Rz = {xxx — yyy}.
H(B*A)®) = 0 means that

VeaveV — (V/ReV)d (Ve VE/R) — V3/(RV + R+ VR)
? > ? — XXX — Yyy

is exact.
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AN EXAMPLE

The dual of the symmetric algebra on X
SKX) = KX/(xixj — xjxi,i < j)
is the exterior coalgebra
AN (sKX) = KX/(xixj + xjxi, i < j)

and we have A°(sKX) ®, S(KX) acyclic.
Proof.

Define a contracting homotopy. Ol

Therefore S(KX) is Koszul (and A°(sX) too).
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QUADRATIC-LINEAR
ALGEBRAS



QUADRATIC-LINEAR ALGEBRAS

Previous constructions can be generalized to the quadratic-linear
case where R C V @ V®2,
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QUADRATIC-LINEAR ALGEBRAS

Previous constructions can be generalized to the quadratic-linear
case where R C V @ V®2,

Canonical example: universal enveloping alg of a Lie alg

Ule) = T(9)/(x®y-y@x—[xy])
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QUADRATIC-LINEAR ALGEBRAS

Previous constructions can be generalized to the quadratic-linear
case where R C V @ V®2,

Canonical example: universal enveloping alg of a Lie alg

Ule) = T(9)/(x®y-y@x—[xy])

We write g : TV — V®? so that gA = A(V, gR) is quadratic.
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QUADRATIC-LINEAR ALGEBRAS

Previous constructions can be generalized to the quadratic-linear
case where R C V @ V®2,

Canonical example: universal enveloping alg of a Lie alg

Ule) = T(9)/(x®y-y@x—[xy])

We write g : TV — V®? so that gA = A(V, gR) is quadratic.

From now on, we suppose
» (gh): RNV =0 (no superfluous generator)
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QUADRATIC-LINEAR ALGEBRAS

Previous constructions can be generalized to the quadratic-linear
case where R C V @ V®2,

Canonical example: universal enveloping alg of a Lie alg

Ule) = T(9)/(x®y-y@x—[xy])

We write g : TV — V®? so that gA = A(V, gR) is quadratic.

From now on, we suppose
» (gh): RNV =0 (no superfluous generator)

In this case there exists a map ¢ : gR — V such that
R = {X—-¢(X)|XeaqR)
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A DIFFERENTIAL

The map ¢

-1
(qA)i = C(sV,s%qR) — s2gR =% sV
extends by coderivation as

d, : (qA)' — T(sV)
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A DIFFERENTIAL

The map ¢

(gA)i = C(sV,s°qR) — s*qR e sy
extends by coderivation as
dy  (qA) = TE(sV)
If we suppose

» (gh): (R®V+V@R)NV®2C RNV
we have that

» the image of d is in (qA)I C T<(sV)

> d2=0
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KOSZUL DUAL DGA COALGEBRA

Given A = A(V, R) quadratic-linear satisfying (gh) and (gh), the
Koszul dual dga coalgebra is

A = ((gA),d,) = (C(TC(SV),szR),d¢>



KOSZUL DUAL DGA COALGEBRA

Given A = A(V, R) quadratic-linear satisfying (gh) and (gh), the
Koszul dual dga coalgebra is

A = ((qA),d,) = (C(TC(SV),szR),d¢>

What we did before generalizes to this case by taking this
differential in account.
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KOSZUL DUAL DGA COALGEBRA

Given A = A(V, R) quadratic-linear satisfying (gh) and (gh), the
Koszul dual dga coalgebra is

A = ((qA),d,) = (C(TC(W),&R),@)

What we did before generalizes to this case by taking this
differential in account.

The conditions (gh) and (gk) are equivalent to

(RYnV = {0} and R=(R)n{Va& Vv®}
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A GRADED ALGEBRA

A quadratic-linear A(V/, R) is filtered by
FA = Im(Sk<n VK — A)
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A GRADED ALGEBRA

A quadratic-linear A(V/, R) is filtered by
FA = Im(Sk<n VK — A)

We write gr A for the associated graded algebra with
gr, A= F,A/F,_1A (intuitively, words which admit a writing of
length n but none of length < n).
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A GRADED ALGEBRA

A quadratic-linear A(V/, R) is filtered by
FA = Im(Sk<n VK — A)

We write gr A for the associated graded algebra with
gr, A= F,A/F,_1A (intuitively, words which admit a writing of
length n but none of length < n).

Theorem (PBW)
When A q-I algebra is Koszul, the epimorphism

p : gA—>grA

is an isomorphism of graded algebras.

Proof.
Spectral sequences. .. O
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REWRITING
METHOD
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THE REWRITING METHOD

Given a quadratic algebra A(V/, R), we can

1.
2.
3.

order a basis of V,

extend this order to monomials of TV (generally using deglex)
choose a basis of R and see it as rewriting rules

Mead — (r — Flead)

check that critical pairs are confluent

In this case, the algebra is Koszul!
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REDUCTION BY FILTRATION

When A = A(V, R) admits a nice filtration, there exists a

morphism
(¢}

A= A(V, Rlead) — grA

if A is Koszul (often easier to show) and the map is an iso (in
weight 3) then A is also Koszul.
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REDUCTION BY FILTRATION

When A = A(V, R) admits a nice filtration, there exists a
morphism

A= A(V,Riead) — grA

if A is Koszul (often easier to show) and the map is an iso (in
weight 3) then A is also Koszul.

The deglex ordering induces a grading on TV which refines the
weight grading. We consider the associated filtration

P
TV = PT1v
q=0

(elements below the p-th element in the deglex ordering).
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REDUCTION BY FILTRATION

When A = A(V, R) admits a nice filtration, there exists a
morphism

A= A(V,Riead) — grA

if A is Koszul (often easier to show) and the map is an iso (in
weight 3) then A is also Koszul.

The deglex ordering induces a grading on TV which refines the
weight grading. We consider the associated filtration

P
TV = PT1v
q=0

(elements below the p-th element in the deglex ordering).
We can consider its image under TV — A and define

groA = FpA/FpiA
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REDUCTION BY FILTRATION

Proposition
If the algebra gr A is Koszul then so is A.
Proof.

Spectral sequences. . .

O
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REDUCTION BY FILTRATION

Proposition
If the algebra gr A is Koszul then so is A.

Proof.

Spectral sequences. . .

O

We have
TV

’Z = TV/(RIead) 7>> grA

with ) iso in weights 0, 1 and 2.

If ¢ is iso and /(Z\ is Koszul, so is A.
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THE DIAMOND LEMMA

Theorem .

Suppose that A = A(V, R) quadratic such that A is Koszul. If
A — gr A is injective in weight 3 then it is an isomorphism (in
every weight). And A is Koszul.

Proof.
Spectral sequences. . . O
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MONOMIAL ARE KOSZUL

Theorem
Any quadratic monomial algebra A = A(V, R) is Koszul.
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MONOMIAL ARE KOSZUL

Theorem
Any quadratic monomial algebra A = A(V, R) is Koszul.

Proof.
We fix a basis 2 of V and X g of R and define
» L") normal forms aj ... a, such that Vi, ajaiy1 € LR
> Z(n): critical pairs aj ... a, such that Vi, ajaj11 € X g
L is a basis of A and L is a basis of Ai. A basis of Al ®,. A is

ai...amQ b1 ...b, with al...amez(m) and b1...b,,€L(") and
we have

d(al...am®b1...bm) = a1...am-1®amb1... b, ifapb € ¥g
=0 ifamblezR

In the latter case, this is the boundary of a1 ...amb1 ® by ... b,
and the Koszul complex is acyclic. O
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PBW BASIS

(0]
Now, consider A associated to a quadratic algebra: it is monomial
and thus Koszul.

The elements of L form a basis of Z and their image under

P /Z — gr A= A span A. When they are independent they form a
PBW basis (or Grobner basis) of A and ¢ is an iso.
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PBW BASIS

(0]
Now, consider A associated to a quadratic algebra: it is monomial
and thus Koszul.

The elements of L form a basis of Z and their image under

P /Z — gr A= A span A. When they are independent they form a
PBW basis (or Grobner basis) of A and ¢ is an iso.

It's enough to check this in weight 3.
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